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Abstract: We introduce a betting game where the gambler aims to guess the last success epoch in
a series of inhomogeneous Bernoulli trials paced randomly in time. At a given stage, the gambler
may bet on either the event that no further successes occur, or the event that exactly one success is
yet to occur, or may choose any proper range of future times (a trap). When a trap is chosen, the
gambler wins if the last success epoch is the only one that falls in the trap. The game is closely related
to the sequential decision problem of maximising the probability of stopping on the last success.
We use this connection to analyse the best-choice problem with random arrivals generated by a
Pólya-Lundberg process.
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1. Introduction

Suppose a series of inhomogeneous Bernoulli trials, with a given profile of success
probabilities p = (pk, k ≥ 1), is paced randomly in time by some independent point
process. As the outcomes and epochs of the first k ≥ 0 trials become known at some time
t, the gambler is asked to bet on the time of the last success. The gambler is allowed to
choose either a bygone action, a next action, or a proper subset of future times called trap.
The gambler wins with bygone if no further successes occur, and with next if exactly one
success occurs after time t. In the case a trapping action is chosen, the gambler wins if the
last success epoch is isolated by the trap from the other success epochs.

Motivation to study this game stems from connections to the best-choice problems
with random arrivals [1–9] and the random records model [10,11]. A prototype problem of
this kind involves a sequence of rankable items arriving by a Poisson process with a finite
horizon, where the kth arrival is relatively the best (a record) with probability pk = 1/k.
The optimisation task is to maximise the probability of selecting the overall best item (the
last record) using a non-anticipating stopping strategy. Cowan and Zabczyk [5] showed
that the optimal strategy is myopic, which means that the decision to stop on a particular
record arrival only depends on whether the winning chance with bygone exceeds that with
next. They also determined the critical cut-offs of the optimal strategy and studied some
asymptotics. Similar results have been obtained for the best-choice problem with some
other pacing processes [1,4,7,9]. In this context, trapping can be employed to test optimality
of the myopic strategy, which fails if in some situations the action bygone outperforms
next but a trapping action is better still. Simple trapping strategies are easy to evaluate
and provide insight into the occurrence of records.

Regarding the pacing point process, we shall assume that it is mixed binomial [12].
This setting covers, in particular, the wide class of mixed Poisson processes. In essence,
this pacing process is characterised by the prior distribution π of the total number of trials,
and some background continuous distribution to spread the epochs of the trials in an i.i.d.
manner. Without loss of generality, the distribution will be assumed uniform; hence, given
the number of trials, they are scattered in time like the uniform order statistics on [0, 1]. We
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enrich the model with a natural size parameter by letting π vary within a family of power
series distributions.

The most obvious instance of a trapping action amounts to leaving some fraction of
time to isolate the last success. We call this trapping action the z-strategy, with a parameter
designating the proportion of time getting skipped (as compared to the real-time cut-off in
the name of the familiar ‘1/e-strategy’ of the best choice [13,14]). The overall optimality
of the class of z-strategies among all trapping actions will be explored for a fixed and a
random number of trials. For the problem of stopping on the last success, the optimality of
the myopic strategy will be shown to hold if the sequence of its cut-offs is decreasing and
interlacing with another set of critical points of z-strategies.

Then we specialise to the best-choice problem driven by a Pólya-Lundberg pacing
process, when the number of trials follows a logarithmic series distribution. In different
terms, the model was introduced by Bruss and Yor [15]. Bruss and Rogers [4] recently
observed that the strategy stopping at the first record after time threshold 1/e is not optimal.
We present a more detailed analysis; in particular, we use a curious property of certain
hypergeometric functions to show that the cut-offs of the myopic strategy are increasing,
hence the monotone case of optimal stopping [16] does not hold. Simulation suggests,
however, that the myopic strategy is very close to optimality, both in terms of the cut-
offs and the winning probability. A better approximation to optimality is achieved by
the strategy that stops as soon as bygone becomes more beneficial than trapping with a
z-strategy.

Viewed inside a bigger picture, the log-series prior appears as the edge ν = 0 instance
of the random records model with negative binomial distribution NB(ν, q) of the number
of trials. It is known that for ν = 1, corresponding to the geometric prior, all cut-offs
coincide [17,18], while for integer ν > 1 they are decreasing [7]. In [19], we show that for
0 < ν < 1 the myopic strategy is not optimal, with the pattern of cut-offs as in the log-series
case treated here.

2. Setting the Scene
2.1. The Probability Model

Let π be a power series distribution

πn = c(q)wnqn , n ≥ 0, (1)

with weights w0 ≥ 0, wn > 0 for n ≥ 1

and scale parameter q > 0 varying within the interval of convergence of ∑n wnqn.
The associated mixed binomial process (Nt, t ∈ [0, 1]) is an orderly counting process

with the uniform order statistics property. The process can also be seen as a time inhomoge-
neous pure-birth process, with a transition rate expressible through the generating function
of (wn), see [20].

Conditionally on Nt = k:

(i) The epochs of the trials within [0, t] and (t, 1] are independent;
(ii) The posterior distribution of the number of trials yet to occur is a power series distri-

bution

π(j |t, k) := P(N1 − Nt = j|Nt = k) = fk(x)
(

k + j
j

)
wk+jxj, j ≥ 0, (2)

with scale variable
x := (1− t)q (3)

and a normalisation function fk(x).
(iii)

(
Nt+s/(1−t) − Nt, s ∈ [0, 1]

)
is a mixed binomial process on [0, 1], with the number of

trials distributed according to (2).



Mathematics 2022, 10, 158 3 of 19

The conditioning relation (2) appears in many statistical problems related to censored
or partially observable data.

In principle, instead of considering a family of distributions for (Nt) with parameter
q, we could deal with one counting process on the x-scale. We prefer not to adhere to this
viewpoint, as the ‘real time’ variable is more intuitive. Nevertheless, we will use (3) to
switch back and forth between t and x, as x is better suitable for power series work.

Let = (pk, k ≥ 1) be a profile of success probabilities. We assume that

0 ≤ p1 ≤ 1, 0 ≤ pk < 1 for k > 1 and
∞

∑
k=1

pk = ∞.

The kth trial, which is occurring at index/epoch k, is a success with probability pk,
independently of other trials and the pacing process. Thus, the point process of success
epochs is obtained from (Nt) by thinning out the kth point with probability 1− pk. Taken
by itself, the process counting the success epochs is typically intractable [10]. A notable
exception is the random records model (pk = 1/k) with the geometric prior π, when the
process is Poisson [1].

We shall identify state (t, k) with the event Nt = k. The notation (t, k)◦ will be used to
denote the event that the kth trial epoch is t and the outcome is a success. If there is at least
one success, the sequence of successes (ti, ki)

◦ increases in both components.

2.2. The Trapping Game and Stopping Problem

A single episode of the trapping game refers to the generic state (t, k). The gambler
plays either next or bygone, or chooses a proper subset of the interval (t, 1]. The trap
[t + z(1− t) , 1], for 0 < z < 1, will be called z-strategy ; this action leaves a (1− z) portion
of the remaining time to isolate the last success epoch from other successes.

Let Ft be the sigma-algebra generated by the epochs and outcomes of trials on [0, t].
Under stopping strategy τ, we mean a random variable taking values in [0, 1] and adapted
to the filtration (Ft, t ∈ [0, 1]). The performance of τ is assessed by the probability of the
event that (τ, Nτ)◦ is the last success state.

We call a stopping strategy Markovian if in the event τ ≥ t a decision to stop or to
continue in state (t, k)◦ does not depend on the trials before time t. The general theory [21]
implies existence of the optimal stopping strategy and that it can be found within the class
of Markovian strategies.

Conditional on Ft, the probability that (t, k)◦ is the last success equals the winning
probability with bygone, while the probability that (t, k)◦ is the penultimate success equals
the winning probability with next. If for every (t, k), where bygone is at least as good as
next, also every state (t′, k′) ∈ [t, 1]× {k, k + 1, · · · } has this property, then the optimal
stopping problem is monotone [21].

Define the myopic stopping strategy τ∗ to be the first record (t, k)◦, if any, such that
bygone is at least as beneficial as next. In the monotone case the myopic strategy is optimal
among all stopping strategies.

Suppose for each k ≥ 1 there exists a cut-off time ak such that the action bygone is
at least as good as next precisely for t ∈ [ak, 1]. Then τ∗ coincides with the time of the
first success (t, k)◦ satisfying t ≥ ak (or τ∗ = 1 if there is no such trial). The problem is
monotone, hence τ∗ is optimal if the cut-offs are non-increasing, that is a1 ≥ a2 ≥ · · · .

3. The Game with Fixed Number of Trials

In this section, we assess the outcomes of actions in state (t, k) conditioned on the total
number of trials n > k. This can be interpreted as the game of an informed gambler who
knows n but not the outcomes of unseen trials k + 1, · · · , n. The time t is not important and
a comparison of bygone with next is tantamount to the discrete-time optimal stopping at
the last success [22,23]. The best action will be shown to coincide with a z-strategy provided
next beats bygone.
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3.1. bygone vs. next

The number of successes in trials k + 1, · · · , n has probability generating function

λ 7→
n

∏
m=k+1

(1− pm + pmλ) =

(
1 + λ

n

∑
i=k+1

pi
1− pi

)
n

∏
m=k+1

(1− pm) + O(λ2).

From this expansion, the probability of no success is

s0(k + 1, n) :=
n

∏
m=k+1

(1− pm),

and the probability of exactly one success is

s1(k + 1, n) :=
n

∑
i=k+1

pi
1− pi

n

∏
m=k+1

(1− pm) = s0(k + 1, n)
n

∑
i=k+1

pi
1− pi

.

There is an obvious recursion

s1(k, n) = (1− pk)s1(k + 1, n) + pks0(k + 1, n),

which we can write as

s1(k, n)− s1(k + 1, n) = pk{s0(k + 1, n)− s1(k + 1, n)}

= pks0(k + 1, n)

(
1−

n

∑
i=k+1

pi
1− pi

)
. (4)

Note that the sequence,

1−
n

∑
i=k+1

pi
1− pi

, 0 ≤ k ≤ n− 1, (5)

has the sign pattern
−, · · · ,−,≥ 0,+, · · · ,+,

and let k∗ be the index value where the sign changes from negative. It follows that:

(i) s1(·, n) is unimodal with maximum at k∗;
(ii) at k∗ bygone becomes at least as good as next;
(iii) k∗ is non-decreasing in n.

Each A ⊂ {1, · · · , n} corresponds to a stopping strategy in the discrete time prob-
lem [22,23]. We say that A wins if the index of the last success falls in A while no other
index of success does.

Lemma 1. Among all A ⊂ {1, · · · , n}, the set A∗ := {k∗ + 1, · · · , n} wins with the maximal
probability.

Proof. Clearly, n ∈ A is necessary for A to be optimal. By induction, suppose we have
shown that {k + 1, · · · , n} ⊂ A. Including k adds to said probability

c pk{s0(k + 1, n)− s1(k + 1)},

where c ≥ 0 depends on A ∩ {1, · · · , k− 1} only. However, this is non-negative precisely
for k ≥ k∗.

The next lemma improves upon Theorem 3.1 of [24] by offering a weaker condition
for monotonicity.
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Lemma 2. For k∗ = k∗(n), if pk∗+1 ≥ pn+1 then maxk s1(k, n) ≥ maxk s1(k, n + 1).

Proof. It is readily checked that the maximum value of s1(· , n + 1) is achieved at either k∗

or k∗ + 1.
Firstly, compare the winning probability of A∗ for n trials with that of B := {k∗ +

1, · · · , n + 1} for n + 1 trials. A difference results from the event that the (n + 1)st trial is a
success, and the number of successes among trials k∗ + 1, · · · , n does not exceed 1. Hence
the difference of winning probabilities is

(
s1(k∗ + 1, n)− s0(k∗ + 1, n)

)
pn+1 =

(
1−

n

∑
i=k∗+1

pi
1− pi

)
s0(k∗ + 1, n) ≥ 0.

Secondly, compare A∗ with the other possible maximiser, C := {k∗ + 2, · · · , n, n + 1}.
The difference of winning probabilities of A∗ in the setting with n trials and C with (n + 1)
trials has four components:

(a) pk∗+1s0(k∗ + 2, n)(1− pn+1), equal the probability that (k∗ + 1)st trial is a success, A∗

wins while C loses,
(b) (1− pk∗+1s1(k∗ + 2, n)pn+1, equal the probability that (k∗ + 1)st trial is a failure, A∗

wins while C loses,
(c) pk∗+1s1(k∗ + 2, n)(1− pn+1), equal the probability that (k∗ + 1)st trial is a success, A∗

loses while C wins,
(d) (1− pk∗+1)s0(k∗ + 2, n)pn+1, equal the probability that (k∗ + 1)st trial is a failure, A∗

loses while C wins.

After simplification, (a) + (b) − (c) − (d) becomes(
1−

n

∑
i=k∗+2

pi
1− pi

)
(pk∗+1 − pn+1),

which has the same sign as pk∗+1 − pn+1 because the first factor is non-negative by the
optimality of A∗.

3.2. z-Strategies

For n fixed, the winning probability of a z-strategy in state (t, k) does not depend on t
and is given by a Bernstein polynomial in z ∈ [0, 1],

S1(k, n; z) :=
n−k−1

∑
j=0

(
n− k

j

)
zj(1− z)n−k−js1(k + j + 1, n). (6)

In particular, S1(k, n; 0) = s1(k + 1, n) is the probability to win with next. Similarly,

S0(k, n; z) :=
n−k

∑
j=0

(
n− k

j

)
zj(1− z)n−k−js0(k + j + 1, n)

is the probability that none of the successes occurs in the time interval (t + z(1− t), 1], so
S0(k, n; 0) = s0(k + 1, n) equals the probability to win with bygone.

Note that s0(k+ 1, n) = S0(k, n; 0) and s1(k+ 1, n) = S1(k, n; 0). From (i) and (ii) above

k ≥ k∗ ⇐⇒ S0(k, n; 0) ≥ S1(k, n; 0) =⇒ S1(k, n; 0) = max
z

S1(k, n; z). (7)

This is also valid for the maximum taken over all trapping actions.
From the unimodality of s1(·, n) and the shape-preserving properties of the Bernstein

polynomials (see [25], Theorem 3.3), it follows that (6) is unimodal. Thus, either the
maximum is at 0 and next beats all z-strategies, or there exists a unique optimal z-strategy.
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Next result stating that the optimum can be understood in a strong sense is a continuous-
time counterpart of Lemma 1.

Theorem 1. If S0(k, n; 0) < S1(k, n; 0) then the optimal trapping action is a z-strategy with
threshold determined as the unique maximiser of S1(k, n; ·).

Proof. By a change of variables we reduce the claim to the case (t, k) = (0, 0). There is
certainly a final interval that belongs to the optimal trap, because close to the end of the
time, the probability of two or more successes is of order o(1− t). Now, suppose [z, 1]
belongs to the trap and we are assessing if the length element [z− dz, z] is worth including.
The change of the winning probability due to the inclusion is a multiple of

n

∑
j=1

(
n− 1
j− 1

)
zj−1(1− z)n−j pj{s0(j + 1, n)− s1(j + 1, n)} n h + o(h) = (8)

(1− z)n
n

∑
j=1

(
n− 1
j− 1

)(
z

1− z

)j
pk{s0(j + 1, n)− s1(j + 1, n)} n h + o(h),

with some positive factor depending on the structure of the trap within [0, z− h]. By (4),
in the variable z/(1− z) the polynomial ∑(· · · ) has at most one variation of sign in the
coefficients. Applying Descartes’ rule of signs, we see that the polynomial has at most one
positive root. This implies that the optimal trap is a final interval with the cut-off coinciding
with the root, or [0, 1] (action next) if there are no roots.

It remains to check that the root, if any, coincides with the maximiser of

S1(0, n; z) =
n

∑
j=0

(
n
j

)
zj(1− z)n−js1(j + 1, n).

Indeed, we have for the derivative using (4)

DzS1(0, n; z) =
n

∑
j=1

(
n− 1
j− 1

)
nzj−1(1− z)n−js1(j + 1, n)−

n−1

∑
j=0

(
n− 1

j

)
nzj(1− z)n−j−1s1(j + 1, n)

=
n

∑
k=1

(· · · )−
n

∑
k=1

(
n− 1
k− 1

)
nzk−1(1− z)n−ks1(k, n)

=
n

∑
k=1

(
n− 1
k− 1

)
nzk−1(1− z)n−k{s1(k + 1, n)− s1(k, n)}

=
n

∑
k=1

(
n− 1
k− 1

)
nzk−1(1− z)n−k pk{s1(k + 1, n)− s0(k + 1, n)},

which is the negative of the polynomial in (8). This provides the desired conclusion.

3.3. Examples

The best-choice problem is related to the profile pk = 1/k. The associated Bernstein
polynomials satisfy

S1(k, n; z)→ −z log z, n→ ∞,

where the convergence is uniform. Both maximiser and the maximum value converge to
1/e as n→ ∞
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The case k = 0 was studied in much detail [13,14,17,26]. The winning probability of
z-strategy can be alternatively written as a Taylor polynomial

S1(0, n; z) = 1− z−
n

∑
j=2

(1− z)j

j(j− 1)
,

which decreases pointwise to z 7→ −z log z as n increases (see Figure 1). The maximisers
increase monotonically to 1/e and also maxz S1(0, n; z) ↓ 1/e. These facts underlie the
minimax property that the 1/e-strategy ensures winning probability of at least 1/e for
every n ≥ 1.

The nice monotonicity properties do not extend to k > 0, the minimax value is below
1/e and the 1/e-strategy is not minimax. This is already seen in the case k = 1, where the
Bernstein polynomials become

S1(1, n; z) =
n− 1

n
−

n−1

∑
j=2

(n− j)(1− z)j

nj(j− 1)

= S1(0, n; z) +
n−1

∑
j=1

(1− z)j+1

n j
− (1− z)

n
.

The first formula is derived by conditioning on the highest rank j of trials that occur
before the threshold of z-strategy.

Figure 1. The winning probability S1(k, n; z) of z-strategy in the best-choice problem for k = 0 and 1 .

The more general profile

pk =
θ

θ + k− 1
, k ≥ 1, (9)

with parameter θ > 0, plays a central role in the combinatorial structures related to the
Ewens sampling formula for random partitions [27]. The term Karamata–Stirling law was
coined in [28] for the distribution of the number of successes with these probabilities. The
number of successes in trials k + 1, · · · , n has probability generating function

λ 7→ (k + θλ)n−k
(k + θ)n−k

.

As n → ∞, S1(k, n; z) → −θzθ log z. The maximum values still converge to 1/e but
the maximisers approach e−1/θ . The shapes vary considerably with θ, see Figure 2. For θ
large, the minimax winning probability is close to zero.
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Figure 2. Bernstein polynomials for pk = θ/(θ + k− 1).

4. Random Number of Trials: z-Strategies

We proceed with the continuous time setting, assuming p and π are given. In state
(t, k), the probability of isolating the last success by means of a z-strategy is a convex
mixture of the Bernstein polynomials:

S1(t, k; z) :=
∞

∑
j=1

π(j|t, k)
j−1

∑
i=0

(
j
i

)
zi(1− z)j−1s1(k + i + 1, k + j). (10)

The z = 0 instance,

S1(t, k; 0) =
∞

∑
j=1

π(j|t, k)s1(k + 1, k + j),

is the probability to win with next, and S1(t, k; 1) = 0. Similarly, the probability that none
of the successes are trapped by the z-strategy is:

S0(t, k; z) :=
∞

∑
j=0

π(j|t, k)
j−1

∑
i=0

(
j
i

)
zi(1− z)j−1s0(k + i + 1, k + j),

and S0(t, k; 0) is the probability to win with bygone.
Being a convex mixture of unimodal functions, S1(t, k; ·) itself need not be unimodal.

Accordingly, the optimal trap need not be a final interval. It may rather include a few
disjoint intervals akin to ‘islands’ in the discrete time best-choice problems [29].

Concavity is a simple condition to ensure unimodality. We say that s1(·, n) is concave
if for every n ≥ 1 the second difference in the first variable is non-positive.

Theorem 2. Suppose s1(·, n) is concave. Then S1(t, k; ·) is unimodal with maximum at some z∗.
If z∗ ∈ (0, 1) then for z = z∗ the z-strategy is optimal among all trapping actions, and if z∗ = 0
then next outperforms every trapping action.

Proof. By the shape-preserving properties of Bernstein polynomials [25], the internal sum
in (10) is a concave function in z, therefore the mixture S1(t, k; ·) is also concave hence
unimodal. The maximum is attained at 0 if DzS1(t, k; 0) ≤ 0, and z∗ > 0 otherwise. The
overall optimality follows from the unimodality as in Theorem 1.

The concavity is easy to express in terms of p explicitly. The second difference in the
variable k of the probability generating function

λ 7→
n

∏
j=k

(1− pj + λpj)
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becomes

{(1− pk + λpk)(1− pk+1 + λpk+1)− 2(1− pk+1 + λpk+1) + 1}
n

∏
j=k+2

(1− pj + λpj).

Computing Dλ at λ = 0 yields the second difference of s1(· , n)

(pk − 2pk pk+1 − pk+1) + (pk pk+1 − pk + pk+1)
n

∑
j=k+2

pj

1− pj
. (11)

From this, a sufficient condition for the concavity of s1(·, n) is

pk − 2pk pk+1 − pk+1 ≤ 0, pk pk+1 − pk + pk+1 ≤ 0, k ≥ 1. (12)

Notably, (12) ensures unimodality for arbitrary π and only involves two consecutive
success probabilities. The price to pay for the simplicity is that the condition is restrictive,
as seen in Figure 3.

Figure 3. The concavity condition (12) holds for profiles p with (pk, pk+1) squeezed between the
parabolas.

For the profile (9), straight calculation shows that (11) is non-positive, hence s1(·, n) is
concave, iff

1
2
≤ θ ≤ 1.

This is only a half range, but it includes two most important for application cases θ = 1
and θ = 1/2.

5. Tests for the Monotone Case of Optimal Stopping

Using (2) and (3), we can cast the winning probabilities with actions bygone, next and
a z-strategy as:

S0(t, k; 0) = fk(x)Pk(x),

S1(t, k; 0) = fk(x)Qk(x), (13)

S1(t, k; z) = fk(x)Rk(x, z),
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where x = q(1− t) and

Pk(x) :=
∞

∑
j=0

(
k + j

j

)
wk+jxjs0(k + 1, k + j),

Qk(x) :=
∞

∑
j=1

(
k + j

j

)
wk+jxjs1(k + 1, k + j),

Rk(x, z) :=
∞

∑
j=1

(
k + j

j

)
wk+jxj

j−1

∑
i=0

(
j
i

)
zi(1− z)j−is1(k + i + 1, k + j).

Thus, Qk(x) = Rk(x, 0). We are looking next at some critical points for the trapping
game and the optimal stopping problem.

Lemma 3. Equation Pk(x) = Qk(x) has at most one root αk > 0, for every k ≥ 1.

Proof. Coefficients of the series Pk(x)− Qk(x) have at most one change of sign from +
to −, hence Descartes’ rule of signs for power series [30] entails that there is at most one
positive root.

We set αk = ∞ if the root does not exist. Define the cut-off

ak =

(
1− αk

q

)
+

.

This is the earliest time when bygone becomes at least as good as next. Keep in mind
that if the sequence (αk) is monotone, then (ak) is also monotone but with the monotonicity
direction reversed. The monotone case of optimal stopping holds for every q, hence τ∗ is
optimal, if αk ↑.

Example 1. In the paradigmatic case pk = 1/k and the geometric prior with wn = 1, we have

s0(k + 1, n) =
k
n

, s1(k + 1, n) =
k
n

n

∑
j=k+1

1
j− 1

,

and explicitly computable power series

Pk(x) =
1

(1− x)k , Qk(x) =
− log(1− x)
(1− x)k .

The equation Pk(x) = Qk(x) yields identical roots αk = 1− 1/e and coinciding cut-offs ak =
(1− (1− e−1)/q)+. Thus, τ∗ stops at the first success trial after a time threshold. See [1,7,17–19]
for details on this remarkable case.

Lemma 4. Equation DzRk(x, 0) = 0 has at most one root βk > 0, for every k ≥ 0. If the root
exists, then βk ≤ αk+1.

Proof. We follow the argument in Lemma 3. The derivative at z = 0 is

DzRk(x, 0) = pk+1

∞

∑
j=1

(
k + j

j

)
wk+j j xj {s0(k + 2, k + j)− s1(k + 2, k + j)},
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which has at most one change of sign for x ≥ 0, and then from + to −. Furthermore,

DzRk(x, 0) ≥ pk+1

∞

∑
j=1

(
k + j

j

)
wk+jxj{s0(k + 2, k + j)− s1(k + 2, k + j)}

= pk+1{Pk+1(x)−Qk+1(x)}.

This follows by comparing the series and noting that the weights at positive terms in
Dz are higher.

If there is no finite root, we set βk = ∞. Let

bk :=
(

1− βk
q

)
+

.

We have DzRk(q(1− t), 0) < 0 for t ∈ (bk, 1], and bk ≥ ak+1 by Lemma 4. Thus, bk is
the earliest time when the action next at index k cannot be improved by a z-strategy with
small enough z.

To summarise the above: for t < ak action next is better than bygone, and tor t < bk a
trapping strategy is better than next.

Theorem 3. The optimal stopping problem belongs to the monotone case (for every admissible q) if
and only if α1 ≤ α2 ≤ · · · . In that case we have the interlacing pattern of roots

· · · ≤ αk ≤ βk ≤ αk+1 ≤ βk+1 ≤ · · · . (14)

Proof. We argue in probabilistic terms. The bivariate sequence of success epochs (t, k)◦

is an increasing Markov chain. The monotone case of optimal stopping occurs iff the set
of states where bygone outperforms next is closed, which holds iff this is an upper subset
with respect to the partial order in [0, 1]× {1, 2, · · · }. The latter property amounts to the
monotonicity condition αk ↑.

By Lemma 3, the inequality αk ≤ βk+1 always holds. In the monotone case, if in some
state (t, k)◦ the actions bygone and next are equally good, then trapping cannot improve
upon these by optimality of the myopic strategy. In the analytic terms, the above translates
as the inequality βk ≤ αk.

6. The Best-Choice Problem under the Log-Series Prior

In this section we consider the random records model with the classic profile pk = 1/k,
and a pacing process with the logarithmic series prior

πn = c(q)
qn

n
, n ≥ 1, (15)

(so π0 = 0), where 0 < q < 1 and c(q) = | log(1− q)|−1. See [31] for Poisson mixture
representations of π. The function S1(t, k; ·) is concave, hence by Theorem 2 it is sufficient
to consider z-strategies.

Let T1 be the time of the first trial.

Lemma 5. Under the logarithmic series prior (15) the pacing process has the following features:

(i) The time of the first trial T1 has probability density function

t 7→ c(q) q
1− (1− t)q

, t ∈ [0, 1].
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(ii) (Nt, t ∈ [0, 1]) is a Pólya-Lundberg birth process with transition rates

P(Nt+dt − Nt = 1 |Nt = k) =


c((1− t)q) q
1− (1− t)q

, k = 0,

k
t + q−1 − 1

, k ≥ 1.

(iii) Given Nt = k, the posterior distribution π(· | t, k) of N1 − Nt is NB(k, (1− t)q). In par-
ticular, conditionally on T1 = t1, the posterior distribution is geometric with the ‘failure’
probability (1− t1)q.

Proof. Assertion (i) follows from

P(T1 > t) = P(Nt = 0) =
∞

∑
n=1

c(q)qn(1− t)n

n
,

and (iii) from the identity (
k + j

j

)
xj

k + j
=

(
k + j− 1

j

)
xj

k

underlying the formula for π(j|t, k) in terms of x = (1− t)q.

In view of part (ii), we will use NB(0, q) to denote the log-series prior (15).

6.1. Hypergeometrics

The power series of interest can be expressed via the Gaussian hypergeometric function

F(a, b; c; x) :=
∞

∑
j=0

(a)j(b)j

(c)j

xj

j!
.

Recall the differentiation formula

DxF(a, b; c, x) =
ab
c

F(a + 1, b + 1; c + 1, x),

the parameter transformation formula

F(a, b; c; x) = (1− x)c−a−bF(c− a, c− b; c; x),

and Euler’s integral representation for c > b > 0

F(a, b; c; x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

yb−1(1− y)c−b−1dy
(1− xy)a .

The probability generating function for the number of successes following state (t, k),
for k ≥ 1, is given by a hypergeometric function:

λ 7→ (1− x)k
∞

∑
j=0

(
k + j− 1

j

)
xj (k + λ)j

(k + 1)j
=

(1− x)k
∞

∑
j=0

(k)j(k + λ)j

(k + 1)j

xj

j!
=

(1− x)k F(k + λ, k; k + 1; x).
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Expanding at λ = 0 we identify two basic power series as:

Pk(x) = k−1 F(k, k; k + 1; x),

Qk(x) = k−1 DaF(k, k; k + 1; x),

where as before x = (1− t)q ∈ [0, 1] and Da is the derivative in the first parameter. The
differentiation formula implies backward recursions:

DxPk(x) = kPk+1(x),

DxQk(x) = Pk+1(x) + k Qk+1(x). (16)

The normalisation function for probabilities (14) is fk(x) = k(1 − x)k for k ≥ 1,
and f0(x) = | log(1− x)|−1. Applying the transformation formula yields Pk(x) = (1−
x)1−kF(1, 1; k+ 1, x), hence, we may write the winning probability with bygone as the series

S0(t, k; 0) = (1− x)
∞

∑
j=0

j! xj

(k + 1)j
, x = (1− t)q.

It is readily seen that, as k increases, this function decreases to 1− x. This result was
already observed in [18] using a probabilistic argument. The convergence to 1− x relates
to the fact that for large k, the point process of record epochs approaches a Poisson process.

For Rk(x, z), we derive an integral formula. Consider first the case k ≥ 1. The
probability generating function of the number of record epochs following (t, k) and falling
in the final interval [t + z(1− t), 1] has probability generating function

λ 7→ (1− x)k
∞

∑
j=0

(
k + j− 1

j

)
xj

j

∑
i=0

(
j
i

)
zi(1− z)j−i (k + i + λ)j−i

(k + i + 1)j−i
=

(1− x)k
∞

∑
i=0

(
k + i− 1

i

)
(xz)iF(k + i + λ, k + i, k + i + 1; x− xz) =

k(1− x)k
∞

∑
i=0

(
k + i

i

)
(xz)i

∫ 1

0

yk+i−1dy
(1− xy + xyz)k+i+λ

=

k(1− x)k
∫ 1

0

yk−1(1− xy + xyz)1−λdy
(1− xy)k+1 .

Differentiating at λ = 0 yields S1(k, t; z), which is the same as k(1− x)kRk(x, z) for
x = (1− t)q, whence

Rk(x, z) =
∫ 1

0

yk−1(1− xy + xyz)| log(1− xy + xyz)|dy
(1− xy)k+1 . (17)

For k = 0, a similar calculation with log-series weights NB(0, x) gives

R0(x, z) =
∫ 1

0

(1− xy + xyz) log(1− xy + xyz)
y(1− xy)

dy.

6.2. The Myopic Strategy

The positive root obtained by equating

P1(x) =
| log(1− x)|

x
and Q1(x) =

| log(1− x)|2
2x

is α1 = 1− e−2 = 0.864665 · · · . On the other hand, solving DzR1(x, 0) = 0 yields a smaller
value β1 = 0.756004 · · · , hence the interlacing condition of Theorem 3 fails for k = 1.
Translating in terms of the best-choice problem, this means that τ∗ stops at the first trial if
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this occurs before a1 = (1− α1/q)+, but a z-strategy will be more beneficial for a bigger
range of times t ≤ b1 = (1− β1/q)+. Therefore, at least for q > β1, it is not optimal to stop
at the first trial before b1 and the myopic strategy can be beaten.

The root α2 := 0.755984 · · · is found by equating

P2(x) =
2(x− L + xL)
(1− x)x2 and Q2(x) =

−2x + 2L− L2 + xL2

(1− x)x2 ,

where for shorthand L := − log(1− x). Formulas become more complicated for larger k.
We see that α1 > α2, which suggests monotonicity of the whole sequence. To show

this, pass to the quotient and re-define the root αk as a unique solution on [0, 1) to

Qk(x)
Pk(x)

= 1 ⇐⇒ DaF(k, k; k + 1; x)
F(k, k; k + 1; x)

= 1, (18)

where Da acts in the first parameter. As x increases from 0 to 1, this logarithmic derivative
runs from 0 to ∞.

Lemma 6. The logarithmic derivative (18) increases in k, hence the sequence of roots αk is strictly
decreasing.

Proof. Euler’s integral specialises as:

F(k + λ, k; k + 1; x) = k
∫ 1

0

yk−1

(1− xy)k+λ
dy.

Expanding in parameter at λ = 0 gives the integral representations

Pk(x) =
∫ 1

0

yk−1

(1− xy)k dy, Qk(x) =
∫ 1

0

yk−1| log(1− xy)|
(1− xy)k dy.

From these formulas,

Qk(x)Pk+1(x) =
∫ 1

0

yk−1| log(1− xy)|
(1− xy)k dy

∫ 1

0

zk

(1− xz)k+1 dz

=
∫ 1

0

∫ 1

0

yk−1zk−1| log(1− xy)|
(1− xy)k(1− xz)k

z
(1− xz)

dydz.

By the same kind of argument, a similar formula is obtained for Qk+1(x)Pk(x). Split-
ting the integration domain, and using symmetries of the integrand yields for x ∈ [0, 1)

Qk(x)Pk+1(x)−Qk+1(x)Pk(x) =∫ 1

0

∫ 1

0

yk−1zk−1| log(1− xy)|
(1− xy)k+1(1− xz)k+1 (z− y)dydz =

∫ ∫
0<y<z<1

yk−1zk−1

(1− xy)k+1(1− xz)k+1 log
(

1− xz
1− xy

)
(z− y)dydz < 0,

which implies the asserted monotonicity.

Figure 4 shows some shapes of fk(x)Pk(x) and fk(x)Qk(x) for k = 1, 2, 3.
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Figure 4. next and bygone curves for k = 1, 2, 3.

The log-series distribution weights satisfy wn+1/wn ↑ 1. Comparison with the geo-
metric distribution, as in [19], in combination with the lemma give αk ↓ (1− 1/e) as k→ ∞.
The same limit has been shown for analogous roots in the best-choice problem with the
negative binomial prior NB(ν, q) for integer ν ≥ 1; however, the monotonicity direction in
that setting is different [7].

To summarise findings of this section, we have:

Theorem 4. The monotone case of optimal stopping does not hold. The myopic strategy τ∗ is not
optimal and has the following features:

(i) for q > 1− 1/e, the cut-offs of τ∗ satisfy ak ↑ 1− (1− 1/e)/q;
(ii) for t ≥ (1− (1− 1/e)/q)+, bygone is the optimal action for every (t, k)◦;
(iii) for times as in (ii), the myopic strategy coincides with the optimal stopping strategy (in the

event τ∗ ≥ t).

6.3. Optimality and Bounds

For state (t, k) and x = q(1− t), define the continuation value Vk(x) to be the maximum
probability of the best choice, as achievable by stopping strategies starting in the state. By
the optimality principle, the overall optimal stopping strategy, starting from (0, 0), stops at
the first record (t, k)◦ satisfying k(1− x)kPk(x) ≥ Vk(x).

Given Nt = k, let Tk+1 be the next trial epoch (or 1 in the event N1 = k). Similar to the
argument in Lemma 5, we find that the random variable (1− Tk+1)/(1− t) has density

y 7→ kx(1− x)k

(1− x + xy)k+1 , y ∈ (0, 1].

By the (k + 1)st trial, the optimal stopping strategy stops if this is a record and bygone

is more beneficial than the optimal continuation, hence integrating out Tk+1 we obtain

Vk(x) =
∫ 1

0

[
1

k + 1
max{(1− y)k+1Pk+1(y), Vk+1(y)}+

k
k + 1

Vk+1(y)
]

kx(1− x)kdy
(1− x + xy)k+1 .

This has the equivalent differential form for k ≥ 1,

(1− x) DxVk(x) =
k

k + 1

(
(1− x)k+1Pk+1(x)−Vk+1(x)

)
+
+ k{Vk+1(x)−Vk(x))}. (19)
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For the special instance k = 0, integrating out the variable T1 gives

V0(x) =
∫ 1

0
max((1− y)P1(y), V1(y))

dy
(1− x + xy)| log(1− x)| ,

or, in the differential form with initial conditions V0(0) = 1 and Vk(0) = 0, for k ≥ 1

(1− x)| log(1− x)|DxV0(x) = max{(1− x)P1(x), V1(x)} −V0(x). (20)

By Corollary 4, the continuation value coincides with the winning probability of next
in a segment of the range; therefore:

Vk(x) = k(1− x)kQk(x), for 0 ≤ x ≤ 1− 1/e, k ≥ 0. (21)

As a check, for k ≥ 1 let V̂k(x) := k−1(1− x)−kVk(x). With this change of variable, (19)
simplifies as

DxV̂k(x) = (Pk+1(x)− V̂k+1(x))+ + (k + 1) V̂k+1(x).

For x in the range where Pk+1(x)− V̂k+1(x) ≥ 0, this becomes the recursion (16).
Outside the range covered by (21), Equations (19) and (20) should be complemented

by a ‘k = ∞’ boundary condition

lim
k→∞

Vk(x) =

{
1/e, for 1− 1/e ≤ x ≤ 1,
−(1− x) log(1− x), for 0 ≤ x ≤ 1− 1/e.

Figure 5 shows stop, continuation and z-strategy curves for k = 1, 2 and 3. The
numerical simulation suggests that the equation k(1 − x)kPk(x) = Vk(x), k ≥ 1 has a
unique solution γk and that the critical points increase with k, so the optimal stopping
strategy is similar to the myopic. These critical points have lower bounds δk defined as
the solution to k(1− x)kPk(x) = Ik(x) and upper bounds ρk defined as the critical points
where bygone is the same as the z-strategy.

To approximate the continuation value in the range 1− 1/e < x < 1, we simulated
some easier computable bounds

k(1− x)kQk ≤ k(1− x)k max
z

Rk(x, z) ≤ Vk(x) < Ik(x).

The upper information bound Ik(x) (see Figure 6) is the winning probability of an
informed gambler who in state (t, k) (with x = q(1− t)) knows the total number of trials
N1, as in Section 3. Two lower bounds stem from the comparison with the myopic and
z-strategies. The points βk computed for k ≤ 10 all satisfy βk < αk, and so the first relation
turns equality for 0 ≤ x ≤ βk. Therefore, the critical points satisfy

δk < γk < ρk ≤ αk.

The results of computation are presented in Figure 5 and Tables 1–4. The data show
excellent performance of the strategy that by the first trial chooses between stopping and
proceeding with a z-strategy.
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Figure 5. Stop, continuation, z-strategy values and bounds; k = 1, 2, 3 and zoomed-in view for k = 3.

Figure 6. Information bounds on the optimal strategy Ik(x).

Table 1. Critical points: αk: Solution to Pk(x) = Qk(x), βk: Solution to DzRk(x, z) = 0, γk: Solution to
k(1− x)kPk(x) = Vk(x), δk: Solution to k(1− x)kPk(x) = Ik(x), ρk: Solution to Pk(x) = maxz Rk(x, z).

k βk δk γk ρk αk

1 0.756004 0.826893 0.849635 0.850335 0.864665
2 0.714616 0.718332 0.753621 0.753727 0.755984
3 0.693549 0.683295 0.713957 0.713995 0.714596
4 0.680931 0.668986 0.693275 0.693311 0.693529
5 0.672567 0.661520 0.680687 0.680814 0.680911
6 0.666632 0.656902 0.672194 0.672499 0.672547
7 0.662206 0.653656 0.665900 0.666584 0.666611
8 0.658782 0.651188 0.661005 0.662169 0.662186
9 0.656055 0.649234 0.657108 0.658751 0.658761

10 0.653833 0.647653 0.653911 0.656028 0.656034
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Table 2. Winning probability and bounds for k = 1.

x (1 − x)P1(x) (1 − x)Q1(x) (1 − x)maxz R1(x, z) V1(x) I1(x)

0.60 0.6109 0.2799 0.2799 0.2799 0.2864
0.65 0.5653 0.2967 0.2967 0.2967 0.3069
0.70 0.5160 0.3106 0.3106 0.3106 0.3262
0.75 0.4621 0.3203 0.3203 0.3204 0.3439
0.80 0.4024 0.3238 0.3269 0.3275 0.3597
0.85 0.3348 0.3176 0.3342 0.3354 0.3728
0.90 0.2558 0.2945 0.3428 0.3446 0.3821
0.95 0.1577 0.2362 0.3532 0.3555 0.3848
0.995 0.0266 0.0705 0.3659 0.3667 0.3731

Table 3. Winning probability and bounds for k = 2.

x 2(1 − x)2P2(x) 2(1 − x)2Q2(x) 2(1 − x)2 maxz R2(x, z) V2(x) I2(x)

0.60 0.5189 0.3297 0.3297 0.3297 0.3743
0.65 0.4682 0.3429 0.3429 0.3429 0.3850
0.70 0.4149 0.3509 0.3509 0.3509 0.3926
0.75 0.3586 0.3521 0.3541 0.3543 0.3970
0.80 0.2988 0.3440 0.3570 0.3575 0.3981
0.85 0.2348 0.3227 0.3600 0.3608 0.3960
0.90 0.1654 0.2809 0.3630 0.3643 0.3903
0.95 0.0887 0.2018 0.3659 0.3674 0.3811
0.995 0.0098 0.0428 0.3678 0.3679 0.3694

Table 4. Winning probability and bounds for k = 3.

x 3(1 − x)3P3(x) 3(1 − x)3Q3(x) 3(1 − x)3 maxz R3(x, z) V3(x) I3(x)
0.60 0.4811 0.3460 0.3460 0.3460 0.3869
0.65 0.4296 0.3562 0.3562 0.3562 0.3923
0.70 0.3762 0.3603 0.3604 0.3605 0.3947
0.75 0.3207 0.3568 0.3620 0.3622 0.3946
0.80 0.2629 0.3431 0.3635 0.3640 0.3923
0.85 0.2026 0.3155 0.3649 0.3660 0.3881
0.90 0.1391 0.2674 0.3663 0.3679 0.3824
0.95 0.0719 0.1846 0.3673 0.3685 0.3755
0.995 0.0075 0.0359 0.3679 0.3679 0.3687
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