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1 Introduction

Testing for persistence is an important subject in time series. It is particularly of interest
to macroeconomists to determine how Gross Domestic Product (GDP) and other variables
evolve. Due to its potential impact on the choice of economic stabilization policies, this
question has generated a huge literature that was largely started by Nelson and Plosser
(1982). The current paper considers testing joint hypotheses about the extent of persistence
and the possibility of a trend in time series. We use the results of Abadir and Distaso (2007),
with the implication here that power can be gained by modifying tests of joint hypotheses to
take into account the fact that inference on the persistence parameter is typically one-sided,
whereas inference on the remaining components are two-sided. The trend parameters are
estimated in the time domain, but we estimate the persistence in the frequency domain using
the Fully-Extended Local Whittle (FELW) estimator of Abadir, Distaso, and Giraitis (2007,
2011) which extends to nonstationarity the classical local Whittle estimator proposed by
Künsch (1987) and Robinson (1995). By virtue of the specification being semiparametric,
it generates robust inference: it allows for seasonality and other effects to be present at
nonzero spectral frequencies and it is valid for a wide class of generating processes that
include non-Gaussian ones. It is also easily usable in applied work.

There are precursors to using frequency-domain estimators (including ones obtained
via autocorrelation functions) in testing hypotheses about trending persistent series. First,
Robinson (1994) introduces such tests that are applied in Gil-Alaña and Robinson (1997).
However, the partially one-sided nature of the joint hypotheses is not taken into account
in their setup (see the alternative hypothesis in their (28)) and there is power to be gained
from doing so. Second, Dolado, Gonzalo, and Mayoral (2008, 2009) allow for trends in the
efficient formulation which Lobato and Velasco (2006) introduce as a modification of the
original one in Dolado, Gonzalo, and Mayoral (2002). They generalize the tests of Dickey
and Fuller (1979) to allow for fractional persistence. They detrend the series but do not
consider joint hypotheses on the trend as well as persistence, which is done by Gil-Alaña
and Robinson (1997) and by Dickey and Fuller (1981). Our procedure also differs from
Dolado et al. (2002) in the robustness indicated in the previous paragraph when estimating
the degree of persistence.

In this paper,
p→ and

d→ denote respectively convergence in probability and in distri-
bution. We write 1A for the indicator of a set A, bνc for the integer part of ν, C for a
generic constant but c. for specific constants. The lag operator is denoted by L, such that
Lut = ut−1, and the backward difference operator by ∇ := 1− L. We write i for the imag-
inary unit (principal value of

√
−1), in roman typeface to distinguish it from the index i.

Consider the process
Xt = α+ βt+ ut, t = 1, 2, ..., n, (1.1)

where the sequence {ut} ∼ I(d) satisfies the following definition.

Definition 1.1. For d = k + dξ, where k ∈ Z is an integer and dξ ∈ (−1/2, 1/2), we say
that {ut} is an I(d) process (also denoted by ut ∼ I(d)) if

∇kut = ξt, t = 1− k, 2− k, . . . ,
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where {ξt} is a second order stationary sequence with spectral density

fξ(λ) = b0 |λ|−2dξ + o(|λ|−2dξ), as λ→ 0 (1.2)

where b0 > 0.

Note that we use the term “stationarity” in a weaker sense than usual, only requiring
the leading term of the spectrum to be as in (1.2). Few papers have so far considered such
settings with an extended range for d to include regions of nonstationarity and to estimate
a time trend, and to conduct joint hypothesis testing, as discussed earlier.

We will assume that the process {ξt} is a linear sequence as follows.

Assumption A.1. {ξt} is a linear sequence

ξt =
∞∑
j=0

ajεt−j , (1.3)

where {aj , j ≥ 0} are real nonrandom weights,
∑∞

j=0 a
2
j < ∞, and {εj} are i.i.d. variates

with zero mean, unit variance, and finite fourth moment Eε4
0 <∞. Moreover, the spectral

density fξ(λ) of {ξt} has the property

fξ(λ) = |λ|−2dξ
(
b0 + b1λ

2 + o(λ2)
)
, as λ→ 0, (1.4)

for some dξ ∈ (−1/2, 1/2), b0 > 0, and finite b0, b1. Defining A(λ) :=
∑∞

j=0 eijλaj , it is also
required that

dA(λ)

dλ
= O(|A(λ)|/λ), as λ→ 0+.

For convenience, we need the following assumption on the true d.

Assumption A.2. {ut} ∼ I(d), with d ∈ (−1/2, 3/2), d 6= 1/2.

It is technically straightforward to extend our results to all values of d > 3/2 that
give rise to nonstationarity, as well as to higher-order polynomials. We do not report such
extensions, in order to keep the exposition as clear as possible and because the applications’
literature that we just cited requires at most linear trends.

In Section 2, we present the estimators and their basic properties for later use. Section
3 contains the construction of the new tests and their limiting distributions under the null
and alternatives. Section 4 illustrates the gains of our approach by means of a simulation
study. Section 5 demonstrates the ease of our approach by applying it to the dynamics of
GDP. Proofs of the main results are given in Section 6.

2 The estimators and their properties

This brief section is not new, but it collects results we need from Abadir et al. (2007,
2011) mainly and lays the ground for the derivations in the following sections. In order to
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estimate the slope parameter β and the location parameter α of (1.1), we use the standard
least squares (LS) estimators

β̂ =

∑n
t=1(Xt − X̄)(t− t̄)∑n

t=1(t− t̄)2
, α̂ = X̄ − β̂t̄,

where X̄ = n−1
∑n

t=1Xt and t̄ = n−1
∑n

t=1 t = (n + 1)/2 are the sample means of the
variables. To estimate d, we start by calculating the detrended data

ût = Xt − α̂− β̂t = ut + α− α̂+ (β − β̂)t, t = 0, 1, ..., n.

Let

In,u(λj) := |wu(λj)|2, wu(λj) := (2πn)−1/2
n∑
t=1

eitλjut

the periodogram and discrete Fourier transform of {ut}, where λj = 2πj/n, j = 1, . . . , n

denote the Fourier frequencies. The FELW estimator d̂ of d based on the residuals {ût} is
defined as

d̂ := argminδ∈[−1/2,3/2] Un(δ), (2.1)

where

Un(δ) :=

log
(

1
m

∑m
j=1 j

2δ In,û(λj)
)
− 2δ

m

∑m
j=1 log j, if δ ∈ [−1/2, 1/2],

log
(

1
m

∑m
j=1 j

2δ|1− eiλj |−2 In,∇û(λj)
)
− 2δ

m

∑m
j=1 log j, if δ ∈ (1/2, 3/2],

(2.2)
where the bandwidth parameter m is such that m → ∞ and m = o (n). In applying the
estimation method, the sample data must be enumerated as û0, ..., ûn when d̂ ∈ [1/2, 3/2].
Note that the minimization in (2.1) that yields d̂ is carried out over [−1/2, 3/2], so that d̂
is restricted to this range. For the limiting distributions of the next section, we will also
need to introduce the following two estimators.

The estimator of the scale parameter b0 of (1.2) is defined by

b̂m,û(d̂) :=

{
1
m

∑m
j=1 λ

2d̂
j In,û(λj), if d̂ ∈ [−1/2, 1/2],

1
m

∑m
j=1 λ

2d̂
j |1− eiλj |−2 In,∆û(λj), if d̂ ∈ (1/2, 3/2].

(2.3)

Abadir et al. (2011) show the consistencies

d̂
p−→ d and b̂m,û(d̂)

p−→ b0 (2.4)

as n→∞, m→∞ and m = O(n4/5). Moreover, if m = o(n4/5), the estimator d̂ satisfies

(
m∑
j=1

ν2
j )1/2(d̂− d)

d→ N(0, 1/4), νj := log j −m−1
m∑
k=1

log k. (2.5)

The factor
∑m

j=1 ν
2
j leads to a better finite-sample approximation than the asymptotic

√
m(d̂ − d)

d→ N(0, 1/4) that was reported in Section 2.3 and Section 3 in Abadir et al.

4



(2007, 2011), respectively. The validity of (2.5) follows from the proof of Theorem 2.4 in
Abadir et al. (2007); see also the proof of Theorem 2 in Robinson (1995) as well as Theorem
8.5.2 and Remark 8.5.2 in Giraitis, Koul, and Surgailis (2012). Since the convergence
(
∑m

j=1 ν
2
j )/m → 1 as m → ∞ is rather slow, we recommend (2.5) for use in applied work.

Also, Cheung and Hassler (2018) and Cheung (2020) noted that the finite-sample normal
approximation (2.5) can be distorted when d is close to discontinuity points −0.5, 0.5, 1.5
of the objective function Un(δ) and they suggested a solution to this problem.

The testing procedures considered below require us to estimate the long run variance s2
ξ

of {ξt}. We recall that Property (1.2) of the spectral density fξ implies that

s2
ξ := lim

n→∞
E

(
n−1/2−dξ

n∑
t=1

ξt

)2

= lim
n→∞

n−1−2dξ

∫ π

−π

(
sin(nλ/2)

sin(λ/2)

)2

fξ(λ)dλ = p(dξ)b0,

(2.6)
where

p(d) :=

∫ ∞
−∞

(
sin(λ/2)

λ/2

)2

|λ|−2ddλ =

{
2Γ(1−2d) sin(πd)

d(1+2d) , if d 6= 0,

2π, if d = 0.

Under Assumption A.1 and the consistencies in (2.4), the probability limit of

ŝ2
m(d̂) :=

{
p(d̂)̂bm,û(d̂), if d̂ ∈ [−1/2, 1/2),

p(d̂− 1)̂bm,û(d̂), if d̂ ∈ [1/2, 3/2]
(2.7)

equals the long-run variance s2
ξ , and we use the same bandwidth parameter m used to

calculate the FELW estimator (2.1). In determining p (d− 1) as d → 3/2 from below, one
should note that limc→0− Γ(−c) = +∞. For the long-run variance when d ∈ (−1/2, 1/2),
see Robinson (2005).

To describe the asymptotic distribution of β̂, define

σ2
β(d) :=

(12)2
(

1
2d+3 −

1
4

)
, if d ∈ [−1/2, 1/2),

(12)2 2d−1
8d(2d+1)(2d+3) , if d ∈ [1/2, 3/2].

Then,
n3/2−d

sξσβ(d)
(β̂ − β)

d→ N(0, 1). (2.8)

This result follows from Theorem 2.1 in Abadir et al. (2011). Recall that {ξt} is a linear
process which satisfies Assumption A.1 and appears in Definition 1.1 of ut. The conditions
of that theorem require that finite-dimensional distributions of the partial sums process

Yn(r) := n−1/2−dξ
∑bnrc+1

t=1 ξt, 0 ≤ r ≤ 1, converge to those of the Gaussian process Y∞(r) =
sξB1/2+dξ(r),

Yn(.)
d→ Y∞(.) (2.9)

where B1/2+dξ(.) is Gaussian process (fractional Brownian motion) with zero mean and
covariance function

cov
(
B1/2+dξ(r), B1/2+dξ(s)

)
= (1/2)

(
r1+2dξ + s1+2dξ − |r − s|1+2dξ

)
=: R(r, s).
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Convergence (2.9) is shown in Proposition 3.1 of Abadir et al. (2013). Moreover, property
(1.2) together with definition of Yn(r) implies

E
(
Yn(r)Yn(s)

)
→ s2

ξR(r, s) = E
(
Y∞(r)Y∞(s)

)
. (2.10)

3 Testing joint hypotheses

In this section, we discuss testing joint hypotheses in (1.1). Recall that in the case d ∈
(−1/2, 1/2), we have that ut = ξt is stationary with memory parameter d. If d ∈ (1/2, 3/2),
then ut can be written as

ut = ut−1 + ξt, t = 1, 2, ..., n,

where {ξt} is a stationary I(dξ) process with the memory parameter dξ = d−1 ∈ (−1/2, 1/2).
We assume that {ξt} is a linear process which satisfies Assumption A.1. Note that frac-
tional ARIMA(p, dξ, q) sequences {ξt} with memory parameter dξ ∈ (−1/2, 1/2) satisfy
Assumption A.1.

Definition 3.1. Let d0 ∈ (−1/2, 3/2), d0 6= 1/2, and β0 ∈ R. We say that {Xt} given by
(1.1) satisfies:

(a) the null hypothesis H0(d0, β0) if d = d0 and β = β0;
(b) the alternative hypothesis H1(< d0, β0) if d < d0 or if

d ≤ d0 and β 6= β0;

(c) the alternative hypothesis H1(> d0, β0) if d > d0 or if

d ≥ d0 and β 6= β0.

Remark 3.1. Notice in the displayed cases of H1 that d is restricted to be at one side of d0,
even when the violation of H0 occurs because of β 6= β0. Compared to the usual approaches
in the literature where H1 : d 6= d0 or β 6= β0, we exclude the case of two-sided alternatives
on d in order to gain power, for any given size, and focus on only one side of potential
violation of d = d0 at a time (case b then case c). The following examples apply:

(a) Under H0(0, 0), Xt = α + ξt is a short memory I(0) sequence. Under H0(1, 0),
Xt = α+ ut where ut = ut−1 + ξt is a unit root I(1) process with short memory {ξt}.

(b) Alternative H1(< 1, 0) covers processes Xt = α + ut with ut ∼ I(d), d < 1, and
processes with a linear trend and d ≤ 1. Alternative H1(< 0, 0) covers antipersistent
stationary processes Xt = α + ξt with d < 0, due in practice to overdifferencing, and
processes with a linear trend and no long memory.

(c) Alternative H1(> 0, 0) covers processes with a linear trend and no antipersistence.
It also covers processes with long memory or nonstationary ut ∼ I(d), subject to d < 3/2.

Note that Dickey and Fuller (1981) have alternatives of the form H1(< 1, 0)∪ H1(> 1, 0),
allowing explosive roots and d > 1 (but no fractional d). Given the nature of the alternative
hypothesis, which is one-sided for the memory parameter d, it is possible to modify the
conventional test statistics to construct more powerful ones. We use the general principle
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introduced in Abadir and Distaso (2007) to devise our tests, and then we work out their
asymptotic distributions.

Let us start with the setup for testing H0(d0, β0) versus H1(> d0, β0). We use

τr := τ2
d01

d̂>d0
+ τ2

β0(d̂), (3.1)

as a modification of τ := τ2
d0

+ τ2
β0

(d̂), where

τd0 := 2(
m∑
j=1

ν2
j )1/2(d̂− d0), τβ0(d̂) :=

n3/2−d̂

ŝm(d̂)σβ(d̂)
(β̂ − β0)

with
m→∞, m = o(n4/5), m−1 log4 n = o(1). (3.2)

The modification of the test statistics comes from the indicator function associated with
the first component of (3.1). Unlike in Abadir and Distaso (2007), there is no need to
orthogonalize the two components of the test statistic since, as will be shown in Theo-
rem 3.1, cov(τd0 , τβ0(d̂)) → 0: consequently, the inner boundaries of the critical regions of
the unmodified tests are circular rather than elliptical.

The following theorem establishes some asymptotic properties of the normalized esti-
mators of d and β. These are required for the application of the joint testing procedure.

Theorem 3.1. Suppose that X1, ..., Xn are given by (1.1), ut ∼ I(d0) with d0 ∈ (−1/2, 3/2),
d0 6= 1/2, and {ξt} satisfies Assumption A.1. Then, under hypothesis H0(d0, β0), as n→∞,(

τd0 , τβ0(d̂)
) d→ (Z1, Z2), τ

d→ Z2
1 + Z2

2 ∼ χ2(2), (3.3)

where Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1) are independent.

To derive the asymptotic distribution of τr, we know from (2.5) and Theorem 2.1 of
Abadir et al. (2011) that, as n→∞,

τd0
d→ N(ζ, 1) and τ2

β0(d̂)
d→ χ2(1, δ)

independently, where ζ = 2
√
m(d− d0) and the χ2 has one degree of freedom and noncen-

trality parameter

δ =
n3−2d

s2
ξσ

2
β(d)

(β − β0)2.

Therefore, under the null hypothesis both noncentrality parameters are zero, ζ = δ = 0;
whereas under the alternative H1(> d0, β0) at least one of them is greater than zero and
diverges as n → ∞. The asymptotic distribution function of τr, denoted in the limit by
Gζ,δ (c) := Pr(τr ≤ c) where c ≥ 0, has been derived by Abadir and Distaso (2007) and is
now specialized to the case of interest:

Gζ,δ (c) =

√
c exp (−δ/2)

2
√
π

∞∑
j=0

cj/2D−j−1 (ζ)

j!
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×
∞∑
k=0

Γ
(
j
2 + 1

) (
δc
4

)k
Γ
(
k + j+3

2

)
k!

1F1

(
k +

1

2
; k +

j + 3

2
;− c

2

)
, (3.4)

where D−j−1 (ζ) := exp
(
−ζ2/4

)
Dj−1 (ζ) is the modified parabolic cylinder function whose

series expansion is derived in Abadir (1993). The gamma function Γ (·), Kummer’s hyper-
geometric function 1F1, and the (unmodified) parabolic cylinder function Dj−1 (ζ) can be
found in Erdélyi’s (1953) chs.1, 6, and 8, respectively. Their main properties and computa-
tional aspects are summarized in Abadir (1999). Each of these “infinite” series are as fast
to compute as the exponential series, with terms decaying at an exponential rate.

The distribution under the null hypothesis is readily obtained by calculating

G0,0 (c) =

√
πc

2

∞∑
j=0

(
c
2

)j/2
1F1

(
1
2 ; j+3

2 ;− c
2

)
Γ
(

1− j
2

) [
Γ
(
j+1

2

)]2
(j + 1)

= Φ
(√
c
)
− 1

2
+
c
√
π

4

∞∑
j=0

(
c
2

)j
1F1

(
1
2 ; j + 2;− c

2

)
Γ
(

1
2 − j

)
j! (j + 1)!

, (3.5)

where we have split the first sum into even j and odd j, and used the definition of the
standard normal c.d.f. Φ(·) in terms of 1F1 as

Φ (ζ) =
1

2
+

ζ√
2π

1F1

(
1

2
;
3

2
;−ζ

2

2

)
.

The test of size γ is constructed as follows:

reject H0(d0, β0) in favour of H1(> d0, β0) if τr > cγ ,

where cγ is the quantile of τr defined by G0,0(cγ) = 1 − γ, and we compute the exact (to
2 decimal places) quantiles c1% = 8.27, c5% = 5.14, and c10% = 3.81. The asymptotic
power function of the test is obtained by calculating 1−Gζ,δ (cγ), which tends to 1 because
|ζ| → ∞ or δ →∞ as n→∞.

Similarly, the test of the hypothesis H0(d0, β0) versus the alternative H1(< d0, β0) is
based on the statistic

τl := τ2
d01

d̂<d0
+ τ2

β0(d̂). (3.6)

We reject H0(d0, β0) in favour of H1(< d0, β0) if τl > cγ , where the quantiles cγ are the same
as above.

As n→∞ under H0(d0, β0), we have

Pr(τr > c)→ 1−G0,0(c), Pr(τl > c)→ 1−G0,0(c). (3.7)

We conclude this section with the following consistency result, which follows from applying
the result of Theorem 2.1 of Abadir et al. (2011) to Theorem 3 in Abadir and Distaso
(2007).

Theorem 3.2. As n→∞ under the alternatives H1(> d0, β0) and H1(< d0, β0), we have

Pr(τr > cγ)→ 1 and Pr(τl > cγ)→ 1,

respectively, for any quantile cγ > 0 of asymptotic size 1−G0,0(cγ) = γ ∈ (0, 1).

Therefore, the tests τr and τl are consistent.

8



4 Simulation results

We simulate the following Data Generating Process (DGP)

yt = α+ βt+ ut, t = 1, . . . , n,

where ut ∼ I(d), for α = 0, β = 0, 0.05, 0.1, d = 0.94, 0.96, 0.98, 1 and n =
250, 500, 1000. We consider three different bandwidths for the estimation of d, namely
m = bn0.65c, bn0.7c, bn0.75c. The DGP is simulated 10,000 times.

The theory covers both persistent I(d) processes with d ∈ (0, 1.5) and antipersistent
ones with d ∈ (−0.5, 0). To save space, we include simulation results only for testing the
null hypothesis H0: d = 1 and β = 0 against nearby alternatives, since these are the ones of
most interest in economic applications. Other simulation results can be obtained from the
authors upon request. The results are reported in Tables 1 to 3, for the three values of m.
For a nominal size of 10%, the tables contain size and power for the null hypothesis H0(1, 0)
for inference on the existence of a unit root and no deterministic trend. The alternative of
interest is H1(< 1, 0), which covers processes with a finite impulse-response function and
possibly a linear trend. The tests used are based on the traditional joint statistic given by

τ = τ2
c,d0=1 + τ2

β0=0(d̂c), τ2
c,d0=1 = 4(

m∑
j=1

ν2
j )(d̂c − 1)2,

and the corresponding one-sided modified statistic

τl = τ2
c,d0=11

d̂c<1
+ τ2

β0=0(d̂c)

where

d̂c :=

{
d̂, if d̂ ∈ [−1/2, 1/2],

d̂+ 1
108λ

2
m, if d̂ ∈ (1/2, 3/2]

(4.1)

is the version of the FELW estimator d̂ corrected for the bias generated by the estimation
procedure in the interval d̂ ∈ (1/2, 3/2], see Theorem 2.2 in Abadir et al. (2007). Such
correction leads to minor improvement of size properties of the tests τ and τl in finite
samples. Since for m = o(n0.8) it holds d̂c = d̂+ op(m

−1/2), the tests τ and τl based on d̂c
and d̂ have the same asymptotics properties.

The actual size is read off the top-right corner entry in each block (n = 250, 500, 1000)
of each table, and is highlighted in italics. Both tests are oversized, due to some negative
bias arising from the estimation of d. The size distortion seems to be increasing in m,
albeit not uniformly. Size distortions are similar in magnitude for τ and τl, except for the
largest m = bn0.75c when both distortions increase. We therefore do not recommend such
a bandwidth unless the sample size is very large.

Powers also are seen to be better for larger values of m. The power gains from our
one-sided modified τl can be substantial. For example, when d = 0.94 (the smallest d that
we report) and β = 0, the power gains of τl over τ are of the order of 5–10%. Even in
the case of the nearest to the unit root, d = 0.98, the power gains remain high at around
4%. These examples show that, even when the alternative to a unit root does not contain a
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visibly distinguishing trend (i.e., β = 0), our modified test is able to detect small departures
from d = 1 better than the traditional χ2(2) test.

We now compare the size-adjusted powers of τ and τl. It is possible to get a represen-
tative idea of the power surfaces of the two tests by looking at Figure 1. The test based
on τl seems to be uniformly more powerful than its unmodified counterpart τ , especially
when violations of the null occur on the long memory parameter. This demonstrates the
usefulness of the modified test.

Figure 1: Size-adjusted power surfaces of the tests based on τ (green) and τl (red), for
n = 500 and m = bn0.75c.
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Table 1: Rejection frequencies of H0(1, 0) at the 10% significance level, for τ and τl, with
m = bn0.65c.

d = 0.94 d = 0.96 d = 0.98 d = 1

n = 250

β = 0
τ 0.178 0.139 0.127 0.108
τl 0.226 0.181 0.155 0.123

β = 0.05
τ 0.292 0.236 0.186 0.175
τl 0.352 0.281 0.230 0.201

β = 0.1
τ 0.559 0.474 0.397 0.343
τl 0.611 0.534 0.458 0.368

n = 500

β = 0
τ 0.198 0.145 0.117 0.116
τl 0.256 0.188 0.148 0.121

β = 0.05
τ 0.435 0.359 0.269 0.220
τl 0.498 0.418 0.328 0.247

β = 0.1
τ 0.854 0.755 0.661 0.561
τl 0.887 0.805 0.715 0.602

n = 1000

β = 0
τ 0.251 0.164 0.129 0.111
τl 0.308 0.221 0.164 0.117

β = 0.05
τ 0.680 0.546 0.422 0.352
τl 0.735 0.612 0.484 0.388

β = 0.1
τ 0.990 0.967 0.913 0.835
τl 0.995 0.977 0.935 0.856
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Table 2: Rejection frequencies of H0(1, 0) at the 10% significance level, for τ and τl, with
m = bn0.7c.

d = 0.94 d = 0.96 d = 0.98 d = 1

n = 250

β = 0
τ 0.181 0.154 0.122 0.104
τl 0.227 0.189 0.149 0.118

β = 0.05
τ 0.293 0.241 0.179 0.171
τl 0.351 0.287 0.222 0.192

β = 0.1
τ 0.570 0.489 0.406 0.346
τl 0.636 0.547 0.450 0.391

n = 500

β = 0
τ 0.222 0.164 0.128 0.117
τl 0.292 0.222 0.154 0.127

β = 0.05
τ 0.462 0.349 0.284 0.221
τl 0.528 0.420 0.333 0.244

β = 0.1
τ 0.873 0.767 0.671 0.538
τl 0.905 0.816 0.709 0.582

n = 1000

β = 0
τ 0.296 0.204 0.136 0.121
τl 0.374 0.257 0.173 0.124

β = 0.05
τ 0.725 0.579 0.428 0.339
τl 0.785 0.643 0.493 0.380

β = 0.1
τ 0.993 0.971 0.905 0.828
τl 0.996 0.982 0.931 0.855
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Table 3: Rejection frequencies of H0(1, 0) at the 10% significance level, for τ and τl, with
m = bn0.75c.

d = 0.94 d = 0.96 d = 0.98 d = 1

n = 250

β = 0
τ 0.204 0.150 0.116 0.115
τl 0.271 0.191 0.151 0.121

β = 0.05
τ 0.314 0.239 0.195 0.160
τl 0.382 0.306 0.242 0.191

β = 0.1
τ 0.583 0.490 0.425 0.338
τl 0.661 0.556 0.477 0.372

n = 500

β = 0
τ 0.268 0.187 0.115 0.111
τl 0.338 0.239 0.160 0.125

β = 0.05
τ 0.511 0.374 0.271 0.211
τl 0.589 0.438 0.323 0.241

β = 0.1
τ 0.870 0.777 0.658 0.553
τl 0.901 0.819 0.714 0.591

n = 1000

β = 0
τ 0.410 0.237 0.124 0.106
τl 0.491 0.300 0.170 0.107

β = 0.05
τ 0.754 0.604 0.439 0.338
τl 0.808 0.671 0.499 0.368

β = 0.1
τ 0.996 0.969 0.908 0.827
τl 0.998 0.979 0.932 0.855

13



5 Empirical illustration: the case of US quarterly GDP

The methods outlined earlier will now be illustrated with the quarterly series of US GDP.
This should be viewed as testing for persistence and trend in a context that is more general
than Dickey-Fuller tests. It is not an attempt to model GDP, as we will explain that this
requires further analysis. Data have been obtained form the Bureau of Economic Analysis
and refer to seasonally-adjusted quarterly GDP values, expressed in billions of dollars at
2000 prices. The series is available from the first quarter of 1947 to the third quarter of
2019, avoiding the covid pandemic period which would require further modelling of this
exceptional event. We can see from Figure 2 that a linear trend is sufficient to capture any
deterministic growth that may be present in the evolution of log(GDP), but we also see a
long cycle that our paper is not estimating and could inflate the estimate of our memory
parameter d which would mop up the excess volatility. Estimating a cycle is not included in
the Dickey-Fuller models either, but was found by Abadir, Caggiano, and Talmain (2013)
to be prevalent in macro series. We leave this aspect to further research, to develop the
theory of estimating a memory parameter d at a nonzero cyclical spectral frequency when
there are deterministic trends.

For yt := log(GDP), we fit
yt = α+ βt+ ut,

where ut ∼ I(d) with d ∈ (−1/2, 3/2). The parameters of the process have been estimated
using LS estimators for α and β and the extended Whittle estimator for d. In particular,
d has been estimated using the two recommended bandwidths for this sample size, m =
bn.65c, bn.7c.

The resulting estimator for m = bn.65c is d̂ = 1.002, and the corresponding 95% confi-
dence interval is (0.8215, 1.1809). The fitted process is given by

ŷt = 7.716 + 0.0079t+ ut,

where the 95% confidence interval for β is (0.0062, 0.0095). The confidence intervals for d
and β are valid for a wide range of processes that lead to Gaussian limits for the estimators.

We caution against the omission of long cycles from the model we fitted here, with
the effect that our estimate of d could be inflated. We leave this for future research.
The cycles are visible in our Figure 1 (where we also see the trend), and these cycles
have been found in Abadir, Caggiano, and Talmain (2013) through the estimation and
testing of a parametric autocorrelation function that represents very accurately almost all
macroeconomic and aggregate financial series.

It is also of interest to test for the popular hypothesis of driftless unit-root nonstation-
arity. Using the methodology described in Section 3, the null and alternative hypotheses of
interest would be

H0(1, 0) versus H1(< 1, 0).

The test statistic defined in (3.6) yields

τl = 4
( m∑
j=1

ν2
j

)
(d̂c − 1)21

d̂c<1
+

(
n3/2−d̂β̂

ŝm(d̂c)σβ(d̂c)

)2

= 83.93

and the null hypothesis is massively rejected even at the 1% level.
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Figure 2: Time series of log(GDP).

6 Proofs

Proof of Theorem 3.1. We assume that H0(d0, β0) is true. Notice that the first claim

in (3.3) implies the second claim τ
d→ Z2

1 + Z2
2 .

By the Cramér-Wold device, to prove the weak convergence of the finite dimensional

distributions (3.3), (τd0 , τβ0(d̂))
d→ (Z1, Z2), it suffices to show that for any real numbers

a1, a2,

a1τd0 + a2τβ0(d̂)
d→ a1Z1 + a2Z2. (6.1)

First we outline some properties of τd0 and τβ0(d̂), used in the proof.

By Theorem 2.1 in Abadir et al. (2011), we have that E(β̂ − β0)2 ≤ Cn−3+2d0 . Now,
the estimated residuals can be written as

ût = Xt − α̂− β̂t = ut + α− α̂+ gn,t

where gn,t := (β − β̂)t. We will estimate d0 by the FELW estimator d̂ computed using the
residuals û1, ..., ûn. Recall that

∑m
j=1 ν

2
j /m→ 1. Then,

τd0 = 2(

m∑
j=1

ν2
j )1/2(d̂− d0) = 2

√
m(d̂− d0) + op(1).
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Since d̂ is data shift-invariant, in estimation of d0, ût can be replaced by ut+gn,t. Moreover,
since

∑n
t=1 g

2
n,t = Op(n

2dξ), then gn,t satisfies (4.41) of Theorem 2.5 (iii) in Abadir et al.
(2007), which implies

τd0 = 2
√
m(d̂u − d0)(1 + op(1)) + op(1),

where d̂u denotes the FELW estimator computed as if u0, u1, ..., un were observed. Together
with (2.5), under Assumption A.1 and m = o(n4/5), this implies that the extended local
Whittle estimator d̂ has the property

τd0 = 2
√
m(d̂u − d0) + op(1)

d→ N(0, 1). (6.2)

Together with Theorem 2.1 of Abadir et al. (2007) applied to d̂u − d0, this implies that

τd0 = m−1/2
m∑
j=1

(log(j/m) + 1)ηj + op(1),

where ηj = b−1
0 λ

2dξ
j In,ξ(λj) and In,ξ(λj) = (2πn)−1

∣∣∑n
t=1 eitλjξt

∣∣2. Write

ηj = ηj,ε + rj ,

where ηj,ε := 2π In,ε(λj) and rj := ηj − ηj,ε and set

Tn,ε = m−1/2
m∑
j=1

(
log(j/m) + 1

)
ηj,ε, Rn = m−1/2

m∑
j=1

(
log(j/m) + 1

)
rj .

Robinson (1995, page 1644) showed that, under (3.2) and Assumption A.1, Rn
p→ 0, as

n → ∞. The latter can be also verified using (6.2.15) of Lemma 6.2.1 in Giraitis et al.
(2012). Therefore, by (6.2),

τd0 = Tn,ε + op(1). (6.3)

Write

Tn,ε = n−1
n∑

t,s=1

[m−1/2
m∑
j=1

(log(j/m) + 1)ei(t−s)λj ]εtεs

=
∑

1≤s<t≤n
cn(t− s)εtεs + cn(0)

n∑
t=1

ε2
t ,

where

cs := 2n−1m−1/2
m∑
j=1

(log(j/m) + 1) cos(sλj).

Property m−1/2
∑m

j=1(log(j/m) + 1) = o(1) implies

cn(0) = o(n−1), cn(0)
n∑
t=1

ε2
t = o(1)

(
n−1

n∑
t=1

ε2
t

)
= op(1). (6.4)

16



Denote

Sn,ε =
n∑
t=1

zt

where zt := εtζt, ζt =
∑t−1

s=1 ct−sεs for 2 ≤ t ≤ n and is 0 otherwise. Then, Tn,ε = Sn,ε+op(1)
and therefore (6.3) reduces to

τd0 = Sn,ε + op(1)
d→ Z1 ∼ N(0, 1). (6.5)

Next, we evaluate τβ0(d̂). Note that by (2.8), consistency of the long-run variance
estimator (2.7), and (2.4), we get

τβ0(d̂) = τβ0(d0)(1 + op(1))
d→ Z2 ∼ N(0, 1). (6.6)

Here, τβ0 = (sξσβ(d0))−1n3/2−d0(β̂ − β0). As in the proof of Theorem 1 in Giraitis et al.
(2011), we can write

n3/2−d0(β̂ − β0) = Vn/Dn, where (6.7)

Vn := n−3/2−d0
n∑
t=1

(ut − ū)t, ū := n−1
n∑
j=1

uj , Dn := n−3
n∑
t=1

(t− t̄)2.

Notice that Dn → 1/12. In the proof of Theorem 1 in Giraitis et al. (2011), using conver-
gence (2.9), it is shown that for d0 ∈ (−1/2, 1/2),

Vn = −
n∑
j=1

n−3/2−d0

(
j∑

k=1

ξk −
j

n

n∑
k=1

ξk

)

= −
∫ 1

0
(Yn(r)− rYn(1)) dr + op(1)

d→ V∞ := −
∫ 1

0
(Y∞(r)− rY∞(1)) dr,

whereas for d0 ∈ (1/2, 3/2),

Vn = −n−3/2−d0
n∑
j=1

j∑
k=1

(
k∑
t=1

ξt − n−1
n∑
s=1

s∑
t=1

ξt

)

= −
∫ 1

0

∫ r

0

(
Yn(s)−

∫ 1

0
Yn(u)du

)
dsdr + op(1)

d→ V∞ := −
∫ 1

0

∫ r

0

(
Y∞(s)−

∫ 1

0
Y∞(u)du

)
dsdr

and Yn(, ), Y∞(.) are the same as in (2.9).
In view of (6.5) and (6.6)–(6.7), to prove (6.1) it suffices to show that

a1Sn,ε + a2Vn
d→ a1Z1 + a2V∞. (6.8)

In turn, to prove (6.8), in view of the definition of Vn, it suffices to show that for any m ≥ 2
and 0 < r1 < r2 < ... < rm ≤ 1, and real numbers a1, b1, ..., bm, it holds

a1Sn,ε + b1Yn(r1) + ...+ bmYn(rm)
d→ a1Z1 + b1Y∞(r1) + ...+ bmY∞(rm), (6.9)
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where Z1 ∼ N(0, 1) and Y∞(r) ∼ N
(
0,E(Y 2

∞(r))
)

are Gaussian variables such that

E(Z1Y∞(r)) = 0, 0 < r ≤ 1. (6.10)

Then, (6.10) implies E(Z1V∞) = 0 and E(Z1Z2) = 12E(Z1V∞)(sξσβ(d0))−1 = 0.
For d0 ∈ (−1/2, 1/2) we have that

E (Z1V∞) = −
∫ 1

0
E [Z1 (Y∞(r)− rY∞(1))] dr = 0,

whereas for d0 ∈ (1/2, 3/2)

E (Z1V∞) = −
∫ 1

0

∫ r

0
E

[
Z1

(
Y∞(s)−

∫ 1

0
Y∞(u)du

)]
dsdr = 0.

Proof of (6.9). To this end, set aj = 0 for j < 0 in (1.3), denote ni = bnric+ 1, i = 1, ...,m
and define

dnk,i := n−1/2−dξ
ni∑
j=1

aj−k, k ≤ ni.

We set dnk,i = 0 for ni < k ≤ n. Then,

Yn(ri) = n−1/2−dξ
ni∑
j=1

ξj = n−1/2−dξ
ni∑
j=1

j∑
k=−∞

aj−kεk (6.11)

=

ni∑
k=−∞

dnk,iεk =
n∑

k=−∞
dnk,iεk.

So, we can write

Un = b1Yn(r1) + ...+ bmYn(rm) =
n∑

k=−∞
νnkεk, νnk :=

m∑
i=1

bidnk,i.

Note that by (2.10),

E (Yn(ri)Yn(rj)) =

min(ni,nj)∑
k=−∞

dnk,idnk,j → s2
ξR(t, s) = E (Y∞(ri)Y∞(rj)) , (6.12)

E
(
U2
n

)
=

n∑
k=−∞

ν2
nk → E

(
U2
∞
)
<∞.

Hence, we can write

Un =

n∑
k=−M

νnkεk +

−M−1∑
k=−∞

νnkεk =: Un,1 + Un,2,
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where M = M(n) is selected such that

E
(
U2
n,2

)
=
−M−1∑
k=−∞

ν2
nk = o(1). (6.13)

Hence
a1Sn,ε + b1Yn(r1) + ...+ bmYn(rm) = a1Sn,ε + Un,1 + op(1).

To prove (6.9), it remains to show that

a1Sn,ε + Un,1
d→ a1Z1 + U∞, U∞ := b1Y∞(r1) + ...+ bmY∞(rm). (6.14)

Defining vt := νntεt if −M ≤ t ≤ n, we can write

a1Sn,ε + Un,1 =
n∑

t=−M
(a1zt + vt),

where zt = 0 for t ≤ 2. Notice that a2zt+vt is a zero mean martingale difference array with
respect to the sigma algebra Ft−1 generated by the variables εs with s ≤ t− 1. Hence, to
verify convergence (6.14), it suffices to prove that with Z1 and Y∞(r) as in (6.9) and (6.10),
it holds

n∑
t=−M

E[(a1zt + vt)
2|Ft−1]

p−→ E(a1Z1 + U∞)2 = a2
1 + E

(
U2
∞
)

(6.15)

and
n∑

t=−M
E
[
(a1zt + vt)

21|a1zt+vt|≥δ
]
→ 0 for all δ > 0. (6.16)

Proof of (6.15). Using (a1zt + vt)
2 = a2

1z
2
t + v2

t + 2a1ztvt, we can write

n∑
t=−M

E[(a1zt + vt)
2|Ft−1] = a2

1in,1 + in,2 + 2a1in,3,

in,1 =
n∑
t=2

E[z2
t |Ft−1], in,2 =

n∑
t=−M

E[v2
t |Ft−1], in,2 =

n∑
t=2

E[ztvt|Ft−1].

To prove (6.15), it suffices to show that

in,1
p−→ 1, in,2

p−→ E
(
U2
∞
)
, in,3

p−→ 0. (6.17)

Convergence in,1
p−→ 1 was shown in (4.12) of Robinson (1995).

Next we evaluate in,2. Using E[v2
t |Ft−1] = ν2

nt, (6.13) and (6.12), we obtain

in,2 =

n∑
t=−M

ν2
tk =

n∑
t=−∞

ν2
nt + o(1) = E(U2

n) + o(1) (6.18)

= E(b1Yn(r1) + ...+ bmYn(rm))2 + o(1)
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→ E(b1Y∞(r1) + ...+ bmY∞(rm))2 = E(U2
∞),

which proves (6.17) for in,2.
To bound in,3, note that E[ztvt|Ft−1] = E[ζtνntε

2
t |Ft−1] = ζtνnt. Hence,

in,3 =
n∑
t=2

ζtνnt =
n∑
t=2

(
t−1∑
s=1

ct−sεs)νnt =
n−1∑
s=1

(
n∑

t=s+1

ct−sνnt)εs,

E(i2n,3) ≤
n−1∑
s=1

(
n∑

t=s+1

ct−sνnt)
2 ≤

n∑
t,k=2

|νntνnk|
min(t,k)−1∑

s=1

|ct−sct−k|.

Bounding |νntνnk| ≤ ν2
nt + ν2

nk and noting that in the sum above 1 ≤ t − s, t − k ≤ n, we
obtain

E(i2n,3) ≤ 2
n∑

t,k=2

ν2
nt

min(t,k)−1∑
s=1

|ct−sct−k| ≤ 2(
n∑
t=2

ν2
nt)(

n∑
s=1

|cs|)(
n∑
k=1

|ck|).

By (6.12),
n∑

t=−M
ν2
nt = O(1).

In Robinson (1995, equation (4.21)), it is shown that

|cs| = O(m−1/2s−1 logm), s ≥ 1, (6.19)

which yields

max
1≤t≤n

n∑
s=1:s 6=t

c2
t−s ≤ Cm−1(log2m)

n∑
s=1

s−2 ≤ Cm−1 log2m = o(1), (6.20)

n∑
s=1

|cs| ≤ Cm−1/2(logm)
n∑
s=1

s−1 ≤ Cm−1/2 log2 n = o(1)

by assumption (3.2) on m. Hence,

E(i2n,3) ≤ Cm−1 log4 n = o(1),

which proves (6.17) for in,3.

Proof of (6.16). Using the inequality (a+ b)4 ≤ (2a2 + 2b2)2 ≤ 8(a4 + b4), we can bound

n∑
t=−M

E
[
(a1zt + vt)

21|a1zt+vt|≥δ
]

≤ δ−2
n∑

t=−M
E
[
(a1zt + vt)

4
]
≤ δ−28

n∑
t=−M

E[a4
1z

4
t + v4

t ] = δ−28(a4
1jn,1 + jn,2),

jn,1 =

n∑
t=−M

E[z4
t ], jn,2 =

n∑
t=−M

E[v4
t ].
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It suffices to show that
jn,1 → 0, jn,2 → 0. (6.21)

We start with the proof of the first claim. Recall that {εt} are i.i.d. random variables, and
E
(
ε4

1

)
<∞. Therefore, for zt = εtζt,

jn,1 = E
(
ε4

1

) n∑
t=1

E
(
ζ4
t

)
.

Since by (6.26),

E
(
ζ4
t

)
= E[(

t−1∑
s=1

ct−sεs)
4] ≤ C(

t−1∑
s=1

c2
t−s)

2,

where C does not depend on t and ct−s, we obtain

jn,1 ≤ C
n∑
t=1

(

t−1∑
s=1

c2
t−s)

2 ≤ (

n∑
t=2

t−1∑
s=1

c2
t−s)( max

t=1,...,n

n∑
s=1:s 6=t

c2
t−s). (6.22)

In the proof of (4.12) of Robinson (1995), it was shown that

n∑
t=2

E
(
z2
t

)
=

n∑
t=2

t−1∑
s=1

c2
t−s → 1. (6.23)

Applying (6.23) and (6.20) in (6.22), we obtain jn,1 → 0.
Using definition vt = νntεt, we have

jn,2 =
n∑

t=−M
E
(
v4
t

)
= E

(
ε4

1

) n∑
t=−M

ν4
nt ≤ C(

n∑
t=−∞

ν2
nt)(max

t≤n
ν2
nt). (6.24)

Property (6.12) implies that the standardized sum Yn(ri) of linear process ξt given by (6.11)
has the property

E[Y 2
n (ri)] = E[(n−1/2−dξ

ni∑
j=1

ξj)
2] =

n∑
k=−∞

d2
nk,i → E[Y 2

∞(ri)] <∞.

In Abadir et al. (2014, equation (2.4)), it is shown that this fact implies maxk≤n |dnk,i| =
o(1) which, in turn, implies

max
t≤n

ν2
nt =

(
max
t≤n

(
m∑
i=1

|bidnk,i|
)2 → 0. (6.25)

Using (6.18) and (6.25) in (6.24) we obtain jn,2 → 0 which proves (6.21) and concludes the
proof of the theorem.
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Lemma 6.1. (Abadir et al.(2014), Lemma 3.1). Let sn =
∑n

j=1 bjεj where {εj} are i.i.d.

random variables with zero mean, E
(
ε4

1

)
< ∞, and {bj} with j ≥ 1 is a sequence of real

numbers. Then,

E
(
s4
n

)
≤ C(E

(
s2
n

)
)2 ≤ C(

n∑
j=1

b2j )
2, (6.26)

where C does not depend on n and bj.
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