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Abstract—The heterogeneous fog radio access networks (Fog-
RAN), the integration of fog computing, and traditional het-
erogeneous radio access networks can be implemented through
the next-generation wireless communication networks. However,
most of the solutions are limited to the spectrum efficiency
optimization, and cross-tier interference existing in the fog
access points (F-APs) could affect the network performance
seriously. In this paper, the user association, resource allocation
(including bandwidth and power), and caching deployment are
investigated in the heterogeneous Fog-RAN to consider energy
efficiency and cross-tier interference mitigation. Specifically, the
user association, resource allocation, and caching strategy are
formulated as a non-convex optimization problem and then
transformed into a convex problem, which can be solved by
a proposed algorithm based on the concept of the alternating
direction method of multipliers (ADMM). Then an ADMM-based
algorithm is proposed to enhance the energy efficiency of the Fog-
RAN. Compared with the current solutions, simulation results
illustrate the proposed algorithm’s convergence and effectiveness.

Index Terms—Fog radio access networks (Fog-RAN), energy
efficiency, resource allocation, caching deployment.

I. INTRODUCTION

With the rapid development of the Internet of Things (IoT),

many smart devices have exponential growth recently. Accord-

ing to the statistical data from market research firm IDC, the

number of global smart devices will reach around 41.6 billion

by 2025, generating 79.4ZB data [1]. The loading of backhaul

links will surge with billions of the IoT devices and the

phenomenons of packet loss in transmission link are easier to

occur. To meet future mobile services’ complex requirements,

the new generation broadband mobile communication with

large capacity and high transmission rate requires development

and breakthrough. In the traditional heterogeneous networks,

the spectral resource and energy resource between low-power

access points or base stations (BSs) are easy to be limited [2],

which leads to a large gap between the performance gains of
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coordinated multi-point transmission. Besides, the constrained

backhaul quickly causes more complicated network manage-

ment, high cost, low spectrum efficiency, and low energy

efficiency [3].

As an emerging paradigm in the future wireless communi-

cation networks, the edge computing enables the cloud com-

puting capabilities to sink to mobile devices. The edge layer

between the terminal apparatus and the cloud is implemented

differently because the edge layer uses the communication

protocol and services. There are three kinds of typical tech-

niques including mobile edge computing, cloudlet computing,

and fog computing [4]. The mobile edge computing can bring

computing and storage capacity to the boundary of the cloud

infrastructure [5]. Compared with the existing frameworks and

algorithms for task offloading, mostly focusing on clouds,

cloudlets have been quickly gaining recognition as an alter-

native offloading destination [6]. As for the fog computing,

it realizes a set of distributing functions to perform resource

allocation, storage management, and computing services [7].

Based on the discussion above, performances among these

three techniques are analyzed. As for power consumption, the

fog computing consumes lower energy compared to the above

two [8]. And when it comes to the applications targeted by

these three techniques, the fog computing goes far beyond the

cloudlets and the mobile edge computing. The fog computing

sinks down a lot of communication and storage capabilities at

the edge of networks, extending the current cloud computing

paradigm to the smart devices [9].

Thus, we choose the fog radio access networks (Fog-RAN)

as the deployment environment to adapt massive data and

real-time requirements from millions of sensors [10]. In the

Fog-RAN, the powerful capacity of processing and computing

sinks in the edge devices, including access points and user

equipments. The edge devices undertake some tasks to reduce

the backhaul load. The Fog-RAN is an emerging domain

that tackle enormous requests from growing user equipments.

Beyond the centralized architecture of cloud radio access

networks [11], many key functions are distributed to the

Fog-RAN’s edge. It can provide a superior user experience

and improve total network performance. The edge caching

are installed in the fog access points (F-APs) [12]. Caching

deployment is a problem that looks into how the diversity

contents is cached in F-APs because it has significant impact

to the network performance of the Fog-RAN. Therefore, how

to deploy the caching better in the Fog-RAN has become a
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focus [13], [14]. As one of the most important parts of the

Fog-RAN, a trade-off between the transmission bandwidth

cost and the storage cost is the design principle of caching

deployment [15], [16]. However, the scale of content acquired

by content providers is growing significantly, and it is thus all

but impossible to cache all content [17], [18]. The fog user

equipments (F-UEs) can access the interesting information

within one hop, which significantly reduces the latency. It

is necessary to study the content delivery performance in

caching-aided heterogeneous wireless networks to illustrate the

benefits of placing caching distributed over the whole Fog-

RAN.

A. Motivations and Contributions

According to the above introduction, the Fog-RAN is an

advanced technique for the future wireless communication

system which can provide high spectral efficiency [19]. And

the problem of achieving maximum energy efficiency to pro-

mote the system performance of the Fog-RAN is of utmost

importance. How to realize the trade-off between circuit power

consumption to sustain caching deployment and transmit

power consumption without caching deployment is worthy of

study.

Meanwhile, most of the studies are limited to a single field

among these aspects, while relatively less on joint optimization

in all these aspects. There are a few reviews on user association

and resource allocation in wireless communication networks.

In [20], Abedin et al. proposed a two-sided matching game

to realize the optimization of user association and band-

width allocation for typical IoT applications in the Fog-RAN.

Qi et al. investigate a stochastic-geometry approach to user

association and time-frequency resource block allocation in

the NOMA based Fog-RAN [21]. The joint optimization of

user association, bandwidth, power allocation, and caching

deployment simultaneously in the heterogeneous Fog-RAN is

seldom mentioned.

The edge caching gain is usually calculated by two indexes,

including time delay reduction [22] and released bandwidth

[23]. Compared with the released bandwidth, the consider-

ation of time delay reduction is feeble. Network latency is

a key performance index that affects the quality of the user

experience. Reducing latency is a crucial indicator to measure

caching performance simultaneously, so it is also considered

in this paper.

Additionally, the cross-tier interference in the spectrum-

sharing deployment of F-APs could affect the network per-

formance seriously [24]. This impact can not be ignored in

the heterogeneous Fog-RAN. Effective cross-tier interference

management ensures stable coexistence between MBS and F-

APs in the heterogeneous Fog-RAN, worthy of being studied.

Motivated by these observations, the preliminary investiga-

tion on this research problem was published in [25], and this

work extends in the following ways: (1) The power allocation

changes into joint optimization with bandwidth allocation and

caching deployment; (2) The minimum transmit data rate

constraint is supplied to guarantee the Quality of Service

(QoS) for F-UEs; (3) We reformulate the caching gain added

with the consideration of time delay; (4) More simulation

results are provided to verify the effectiveness of the proposed

algorithm.

In this paper, the environment mainly depends on the Fog-

RAN, considering heterogeneous networks and QoS. User as-

sociation, wireless resource allocation (bandwidth and power),

caching deployment with energy efficiency are considered

in the heterogeneous Fog-RAN. We formulate user associa-

tion, resource allocation (bandwidth and power), and caching

deployment as a joint optimization problem. The caching

gains both considering alleviation of bandwidth and time

delay reduction are taken into consideration in the proposed

networks architecture. Simulation results illustrate the superior

performance of the proposed algorithm.

The main contributions of this paper can be summarized as

follow:

• The joint optimization problem for a heterogeneous Fog-

RAN is formulated, combined with user association,

resource allocation, and caching deployment. The energy

efficiency maximization with multiple constraints is de-

signed.

• Every F-AP is equipped with edge caching. Gains from

edge caching includes the alleviation of backhaul band-

width and the reduction of time delay. In this paper, both

of them are considered in the heterogeneous Fog-RAN

with energy efficiency maximum.

• Concerning that the original optimization problem is non-

convex and nonlinear, an approximate convex transforma-

tion is proposed. This method can convert the objective

function into a global consensus problem which is con-

venient to the ADMM’s solving.

• A joint optimization scheme based on the ADMM is

proposed for energy efficiency maximization. The effect

of this distributed optimization can be optimized by iter-

ation, and the simulation results verify the convergence

of the proposed algorithm.

B. Organization

The rest of the paper is organized as follows. Section

II presents the heterogeneous Fog-RAN system model and

user association problem formulation, wireless resource al-

location, and edge caching deployment. Section III provides

the algorithm based on ADMM, which aims to achieve user

association, resource allocation combined with caching de-

ployment in the heterogeneous Fog-RAN. Section IV clarifies

the computational complexity of the proposed algorithm. In

Section V, the proposed algorithm is verified by simulations.

Finally, the paper is summarized in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The heterogeneous Fog-RAN consists of one MBS and J
F-APs where j is used to indicate the jth F-AP. Both of them

are equipped with a few caches, whose sizes depend on their

storage and computing capability. Meanwhile, a cloud data

center has a more powerful capability, where MBS and F-APs
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Fig. 1. Heterogeneous Fog-RAN network.

are connected to the cloud data center through backhaul links.

K is denoted as the set of these F-UEs and k is the index

of the associated F-UE. There exists co-channel interference

between different F-APs. Besides, cross-tier interference from

the MBS should also not be ignored.

In Fig. 1, each assigned F-UE is represented by k, and K
is the set of these F-UEs. The spectrum used by different F-

APs is shared, which means that there exists co-channel inter-

ference between F-APs. Additionally, the spectrum is shared

between the MBS and F-APs in the MBS’s coverage, so cross-

tier interference from the MBS should also be considered.

The transmit power on the MBS is p0,k Watts and the F-AP

j’s is pj,k Watts. Thus, spectrum efficiency of the F-UE k is

associated with the F-AP j, which can be calculated as which

γj,k =
gj,kpj,k∑

l,l �=j

gl,kpl,k + σ2
, (1)

where γj,k is the signal-to-interference-plus-noise ratio (SINR)

of the F-UE k in the F-AP j. gj,k is the channel gain that

includes pathloss and shadowing. σ2 is the additive white

Gaussian noise.

In the design model, let aj,k represent the user association

indicator, aj,k = 1 when the F-UE k is associated with the

F-AP j, otherwise aj,k = 0. Actually, each F-UE is connected

with only one F-AP, so
∑
J

aj,k = 1. bj,k ∈ [0, 1] denotes

percentage of spectrum resource allocated and
∑
K

bj,k ≤ 1.

The expected information transmission rate of the F-UE k to

the F-AP j is:

Rj,k=Bjrj,kbj,k, (2)

where Bj is spectrum allocated to the F-AP j. And rj,k =
log2 (1 + γj,k) is the spectrum efficiency of the F-UE k who

associates with the F-AP j by using the Shannon bound.

After Rj,k from the F-AP j to the F-UE k is obtained, the

energy efficiency ηj,k can be calculated by [26]:∑
J

∑
K

ηj,k =
Bjrj,kbj,k

pj,kc
+ aj,k(pj,k +mj,kpcachej,k )

, (3)

where pj,kc is circuit consumption power, the subscript of ηj,k
is the rule of user association between the F-AP j and the F-

UE k. pcachej,k is the power consumption from caching between

the F-AP j and the F-UE k. The caching deployment can be

controlled by the binary parameter mj,k ∈ {0, 1}. If F-AP

j caches the requested content of F-UE k, then mj,k = 1,

otherwise mj,k = 0. The first F-UE’s index can be used to

indicate the content requested by releasing notation.

For convenience, A,M,P is leveraged to replace the part

of power consumption:

Up(A,M,P) = pj,kc
+ aj,k(pj,k +mj,kp

cache
j,k ), (4)

where Up(A,M,P) represents the utility function of the user

association matrix A, the caching deployment strategy M, and

the power allocation matrix P. When the maximum value of

ηj,k is obtained, the user association matrix A and the power

allocation matrix P are updated correspondingly. And as for

caching deployment strategy M, it will be elaborated in the

following.

Moreover, ζ(x) logarithmic dealing is a non-decreasing

and concave function normally. In this paper, the universal

logarithmic function is adapted to the utility function. Namely:

ζ(x) =

{
log x x > 0
−∞ otherwise

(5)

There are two ways to consider caching gain. One is the

alleviation of backhaul bandwidth. The other is the reduction

of the time delay. The alleviation of backhaul bandwidth is

regarded as the reward of caching in the following formula

ΔC
[1]
j =

∑
K

qkR̄jmj,k, (6)

where qk is the data rate requirement of F-UE k’s requested

content, R̄j is the average rate of the single F-UE of F-AP j.

ΔC
[1]
j is the estimated reward of caching, which reflects the

advantage of considering caching into F-APs.

Concerning the data rate requirement qk, we regard it

follows ZipF distribution. Because caching performance de-

pends on the relative popularity of different objects [22], it

has frequently been observed that the popularity of contents

follows a generalized ZipF distribution [27], [28], and yields

estimates for ε between 0.56 and 0.83. The ε reflects the

performance of content reuse, where the most popular files

account for the majority of download request.

qk=
1/fε∑F
f=1 1/f

ε
, ∀f. (7)

In terms of the reduction of the time delay, the reward of

caching hj,k can be obtained:

hj,k =
qkskmj,k

Tmj,k

, (8)

where Tmj,k
is the time delay of downloading the requested

content through the backhaul link, sk is the size of the content

requested by F-UE k. And through the formula (8), the sum

of reward of caching about the time delay can be calculated.

ΔC
[2]
j =

∑
K

hj,k, (9)
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where ΔC
[2]
j is the estimated reward of caching which con-

siders the reduction of the time delay.

In this paper, these two situations will be considered to-

gether and they can be expressed by

ΔCj = ΔC
[1]
j +ΔC

[2]
j =

∑
K

qkmj,k

(
R̄j+

1

Tmj,k

)
. (10)

The storage of the F-AP j may be limited and the content size

of caching is smaller than the rest space of Mj . It is expressed

by: ∑
K

aj,kmj,ksk ≤ Mj , (11)

and every content is assumed to be equal, i.e. sk = 1.

B. Problem Formulation

In this paper, four important parameters are considered.

The user association indicator is aj,k, which represents the

connection status between the F-UE k and the F-AP j. bj,k and

pj,k reflect the allocated bandwidth and power resource status

respectively. mj,k indicates updating of caching deployment.

• Firstly, we assume that each F-UE k should be connected

with only one F-AP.∑
J

aj,k = 1, ∀k. (12)

• The percentage of spectrum resource allocated status

should be less than 1.∑
K

bj,k ≤ 1, ∀j. (13)

• The backhaul bandwidth usage of F-UEs is the same as

instantaneous data rate, which is less than the backhaul

capacity of F-APs.∑
K

Rj,k ≤ Cj , ∀j, (14)

where Rj,k represents expected information transmission rate

of the F-UE k to the F-AP j, Cj represents the maximum

channel transmission capacity of the F-AP j.

• The caching strategy is limited in the empty space of the

caching of each F-AP.∑
K

aj,kmj,k ≤ Mj , ∀j, (15)

let Mj denote the maximum buffer volume of the F-AP j.

• For each F-UE associated with the F-AP, sum of them

exist a power budget Pmax.∑
K

aj,kpj,k ≤ Pmax, ∀j, (16)

where Pmax represents the transmit power threshold.

• The QoS requirement Rk for the F-UE k should main-

tain its performance [29], which requires the following

constraint: ∑
J

aj,kBjrj,k ≥ Rk, ∀k. (17)

• The cross-tier interference suffered from the MBS to each

F-AP j is: ∑
K

bj,kpj,kgj,k ≤ Ij , ∀j. (18)

Let Ij represent the maximum tolerable interference on co-

channel for the MBS and each F-AP j.

According to the above discussion of the utility function

and constraints, the preliminary problem formulation can be

realized as

max
A,B,M,P

∑
J

∑
K

Bjrj,kbj,k + qkmj,k

(
Rj,k + 1

/
Tmj,k

)
Up(A,M,P)

,

(19)

s.t. C1 :
∑
J

aj,k = 1, ∀k,

C2 :
∑
K

bj,k ≤ 1, ∀j,

C3 :
∑
K

Rj,k ≤ Cj , ∀j,

C4 :
∑
K

aj,kmj,k ≤ Mj , ∀j,

C5 :
∑
K

aj,kpj,k ≤ Pmax, ∀j,

C6 :
∑
J

aj,kBjrj,k ≥ Rk, ∀k

C7 :
∑
K

bj,kpj,kgj,k ≤ Ij , ∀j.

(20)

Obviously, optimization problem (19) with constraints (20) is

intractable to solve:

• The binary variables aj,k and mj,k are discrete and the

set of constraints are non-convex.

• The utility function is not convex due to the product

relationship between aj,k and convex function.

• In the heterogeneous Fog-RAN, the number of variables

aj,k is very large with the increasing of the F-APs’

density.

A mixed discrete and non-convex optimization problem is

very difficult to find its global optimal solution. Thus, the

optimization problem (19) in the constraints (20) should be

simplified.

A relaxation of the binary conditions of aj,k and mj,k

constitutes the first step of solving the problem. Following

the approach that has been used extensively, aj,k and mj,k

are relaxed in the problem (19) to be real value variables,

0 ≤ aj,k ≤ 1 and 0 ≤ mj,k ≤ 1, where aj,k as well

as mj,k can be considered as a time-sharing factor for co-

channels and caches. mj,k can be interpreted as the fraction

of time that channel is assigned to the F-UE k during one

transmission frame with the caching model. The relaxed aj,k
can be sensible and meaningfully interpreted as the time-

sharing factor representing the ratio of time when the F-UE k
associates with the F-AP j.

After relaxing the binary variables, the utility function is

still non-convex. Thus, to make the problem (19) tractable
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and solvable, the second step is necessary. b̃j,k and m̃j,k are

defined as b̃j,k = aj,kbj,k, m̃j,k = aj,kmj,k respectively.

According to the formula (5), the utility function (19) is

transformed into the convex form:

max
A,B,M,P

∑
J

∑
K

aj,ku

(
Bjrj,k b̃j,k + qkm̃j,k

(
Rj,k + 1

/
Tmj,k

)
aj,kUp(A,M,P)

)
.

(21)

This is because the f(t, x) = xlog(t/x), t ≥ 0, x ≥ 0 is

the well-known perspective operation of log, whose convexity

is preserved. The log

(
Bjrj,k˜bj,k+qkm̃j,k(Rj,k+1/Tmj,k)

Up(A,M,P)

)
is

concave, so the aj,k log

(
Bjrj,k˜bj,k+qkm̃j,k(Rj,k+1/Tmj,k)

aj,kUp(A,M,P)

)
is

also concave with the help of perspective function. Added with

the constraints (20) are linear so the problem transforms into

a convex problem.

To solve the problem (21), local copies of the global

association indicators are also introduced. Each local variable

can be considered the preference of each F-AP j with F-

UEs’ association. A set of new variables to represent the local

copies of user association indicators are introduced. To avoid

confusion, l denotes the subscript of other F-APs rather than

j. The local copy of the total user association at F-AP j can

be denoted as âjl,k. Formally,

âjl,k = al,k, ∀j. (22)

Through this local transformation, the problem (21) turns to

a global consensus problem, which contributes to introducing

the following algorithm to solve.

For the convenience of readers, the parameters concerning

the formulation can be found in Table I:

TABLE I
EXPLANATION OF ABBREVIATIONS.

Notations Explanations
J The number of F-APs
K The number of F-UEs
gj,k The channel gain from F-AP j to F-UE k
pj,k The transmit power from F-AP j to F-UE k
aj,k The user association indicator
bj,k The percentage of wireless resource allocated
mj,k The caching deployment
rj,k The spectrum efficiency
ηj,k The energy efficiency

b̃j,k The relaxed bandwidth allocation parameters
m̃j,k The relaxed caching deployment parameters

Up(A,P) The power consumption function
qk The data rate requirement of F-UE k
R̄j The average rate of single F-UE of F-AP j

Tmj,k The time delay of downloading the requested content

âjl,k The local copy of a at F-AP j

ΔC
[1]
j The reward of caching about bandwidth alleviation

ΔC
[2]
j The reward of caching about time delay

III. USER ASSOCIATION, RESOURCE ALLOCATION AND

CACHING DEPLOYMENT BY ALTERNATING DIRECTION

METHOD OF MULTIPLIERS

In this section, the ADMM algorithm is introduced firstly.

Then the ADMM with consensus constraint is applied into the

optimization problem (21). Finally, the optimization problem

(21) will be solved by the ADMM with consensus constraint.

A. Alternating Direction Method of Multipliers with Consen-
sus Constraint

The ADMM is suitable for solving convex optimization

problems via breaking them into smaller pieces [30]. Typically,

the ADMM is used to solve optimization problems with only

equation constraints for two optimization variables. It is widely

used in signal processing, image processing, machine learning,

engineering computing, and other fields, with fast convergence

speed, convergence performance advantages.

The ADMM can be regarded as the cooperation of dual

decomposition and augmented Lagrangian methods. It adopts

the decomposition method to solve a complex global problem

with the solution to small local sub-problems. The global con-

sensus problem can be rewritten with local variables xi ∈ Rn

and a common global variable z:

min
∑N

i=1 fi (xi),
s.t. xi − z = 0, i = 1, 2, ..., N.

(23)

The ADMM for the problem (23) can be transformed into

the augmented Lagrangian:

Lρ (x1, ..., xN , z, λ) =∑N
i=1

(
fi (xi) + λT

i (xi − z) + (ρ/2) ‖xi − z‖22
)
.

(24)

Then an optimal result can be generated by the ADMM

algorithm [31]:

xt+1
i :=

argmin
xi

(
fi (xi) + λtT

i (xi − zt) + (ρ/2) ‖xi − zt‖22
)
,

(25)

zt+1
i := argmin

N∑
i=1

(
λt
i
T (

xi − zt
)
+ (ρ/2)

∥∥xi − zt
∥∥2
2

)
,

(26)

λt+1
i := λt

i + ρ
(
xt+1
i − zt+1

)
. (27)

B. Solution to the problem by ADMM

In this subsection, the ADMM with consensus constraint is

used to solve user association, resource allocation (including

bandwidth and power), and caching deployment.

In the simplified optimization problem (21), the utility

function should be considered. In order to realize the transfor-

mation of the global consensus problem, the solution has to

convert the maximum into the minimum. Thus, according to
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the problem (21) and the formula (22), it should be changed

as follows:

max
A,B,M,P

∑
J

∑
K
ηj,k =

âjl,kζ

(
Bjrj,k˜bj,k+qkm̃j,k(Rj,k+1/Tmj,k)

âj
l,kUp(A,M,P)

)
.

(28)

So ζj (·) in the formula (5) is introduced to transform the

utility function ηj,k into a concave form, is expressed as:

ζj =

{ ∑
K
ηj,k ηj,k ∈ (20)

∞ otherwise
. (29)

Finally, the ζj is combined with the constraints (20) in the

problem (19), and obtain the convex optimization in global

consensus form:

min
A,B,M,P

Utotal = −∑J
j=1 ζj ,

s.t.âjl,k − al,k = 0, j = 1, 2, ...,J ,
(30)

where Utotal denotes as the total energy efficiency in the

proposed heterogeneous Fog-RAN. According to the joint

resource optimization model above, the augmented Lagrange

function is:

Lρ

({
âjl,k, b̃j,k, m̃j,k, pj,k

}
, {al,k} ,

{
λj

})
= Utotal+∑

J

∑
K
λj

(
âjl,k − al,k

)
+ ρ

2

∑
J

∑
K

(
âjl,k − al,k

)2

,

(31)

where the Lagrange parameter is ρ, and Lagrange multipliers

are λ.

The ADMM-based algorithm can be realized in the fol-

lowing three updating steps, including joint optimization with

local optimization
{
âjl,k, b̃j,k, m̃j,k, pj,k

}j(t+1)

j∈J
, global user

association a(t+1), and Lagrange multipliers λ(t+1).

The updating of joint optimization with local optimization{
âjl,k, b̃j,k, m̃j,k, pj,k

}j(t+1)

j∈J
is:

{
âjl,k, b̃j,k, m̃j,k, pj,k

}j(t+1)

j∈J
= argmin {Utotal+∑

J

∑
K
λ
j(t)
l,k

(
â
j(t)
l,k − a

(t)
l,k

)
+ρ

2

∑
J

∑
K

(
â
j(t)
l,k − a

(t)
l,k

)2
}
,

(32)

where the local optimization
{
âjl,k, b̃j,k, m̃j,k, pj,k

}j(t+1)

j∈J
con-

sists of four parameters: local user association among all F-

UEs and other F-APs â
j(t)
l,k , bandwidth resource parameter b̃j,k,

caching deployment m̃j,k, and power allocation parameter pj,k
between the F-AP j and the F-UE k. Additionally, a

(t)
j∈J

denotes the association between with all F-UEs and the F-AP

j when the iteration is the t+1th. λ
j(t)
l,k is Lagrange multipliers

that associates with the tth constraints, â
j(t)
l,k denotes as the user

association copied information of other F-APs in the F-AP j.

The associated F-UEs’ optimization matrix is (33), where

J is denoted the gather of F-APs, the updating of global user

association a(t+1) is:

x
(t+1)
j∈J = argmin

∑
J

{∑
J

∑
K

λ
j(t)
l,k

(
â
j(t)
l,k − a

(t)
l,k

)
+ ρ

2

∑
J

∑
K

(
â
j(t)
l,k − a

(t)
l,k

)2
}
.

(33)

The updating of Lagrange multipliers λ is:

λk
j(t+1)
j∈J = λ

j(t)
k + ρ

(
â
j(t+1)
l,k − a

(t+1)
l,k

)
. (34)

The user associated matrix can be updated by the formula

(32), It is difficult to deal with
{
âjl,k, b̃j,k, m̃j,k, pj,k

}j(t)

j∈J
in

the formula (32), so Algorithm 1 based on the logarithmic

barrier function interior-point method is considered. The log-

arithmic barrier function interior-point method forms the next

hierarchy [32]. In Algorithm 1, ς is the logarithmic barrier.

Given that strict feasible point
{
âjl,k, b̃j,k, m̃j,k, pj,k

}(0)

in the

problem (29), uj
(t) can be calculated by tuj+ς . Subsequently,

t is updated by the product of μ and the original t. And ς can

be expressed by

ς = −log(h(x)T ) = −
m∑
i=1

log(hi(x)), (35)

where m is the number of non-equality constrains, which is

6 in the constraints (20). hi(x) is the logarithmic form of ith

constraint. Then
{
âjl,k, b̃j,k, m̃j,k, pj,k

}j(t)

j∈J
is used to denote

the tth solution to the problem (29). Then the local joint

optimal user association, resource allocation, and caching de-

ployment ζj(â
j
l,k, b̃j,k, m̃j,k, pj,k), and corresponding optimal

point
{
âjl,k, b̃j,k, m̃j,k, pj,k

}
can be obtained until m/t > ε.

Based on the analysis above, Algorithm 1 is summarized

below.

Algorithm 1 Logarithmic barrier function interior-point

method for ζj(â
j
l,k, b̃j,k, m̃j,k, pj,k)

.

Initialize: Given strict feasible point{
âjl,k, b̃j,k, m̃j,k, pj,k

}(0)

in the problem (29), the step

factor μ > 1, and the threshold error ε > 0.

while m/t > ε.

a) Compute tζj + ς to get the ζj
(t);

b) Increase t: t = μt.
end while
Output: The local joint optimal user association, resource

allocation, and caching deployment ζj(â
j
l,k, b̃j,k, m̃j,k, pj,k),

and corresponding optimal point
{
âjl,k, b̃j,k, m̃j,k, pj,k

}
.

We can obtain
{
âjl,k, b̃j,k, m̃j,k, pj,k

}
and the optimal

ζj(â
j
l,k, b̃j,k, m̃j,k, pj,k) via calculating Algorithm 1. After

dealing with
{
âjl,k, b̃j,k, m̃j,k, pj,k

}
, the total energy efficiency

Utotal can be obtained in the proposed system. To solve the
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transformed optimization problem in the subtractive form (30),

Algorithm 2 is proposed.

The problem (30) can be solved via the ADMM’s ap-

plicability on the global consensus problem. The updated

local variables
{
âjl,k, b̃j,k, m̃j,k, pj,k

}j(t+1)

j∈J
and total energy

efficiency Utotal calculated from Algorithm 1. Meanwhile,

the updating of local variables in formula (32) is finished.

are used in the following steps in updating global a(t+1)

and λ(t+1). Finally, the global joint optimization, including

user association, resource allocation (bandwidth and power),

and caching deployment will be realized in the proposed

heterogeneous Fog-RAN. Based on the analysis above, the

distributed heterogeneous Fog-RAN algorithm by ADMM can

be summarized as Algorithm 2.

Algorithm 2 ADMM-based joint resource optimization in the

heterogeneous Fog-RAN.

Initialize: Lagrange multiplier λ > 0 and the stop criterion

threshold ζ > 0.

Initialize feasible resource allocation, caching deployment

with an equal power distribution
{
âjl,k, b̃j,k, m̃j,k, pj,k

}(0)

and begin with the loop.

for t = 1 to T do
repeat

a) Determine a(t) and λ(t);

b) For each F-AP j, solve the problem (29) to get

optimized Utotal via Algorithm 1;

c) Update
{
âjl,k, b̃j,k, m̃j,k, pj,k

}j(t+1)

j∈J
via (32);

d) Update a(t+1) by the results of{
âjl,k, b̃j,k, m̃j,k, pj,k

}j(t+1)

j∈J
via (33);

e) Update λ(t+1) via (34).

until if s
(t+1)
dual = a(t+1) − a(t) and

∥∥∥s(t+1)
j

∥∥∥
2
≤ ζ, ∀j.

end for
Output:The global joint optimal resource allocation{
aj,k, b̃j,k, m̃j,k, pj,k

}j(t+1)

j∈J
.

C. Complexity analysis

In this subsection, the space and time computational com-

plexity of the proposed algorithms are discussed.

In Algorithm 1, the calculation of (29) for F-UEs in each

F-AP entails 4JK operations, because there exist four param-

eters including user association, bandwidth, power allocation

and caching deployment
{
âjl,k, b̃j,k, m̃j,k, pj,k

}
. In Algorithm

2, the update of local user association
{
âjl,k, b̃j,k, m̃j,k, pj,k

}
in equation (33) entails 4JK×J = 4J 2K operations because

of the local copy of user association. The updating a(t+1) of

equation (33) needs JK storage, and the updating λ(t+1) of

equation (34) needs 4JK storage, respectively. Therefore, Al-

gorithm 1’s space computational complexity is O(4JK), and

Algorithm 2’s is O(4J 2K+JK+4JK) = O(4J 2K+5JK).
Compared with Algorithm 2, the interior-point method’s space

TABLE II
SUMMARY OF COMPUTATIONAL COMPLEXITY.

Algorithms Terms

Algorithm 1

Each F-AP performs joint resource allocation locally
in (29), here the number of F-APs is J , the number
of F-UEs is K. Each F-AP finds{
âjl,k, b̃j,k, m̃j,k, p̃j,k

}(T )

j∈J
satisfied m/T ≤ ε.

Algorithm 2

Calculating the complexity of the global consensus

problem (30). Updating of
{
âjl,k, b̃j,k, m̃j,kp̃j,k

}(T )

j∈J
requires O(JT ) operations and O(4J 2K) storage.

Update of a(t+1) needs O(T ) operations and O(JK)

storage. Update of λ(t+1) needs O(JT ) operations and
O(4JK) storage. Deploy I Monte-Carlo simulations to
ensure the stability of data.

computational complexity is O(J K) and has a much higher

complexity.

We assume the joint optimal resource allocation vector can

be found within at most T iterations. The time complexity of

the proposed Algorithm 1 is modified by O((T )) thorough the

verification. In Algorithm 2, we need to update each iteration

resource allocation, so Algorithm 1 is the substep of proposed

Algorithm 2. Thus the total complexity of Algorithm 2 is

O((J T )). And to ensure the stability of data, we need to

deploy I Monte-Carlo simulations, and the time computational

complexity of proposed Algorithm 2 is O((J TI)). Compared

with the exponential computational complexity of the exhaus-

tive search, the proposed algorithm has lower complexity.

And we have summarized the computational complexity of

proposed Algorithm 1 and Algorithm 2 in Table II.

IV. SIMULATION RESULTS AND DISCUSSIONS

The simulation results are discussed and the effectiveness of

the proposed algorithm is verified in this section. The position

MBS is fixed. And 20 F-APs are randomly distributed in

the covered area of the MBS. The radius of the MBS is

500m and the radius of F-APs is 10m. The locations of F-

UEs will random changed in the covered are of the fixed

F-APs at each shot. After 20 shots, the location of 20 F-

APs is changed randomly and run 200 F-UEs shots again.

The simulation environment is deployed on an X64 desktop

computer equipped with Matlab R2019b.

Fig. 2 illustrates the energy efficiency versus iteration num-

bers with ρ = 0.1, ρ = 1, and ρ = 10. At the same time,

we also introduce the interior-point method and equal power

allocation to compare the proposed algorithms’ effectiveness.

The y-axis is the energy efficiency of different methods, and

the x-axis is the iteration step-index. The different effect of

parameter ρ in ADMM has different convergence of Algorithm

2. We can clearly identify ρ = 0.1 gives a higher rate than

ρ = 1 and ρ = 10, particularly before 20 iterations. It will

gradually tend to a fixed value when the number of iterations

reaches 30. “Interior-Point method” is a certain algorithm that

solves linear and nonlinear convex optimization problems [32].

It can approach the boundary of the feasible set only in the

limit. Additionally, as a centralized method, the interior-point

method needs higher computing complexity, and the proposed
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Fig. 2. The energy efficiency convergence under different algorithms.
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Fig. 3. The effect of proposed Algorithm 2 with the number of F-APs (energy
efficiency).

algorithm can converge the fixed value that is superior to

the interior-point method. And the proposed algorithm can

converge the fixed value that is superior to the interior-point

method. From Fig. 2, the effect with ρ = 0.1 and ρ = 1
should be better than ρ = 10. On the other hand, the results

with ρ = 0.1 and ρ = 1 will converge the same value with the

increasing iteration steps. By simulation result, when ρ = 0.1,

energy efficiency will have more stable performance, but it will

cause unnecessary cost because of low step length. However,

ρ = 1 also reaches the same convergence when the iteration

index is enough. So in the following study, we will study the

interval between ρ = 0.1 and ρ = 1.

Fig. 3 shows energy efficiency with the increasing number

of F-APs. ρ = 1, ρ = 0.1, and ρ = 0.1 are chosen to compare.

Energy efficiency increasing in ρ = 0.1 and ρ = 1 is higher

than ρ = 10, obviously. On the one hand, ρ = 0.1 has a slight

advantage on the ρ = 1, so the size of ρ doesn’t matter that

so much when it’s less than 1.

Fig. 4 describes energy efficiency versus the different F-

UEs through ADMM parameters. Obviously, energy efficiency

Fig. 4. The effect of proposed Algorithm 2 with the number of F-UEs (energy
efficiency).
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Fig. 5. The total capacity convergence of the proposed Algorithm 2.

increasing in ρ = 1 is higher than ρ = 0.5. Fig. 4 shows the

energy efficiency of the system when the F-UEs number is

from 2 to 16, and the number of F-APs is 20. After reaching

12, the number of F-UEs begins to lose the effectiveness to

improve energy efficiency.

Fig. 5 illustrates the convergence of the proposed Algorithm

2 in terms of the system’s capacity. In Fig. 5, the iteration

index which reaches 40, its converge performance is not

very good. The reason is that the proposed objective function

is to maximize energy efficiency rather than total capacity.

When maximizing the total capacity, it has a longer time to

convergence. Therefore, compared with Fig. 2, it needs to

iterate to 45 to converge. At this time, the performance is

more stable and better.

Fig. 6 depicts the total energy efficiency versus caching

constraints. Different cache consumption powers are selected

to compare. In the energy efficiency calculation, the tendency

is to descend with the increasing of caching consumption

power. As is shown in Fig. 7, the energy efficiency of

(powercache = 0.1) is significantly superior to others.

To analyze further, the average channel capacity and the
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number of F-UEs in each F-AP are shown in Fig. 7, the

tendency of energy efficiency is similar to Fig. 6, the case

of (powercache = 0.1) is still better than those have a higher

power.

Fig. 8 illustrates the average download delay versus different

numbers of F-UEs with the proposed Algorithm 2 and the

interior-point method. It will gradually tend to a fixed value

with the increasing in the number of F-UEs. From Fig. 8,

the proposed Algorithm 2 should be better than the interior-

point method. This is because the distributed feature of the

proposed Algorithm 2 accelerates its local calculating time.

Additionally, the proposed Algorithm 2 has a lower space

computational complexity than the interior-point method. This

suggests the proposed Algorithm 2 is more suitable in this

simulation environment in terms of the average download.

Based on the analysis of Fig. 8, Fig. 9 depicts the alleviation

of capacity by caching versus the number of F-UEs. The x-axis

is the number of F-UEs in each F-AP, and the y-axis is the

alleviation of capacity by caching. The alleviating capacity

caused by caching is the product of alleviating backhaul
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Fig. 8. Comparison of proposed Algorithm 2 and interior-point method
(average download delay).

bandwidth and transmission rate per unit bandwidth. The

proposed Algorithm 2 and the interior-point method continue

to be selected to compare. It can be verified that proposed

Algorithm 2 has an advantage on the interior-point method

with the increasing number of F-UEs. And when the number

of F-UEs reaches 10, the alleviation of capacity by caching

tends to converge.
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Fig. 9. Comparison of proposed Algorithm 2 and interior-point method
(alleviation of capacity by caching).

V. CONCLUSION

In this paper, we investigated the user association, resource

allocation (including bandwidth and power), and caching

deployment in the heterogeneous Fog-RAN with the consid-

eration of energy efficiency, capacity, and download delays.

The user association, wireless resource allocation, and caching

problem were formulated as a global consensus convex op-

timization problem. An effective algorithm was proposed to

solve the energy efficiency maximization in the heterogeneous

Fog-RAN using the ADMM method. The effectiveness of

the proposed algorithm was verified by simulation results,
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by comparing it with the current method and changing the

proposed algorithm’s parameters.
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