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Abstract—In human-machine interaction systems, continuous 

movement estimation methods occupy an important position 
because they are more natural and intuitive than 
pattern-recognition methods. Essentially, arm position is decided 
by the shoulder and elbow joint angles. However, the various 
deformations of muscles around the shoulder and elbow often 
lead to difficulties in sensor fixation, which results in a loss of 
synchronization between the surface electromyography (sEMG) 
signals and joint angles. In order to accurately estimate 
movement angles using sEMG in situations where the sEMG is 
not synchronized with joint angles, we utilized a bi-directional 
long short-term memory (Bi-LSTM) network rather than other 
deep learning methods to estimate non-dominant arm 
movements, based on the sEMG signal from the dominant arm. 
This estimation protocol was designed to avoid a multiplicity of 
sensors and to simulate more complicated loss of synchronization 
problems). The performance of the Bi-LSTM was compared with 
multilayer perceptrons (MLPs), convolutional neural networks 
(CNNs), and a long short-term memory network (LSTM). The 
Pearson correlation coefficient (cc) between the estimated and 
target joint angle sequences was calculated to evaluate the 
performance of each neural network. The Wilcoxon signed-rank 
results showed that the Bi-LSTM model significantly 
outperformed the MLP, CNN, and LSTM models (tested with 
completely untrained newly recorded free movements). 
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Index Terms—Machine Learning for Robot Control, 

Continuous movement estimation, surface electromyography, 
free movements test. 

I. INTRODUCTION 
N recent years, as the use of robots has increased, the 
coordination between human and machine has attracted 

much attention, especially in the manufacturing, military, 
service delivery, and medical fields [1]–[4]. In this regard, 
making a machine “aware” of human movements in its vicinity 
[5] is particularly important. Hence, movement estimation 
strategies driven by computer vision-based methods [6], 
inertial device-based methods [7], and surface electromyogram 
(sEMG) based methods [8], have been proposed and widely 
adopted for some years. Technically, computer vision-based 
methods often require carefully specified camera positioning 
and lighting, but they do not provide force information. 
Similarly, inertial device-based methods lack force information 
and are further limited by the time delay between the 
occurrence of the moment and the sensor output. However, 
sEMG-based methods can provide information about 
movement intention a few instants before the movement occurs 
and with no requirement for an unobstructed field of view. 
Thus, the sEMG approach lends itself well to a wide range of 
practical applications and is therefore the focus of this study. 
Since the sEMG signal contains rich neuromuscular 
information from which useful kinematic characteristics can be 
obtained, it has been used in human-machine interaction 
control systems for decades [9]. However, most widely 
adopted sEMG based control methods rely mainly on 
myoelectric-pattern recognition (MPR) techniques [10], which 
are only able to provide discrete movement classification. 
Therefore, simultaneous and proportional control (SPC) 
methods have been proposed with the aim of providing 
continuous movement estimation, this being closer to the 
natural dynamics of the human arm in accomplishing 
day-to-day activities.  

Towards enabling intuitive and natural control of robotic 
arms, Qing et al. [11] proposed a Hill-based muscle model that 
provided continuous estimation of elbow joint angles. Lin et al. 
[12] employed a degree of freedom (DoF)-wise non-negative 
matrix factorization (NMF) method to estimate neural control 
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information from multichannel sEMG, based on the concept of 
muscle synergy [13]. Muceli et al. [14] used an artificial neural 
networks (ANN) to estimate the kinematics of wrist and hand 
movements from high-density sEMG recordings obtained from 
six healthy subjects. In practical terms, musculoskeletal 
-model-based methods usually require a relatively complex 
computational procedure, thus often limiting their wide 
adoption in practical applications. The NMF based approach is 
primarily used in wrist movement estimation, and it provides a 
control matrix rather than joint angles [15]. The training 
protocols of most machine learning-based methods involve the 
collection of signals and estimation of joint angle on the same 
limb, which leads to instabilities when sensors become 
unsynchronized, a problem we encountered in a previous study 
[16]. Moreover, the usual experimental paradigm, involving 
partitioning the recorded data into training and test sets (which 
share similar patterns of joint angle movement) often does not 
perform well in practical applications especially when 
untrained movements (including multiple new pattern 
movements) are presented to the built model.  

Thus, there is a need to find a novel, effective solution to 
continuously estimate joint angles using sEMG sensors alone 
which can overcome in part, the loss of synchronization 
problem even in the presence of untrained joint angle 
movements. In this study the elbow and shoulder joint angles 
were chosen, because they are the major joints of the upper 
limb and are involved in most of its movements. To simulate 
the loss of synchronization as it might arise in most practical 
settings, we arranged to simultaneously record sEMG data 
from the dominant arm and joint angle data from the 
non-dominant arm, while moving both arms in the same way. 
Also, in an attempt to provide a more realistic simulation, we 
used for testing purposes, only newly recorded untrained free 
movements rather than a selection from pre-recorded 
movement data. Another challenge is that the testing dataset 
often contains many untrained pattern movements. Therefore, 
we investigated the effectiveness of commonly adopted deep 
learning networks. Bi-directional long short-term memory 
(Bi-LSTM) [17] has proven its ability in various fields, such as 
speech recognition [18] and sentiment analysis [19]. It has also 
been suggested that Bi-LSTM is capable of dealing with data in 
which the input and target do not exactly correspond 
point-by-point. Therefore, we chose to apply Bi-LSTM, and to 
compare it with the commonly adopted deep learning-based 
methods (MLP [20], CNN [21] and LSTM [22]). 

II. METHOD 

A. Subjects 
The dataset utilized in this study was obtained from eight 

able-bodied individuals (6 males and 2 females, ages: 22-40 
years, all right-handed). None of the participants has any 
known neurological disorders. 7 of the subjects has never 
participated in any myoelectric control experiment or used any 
myoelectric interface device. All the subjects gave their written 
informed consent and agreed to the publication of their 
anonymized data for scientific and educational purposes. The 

experimental protocols were approved by the Research Ethics 
Board of the Shenzhen Institute of Advanced Technology, 
Chinese Academy of Sciences.  

B. Experimental Protocol 
As mentioned in the introduction, in an attempt to simulate 

the synchronization loss problem, the sEMG measurements 
were obtained from the dominant arm while simultaneous 
angle measurements were obtained from the other arm. 
Throughout the time that data were recorded, subjects were 
asked to move both arms in the same way, thus producing a 
‘built-in’ loss of synchronization.  This procedure also helped 
to avoid the overcrowding of sensors which would have 
resulted had they been on the same shoulder and arm. 

During the measurement sessions, each subject was asked to 
stand in front of a full-length mirror with their arms resting 
naturally along the body and the palms facing forward. The 
sEMG signal sensors were placed on the biceps brachii, triceps 
brachii, anterior deltoid, posterior deltoid, and pectoralis major 
and the joint angle sensors were placed on shoulder and elbow 
as shown in Fig. 1.  

For target movements, four single DoF movements and three 
multiple-DoF simultaneous movements were selected as being 

 
Fig. 1. Sensor placement on a right-handed subject, showing joint angle 
sensors (square markers) on the non-dominant side and sEMG sensors 
(circular markers) on the dominant side.   
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functionally relevant and representative of most 
shoulder-elbow flexions, rotations and translations occurring in 
day-to-day life. These are listed in TABLE I, and can be seen 
as images in [16]. The subjects were told to sequentially 
perform the seven types of movements on the non-dominant 
arm and to imitate these movements with the dominant arm, 
starting from the natural state with the arms extended, 
motionless and palms facing forwards. Subjects were prompted 
to start and end each movement in the sequence by a message 
on a computer screen. The participants were instructed to 
perform each set of movements simultaneously on both arms 
for approximately 90s at a rate of no more than one movement 
per second. Finally, the subjects were instructed to perform 
unrestricted simultaneous free arm movements for around 90s, 
again, while attempting to perform identical movements with 

each arm. After familiarization with the experimental protocol 
(including a basic warm-up exercise to allow the subjects to 
practice simultaneous and closely similar movements on both 
arms), the subjects performed the target movements 
sequentially with a rest period, while seated, of at least ten 
minutes between movements to ensure acquisition of quality 
sEMG signals that were free from muscle fatigue. 

The sEMG signals and joint angle signals were recorded 
synchronously using the TrignoTM wireless EMG acquisition 
system (Delsys, Inc, Natick, Massachusetts, USA) at a 
sampling frequency of 1926 Hz. To measure the joint angle, a 
TrignoTM Goniometer Adapter was used. These sensors 
provide 2 channels of joint angle data, from the horizontal and 
vertical planes respectively, as shown in Fig. 2. The sampling 
rate of each channel is 148 Hz. We recorded all 4 joint angles in 
the experiment. To ensure sample point synchrony between 
both sensor types, the joint angle signal sample rate was raised 
by bilinear interpolation to the same value (1926 Hz) as that 
used by the sEMG sensors. The labelling of each channel is 
described in TABLE II.  

The joint angle sensor was triggered by the Delsys recording 

software, to ensure that the joint angle and sEMG were 
synchronized. Z-score normalization and power frequency 
filtering were applied to each channel of the recorded signals. 
The Z score normalization process is expressed by (1). 

𝑍 = ($%&)
(

                                  (1) 

where	𝑥 stands for the original data vector, 𝜇 is the arithmetic 
mean of the given sequence and 𝜌 is the standard deviation of 
the given data. Here, the sEMG normalization parameters were 
set to 𝜇 = 0, 𝜌 = 0.5. The root mean square value (RMS) was 
employed as the feature extraction approach due to its 
abundant information content and ease of computation. The 
RMS feature extraction used a window width of 100ms and a 
stride length of 0.5ms. The RMS [23] of an analysis window 𝑑 
can be calculated using the following expression: 

𝑅𝑀𝑆1 = 23
4
∑ (4
673 𝑛6 − 𝑛:	);																								(2) 

where 𝑁 is the analysis window length of window 𝑑, 𝑛6 stands 

TABLE I 
MOVEMENT PATTERNS INVESTIGATED 

Movement index Movements Time USAGE 

1 
Elbow joint 

flexion/extension 
(in the sagittal plane) 

90s 

Training 

2 
Shoulder joint 

flexion/extension 
(in the sagittal plane) 

90s 

3 

Shoulder joint 
horizontal 

adduction/abduction 
(in the coronal plane) 

90s 

4 

Shoulder joint vertical 
adduction/abduction 

(in the transverse 
plane) 

90s 

5 

Shoulder elbow 
simultaneous circular 

movement in the 
sagittal plane 

90s 

6 

Shoulder elbow 
simultaneous circular 

movement in the 
transverse plane 

90s 

7 

Shoulder elbow 
simultaneous circular 

movement in the 
coronal plane 

90s 

8 Unlimited free 
movement 90s Testing 

 
TABLE II 

RECORDED JOINT ANGLES 

Abbreviations Implication 

EBH 
Joint angle between the 

forearm and upper arm in the 
horizontal plane 

EBV 
Joint angle between the 

forearm and upper arm in the 
vertical plane 

SDH 
Joint angle between the upper 

arm and shoulder in the 
horizontal plane 

SDV 
Joint angle between the upper 

arm and shoulder in the 
vertical plane 

 

 
Fig. 2.  The angle sensors detected joint angles in two orthogonal planes. 
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for the data values in window 𝑑 and the 𝑛: is the mean value of 
the data in window 𝑑. A comparison between the sEMG signal 
before and after applying the RMS feature extraction is shown 
in Fig. 3. When applying a neural network to bio-signal 
processing, this feature extraction scheme is effective in 
removing high frequency noise and revealing the meaningful 
information, as shown in Fig. 7 in the results section which 
compares the model performance operating on the raw sEMG 
input and RMS input.  

C. Model Development  
1) Bi-directional LSTM 

The long short term memory (LSTM) network, a type of 
recurrent neural network (RNN), was first proposed in 1997 by 
Hochreiter and Schmidhuber [24]. RNNs are more efficient 
than other kinds of neural network when dealing with time 
series data. However, an RNN can only provide a short time 
memory and therefore often fails to perform satisfactorily 
when applied to signals embodying relatively long-term 
dependencies. With the aim of dealing with data containing 
more persistent time information, the long short-term memory 
network was introduced. LSTM networks have proved to be 
more suitable for regression-based problems especially with 
input data which contains long term time information.  

The normal LSTM model passes the hidden state in the 
forward direction. In other words, the information in the 
previous moments is considered in the processing but the 
information in future moments is not. LSTM-based networks 
are limited when it comes to complicated tasks, which 
prompted the development of bidirectional LSTM [25] [26], 
employing both the past and future features in one timestep. It 
is constructed from the same cell as LSTM but in both forward 

and backward directions, making it bi-directional. The normal 
output of a bi-directional LSTM usually only involves the last 
time-step of hidden layers. This is logical but not stable and is 
thus not able to estimate a continuous joint angle sequence 
effectively. Therefore, we have modified the Bi-LSTM to 
process the sEMG signals. 

Essentially, each LSTM unit consists of an input gate, an 
output gate, a forget gate and a memory cell [27], with weights 
and bias applied between any two gates. Fig. 4 illustrates the 
basic memory cell structure which can be represented by the 
following mathematical model (3)-(7): 

𝑖> 	= 	𝜎(𝑊$A𝑥> 	+	𝑊CAℎ>%3 	+	𝑊EA𝑐>%3 	+	𝑏6)    (3) 

 
Fig. 4.  The internal structure and workflow of a long short-term memory cell.  
 

 
 

Fig. 5.  Functional elements of the Bi-LSTM. The model includes both 
forward and backward timesteps, enabling the Bi-LSTM to utilize global 
features embedded in the sEMG signal where ℎHI , ℎH3 , ℎH;  represent the 
hidden states output in the forward direction from moments 𝑡 − 1 to 𝑡 + 1 and 
ℎLI, ℎL3, ℎL; stand for the hidden states output in the backward direction from 
moment 𝑡 + 1 to 𝑡 − 1.  

 
(a) 

 
(b) 

Fig. 3.  Comparison between (a) the raw sEMG signal (after Z-normalization) 
and (b) the corresponding RMS values (after Z-normalization).  
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𝑓> 	= 	𝜎(𝑊$H𝑥> 	+	𝑊CHℎ>%3 	+	𝑊EH	𝑐>%3 	+	𝑏H)   (4) 

𝑐> 	= 	𝑓>𝑐>%3 	+ 𝑖> tanh(𝑊$E𝑥>	 +	𝑊CEℎ>%3 	+	𝑏E)    (5) 

𝑜> 	= 	𝜎(𝑊$S𝑥> 	+	𝑊CSℎ>%3 	+	𝑊ES𝑐> 	+ 	𝑏S)   (6) 

ℎ> 	= 	𝑜>𝑡𝑎𝑛ℎ(𝑐>)ℎLI            (7) 

where	𝑥 is the input, 𝜎 represents the activation function, 𝑖, 𝑓, 𝑜 
and 𝑐 stand for the input gate, forget gate, output gate and cell 
state vectors respectively, all of which have the same size as the 
hidden vector ℎ. All the vector subscripts (containing 𝑡 or 𝑡 −
1) stand for the vector state at time 𝑡 or 𝑡 − 1. The weight 
matrix subscripts, as the name suggests represent the 
magnitudes of the weight matrix. For instance, 𝑊CE  is the 
hidden-cell gate matrix while 𝑊$S   is the input-output gate 
matrix.  

The Bi-LSTM contains both forward and backward 
pathways rather than only the forward, as shown in the Fig. 5. 
The information flowing in two directions fundamentally 
enlarges the receptive field of the Bi-LSTM. In the forward 
direction, ℎHI, ℎH3, ℎH; stand for the cell outputs at times 𝑡 −
1	, 𝑡, 𝑡 + 1, respectively. Similarly, in the backward direction 
ℎLI, ℎL3, ℎL; represent the cell outputs at times 𝑡 + 1	, 𝑡, 𝑡 −
1. Therefore, the outputs of Bi-LSTM should be	{[ℎHI, ℎL;],
[	ℎH3, ℎL3], [ℎH;, ℎLI]}  rather than {ℎHI, ℎH3, ℎH;} , which 
extends and enhances the information content of the network. 
Because the aim of our study was to estimate the continuous 
joint angle curve associated with the upper limb kinematics, the 
outputs should be strongly related. Therefore, all the outputs 
were normalized and fed into the same high-density layer 
during each timestep, which tightly bounded the outputs. 

A backpropagation [28] technique was adopted as the 
training strategy. Both the conventional LSTM and Bi-LSTM 
were set to 5 layers containing 32 hidden units in each layer. In 
a preliminary experiment, it was found that the performance of 
the network improved as the number of layers increased up to 
and including 5 but rapidly deteriorated after 6. Again, 
following a preliminary experiment, the dropout [29] ratio was 
set to 0.3 to prevent overfitting. It was found that setting it to 0 
would lead to overfitting and setting it to 0.5 reduced the 
convergence speed. The dimension of the high-density layer 
was set to double the size of hidden layer in order to 
accommodate the bidirectional information. During the 
training process, the data was shuffled when applied to the 
Bi-LSTM and LSTM models. Although this increases the 
convergence time, it was found to improve the performance of 
the model.  
2) Comparison of the Models 

The multilayer perceptron (MLP), considered to be the most 
basic artificial neural network [30], [31] has been used many 
times in investigating SPC systems [14], [32]. Therefore, we 
employed the MLP as the baseline model for comparison in 
this study. The MLP has been proved to have the ability to fit or 
approach any continuous curve or sequence. In this study, as a 
control group, three layers of non-fully connected networks 
were set as the hidden layers. Before sending the data into the 
networks, it was flattened into a 1-dimensional form (except 

for the batch dimension). The first layer expanded the data to 
512 points. And the last two layers compressed the expanded 
data into 4 channels (to predict the joint angles). Again, in 
order to prevent the models from overfitting, the spatial 
dropout at 0.3 was added between every layer (only applied to 
the training step). 

Convolutional neural networks have been extraordinarily 
successful in computer vision [33], intention recognition [34] 
etc. Compared with MLPs, CNNs have higher feature 
extraction ability and are more robust because their structure 
includes convolutional layers and pooling layers. In order to 
balance the quantity of trainable parameters, the hidden units 
were set to the following sizes 32, 64, 128, 256, 128, 64. 
Specifically, the convolutional operation was one-dimensional. 
The channels were independently convolved with a kernel of 
size 7. The convolution stride was 1 and the padding was set to 
3 to avoid the change of window size. Additionally, the max 
pooling size was 2 for the feature size reduction, which 
prevented overfitting problems. Following this, all the output 
features were compressed into 4 channels with a dense layer as 
shown in Fig. 6. Again, the dropout rate was set to 0.3 as 
explained above. All the models were optimized with the 
Adam optimizer [35] and all input data was shuffled in the 

training process.  
3) Statistical Analysis 

Using the Kolmogorov-Smirnov test, it was found that the 
data were not normally distributed so non-parametric tests 
were used. The Friedman test was adopted, to assess significant 
differences among the subjects. If the Friedman test revealed a 
statistically significant effect, post-hoc comparisons were 
performed using the Wilcoxon sign-rank test, with the 𝑝 values 
adjusted by the Bonferroni correction for multiple 
comparisons. p values < 0.05 were taken as the threshold of 
statistical significance. 

III. RESULTS 
Before a detailed analysis of the proposed and comparison 

networks, a performance comparison was made between them 
with the raw sEMG signal and the extracted feature (RMS) as 
inputs. (See Fig. 7, in which only the comparison for the CNN 
is presented due to space limitations).  

It can be seen that the performance of the CNN was greatly 
improved by adopting feature extraction. Because of its unique 
convolutional structure, the CNN model was the only one that 
could handle the unprocessed sEMG signal whereas the MLP 
and LSTM could barely decode the raw sEMG signal without 

 
Fig. 6.  The structure of CNN model employed in this study.  
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feature extraction. However, after having applied feature 
extraction, all models were able to learn the mapping 
relationship between sEMG features and joint angles. 

After the comparison of raw data input and RMS input, all 
the models' hidden layer parameter sizes were kept below 
100,000. For equitable comparison, all the four models were 
developed in Pytorch [36]. All the comparisons between the 
performance of the models were made on the free movement 
scenario (i.e., No.8 in Table I). As an example, the performance 
of each model on subject 2 is compared in Fig. 8. This shows 
the variation of measured joint angles with time in red and the 
predicted values in blue, (labelled “target” and “output”, 
respectively).  

Panel (a) of the figure shows that the MLP model is barely 
able to match the pattern of any of the four measured joint 
angles and performed particularly badly when estimating the 
SDH angle. Relatively, the CNN model performed better, but it 

became unstable whenever a large change in the joint-angle 
occurred. The LSTM performed markedly better for the 
estimation of the elbow joint angle planes although its 
performance for the SDH was inferior. However, the Bi-LSTM 
compensated for the shortcomings of the LSTM and CNN, and 
achieved the best performance when compared to the other 
models. The Pearson correlation coefficient (cc) was used to 
provide a quantitative measure of the association between the 
joint angles estimated from the sEMG signals and those 
obtained by direct measurement for the 4 methods as applied to 

 
(a) 

 
(b) 

Fig. 7.  Performance comparison between (a) CNN model with raw input (b) 
CNN model with RMS feature input (See table II for an explanation of the 
y-axis labels. The red line represents the actual joint angles and the blue line 
indicates the predicted joint angles).  

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Fig. 8.  Estimated outputs compared to the actual measured joint angles based 
on, a) MLP model (b) CNN model (c) LSTM model (d) Bi-LSTM model.  

TABLE III 
INDIVIDUAL SUBJECT CORRELATION COEFFICIENTS BETWEEN DIRECTLY 
MEASURED AND ESTIMATED JOINT ANGLES FOR EACH ANALYSIS MODEL 

(MOVEMENTS 1-7 FOR TRAINING ONLY 8 FOR TESTING) 

Subject MLP CNN LSTM Bi-LSTM 

1 0.751±0.188 0.785±0.111 0.835±0.102 0.863±0.052 
2 0.659±0.190 0.691±0.125 0.739±0.046 0.787±0.038 
3 0.660±0.185 0.761±0.085 0.842±0.023 0.872±0.075 
4 0.769±0.090 0.769±0.109 0.700±0.290 0.834±0.069 
5 0.687±0.127 0.712±0.106 0.798±0.118 0.839±0.025 
6 0.701±0.159 0.711±0.147 0.745±0.340 0.753±0.258 
7 0.717±0.095 0.789±0.055 0.848±0.072 0.871±0.086 
8 0.694±0.159 0.664±0.096 0.857±0.151 0.881±0.144 
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each subject, as shown in Table III. For conciseness, the mean 
and standard deviation of channels (EBH, EBV, SDH, SDV) 
were calculated for each subject and each model. 

The different methods showed significantly different 
performance on subjects according to the Friedman test. And 
the Wilcoxon signed-rank test result after Bonferroni 
correction indicated that the Bi-LSTM model (𝑐𝑐 = 0.8374 ±
0.0455) significantly outperformed the MLP (𝑐𝑐 = 0.7048 ±
0.0395, 𝑝 = 0.036) , the CNN ( 𝑐𝑐 = 0.735 ± 0.0468, 𝑝 =
0.036 ) as well as the LSTM (𝑐𝑐 = 0.7952 ± 0.0598, 𝑝 =
0.036 ). The superiority of the proposed method over the 
existing methods is further seen by the cc values of each 
subject, as shown in Fig. 9. (Error bars represent standard 
deviations of the mean values shown).  

IV. DISCUSSION 
In this study, the Bi-LSTM was used to obtain indirectly 

estimated joint angles based on noninvasively collected sEMG 
signals and the results compared with those derived from the 
MLP, CNN, and normal LSTM models. The experimental 
results on untrained random movement patterns proved that the 
Bi-LSTM model was better able to exploit the kinematic 
information embedded in the sEMG signal than the MLP, 
CNN, and LSTM methods and that, in each case, these 
differences were statistically significant. 

Taken together the overall results show that, due to the 
adoption of the training protocol, in which the joint angles were 
not synchronous with sEMG signals, it was a challenge for the 
existing models to estimate the joint angles adequately. For 
instance, the MLP model was neither capable of predicting the 
cyclical movement pattern nor the amplitude of the joint angle 
precisely because of the information loss caused by the 
flattening operation at the start of the data pathway. The CNN 
model was clearly more adaptive in exploiting the structural 
features of the input due to the inherent convolution operation, 
but it resulted in some unwanted noise. The LSTM provided 
smoother and more accurate joint angle curves when compared 
to the MLP and CNN models, since it was able to combine a 
priori information in its memory cell. Nevertheless, the 
decoding of the SDH joint angle remains a challenge. The 
Bi-LSTM compensated for this shortcoming due to its 
bidirectional structure and, overall, yielded the best estimation 
results. According to Fig. 9, the average CC of Bi-LSTM 

exceeded those of the MLP, CNN and LSTM models in every 
subject. However, from Fig. 9 it can be seen that the LSTM 
standard deviation is markedly higher in two subjects (4 and 6). 
For these subjects the performance of RNN-type networks was 
poorer than MLP and CNN on the SDV channel. We found that 
there are some problems with the data quality, leading to the 
high standard deviations. But compared to the uni-directional 
LSTM, the Bi-LSTM effectively suppressed the noise. Having 
analyzed the detailed results for each channel, we speculate 
that the abnormal performance of the RNN-based neural 
network is inevitable especially when data quality is low. A 
similar effect was reported in [37]. To tackle this problem in 
future work, one might consider estimating joint angles in 
specific channels (e.g., SDV) with an independent neural 
network. 

Notably, in our previous upper limb joint angle estimation 
experiment, we compared the Bi-LSTM and LSTM approaches 
using data from the same limb. In that case the Bi-LSTM did 
not significantly outperform the normal LSTM. We speculate 
that, because the joint angles and sEMG were recorded from 
the same limb, both signals were closely synchronized. The 
joint angles were mainly associated with the sEMG signals 
before the current moment, and could, therefore be modeled by 
the LSTM; thus, performing as effectively as the Bi-LSTM. 
However, in this study, the Bi-LSTM significantly 
outperformed LSTM because, due to its bidirectional nature it 
is able to detect the association between the sEMG and joint 
angle signals even though they are only poorly synchronized. 

According to the results of the Wilcoxon signed-rank test, 
the superior performance of the Bi-LSTM when compared to 
that of MLP, CNN and normal LSTM was statistically 
significant. This shows that when simulating the frequently 
occurring lack of synchronization between joint angles and 
their associated sEMG signals, the Bi-LSTM approach has 
proved to be the most robust solution to this lack of synchrony. 
Because of its ability to tolerate errors due to loss of 
synchronization, the technique proposed here lends itself well 
to practical applications which require the continuous 
estimation of limb movement. For instance, currently we are 
not able to collect accurate joint angle and sEMG signals 
simultaneously from amputees. With the technique described 
here, amputees could follow predetermined movement 
instructions while their sEMG signals are recorded. Then, the 
proposed algorithm could build relationships between the 
non-synchronized sEMG signals and joint angles.  

We also note that all the measurements described here were 
carried out with the subjects standing and thus with gravity 
acting vertically through them. In future work we will 
investigate this limitation by exploring how changes in posture 
affect the timing and amplitude of the sEMG signals and their 
relationship with the measured joint angles. 

V. CONCLUSIONS 
Based on the weakly synchronized measurements, the 

kinematic information extracted from the sEMG signals of the 
muscles in the dominant arm can be used to simultaneously and 

 
Fig. 9.  Individual correlation coefficient results for each subject.  
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proportionally estimate the joint angles of the corresponding 
movements on the contralateral, non-dominant side. The 
results show that the Bi-LSTM model achieved a significantly 
better performance than the normal LSTM as well as the MLP 
and CNN models. In comparison to the commonly used 
network models, its time and memory requirements are modest 
and it is more accurate. Entirely untrained free movements 
were used for testing, with the aim of simulating the 
unpredictable movement patterns that occur in practice.  

Whereas for non-medical applications, large amounts of 
training data are relatively easy to obtain, for ethical and 
practical reasons this is much harder for sEMG data. And this 
lack of data exacerbates the overfitting problem and makes it 
difficult to generalize. In future work, we will attempt to 
combine conventional machine learning methods and deep 
learning algorithms to focus on more effective information 
extraction and thus realize an effective remote movement 
estimation of a practical robotic arm. 
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