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 Background and Objective: Aortic pressure (Pa) is important for the diagnosis of cardiovascular disease. 

However, its direct measurement is invasive, not risk-free, and relatively costly. In this paper, a new 

simplified Kalman filter (SKF) algorithm is employed for the reconstruction of the Pa waveform using dual 

peripheral artery pressure waveforms.  

Methods: Pa waveforms obtained in a previous study were collected from 25 patients. Simultaneously, radial 

and femoral pressure waveforms were generated from two simulation experiments, using transfer functions. 

In the first, the transfer function is a known finite impulse response; and in the second, it is derived from a 

tube-load model. To analyse the performance of the proposed SKF algorithm, variable amounts of noise 

were added to the observed output signal, to give a range of signal-to-noise ratios (SNRs). Additionally, 

central aortic, brachial and femoral pressure waveforms were simultaneously collected from 2 Sprague-

Dawley rats and the measured and reconstructed Pa waveforms were compared.  

Results: The proposed SKF algorithm outperforms canonical correlation analysis (CCA), which is the 

current state-of-the-art blind system identification method for the non-invasive estimation of central aortic 

blood pressure. It is also shown that the proposed SKF algorithm is more noise-tolerant than the CCA 

algorithm over a wide range of SNRs.  

Conclusion: The simulations and animal experiments illustrate that the proposed SKF algorithm is accurate 

and stable in the face of low SNRs. Improved methods for estimating central blood pressure as a measure 

of cardiac load adds to their value as a prognostic and diagnostic tool. 

 

1. Introduction 

The aortic pressure (Pa) waveform is an important predictor of 

cardiovascular disease risk [1]. The blood ejected from the left ventricle 

gives rise to an aortic pressure wave which is propagated through the 

arterial tree changing in amplitude and shape as it progresses, in a way 

which depends on variations in the local diameter, wall thickness and 

elastic properties of the aorta, as well as the presence of reflected waves 

from peripheral sites and, to a lesser extent, on re-reflections [2], [3]. Thus 

Pa, having been formed initially at the aortic root by the contraction of the 

left ventricle, contains essential information about the heart itself as well 

as about the properties of the arterial system in general [4], [5]. Pa in the 

ascending aorta, often referred to as “central pressure” is of particular 

importance because it is a measure of maximal left ventricular load [6]. 

However, the use of Pa as a diagnostic and prognostic tool has been limited 

in clinical practice because the gold standard of Pa measurement using a 

pressure-sensing cardiac catheter is invasive and expensive [7]. Therefore, 

a number of non-invasive measurement techniques have been proposed, 

usually substitution and transfer function methods in which the central 

pressure wave is derived from peripheral pressure measurements. 

Peripheral artery pressure (Pp) waveforms such as the brachial (Pb) are 

generally easier to obtain noninvasively than the Pa waveform. However, 

due to the aforementioned changes in shape as the wave propagates along 

the arterial tree, important aspects of the Pa waveform, such as systolic 

pressure and pulse pressure cannot be accurately derived from the 

measurement of peripheral artery pressure [8]. Carotid pressure is also 

often used as a surrogate for central Pa because the carotid artery is closer 

to the aorta than the brachial. However, even the carotid pressure 

waveform is subject to amplification and, in general, will lead to an over-

estimation of central Pa [9], [10]. Several numerical methods to estimate 

the Pa from non-invasive measurements of Pp have recently been 

developed. A widely used approach is based on the notion of a generalized 

transfer function. This is obtained from simultaneous measurements of Pa 

(invasive) and Pp (non-invasive) on a large number of subjects [11], [12], 

[15]. The inverse transfer function can then be derived and used to 

estimate Pa from Pp. Tube-load models represent the path between the 

aorta and the periphery from which a transfer function can be derived for 

the Pa waveform [13], [14]. However, generalized transfer function 

methods require parameter values derived from prior invasively measured 

central pressures from many subjects [15]. Additionally, the form of the 

function will depend on the specific measurement device and thus care 

should be taken to allow for this [15]. Furthermore, it is usually assumed 

that the arterial system is linear and short-time invariant. In spite of these 

limitations, such methods have proved to be useful as a means of 

estimating systolic pressure although pulse pressure estimation is less 

reliable [17]. More recently, multichannel blind system identification 

(MBSI) algorithms have been proposed, such as the cross-relation (CR) 

algorithm [18], the subspace (SS) algorithm [19], and the canonical 

correlation analysis (CCA) algorithm [20]. These methods are able to 

estimate the Pa waveform satisfactorily when the signal-to-noise ratio 

(SNR) of the observed channel output is high [21]. Unfortunately, the 

peripheral artery pressure signal may contain some noise and the SNR 
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may not be high enough. In this paper, we propose a simplified Kalman 

filter (SKF) algorithm for Pa waveform estimation with a high update rate 

and which is tolerant of low SNRs. 

The paper is organized as follows. Section 2 describes the data 

acquisition, the estimation of the Pa by the MBSI method, evaluation 

indices and statistical analysis. Section 3 presents the results, which are 

discussed and interpreted in Section 4. Section 5 concludes the paper with 

suggestions for future work. 

 

2. Methods 

In this paper, the CCA algorithm [20] based on a linear single input 

multiple output (SIMO) system is applied as a benchmark to compare the 

performance of different blind system identification algorithms. The 

generated peripheral artery pressure waveforms as the observed output 

signals using the finite impulse response (FIR) and tube-load simulation 

models are noiseless. It has been reported that the majority of real pulse 

waveforms have SNRs between 50 dB and 10 dB with only 8% above 50 

dB and only 1.5% below 10 dB [22]. Therefore, to analyze and compare 

the performance of the SKF and CCA algorithms, various levels of noise 

(Gaussian random) in the range 10 dB to 50 dB were added to the observed 

output signals. Respiration was simulated by modulating the baseline with 

a sinusoidal signal [22]. and these noisy signals were used in the 

simulation experiments. With this in mind, the resulting pulse signal can 

be modeled as: 

  1 2
( )= ( )

i pi i i
x n p n b n b n+ ( ) + ( )   (1) 

As shown in Fig. 1, ( )
pi

p n  represents the heart-generated pulse wave signal. 

1i
b n( )  and 2 i

b n( )  represent the respiratory modulation signal and 

Gaussian random noise signal, respectively. 

 1 1 0 s
sin 2

i
b n a f n F( ) = ( )/  (2) 

  
Fig. 1. Examples of  a pulse wave, simulated baseline modulation and Gaussian random 

noise signals (SNR =25 dB). ppi: pulse wave signal without noise; xi: pulse wave signal 

with added Gaussian noise  and respiratory modulation. b1i: simulated respiratory 

modulation signal; b2i: Gaussian random noise signal. 

where 1
a  and 0

f are the amplitude and frequency of the simulated 

respiratory sinusoidal signal. Clinical observations have shown that the 

healthy human pulse rate is four to five times the respiration rate [23]. 

Therefore, 0
f  was set to 0.3 Hz and the value of 1

a was chosen 

according to the magnitude of the SNR. 

2.1 Data acquisition 

Here, we have utilized a set of clinical data collected in a previous study 

[24], [40]. Invasive measurements of central Pa were made at the aortic 

root in 25 patients undergoing cardiac surgery, at a sampling frequency of 

100 Hz. Basic population and hemodynamic data are listed in Table 1. 

Approval was obtained from the Research Ethics Committee of the 

Northeastern University (EC-2020B016), China, and written informed 

consent was obtained from all participants.  

 
Table 1 

Basic information of the clinical data (Mean ± SD). 

Variables Data 

No. of subjects 25 

Age (years) 56.8 ± 13.5 

Height (cm) 165.4 ± 7.9 

Weight (kg) 68.6± 12.4 

SP (mmHg) 147.3 ± 20.7 

DP (mmHg) 76.8 ± 11.5 

HR (bpm) 74.0 ± 4.8 

2.1.1 Simulation data generated with the FIR model 

As shown in Fig. 2, the simulated radial pressure (Pr) and femoral 

pressure (Pf) waveforms without noise are obtained as the output signals 

of two given FIRs with the above-mentioned Pa waveform as the input 

signal. The impulse responses of the two channels, were as used in a 

previous study [20]. The FIR coefficients refer to the pressure signal 

transmission from the aorta to the upper and lower limb arteries, 

respectively. 

 

Fig. 2. Measured Pa and generated Pr and Pf waveforms using the FIR simulation model. 

2.1.2 Simulation data generated with the tube-load model 

The ascending aortic to peripheral wave propagation path is modeled 

by a uniform lossless tube and a Windkessel load. This set up is usually 

called the tube-load model, the transfer function of which is given by: 
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Derivation of the equations and further details can be found in [14]. The 

transfer function of the tube-load model has three unknown parameters: 

a p
N

− , 1
  and 2

 . In Equation (4), C
Z represents the characteristic 

impedance of the tube, the terminal of which is composed of a Windkessel 

load consisting of the compliance ( T
C ) of the distal arteries and a 

peripheral resistance ( T
R ) due to the arterioles. L

Z  represents the 

terminal impedance of the Windkessel load. In Equation (5), a p
n

−  is the 

pulse transit time associated with the wave propagation from the 

ascending aorta to the distal end of the cardiovascular system. S
F  is the 

sampling frequency. 

 1 2

2
= , =

2 2

C T T

C T T C T T

Z R R

Z R C Z R C
 

+

   
 (4) 

 a p a p a p
, 2 1

S L
N n F N N

− − −
=  = +  (5) 

In many previous studies, the tube-load model has been used in animals 

to estimate central aortic hemodynamics based on the relative ease of 

obtaining Pp waveforms [25], [33]-[35]. The model has been rarely used 

in human subjects due to the difficulty of obtaining invasive aortic 

pressure measurements and simultaneous multiple peripheral artery 

pressures. In one such study [14], the values of the physiologically 

relevant parameters of the tube-load model (load compliance, 

characteristic impedance, and peripheral resistance, pulse transit time etc.) 

were derived from the measured aortic blood pressure and estimated aortic 

blood pressure. The mean values of the parameters such as 1
 , 2

  and 

a p
n

−  from this study [14] are used in this simulation. Their values are 94.6 

and 16.6 for radial artery; and 82.5 and 40.6 for the femoral artery. The 

order NL of the transfer function is determined by the values of the 

parameter a p
n

−  for the upper and lower limbs. The a p
n

−  of the upper 

and lower limbs were set to 86.9 ms and 64.4 ms, respectively. The same 

Pa waveform in subsection 2.1.1 was also used as the input signal to the 

tube-load models. The simulated waveforms are shown in Fig. 3. 

 
Fig. 3. An example of measured Pa waveform and the corresponding simulated Pr and Pf 

waveforms based on the tube-load model.  

2.1.3 Animal experiments 

Blood pressure in the ascending aorta, brachial and femoral arteries was 

recorded in two anesthetized Sprague-Dawley rats, weighing 0.32 kg and 

0.35 kg. Blood pressures were measured simultaneously through three 

catheters, each connected to a transducer (MLT1199, AD Instruments, 

Castle Hill Australia). The catheters were introduced via incisions in the 

right common carotid artery and right brachial and left femoral arteries. 

The carotid catheter (outer diameter (o.d.) 0.90 mm and an inner diameter 

(i.d.) 0.50 mm.) was passed into the ascending aorta to record aortic 

pressure. For the brachial and femoral artery measurements, smaller 

catheters, o.d. 0.60 mm and i.d. 0.30 mm were used. A Power Lab 8/35 

(PL3508) and quad Bio Amp (FE224) acquisition system (AD 

Instruments, Castle Hill Australia) and Lab Chart software running on a 

laptop computer were used for displaying and storing the data in real time, 

at a sampling rate of 1 kHz. All the animal experimental procedures were 

approved by the Institutional Animal Care and Use Committee (IACUC) 

of Shenzhen Institutes of Advanced Technology, Chinese Academy of 

Sciences: (SIAT-IACUC-190801-YGS-LWH-A0454-01). 

 

2.2 Estimation of the Pa by the MBSI algorithm 

In this study, the cardiovascular system is regarded as a black-box model 

of a two-channel wave propagation system, with one channel 

corresponding to the upper limb and the other to the lower limb. Up to 

now, many MBSI approaches have assumed the arterial system to be linear 

and short-time invariant [20]. In this study, we present a method for Pa 

waveform estimation, with a FIR filter used as a transfer function. For a 

two-channel FIR system as presented in Fig. 4, ( )s n  denotes the Pa 

waveform; ( ), ( 1, 2)
i

x n i =   denotes the Pp waveforms; the L-by-1 vector 

0 1 1 1 2
i i i i

h h h L i ==  ( ) ( )    ( − )  (  )
T

h   represents the channel’s impulse 

response between the Pa waveform and the i-th Pp waveform; ( )
i

u n  is 

the additive noise.  

( )s n

2
h

1
h

1
( )x n

1( )u n

2
( )x n

2 ( )u n

 

Fig. 4. Black-box structure of a two-channel FIR system. 

A linear convolution between the Pa and Pp waveforms is then given by 

Equation (6) [26]:  

 
1

0

( ) ( ) ( ) ( )
L

i i i

k

x n h k s n - k u n
−

=

= +   (6) 

The two Pp waveforms are not independent; they conform to the so-called 

cross-relation (CR): 

 )()(*)()(*)(
121221

nnhnxnhnx +=  (7) 

where  

 )(*)()(*)()(
122112

nhnunhnun −=    (8) 

The * symbol is the linear convolution operator. The cross-relation in 

Equation (7) can be rewritten in matrix form as: 

 0)()(
12

=+ nn hC                    (9) 

where 2 1
( ) [ ( ), ( )]n n n= −C x x ; T T T

1 2
[ ]h = h h ; 1 1

i i i i
n x n x n x n L( ) =  ( ) ( − )   ( − + )x . 
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2.2.1 An introduction to the SKF algorithm 

For Pa waveform estimation, the first step is to identify the multichannel 

impulse response vector h. Taking into account the cross-relation in 

Equation (9), we propose the following Kalman filter problem for h 

estimation. The process and measurement equations are given as follows: 

a) Process equation: 

 1
1 1n n n n n( + ) = ( +  ) ( ) + ( )h F h v  (10) 

b) Measurement equation: 

 2
n n n n( ) = ( ) ( ) + ( )y C h v  (11) 

where the vectors 1
n( )v  and 2 12

n n( ) = ( )v  denote the process and 

measurement noise, respectively; the state transition matrix is assumed to 

be 1,n n( + ) =F I  (identity matrix) because the cardiovascular system is a 

slow time-varying system; the observation vector 1 2n n ...( ) = ( =   )y 0  is a 

zero-vector series. For the special transition matrix and the zero-

observation vector, the computation of the Kalman filter is simplified as 

in Table 2. 
 

Table 2 

Summary of the SKF algorithm. 

Input vector process: 

1
( )x n , 2

( )x n  

Known parameters: 

1,n n( + ) =F I  

1
=0n( )Q , 

7

2

10 Noiseless

Noisy
n

−
= 


I,
Q ( )

I,
 

Computation: 1, 2, 3,n =     

T T -1

2
1 1n n n n n n n( ) = ( − ) ( ) ( ) ( − ) ( ) + ( )G K C C K C Q  

2
1 here 1n n n n n

  

( + ) = ( ) − ( ) ( ) ( ) =h h G C h h，  

1 1n n n n n( ) = ( − ) − ( ) ( ) ( − )K K G C K  

 

As shown in Table 2, for the simplified multichannel identification 

problem, the correlation matrix of process noise is assumed to be 1
=0n( )Q  

(meaning 1
( )=0nv ) and the correlation matrix of the measurement noise is 

assumed to be n( )
2

Q . The matrix n( )G  represents the Kalman gain, and 

the n( )K  represents the filtered state-error correlation matrix. 

2.2.2 Multichannel deconvolution algorithm 

After the identifying the SIMO system using the SKF algorithm, the Pa 

waveform can be obtained by the deconvolution of the two known Pp 

waveforms. These deconvolution problems are of two types. First, if both 

the output signal and the channel responses are known, the input signal 

can be solved by ordinary deconvolution. Second, if only the output signal 

is known, both the input signal and the channel transfer function need to 

be solved. This second type is known as blind deconvolution and is more 

difficult to handle than ordinary deconvolution. Nevertheless, 

multichannel blind deconvolution algorithms have been used in many 

applications including signal processing [27], medical imaging [28] and 

seismic imaging [29]. Several blind deconvolution algorithms have been 

proposed, including the Sato algorithm [30], Godard algorithm [31] as 

well as Bussgang-type algorithms [32]. However, these algorithms require 

prior knowledge of the source statistics. The multi-input multi-output 

theorem can also be used to solve a multichannel inverse system and then 

to filter multiple signals [33]. In this paper, the channel responses are 

solved by the SKF algorithm. Both two-channel output signals and the 

corresponding two FIRs are known and used to solve the common input 

signal based on a multichannel least squares deconvolution. Equation (6) 

can be rewritten in matrix form： 

 
1 1 1

2 2 2

x H u
= s+

x H u

     
     
     

 (12) 

where 

 T
=[ (0), (1), , ( -1)]

i i i i
x x x N  x  (13) 

 T
=[ (0), (1), , ( -1)]

i i i i
u u u N  u  (14)  

 T
[ ( 1), ( 2), , ( 1)]s L s L s N= − + − +   −s  (15) 

and N denotes the number of the measured Pp waveform samples.  

 

( 1) (0) 0

0 ( 1) (0) 0

0 ( 1) (0)

i i

i i

i

i i

h L - h

h L - h

h L - h

         
 

     
 
                  
 

         

H =   (16) 

Here i
H is the [ ( 1)N N L + − ] Toeplitz matrix composed of the estimated 

impulse responses of the channel. The linear least squares solution of the 

problem is given by: 

 T 1 T
s H H H x

−
= ( )  (17) 

where 

 T T T

1 2
=   H H H  (18) 

 T T T

1 2
[ , ]x x x=  (19) 

 

2.2.3 Evaluation and statistical analysis 

In all experiments, we used the root mean square error (RMSE) as a 

measure of the quality of the quantitative assessments. RMSE is defined 

as follows: 

 
2

1

1
RMSE= [ ( ) ( )]

N

n

s n s n
N



=

−  (20) 

In Equation (20), ( )s n  is the real source input signal for the system 

identification; ( )s n


 is the estimated source input signal and N represents 

the total number of data points comprising the test signal. 

 Normalized projection misalignment (NPM) is commonly used to 

evaluate the convergence performance of the estimated impulse responses 

in blind SIMO systems [36], [37]. The NPM is computed during the 

iteration process and is given by: 

 

T

T

10

h h ( )
h h ( )

h ( ) h ( )
NPM ( ) 20 log

h

ii
ii

i i

i

i

k
k

k k
k





 
−

=

 (21) 

where || · || is the l2 norm; k is the iteration index; h
i and h

i



are the real 

and estimated FIRs, respectively.  

Measured and estimated central aortic pressure were analyzed by a 

paired t-test (IBM SPSS Statistics, version-23) and reported as mean ± SD 

or 95% CI where appropriate. The linear regression analysis and Pearson’s 

correlation coefficients measured and estimated central aortic pressure 

were also calculated. Bland-Altman plots were constructed to assess the 

agreement between estimated and measured central aortic pressure. A p-

value smaller than 0.001 was considered to be statistically significant. 

 

3. Results  
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3.1 FIR simulation experiments 

Blind system identification algorithms are usually sensitive and 

vulnerable to measurement noise [21]. The SNR of the observed output 

signals can affect the convergence process and the noise of each channel 

is unknown in practice. Therefore, simulation experiments were 

conducted to verify the performance of the proposed algorithm under a 

range of different SNRs. In Fig. 5, the curves represent the convergence 

performance of the SKF algorithm when applied to signals with various 

SNRs. The curves from top to bottom correspond to SNRs from 10 dB to 

50 dB. Fig. 6 shows the effect of iteration number on the relationship 

between RMSE and SNR, using the SKF algorithm. As shown in Fig. 6, 

the number of iterations is in the range 80 to 200. 

 

Fig. 5. The convergence behavior of averaged NPMs at different SNRs for a two-channel 

system.  

 

Fig. 6. Effect of iteration number on the relationship between RMSE and SNR, using the 

SKF algorithm. 

All simulation results are summarized in Table 3. To simulate real in-vivo 

measurements where noise is inevitable, we applied the proposed SKF and 

CCA algorithms to estimate the Pa waveform by adding noise to Pp to 

produce a SNR of 25 dB. The RMSEs of the measured and estimated Pa 

were computed for the total waveform (TW), SP and beat-to-beat diastolic 

pressure (DP). For a SNR of 25 dB, it can be seen that the TW RMSE of 

the measured and estimated Pa waveforms using the CCA algorithm is 

6.43 ± 2.66 mmHg. However, the corresponding value obtained from the 

SKF algorithm is 3.31 ± 1.92 mmHg.  

 
Table 3 

RMSEs obtained from measured and estimated Pa waveforms using the CCA and SKF 

algorithms at different added noise levels (Mean ± SD). 

SNR 

(dB) 

Method TW 

(mmHg) 

SP 

(mmHg) 

DP 

(mmHg) 

10 
CCA 21.60 ± 5.66 30.9 ± 12.95 143.36 ± 106.56 

SKF 8.76 ± 3.59 5.28 ± 2.26 13.11 ± 9.94 

15 
CCA 12.04 ± 4.78 13.45 ± 7.61 55.55 ± 40.98 

SKF 5.78 ± 2.93 2.46 ± 1.45 3.46 ± 2.33 

20 
CCA 7.97± 3.12 5.38 ± 2.00 11.43 ± 9.03 

SKF 4.52 ± 2.42 1.44 ± 0.78 1.55 ±0.90 

25 
CCA 6.43 ± 2.66 2.27 ± 0.97 3.16 ± 1.73 

SKF 3.31 ± 1.92 0.93 ± 0.42 1.12 ± 0.58 

30 
CCA 4.73 ± 2.76 1.16 ± 0.56 1.55 ± 0.91  

SKF 2.41 ± 1.14 0.77 ± 0.22 .99 ± 0.43 

35 
CCA 3.89 ± 2.52 0.78 ± 0.24 1.03 ± 0.45 

SKF 2.25± 1.57 0.77 ± 0.27 0.89 ± 0.30 

40 
CCA 1.95 ± 1.14 0.77 ± 0.23 0.87 ± 0.32 

SKF 1.46 ± 0.79 0.76 ± 0.22 0.81 ± 0.21 

45 
CCA 1.26 ± 0.80 0.75 ± 0.23 0.80 ± 0.20 

SKF 1.29 ± 0.65 0.74 ± 0.22 0.79 ± 0.18 

50 
CCA 1.06 ± 0.49 0.75 ± 0.22 0.76 ± 0.19 

SKF 1.19 ± 0.54 0.75 ± 0.22 0.76 ± 0.22 

 
Fig. 7. Effect of added noise on the RMSE values obtained from measured and estimated 

Pa waveforms using the CCA and SKF algorithms (Mean ± SD, the number of points in 

the total waveform, n is 600). 

The two algorithms were compared by a paired t-test (IBM SPSS Statistics, 

version-23). The SKF algorithm has significantly lower RMSEs than the 

CCA up to an SNR of 40dB or maybe even 45dB. Fig. 7 shows that there 

was a significant difference between the CCA and SKF methods when the 

SNR values were less than 35 dB (p<0.001), although not for SNR values 

greater than 35 dB (p>0.01). In general, the results show that the SKF 
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method is more noise-tolerant than the CCA method. Fig. 8 compares the 

measured and estimated Pa waveforms using the CCA and SKF algorithms, 

operating on the same FIR simulation dataset. The correlation between the 

measured and estimated pressures is shown in Figs. 9 (A) and 10 (A) for 

the CCA and SKF algorithms, respectively. Also shown in each plot are 

the line of identity and the equation of the linear fit to the data. Figs. 9 (B) 

and 10 (B) are the corresponding Bland-Altman plots in which the mean 

bias is shown by the solid horizontal line and limits of agreement 

(±1.96SD of the mean difference), by dashed lines. 

 
Fig. 8. Measured and estimated Pa waveforms using the CCA and SKF algorithms from 

the same subject for a SNR of 25 dB. 

The linear regression equations obtained between the measured and 

estimated Pa waveforms using the CCA and SKF algorithms were 

y=1.00x-0.14 (r=0.99, p<0.001) in Fig. 9 (A) and y=1.00x+0.28 (r=0.99, 

p<0.001) in Fig. 10 (A). A comparison (mean ± SD, -0.11 ± 2.27 mmHg) 

between the measured and estimated Pa waveforms using the CCA 

algorithm is shown in Fig. 9 (B); and a similar comparison using the MCN 

algorithm (mean ± SD, -0.10 ± 1.80 mmHg) is shown in Fig. 10 (B).  

 

 

Fig. 9. (A) Correlation analysis and (B) Bland-Altman plots comparing measured and 

estimated Pa waveforms for a SNR of 25 dB using the CCA algorithm and FIR simulation 

data (25 subjects). m

a
P and e

a
P  are the measured and estimated pressures, respectively. 

 
Fig. 10. (A) Correlation analysis and (B) Bland-Altman plots comparing measured and 

estimated Pa waveforms for a SNR of 25 dB using the SKF algorithm and FIR simulation 

data (25 subjects). m

a
P  and e

a
P are the measured and estimated pressures, respectively. 

3.2 Tube-load Modeling of arterial pressure waveforms in human subjects 

As shown in Fig. 11, the SKF algorithm also has significantly lower 

RMSEs than the CCA. The proposed SKF algorithm clearly outperforms 

the CCA algorithm (p<0.001). It is notable that, as shown in Fig. 11, the 

RMSE values of the measured and estimated Pa waveforms using the CCA 

algorithm are more than 5 mmHg for all values of SNR investigated. Thus, 

the mean difference between the estimated and measured Pa waveforms 

does not satisfy the Association for the Advancement of Medical 

Instrumentation standard of 5 ± 8 mmHg [38], [39], whereas this 

requirement is met by the SKF approach, for SNRs of 25 dB and above. 

Again, a SNR of 25 dB, corresponding to a typical real-world value, has 

been used in Fig. 12 to provide a visual comparison of the performance of 

the two algorithms, where it is seen that the qualitative agreement between 

measured and estimated waveforms is good for the SKF algorithm but 

clearly inferior for the CCA approach. 

Considering the tube-load simulation experiments, Table 4 shows that 

for SNRs greater than 25 dB there is little change in the RMSEs for SP 

and DP when calculated by either algorithm, although the SKF values 

remained consistently lower. 

  
Fig. 11. Effect of added noise on the RMSE values obtained from measured and 

estimated Pa waveforms, using the CCA and SKF algorithms (Mean ± SD, the number 

of points in the total waveform, n is 600).  



7 

 

When the SNR increases from 10 dB to 40 dB, the corresponding RMSE 

values for TW continue to decrease, as also listed in Table 4. Point-by-

point comparisons of the pressure signals analyzed by the CCA and SKF 

algorithms are shown in the correlation plots of Figs.13 (A) and 14 (A), 

respectively. Also, in each plot the line of identity and the equation of the 

linear fit to the data are shown. Figs. 13 (B) and 14 (B) are the 

corresponding Bland-Altman plots in which the mean bias is shown by 

the solid horizontal line and limits of agreement (±1.96SD of the mean 

difference), by dashed lines. The superior performance of the SKF 

approach is evident in the higher value of the Pearson correlation 

coefficient (r=0.99, p<0.001 vs. r=0.96, p<0.001) and the narrower limits 

of agreement (±9.73 mmHg vs. ±19 mmHg). 

  
Fig. 12. Measured and estimated Pa waveforms using the CCA and SKF algorithms from 

the same subject for a SNR of 25dB. 

 
Table 4 

RMSE values are obtained from measured and estimated Pa waveforms using the CCA 

and SKF algorithms with the different SNRs of the observed channel output signals 

(Mean ± SD). 

SNR Method TW SP DP 

(dB)  (mmHg) (mmHg) (mmHg) 

10 
CCA 22.39 ± 6.80 36.79 ± 11.91 122.09 ± 62.58 

SKF 7.59 ± 3.12 3.41 ± 2.35 4.10 ± 4.60 

15 
CCA 10.95 ± 3.27 16.57 ± 6.02 31.45 ± 30.11 

SKF 5.19 ± 1.52 3.19 ± 1.79 1.70 ± 0.67 

20 
CCA 8.03 ± 3.04 11.01 ± 5.03 9.02 ± 5.10 

SKF 4.60 ± 1.87 2.24 ± 1.47 1.24 ± 0.74 

25 
CCA 7.03 ± 2.15 8.77 ± 4.85 2.87 ± 1.67 

SKF 4.43 ± 2.05 2.16 ± 1.57 0.96 ± 0.61 

30 
CCA 6.74 ± 2.12 8.34 ± 5.00 1.72 ± 1.55 

SKF 4.49 ± 2.12 2.83 ± 2.45 0.82 ± 0.73 

35 
CCA 6.76 ± 2.16 8.23 ± 4.93 1.33 ± 1.09 

SKF 4.71 ± 1.96 4.15 ± 3.66 0.64 ± 0.42 

40 
CCA 7.10 ± 2.64 8.38 ± 5.09 1.34 ± 1.03 

SKF 4.68 ± 1.81 3.60 ± 3.50 0.72 ± 0.35 

45 
CCA 6.98 ± 2.39 8.33 ± 5.08 1.22 ± 1.05 

SKF 4.63 ± 1.79 3.20 ± 3.27 0.81 ± 0.44 

50 
CCA 6.77 ± 1.97 8.24 ± 4.97 1.14 ± 1.08 

SKF 4.66 ± 2.30 2.84 ± 2.60 0.98 ± 0.73 

 

Fig. 13. (A) Correlation analysis and (B) Bland-Altman plots comparing measured and 

estimated Pa waveforms for a SNR of 25 dB using the CCA algorithm and FIR simulation 

data (25 subjects). m

a
P and e

a
P are the measured and estimated pressures, respectively. 

 

Fig. 14. (A) Correlation analysis and (B) Bland-Altman plots comparing measured and 

estimated Pa waveforms for a SNR of 25 dB using the SKF algorithm and FIR simulation 

data (25 subjects). m

a
P and e

a
P are the measured and estimated pressures, respectively. 

3.3 Animal experiments  

To verify the accuracy and effectiveness of the proposed SKF algorithm 

in vivo, we performed measurement on two Sprague-Dawley rats. The 

channel order was assumed to be 20 and the number of points in the total 

waveform of every sample was 1800. The estimated and true pressure 

waveforms agreed well. The average RMSE of the total waveform 

between the measured and estimated Pa waveforms using the SKF 

algorithm was 1.20 mmHg and that using the CCA algorithm, 1.70 mmHg.  

 

  

Fig. 15. (A) Correlation analysis and (B) Bland-Altman plots comparing measured and 

estimated Pa waveforms using the CCA algorithm (2 Sprague-Dawley rats). Animal1, 

blue points; animal2, black points. m

a
P and e

a
P are the measured and estimated pressures, 

respectively. 
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Fig. 16. (A) Correlation analysis and (B) Bland-Altman plots comparing measured and 

estimated Pa waveforms using the SKF algorithm (2 Sprague-Dawley rats). 

  

  

Fig. 17. Measured and estimated Pa waveforms using the CCA and SKF algorithms from 

2 Sprague-Dawley rats (A and B).  

The point-by-point correlation and corresponding Bland Altman plots 

(Figs. 15 and 16) again show that the SKF algorithm yields a higher 

correlation coefficient (r=0.99, p<0.001 vs. r=0.97, p<0.001) as well as 

narrower limits of agreement (±3.29 mmHg vs. ±6.50 mmHg). Fig. 17 is 

a visual comparison of the two algorithms and shows that the estimated Pa 

waveform using the SKF algorithm is closer to the measured Pa waveform 

than that obtained from the CCA algorithm, most notably near end systolic 

and end diastolic pressure. 

 

4. Discussion  

In this study, we have applied a simplified Kalman filter algorithm to 

estimate central Pa in simulations and in-vivo experiments and compared 

the results to those obtained from the previously described CCA approach. 

In the simulations, we have shown that, although the results are similar at 

high SNRs, when the signal becomes relatively weaker the SKF algorithm 

outperforms the CCA algorithm. Furthermore, the proposed SKF 

algorithm for central Pa estimation does not require any explicit 

calibration as the method is by nature self-calibrating and can thus account 

for any inter-subject or intra-subject variability in vascular dynamics. 

In the simulation experiments, the convergence performance of the SKF 

algorithm has shown that the NPM values decrease markedly as the SNR 

increases. The convergence is fast and the channel impulse responses are 

accurately estimated when the SNR is high, as shown in Fig. 5. The results 

also demonstrate that the RMSEs decrease as the number of iterations 

increases, as shown in Fig. 6, where the number of iterations ranges from 

80 to 200. It was found that if the number of iterations is less than the 

number of sampling points in one complete cardiac cycle, the Pa 

waveform cannot be reliably reproduced. Therefore, the number of 

iterations was maintained at a value not less than 80. For lower values of 

SNR, RMSEs fall with increasing number of iterations; although for SNRs 

greater than 30 dB, increasing the number of iterations had little further 

effect. Fig. 6 also shows that there is a small additional gain in 

performance when the number of iterations is increased from 150 to 200, 

the effect being more marked for low SNRs. These results indicate that 

the proposed SKF algorithm has a good overall performance when the 

number of iterations is 150 or more. Accordingly, to optimize the speed 

and accuracy in estimating the Pa waveform, the number of iterations of 

the SKF algorithm was set to 200. On the whole, TW RMSEs of the 

measured and estimated Pa waveforms using the SKF algorithm are lower 

than those seen when using the CCA algorithm. Moreover, the SKF 

algorithm gives lower RMSE values for SP and DP, as shown in Tables 3 

and 4. For the animal experiments, although the proposed SKF algorithm 

outperforms the CCA method, only two animals were measured, so this 

result should be regarded only as preliminary. 

There are other limitations to the study. Although the aortic and brachial 

blood pressure measurements in our previous study were collected 

simultaneously, we did not record any additional peripheral pressures at 

the same time. The nonlinearity of the cardiovascular system is neglected, 

which may lead to some estimation errors, such as notch point error and 

reflection point error, both of which will affect clinically important 

hemodynamic variables such as augmentation index, reflection magnitude 

and reflection index.  
 

5. Conclusion 

The results of the simulation experiments demonstrate that the 

performance of MBSI algorithms based on the proposed SKF approach is 

superior to that of the CCA method over a wide range of SNRs in the 

observed signal. The results of the animal experiments also confirm that 

the proposed SKF algorithm is superior to the CCA algorithm. It is worth 
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noting that the SKF algorithm is especially effective for estimating 

systolic and diastolic pressures, which from the clinician’s point of view, 

as a measure of cardiac load, is of particular value. In a future study, we 

will measure more animals for the in-vivo validation of the SKF approach. 

We also plan to develop a nonlinear blind identification algorithm as an 

alternative approach to the estimation of central pressure from peripheral 

measurements. 
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Abbreviations 
 

CCA Canonical correlation analysis 

CR Cross-relation 

CT Compliance of the distal arteries 

DP Diastolic pressure 

FIR Finite impulse response 

MBSI Multichannel blind system identification 

NPM Normalized projection misalignment 

Pa Aortic pressure 

Pb Peripheral artery pressure 

Pf Femoral pressure 

Pp Peripheral artery pressure 

Pr Radial pressure 

RT Peripheral resistance  

RMSE Root mean square error 

SIMO Single input multiple output 

SKF Simplified Kalman filter 

SP Systolic pressure 

SS Subspace 

TW Total waveform 

Zc Characteristic impedance 

ZL Terminal impedance 
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