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Abstract. If A1, . . . , AN are real d × d matrices then the p-radius, generalised Lyapunov ex-
ponent or matrix pressure is defined to be the asymptotic exponential growth rate of the sum∑N

i1,...,in=1 ‖Ain · · ·Ai1‖p, where p is a real parameter. Under its various names this quantity has
been investigated for its applications to topics including wavelet regularity and refinement equations,
fractal geometry and the large deviations theory of random matrix products. In this article we present
a new algorithm for computing the p-radius under the hypothesis that the matrices are all positive
(or more generally under the hypothesis that they satisfy a weaker condition called domination) and
of very low dimension. This algorithm is based on interpreting the p-radius as the leading eigenvalue
of a trace-class operator on a Hilbert space and estimating that eigenvalue via approximations to the
Fredholm determinant of the operator. In this respect our method is closely related to the work of
Z.-Q. Bai and M. Pollicott on computing the top Lyapunov exponent of a random matrix product.
For pairs of positive matrices of dimension two our method yields substantial improvements over
existing methods.
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1. Introduction. If (A1, . . . , AN ) is a tuple of real d× d matrices and p ∈ R a
real parameter, the limit

(1.1) %p(A1, . . . , AN ) := lim
n→∞

 N∑
i1,...,in=1

‖Ain · · ·Ai1‖
p

 1
n

exists by applying Fekete’s subadditivity lemma to the sequence

an(p) := log

 N∑
i1,...,in=1

‖Ain · · ·Ai1‖
p


if p ≥ 0, or to the sequence −an(p) if p < 0. The quantity (1.1), modulo some
trivial variations in its definition, has been studied independently in at least three
different contexts and literatures: under the name of generalised Lyapunov exponent
the quantity log(N−1%p(A1, . . . , AN )) has been studied for p ∈ R in [10, 41] where its
investigation is motivated by the large deviations theory of random matrix products in
statistical mechanics; under the name of matrix pressure, the quantity %p(A1, . . . , AN )
has been investigated for p ≥ 0 in the fractal geometry literature in view of its
applications to the dimension of self-similar and self-affine limit sets ([12, 13, 14, 27,
34]); and in the joint spectral radius literature, the quantity N−1/p%p(A1, . . . , AN )1/p

has been investigated for p ≥ 1 in connection with its applications to wavelet regularity
[9, 26, 43] and the control theory of discrete linear inclusions [22, 30]. Across all three
literatures there has arisen the problem of computing or estimating the quantity
%p(A1, . . . , AN ) – as may be seen for example in [23, 27, 31, 34, 36, 39, 41] – and it
is with this that the present article is concerned. The principal result of this article
is a new algorithm for the computation of %p(A1, . . . , AN ) in the case where the
matrices A1, . . . , AN are positive and p is an arbitrary real number. More generally,
our method extends to the case where the matrices A1, . . . , AN strictly preserve a
cone or multicone.
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2. Statement of main result. In order to state our result let us present the
definition of a multicone. Let us say that a cone in Rd is a set K ⊂ Rd which is
closed, convex, has nonempty interior, satisfies λK = λK for all real λ > 0 and
satisfies K∩−K = {0}. A multicone will be a tuple (K1, . . . ,Km) of cones in Rd such
that for some nonzero vector w ∈ Rd we have 〈u,w〉 > 0 for all nonzero u ∈

⋃m
j=1Kj ,

and such that Ki ∩ Kj = {0} for distinct i, j ∈ {1, . . . ,m}. We call such a vector w a
transverse-defining vector for the multicone, and when discussing specific multicones
we will find it convenient to fix a choice of transverse-defining vector w. We say
that a matrix A ∈ Md(R) strictly preserves a cone K if A(K \ {0}) ⊆ IntK, and we
say that A strictly preserves a multicone (K1, . . . ,Km) if for every i = 1, . . . ,m we
have A(Ki \ {0}) ⊆ IntKj ∪ (− IntKj) for some j ∈ {1, . . . ,m} depending on i. If A
strictly preserves a multicone then a simple pigeonhole argument demonstrates that
some power of A strictly preserves a cone, which implies that A has a simple leading
eigenvalue (which might be either positive or negative). We say that (A1, . . . , AN ) ∈
Md(R)N strictly preserves a multicone (K1, . . . ,Km) if every Ai strictly preserves
that multicone. We say that (A1, . . . , AN ) is multipositive if there exists a multicone
which is strictly preserved by (A1, . . . , AN ). The property of multipositivity admits
characterisations which do not overtly refer to cones or multicones: for example, if
(A1, . . . , AN ) ∈ Md(R)N is a tuple of invertible matrices then the multipositivity of
(A1, . . . , AN ) is equivalent to the existence of constants C > 0, θ ∈ (0, 1) such that

(2.1) max

{
σ2(Ain · · ·Ai1)

σ1(Ain · · ·Ai1)
: 1 ≤ i1, . . . , in ≤ N

}
≤ Cθn

for all n ≥ 1, where σk(A) denotes the kth singular value of the matrix A, see for
example [4, 6, 29]. The condition (2.1) above is sometimes called 1-domination or
simply domination and has been explored in some detail in the dynamical systems
literature [1, 6]; its applications to certain numerical invariants of sets of matrices
have been investigated in such works as [7, 8]. We remark that the existence of a
strictly preserved multicone, and the condition (2.1), are both preserved by a linear
change of co-ordinates: if every Ai is conjugated by some matrix X then the constant
θ in (2.1) is unchanged and the constant C is multiplied by the square of the condition
number of X.

For each N ≥ 1 we let Σ∗N denote the set of all finite sequences i = (i1, . . . , in)
such that i1, . . . , in are integers between 1 andN . If a tuple of matrices (A1, . . . , AN ) ∈
Md(R)N is understood, given i = (i1, . . . , in) ∈ Σ∗N we define Ai := Ain · · ·Ai1 . If
i = (i1, . . . , in) ∈ Σ∗N then we write |i| := n and call this the length of i. Finally
we let ρ(A) denote the spectral radius of the matrix A, and we let λ1(A), . . . , λd(A)
denote the eigenvalues of A listed in decreasing order of absolute value. Since our
matrices A will always strictly preserve a multicone the largest eigenvalue of A will
always be unique and the definition of λ1(A) unambiguous.

We may now state the principal result of this article, which is the following:

Theorem 2.1. Let (A1, . . . , AN ) ∈ Md(R)N be multipositive, where N, d ≥ 2,
and let p ∈ R. For every n ≥ 1 define

tn :=
∑
|i|=n

ρ(Ai)
p

d∏
j=2

(
1− λj(Ai)

λ1(Ai)

)−1

=
∑
|i|=n

λ1(Ai)
d−1ρ(Ai)

p

p′Ai
(λ1(Ai))

where pB(x) := det(xI − B) denotes the characteristic polynomial of the matrix B
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and p′B(x0) its first derivative evaluated at x0. Define a0 := 1 and

an :=
(−1)n

n!
det



t1 n− 1 0 · · · 0 0
t2 t1 n− 2 · · · 0 0

t3 t2 t1
. . . 0 0

...
...

...
. . .

. . .
...

tn−1 tn−2 tn−3 · · · t1 1
tn tn−1 tn−2 · · · t2 t1


=

n∑
k=1

(−1)k

k!

∑
n1,...,nk≥1
n1+···+nk=n

k∏
`=1

tn`
n`

for every n ≥ 1. Then for all sufficiently large n there exists a smallest positive real
root rn > 0 of the polynomial

∑n
k=0 akx

k, and there exist constants K, γ > 0 such
that for all large enough integers n

(2.2)

∣∣∣∣%p(A1, . . . , AN )− 1

rn

∣∣∣∣ ≤ K exp
(
−γn

d
d−1

)
.

The method of Theorem 2.1 is inspired by earlier results by M. Pollicott and coauthors
on the estimation of various dynamical quantities via transfer operators such as in
the articles [32, 33, 35]. It relies on a transfer operator theorem proved by the author
in [29] which extends a technical result of the article [32] (which is itself in turn a
rigorous version of an earlier argument of Z.-Q. Bai [2]).

Theorem 2.1 applies in particular if the matrices Ai are all positive matrices,
or if the matrices Ai all strictly preserve a single cone K. However, multipositive
matrix tuples with neither of these two properties also exist: see [1]. We remark that
since %p(A1, . . . , AN ) = %p(X

−1A1X, . . . ,X
−1ANX) for every invertible matrix X,

a sufficient condition for the application of Theorem 2.1 is that the matrices Ai be
simultaneously conjugate to positive matrices. The problem of estimating the implied
constants K and γ in (2.2) is not attempted in this article, but is discussed briefly in
§7 below. However, we believe this problem to be difficult, and at the present time
this limits Theorem 2.1 to the production of empirical estimates of %p(A1, . . . , AN )
rather than estimates whose accuracy can be rigorously guaranteed. In general the
constants K and γ should be expected to diverge to infinity and zero respectively as
the positivity hypothesis is weakened, that is, when the ratio of the largest entry of
the matrices Ai to the smallest entry tends to infinity. In §7 we also briefly discuss the
complexity of computing the quantities an, which we estimate to be of order roughly
d4Nn.

We believe that it would be possible in principle to adapt Theorem 2.1 so as
to work with restricted products of matrices such that the products Ai1 · · ·Ain are
subject to a Markovian constraint, i.e. such that certain pairs of successive values
(ik, ik+1) ∈ {1, . . . , N}2 are disallowed. This would yield an analoguous approxima-
tion formula for the exponential growth rate %p of the expressions

∑
|i|=n ‖Ai‖p for

which the sum is restricted to words allowed by the Markovian constraint. The defini-
tion of tn in this case must be correspondingly modified so as to sum only over words
i of length n with the property that ii is an allowed word, similarly to formulas
for the approximation of the top Lyapunov exponent given in the thesis [42]. The
multipositivity hypothesis in this situation may potentially be relaxable to something
resembling that of [5].
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The reader will notice that the order of convergence in Theorem 2.1 is strongest
when the dimension of the matrix is 2 and becomes weaker as the dimension is in-
creased, although it is in all cases super-exponential in n. On the other hand as noted
above the number of computational steps involved in computing the coefficients an
admits a factor Nn. The method introduced in this article is therefore most useful
when both the dimension d and the number of matrices N are equal to 2 and it should
not be expected to compare favourably with other methods when N exceeds 4 or when
d exceeds 3. We also emphasise that the positivity (or domination) requirement makes
it unsuitable for use with sparse matrices, unlike the alternative methods which are
reviewed in §3 below.

In the situation where both the number of matrices and the dimension are equal
to 2, Theorem 2.1 substantially outperforms other methods. For example, in the
previous work [23], R. Jungers and V. Yu. Protasov investigated the problem of
computing what in our notation corresponds to the quantity

1− log2

(
2−

1
p %p(A1, A2)

1
p

)
=
p+ 1

p
− 1

p
log2 %p(A1, A2)

for the pair of matrices

A1 :=

(
1
5 0
1
5

3
5

)
, A2 :=

(
3
5

1
5

0 1
5

)
with p := 3.5, obtaining an estimate of 1.95 ≤ p+1

p −
1
p log2 %p(A1, A2) ≤ 1.973. Since

the pair (A1, A2) is simultaneously conjugate to a pair of positive matrices Theorem
2.1 may be applied. Taking n = 20 yields the estimate

(2.3) 1.953821293179325866750389914731492551138280064126997 . . .

for the same quantity, which we have found to be empirically accurate to all significant
figures shown in the sense that these digits remain stable as n is further increased.

We remark that in the literature on the generalised Lyapunov exponent, it is
common to consider the quantity

(2.4) lim
n→∞

 N∑
i1,...,in=1

pin · · · pi1 ‖Ain · · ·Ai1‖
p

 1
n

in place of the quantity %p(A1, . . . , AN ) as defined in (1.1), where (p1, . . . , pN ) is a
probability vector. The quantity (2.4) can easily be included within the scope of (1.1)
and Theorem 2.1 by replacing each instance of a matrix Ai with the corresponding

matrix p
1/p
i Ai. For the remainder of the article we therefore ignore the issue of giving

a probability weighting to each Ai and concentrate on the calculation of the p-radius
as defined in (1.1).

It is possible to show that the quantities tn defined in Theorem 2.1 satisfy
limn→∞ tn%p(A1, . . . , AN )−n = 1 and therefore increase (or decrease) exponentially
with n. The efficiency of the estimate in Theorem 2.1 on the other hand relies on the

quantities an decreasing as O(exp(−γn
d
d−1 )). The small size of the quantities an thus

arises from additive cancellation among the relatively large terms in the sum defining
each an. In practical applications it is therefore important to compute the quantities
tn to a precision exceeding that desired for the approximation to %p(A1, . . . , AN ).

4



The remainder of this article is structured as follows. In §3 below we review the
fundamental properties of %p and describe some existing techniques for its estimation.
In §4 we describe in outline the techniques underlying the proof of Theorem 2.1 and
in §5 the proof itself is presented. In §6 we present some examples of the computation
of %p using the algorithms described herein.

3. Methods for estimating the p-radius.

3.1. Fundamental estimates. If (A1, . . . , AN ) ∈ Md(R)N and p ∈ R then
by elementary estimates it follows that %p(A1, . . . , AN ) = 0 if and only if the joint
spectral radius

lim
n→∞

max
|i|=n

‖Ai‖
1
n

is zero. It is well known that the joint spectral radius is zero if and only if all of the
products Aid · · ·Ai1 of length d are zero, if and only if there exists a basis in which
all of the matrices A1, . . . , AN are simultaneously upper triangular with all diagonal
entries equal to zero (for details see [21, §2.3.1]). Since the theory of the p-radius is
trivial in this situation we will for the remainder of this paper deal only with matrices
for which the p-radius is assumed to be nonzero. We remark that in the multipositive
case considered in Theorem 2.1 every product Ai has a simple leading eigenvalue and
in particular is not the zero matrix, so in this case %p(A1, . . . , AN ) is guaranteed to
be nonzero.

When p > 0 the p-radius admits an elementary description as the limit of a
convergent sequence of upper bounds,

(3.1) %p(A1, . . . , AN ) = lim
n→∞

∑
|i|=n

‖Ai‖p
 1

n

= inf
n≥1

∑
|i|=n

‖Ai‖p
 1

n

,

as a consequence of the submultiplicativity relation

∑
|i|=m+n

‖Ai‖p ≤

 ∑
|i|=m

‖Ai‖p
∑

|i|=n

‖Ai‖p
 .

Less trivially, when p > 0 it may also be expressed as the limit of a convergent
sequence of lower bounds:

%p(A1, . . . , AN ) = lim
n→∞

 ∑
|i|=nd ‖Ai‖p

K(p, d)
(∑

|i|=n ‖Ai‖p
)d−1


1
n

(3.2)

= sup
n≥1

 ∑
|i|=nd ‖Ai‖p

K(p, d)
(∑

|i|=n ‖Ai‖p
)d−1


1
n

where K(p, d) := d2+(d+1)p max{d1−p, 1}, see [27, Theorem 1.2]. In particular the
p-radius can in principle be approximated to within any prescribed error ε by sys-
tematically computing the upper and lower bounds until they eventually agree to
within the prescribed amount. However, since the computational effort involved in-
creases exponentially with n and the relative error may reasonably be presumed to be
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at least of the order of K(p, d)1/n, and since the constant K(p, d) is relatively large
even in the case d = 2, this procedure seems unlikely to have any value for practical
computations. An illustration of this is presented in §6 below. We remark that an
additional theoretical consequence of the above expressions is that the p-radius varies
continuously both in p and in the matrix entries when p is positive, since it is then
equal to both an upper and a lower pointwise limit of sequences of continuous func-
tions, hence continuous. When p < 0 the computability and continuity of the p-radius
do not seem to have been as thoroughly investigated, but based on the related works
[7, 28, 40] it seems likely that continuity should not hold and that systematic upper
and lower estimation might be infeasible, at least when the matrices are not assumed
to be positive or invertible.

When p is a positive even integer, or when p is a positive integer and the matrices
A1, . . . , AN preserve a cone, the identity

(3.3) %p(A1, . . . , AN ) = ρ

(
N∑
i=1

A⊗pi

)

has been discovered independently on several occasions [11, 36, 44]. (Here A⊗p denotes
the pth Kronecker power of the matrix A, see for example [18, §4.2].) When p is a
positive integer and A1, . . . , AN are not necessarily positive, the inequality

%p(A1, . . . , AN ) ≤ ρ

(
N∑
i=1

A⊗pi

)

may be obtained by the same means. Whilst in principle (3.3) represents an easy
method for computing the p-radius of positive matrices, the size of the auxiliary matrix∑N
i=1A

⊗p
i increases exponentially with p which prevents the use of the formula when

p is sufficiently large. For non-integer p these results may nonetheless be exploited so
as to yield upper bounds as follows. We observe that if p1 and p2 are real numbers
such that 0 < p1 < p2, and λ ∈ (0, 1), then for each n ≥ 1

∑
|i|=n

‖Ai‖λp1+(1−λ)p2 ≤

∑
|i|=n

‖Ai‖p1
λ∑

|i|=n

‖Ai‖p2
1−λ

using Hölder’s inequality with p := 1
λ and q := 1

1−λ . It follows easily that

log %λp1+(1−λ)p2(A1, . . . , AN ) ≤ λ log %p1(A1, . . . , AN ) + (1− λ) log %p2(A1, . . . , AN )

and hence the function p 7→ log %p(A1, . . . , AN ) is convex. This yields the upper
bound

%p(A1, . . . , AN ) ≤ %bpc(A1, . . . , AN )p−bpc%1+bpc(A1, . . . , AN )1+bpc−p(3.4)

≤ ρ

(
N∑
i=1

A
⊗bpc
i

)p−bpc
ρ

(
N∑
i=1

A
⊗(1+bpc)
i

)1+bpc−p

valid for all p > 0 and A1, . . . , AN ∈ Md(R), which does not seem to have been
previously noted in the literature. We will see in §6 below that despite its crudity
this estimate does not automatically provide a bad approximation and should not be
discounted out of hand.
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3.2. Resampled Monte Carlo methods. In [41], J. Vanneste introduced a
method based on the interpretation of the p-radius as an asymptotic moment of a
random matrix product: given A1, . . . , AN ∈ Md(R), n ≥ 1 and p ∈ R we may
view the sum 1

Nn

∑
|i|=n ‖Ai‖p as the expectation of the random variable i 7→ ‖Ai‖p

where each word i of length n is chosen with probability 1/Nn. This suggests the
possibility of approximating 1

Nn

∑
|i|=n ‖Ai‖p for large n by Monte Carlo estimation:

if we choose M words i1, . . . , iM independently then by the law of large numbers, the
average 1

M

∑M
k=1 ‖Aik‖p should for large enough M give a reasonable approximation

to the value 1
Nn

∑
|i|=n ‖Ai‖p which is that random variable’s expectation and hence

a good approximation to %p(A1, . . . , AN ) as long as n is reasonably large. However,
except which p is small, the variance of this random variable will be prohibitively large
– indeed exponentially large in n – which makes convergence in the strong law of large
numbers unreasonably slow. To compensate for this Vanneste introduced a “go-with-
the-winners” resampling scheme along the lines of [16], which successively modifies the
distribution of the random variable i 7→ ‖Ai‖p so as to retain the same mean while
reducing the variance; see discussion in [41, §III] for details. The particular strength
of this method is that it has very limited dependence on the number of matrices and
their dimension; on the other hand, the accuracy of the results is relatively low in
practice. See §6 below for further discussion.

3.3. The convex optimisation bounds of Jungers and Protasov. The
article [23] introduced new systematic upper and lower bounds for the p-radius in the
case p ≥ 1. If (A1, . . . , AN ) are non-negative matrices, Jungers and Protasov showed
that the quantities

ap(n) = inf
(u1,...,ud)∈Rd

∑
|i|=n

max
1≤i≤d

d∑
j=1

(Ai)ije
uj−ui

p

,

bp(n) = inf
(v1,...,vd)∈Rd

max
1≤j≤d

∑
|i|=n

(
d∑
i=1

(Ai)ije
vi−vj

)p
,

where (B)ij denotes the (i, j) entry of the matrix B ∈Md(R), satisfy

max
{
d−

p
n ap(n)

1
n , d

1−p
n bp(n)

1
n

}
≤ %p(A1, . . . , AN ) ≤ bp(n)

1
n

for every n ≥ 1. (Here we have modified the statement of their results in concordance
with our definition of %p.) The quantities ap(n) and bp(n) are solutions to convex
optimisation problems and as such may be efficiently approximated. In the case where
(A1, . . . , AN ) preserves a more general cone K (in the weak sense that AiK ⊆ K for
each i = 1, . . . , N) analogous upper and lower bounds are given, but these are not in
general the solutions to convex optimisation problems and as such are more difficult
to efficiently or rigorously estimate. Since the matrices A⊗2

1 , . . . , A⊗2
N always preserve

a cone irrespective of the structure of the original matrices A1, . . . , AN , and since
%p(A1, . . . , AN ) = %p/2(A⊗2

1 , . . . , A⊗2
N ) for all p ∈ R, this more general version of their

method permits the estimation of %p(A1, . . . , AN ) for arbitrary A1, . . . , AN ∈ Md(R)
and p ≥ 2.

As with the upper and lower bounds (3.1) and (3.2) this system of estimation
requires the computation of Nn matrix products in order to obtain the nth approxi-
mation and as such is best suited to cases in which N is small.
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3.4. Eigenvalue methods. As has been previously observed by J. Vanneste
[41, §II.B], the quantity %p(A1, . . . , AN ) can be represented as the leading eigenvalue
of a linear operator on an infinite-dimensional function space in the following manner.
Suppose that A1, . . . , AN ∈ Md(R) are invertible matrices and let p ∈ R. Let RPd−1

denote the space of lines through the origin in Rd, with the distance between two
lines defined to be the angle at which they intersect. For each nonzero u ∈ Rd let
u ∈ RPd−1 denote the line spanned by u. Define an operator on the space Cα(RPd−1)
of α-Hölder continuous functions f : RPd−1 → R by

(Lpf) (u) :=

N∑
i=1

(
‖Aiu‖
‖u‖

)p
f(Aiu)

and observe that by a simple calculation

(
Lnpf

)
(u) =

∑
|i|=n

(
‖Aiu‖
‖u‖

)p
f(Aiu)

for every n ≥ 1, f ∈ Cα(RPd−1) and u ∈ RPd−1. With only a little more work one
may show that in fact

lim
n→∞

∥∥Lnp∥∥ 1
n = lim

n→∞

∑
|i|=n

‖Ai‖p
 1

n

,

and under mild algebraic non-degeneracy conditions on the matrices Ai, a rather
longer argument shows that %p(A1, . . . , AN ) is the largest eigenvalue of Lp acting on

Cα(RPd−1) if α > 0 is chosen sufficiently small (see for example [17, Théorème 8.8]).
This suggests the idea of calculating %p(A1, . . . , AN ) by approximating the operator
Lp with a large matrix representing the action of the matrices Ai on a discretised

version of RPd−1. This approach was previously described in [41, §IV.A] but does not
seem to have been investigated in detail. A version of this method was also suggested
in [29, §8] for the purpose of estimating the Hausdorff dimensions of some self-affine
limit sets.

To give a concrete example, in the case d = 2 write u(θ) := (cos θ, sin θ) for each
θ ∈ [0, π) and for u, v let [u, v) denote the shorter of the two arcs in RP1 from u
to v, including the former endpoint but not the latter. Fix an integer n ≥ 1. For

each i = 1, . . . , N define an n × n matrix Bi = [b
(i)
jk ]n−1

j,k=0 by b
(i)
jk := ‖Aiu(jπ/n)‖p

if Au(jπ/n) ∈ [u(kπ/n), u((k + 1)π/n)) and b
(i)
jk := 0 otherwise. Define now the

matrix B :=
∑N
i=1Bi. Since B corresponds to a version of Lp acting on functions

defined on a discretisation of RP1 into n evenly-spaced points, we expect that for
large n the spectral radius of B should give a reasonable approximation to ρ(Lp) =
%p(A1, . . . , AN ). In principle it may be possible to demonstrate this rigorously using
the methods of [25], but this does not seem to have so far been attempted in the
literature and is certainly a problem beyond the scope of this article.

For two-dimensional matrices this method appears to yield approximations accu-
rate to several decimal places in a tolerable amount of time (see §6 below) and it is
apparent from the definition that the effect of increasing the number of matrices N
has at worst a polynomial effect on the running time of the algorithm. However the
size of the matrix required in order to discretise RPd−1 into a mesh of prescribed size
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ε rises exponentially with the dimension d, suggesting that this method is unlikely
to be very useful for matrices which are not of low dimension. The question also
arises of whether better estimates may be obtained by adapting the mesh locally so
as to include more mesh points in regions where the derivative of one of the maps
u 7→ Aiu is large and fewer mesh points where it is small. Since the principal purpose
of this article is to introduce the new algorithm given by Theorem 2.1, we leave these
questions to other investigators.

4. Overview of the proof of Theorem 2.1. In the previous subsection we
observed that %p(A1, . . . , AN ) admits an interpretation as the leading eigenvalue of
a linear operator on an infinite-dimensional function space and considered the possi-
bility of approximating such an operator directly by operators on finite-dimensional
spaces. This is however not the only mechanism by which the leading eigenvalue of an
operator may be calculated. In order to describe our chosen alternative we will briefly
and informally review some concepts from the theory of trace-class linear operators;
thorough formal treatments of this topic may be found in e.g. [15, 38].

If an operator L on an infinite-dimensional Hilbert space has the property that
the sequence of approximation numbers

sn(L ) := inf {‖L −F‖ : rank F < n}

is summable then it is called trace-class. If this is the case then L is a compact
operator (since it is a limit in the norm topology of a sequence of finite-rank opera-
tors) and therefore its spectrum consists of 0 together with a finite or infinite set of
eigenvalues, each of finite algebraic multiplicity, which has no nonzero accumulation
points. It is not difficult to see that sn(L k) ≤ ‖L k−1‖sn(L ) for every k, n ≥ 1 by
direct manipulation of the definition and consequently every power of a trace-class
operator is also trace-class. If L is a trace-class operator on H with finite or infi-
nite sequence of nonzero eigenvalues (λn)Mn=1, it is classical that the series

∑M
n=1 λn

converges absolutely to a quantity which is called the trace of L and denoted tr L .
Moreover the quantity

det(I − zL ) :=

M∏
n=1

(1− zλk),

called the Fredholm determinant of L , defines an entire holomorphic function in the
variable z with power series

∑∞
n=0 anz

n, say. It is also classical that in this case the
zeros of z 7→ det(I − zL ) are precisely the reciprocals of the nonzero eigenvalues of
L and that additionally

(4.1) an =
∑

i1<i2<···<in

λi1 · · ·λin =
1

n!

∑
n1+···+nk=n

k∏
i=1

(
− tr L ni

ni

)
for every n ≥ 1, where a0 := 1 and where λk is interpreted as zero if k > M . It
follows that if the traces tr L k can be easily calculated for k = 1, . . . , n, say, then
an approximation

∑n
k=0 akz

k to the Fredholm determinant can be constructed using
(4.1) and it might be hoped that the smallest positive real root of the polynomial∑n
k=0 akz

k would provide a good estimate for the reciprocal of the leading eigenvalue
ρ(L ) of L as long as the remainder

∑∞
k=n+1 akz

k is extremely small. In view of

the equation (4.1) it follows that if the sequence (λn)Mn=1 can be shown to decay
stretched-exponentially then this remainder will in fact be super-exponentially small,
and this is indeed the approach which we will take in estimating %p(A1, . . . , AN ).
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This general approach to estimating dynamical quantities via operator eigenvalues
has been previously exploited in a number of prior articles of which we note [2, 19,
20, 29, 32, 33, 35].

The proof of Theorem 2.1 therefore proceeds via the introduction of a trace-
class operator L on a Hilbert space H with the properties required by the argument
sketched above: a stretched-exponential estimate on the singular values sn(L ) (which
implies a stretched-exponential estimate on the eigenvalues via Weyl’s inequality), the
property ρ(L ) = %p(A1, . . . , AN ), and a simple, computationally-feasible formula for
the sequence of traces tr L n. The following result from [29] saves us the necessity of
constructing such an operator from first principles:

Theorem 4.1. Let d,N ≥ 2, let A1, . . . , AN be real d × d matrices and suppose
that (K1, . . . ,Km) is a multicone for (A1, . . . , AN ) with transverse-defining vector w ∈
Rd. Then there exists a nonempty bounded open subset Ω of the complex hyperplane
{z ∈ Cd : 〈z, w〉 = 1} such that the following properties hold. Let A2(Ω) denote the
separable complex Hilbert space of holomorphic functions Ω→ C for which the integral∫

Ω
|f(z)|2dV (z) is finite, where V denotes 2(d− 1)-dimensional Lebesgue measure on

Ω. For each p ∈ C define an operator Lp : A2(Ω)→ A2(Ω) by

(Lpf) (z) :=

N∑
i=1

(
〈Aiz, w〉

sign<(〈Aiz, w〉)

)p
f
(
〈Aiz, w〉−1Aiz

)
.

Then the operators Lp are well-defined bounded linear operators on A2(Ω) and:
(i) There exist C, κ, γ > 0 such that for all p ∈ C and n ≥ 1 we have

sn(Lp) ≤ C exp
(
κ|p| − γn

1
d−1

)
.

In particular each Lp is trace-class.
(ii) For every p ∈ C and n ≥ 1 we have

tr L n
p =

∑
|i|=n

ρ(Ai)
p

d∏
j=2

(
1− λj(Ai)

λ1(Ai)

)−1

=
∑
|i|=n

λ1(Ai)
d−1ρ(Ai)

p

p′Ai
(λ1(Ai))

(iii) For every p ∈ R the spectral radius of Lp is equal to

lim
n→∞

∑
|i|=n

‖Ai‖p
 1

n

.

(iv) For all p ∈ R the spectral radius of Lp is a simple eigenvalue of Lp and there
are no other eigenvalues of the same modulus.

Theorem 4.1 above is precisely the special case ` = 1 of [29, Theorem 11].
Theorem 2.1 can thus be seen as a version of the eigenvalue-problem approach dis-

cussed in the previous section, but one which takes advantage of the special additional
structure of trace-class operators. Note that since trace-class operators are compact
operators they are very far from being invertible, and indeed an important feature of
the hypotheses of Theorem 4.1 is that the transformations Ai map a (not necessarily
connected) patch of RPd−1 strictly inside itself – which results in a non-invertible
action on the associated function space – as opposed to acting transitively on RPd−1.

10



This feature is precisely the content of the multicone hypothesis, and indeed the non-
invertibility of the action on RPd−1 is critical in constructing a space on which the
operators Lp can act in a trace-class manner. As such any extension of the method
of Theorem 2.1 to families of matrices with non-real eigenvalues is therefore likely to
be impossible since such matrices would tend to act transitively on the phase space
RPd−1, preventing the construction of a suitable domain for a trace-class operator to
act upon.

The operator considered in Theorem 4.1 is closely related to an operator con-
structed in earlier work of M. Pollicott [32], but with two differences. In the first
instance, Pollicott’s construction deals only with the simpler case where the param-
eter p is equal to zero – in which case several factors in Theorem 4.1 evaluate to 1
and disappear, simplifying many steps of the argument. Secondly, Pollicott’s article
treats only the case d = 2 in detail and omits many details of the construction of the
domain Ω in other cases. The additional complexities inherent in this construction in
higher dimensions are responsible for much of the length of the article [29] in which
Theorem 4.1 is proved.

5. Proof of Theorem 2.1. The following result summarises the classical results
on traces and determinants of trace-class operators on Hilbert spaces which will be
required in our proof. It is a combination of several results from [38, §3], with the
exception of the determinant formula for an which may be found instead in, for
example, [37, Theorem 6.8] or [15, Theorem IV.5.2].

Theorem 5.1. Let H be a complex separable Hilbert space, let L be a trace-class
operator acting on H , and define a0 := 1 and

an :=
(−1)n

n!
det



tr L n− 1 0 · · · 0 0
tr L 2 tr L n− 2 · · · 0 0

tr L 3 tr L 2 tr L
. . . 0 0

...
...

...
. . .

. . .
...

tr L n−1 tr L n−2 tr L n−3 · · · tr L 1
tr L n tr L n−1 tr L n−2 · · · tr L 2 tr L


=

n∑
k=1

(−1)k

k!

∑
n1,...,nk≥1
n1+···+nk=n

k∏
`=1

tr L n`

n`

for every n ≥ 1. Then the power series D(z) :=
∑∞
n=0 anz

n converges for all z ∈ C.
The function D : C → C is holomorphic, the zeros of D are precisely the reciprocals
of the nonzero eigenvalues of L , and the degree of each zero of D is equal to the
algebraic multiplicity of the corresponding eigenvalue of L . Moreover the coefficients
an satisfy the estimate

(5.1) |an| ≤
∑

i1<i2<···<in

si1(L ) · · · sin(L )

for every n ≥ 1.

Proof. In the notation of all three of [15, 37, 38] the function D corresponds to the
function z 7→ det(I − zL ). The fact that this function satisfies D(z) =

∑∞
n=0 anz

n

with each an given by the determinant formula above, and with the series being
absolutely convergent for all z ∈ C, follows from [15, Theorem IV.5.2]. Obviously

11



D(0) = 1 6= 0, so the claim regarding the zeros of D pertains to its values at nonzero
numbers z ∈ C only. If λ ∈ C \ {0} is not the reciprocal of an eigenvalue of L then
I − λL is invertible, since the nonzero points of the spectrum of a compact operator
are precisely its eigenvalues; thus D(λ) = det(I − λL ) 6= 0 by [37, Theorem 3.9].
On the other hand if λ ∈ C \ {0} is the reciprocal of an eigenvalue of L of algebraic
multiplicity k > 0 then λ is a zero of D of degree k by [37, Theorem 3.10]. As a
consequence of [38, Lemma 3.3] and in particular formula (3.5) in that lemma, the
absolute value of the coefficient an for n ≥ 1 is precisely the absolute value of the
trace of the exterior power ∧nL . By [38, Theorem 3.1] this trace is bounded by the
trace norm ‖ ∧n L ‖1 and by equation (3.8) in the proof of [38, Lemma 3.3] this in
turn is bounded by the expression on the right-hand side of (5.1). This yields (5.1).
By equation (5.12) in the proof of [38, Theorem 5.4] we have

D(z) = det(I − zL ) = exp

(
−
∞∑
m=1

zm · tr Lm

m

)

for all z in a sufficiently small complex neighbourhood of 0, with the series being
absolutely convergent. Comparing the coefficients of zn on either side of the resulting
equation

∞∑
n=0

anz
n =

∞∑
k=0

1

k!

(
−
∞∑
m=1

zm · tr Lm

m

)k
yields the second expression for the coefficients an, and the proof is complete.

We also require the following elementary lemma:

Lemma 5.2. For each γ, α > 0 there exists a constant K = K(α, γ) > 0 such that

∞∑
n=m

exp (−γnα) ≤ K exp
(
− γ

21+α
mα
)

for all m ≥ 1.

Proof. Fix γ and α. By adjusting the constant K if necessary we may without
loss of generality assume m ≥ 2. Define

C := sup
{
u

1
α−1 exp

(
−γ

2
u
)

: u ≥ 1
}
> 0.

Since clearly e−γn
α ≤

∫ n
n−1

e−γt
α

dt for every integer n we have

∞∑
n=m

exp (−γnα) ≤
∫ ∞
m−1

exp (−γtα) dt

=
1

α

∫ ∞
(m−1)α

u
1
α−1 exp (−γu) du

≤ C

α

∫ ∞
(m−1)α

exp
(
−γ

2
u
)
du

=
C

α
exp

(
−γ

2
(m− 1)

α
)
≤ C

α
exp

(
− γ

21+α
mα
)

for every m ≥ 2 and the result follows.
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We may now begin the proof of Theorem 2.1. Fix A1, . . . , AN and p ∈ R as
in Theorem 2.1. By Theorem 4.1 there exist a complex separable Hilbert space H
and a trace-class linear operator Lp : H →H such that %p(A1, . . . , AN ) is a simple
isolated eigenvalue of Lp, such that all other eigenvalues have absolute value strictly
smaller than %p(A1, . . . , AN ), such that

tr L n
p =

∑
|i|=n

ρ(Ai)
p

d∏
j=2

(
1− λj(Ai)

λ1(Ai)

)
=
∑
|i|=n

λ1(Ai)
d−1ρ(Ai)

p

p′Ai
(λ1(Ai))

for every n ≥ 1 and such that there exist constants C1, γ1 > 0 such that sn(Lp) ≤
C1 exp(−γ1n

1
d−1 ) for every n ≥ 1. Define the sequence (tn) in accordance with The-

orem 2.1 and note that we have tn = tr L n
p for every n ≥ 1. For each n ≥ 0 let an

be as defined in Theorem 5.1 and note that this coincides with the definition of the
sequence an in Theorem 2.1. We claim that there exist C2, γ2 > 0 such that

(5.2) |an| ≤ C2 exp
(
−γ2n

d
d−1

)
for every n ≥ 1. To see this let n ≥ 1 and observe that by Theorem 5.1

|an| ≤
∑

i1<···<in

si1(Lp) · · · sin(Lp) ≤
∑

i1<···<in

n∏
k=1

C1 exp

(
−γ1i

1
d−1

k

)

= Cn1
∑

i1<···<in

exp

(
−γ1

n∑
k=1

i
1
d−1

k

)

≤ Cn1
∞∑
i1=1

· · ·
∞∑

in=n

exp

(
−γ1

n∑
k=1

i
1
d−1

k

)

= Cn1

n∏
k=1

∞∑
ik=k

exp

(
−γ1i

1
d−1

k

)

≤ Cn1Kn
n∏
k=1

exp

(
− γ1

2
d
d−1

k
1
d−1

)

= Cn1K
n exp

(
− γ1

2
d
d−1

n∑
k=1

k
1
d−1

)

≤ Cn1Kn exp

(
− (d− 1)γ1

d2
d
d−1

n
d
d−1

)
where we have used Lemma 5.2 with α = 1

d−1 and have also used the elementary
inequality

n∑
k=1

k
1
d−1 ≥

∫ n

0

t
1
d−1 dt =

d− 1

d
n

d
d−1

which is valid since the series is an upper Riemann sum of the integral. The claim
follows easily.

Now define a function D : C → C by D(z) :=
∑∞
n=0 anz

n. It is clear from the
estimate (5.2) that this power series has infinite radius of convergence and therefore
D is a well-defined holomorphic function on C. By Theorem 5.1 we have D(z) =
det(I − zLp) for all z ∈ C and the zeros of D are precisely the reciprocals of the
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nonzero eigenvalues of Lp with the degree of each zero being equal to the algebraic
multiplicity of the corresponding eigenvalue. By Theorem 4.1, %p(A1, . . . , AN ) is the
largest eigenvalue of Lp in absolute value and is a simple eigenvalue. It follows that
we may choose a circular contour Γ in C which is centred somewhere on the real line,
passes through 0, encloses 1/%p(A1, . . . , AN ) and does not enclose or intersect the
reciprocal of any eigenvalue of Lp other than %p(A1, . . . , AN ). Let c ∈ R and R > 0
denote the centre point and radius of Γ respectively. Since Γ does not intersect the
reciprocal of any eigenvalue of Lp the function D does not have any zeros on Γ, so
by compactness

inf
|z−c|=R

|D(z)| > 0.

For each n ≥ 1 define a function Dn : C→ C by Dn(z) :=
∑n
k=0 akz

k. Obviously each
Dn is a polynomial and is therefore holomorphic on C. Via Lemma 5.2 the estimate
(5.2) implies

sup
|z−c|≤R

∞∑
k=n

|akzk| ≤
∞∑
k=n

C2(2R)k exp
(
−γ2k

d
d−1

)
(5.3)

≤
∞∑
k=n

C3 exp
(
−γ3k

d
d−1

)
≤ C4 exp

(
−γ4n

d
d−1

)
for all n ≥ 1 and some suitable constants C3, C4, γ3, γ4 > 0. In particular

(5.4) lim
n→∞

sup {|D(z)−Dn(z)| : |z − c| ≤ R} = 0

and therefore there exists n0 ≥ 1 such that for all n ≥ n0

sup
|z−c|=R

|D(z)−Dn(z)| < inf
|z−c|=R

|D(z)|.

Applying Rouché’s theorem on the circular contour Γ we deduce that for all n ≥ n0

the functions D and Dn have the same number of zeros inside the contour Γ, and the
total degree of the zeros inside Γ is the same for the function D as it is for the function
Dn. Since D has a unique zero inside Γ and that zero is simple this means that Dn

has a unique zero inside Γ for all large enough n, and this zero is simple. Call this
zero rn. Since Dn is a polynomial with real coefficients its zeros are symmetrically
located with respect to reflection in the real axis. Since the contour Γ is circular with
real centre, a zero of Dn is enclosed by Γ if and only if the complex conjugate of that
zero is also so enclosed. It follows that the complex conjugate of rn is also enclosed by
the contour Γ and is therefore also a zero of Dn. But Dn has a unique zero inside Γ.
These statements can only be compatible if rn is equal to its own complex conjugate,
and we conclude that rn is real. Since rn is enclosed by Γ and is real it necessarily
lies on the interval (0, 2R) and is the unique zero of Dn on that interval. In particular
it is the smallest positive zero of the polynomial Dn.

Define r∞ := 1/%p(A1, . . . , AN ) ∈ (0, 2R). To complete the proof of the theorem
we will show that ∣∣∣∣ 1

r∞
− 1

rn

∣∣∣∣ = O
(

exp
(
−γ4n

d
d−1

))
.

We first require a lower bound for the derivative D ′(z) for z close to r∞. Since
r∞ = 1/%p(A1, . . . , AN ) is a simple zero of D we have D ′(r∞) 6= 0, and since it is also
necessarily an isolated zero we may choose δ > 0 such that |D ′(z)| 6= 0 for all z ∈ C
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with |z − r∞| ≤ δ, such that D(z) 6= 0 for all z ∈ C with 0 < |z − r∞| ≤ δ, and such
that the closed disc of radius δ and centre r∞ is enclosed by the contour Γ. Since by
compactness

inf
|z−r∞|=δ

|D(z)| > 0

it follows via (5.4) in the same manner as before that there exists n1 ≥ n0 such that
for all n ≥ n1

sup
|z−r∞|=δ

|D(z)−Dn(z)| < inf
|z−r∞|=δ

|D(z)|.

Applying Rouché’s theorem again, this time to the circular contour with centre r∞
and radius δ, we see that for each n ≥ n1 there is a unique zero of Dn within distance
δ of r∞. Since the disc of radius δ and centre r∞ is enclosed by Γ, and Γ encloses a
unique zero of Dn, we conclude that this zero must be rn and therefore |rn− r∞| < δ
for all n ≥ n1.

Now define
κ := inf {|D ′(z)| : |z − r∞| ≤ δ} > 0.

Since Dn is a polynomial with real coefficients it takes only real values when restricted
to R and therefore the same is true of D since it is the pointwise limit of Dn as n→∞.
Let n ≥ n1 and suppose that rn 6= r∞. By the Mean Value Theorem it follows that
there exists a real number t in the interval from rn to r∞ such that

D(rn)−D(r∞)

rn − r∞
= D ′(t).

Since clearly |r∞ − t| ≤ |r∞ − rn| ≤ δ we have |D ′(t)| ≥ κ and therefore

|rn − r∞| ≤ κ−1|D(rn)−D(r∞)|.

This inequality is obviously also true for integers n ≥ n1 such that rn = r∞. In
particular for all n ≥ n1 we have

|rn − r∞| ≤ κ−1|D(rn)−Dn(rn)|

using the fact that Dn(rn) = 0 = D(r∞). Thus

|rn − r∞| ≤ κ−1|D(rn)−Dn(rn)| = κ−1

∣∣∣∣∣
∞∑

k=n+1

akr
k
n

∣∣∣∣∣ ≤ κ−1C4 exp
(
−γ4n

d
d−1

)
for all n ≥ n1 using (5.3). We in particular have limn→∞ rn = r∞. If n2 ≥ n1 is taken
large enough that for all n ≥ n2 we have rn ≥ 1

2r∞, then for all n ≥ n2 we have∣∣∣∣ 1

rn
− 1

r∞

∣∣∣∣ =
|rn − r∞|
rnr∞

≤ |rn − r∞|1
2r

2
∞

≤ 2C4

κr2
∞

exp
(
−γ4n

d
d−1

)
and this completes the proof of the theorem.

6. Example: a pair of matrices considered by Jungers and Protasov.
In the article [23] the p-radius of the pair (A1, A2) defined by

A1 :=

(
1
5 0
1
5

3
5

)
, A2 :=

(
3
5

1
5

0 1
5

)
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was investigated motivated by its connection with Chaikin’s subdivision schemes and
the Lp regularity of refinable functions. The reader may easily check that if we define

X :=

(
3 −1
−1 3

)
then the matrices X−1A1X and X−1A2X are both positive, so the pair (A1, A2)
strictly preserves a cone and Theorem 2.1 may be applied thereto. The results of
applying the various methods of estimation to %3.5(A1, A2) are tabulated in Figures
6.1–6.5 below. The reader will notice that by far the best results are those obtained
by Theorem 2.1: the estimate obtained by evaluating all products Ai of length up
to 12 yields the estimate 0.19773298680753190957 . . ., where all 20 significant figures
remain stable at higher values of n. Estimates of comparable complexity using the
method of §3.3 give only the first two significant figures, albeit rigorously; the näıve
upper and lower estimates described in §3.1 are not even sufficient to establish the
first significant digit of %3.5(A1, A2). The methods of §3.2 and §3.4 perform somewhat
better, being able to give non-rigorous estimates accurate to several decimal places.
We also observe that the upper estimate arising from logarithmic convexity,

%3.5(A1, A2) '
√
%3(A1, A2)%4(A1, A2) =

√
ρ
(
A⊗3

1 +A⊗3
2

)
ρ
(
A⊗4

1 +A⊗4
2

)
,

gives a rigorous upper bound of

%3.5(A1, A2) ≤ 0.1986720360 . . .

which, remarkably, is more accurate than several of the other methods employed.
Applying Theorem 2.1 with n = 20 gives the estimate

%3.5(A1, A2) ' 0.1977329868075319095734771033479503703640246341567 . . .

where the digits displayed were likewise found empirically to be stable with respect to
increase of n, and this estimate provides the value (2.3) mentioned in the introduction.

n Näıve upper estimate Näıve lower estimate

1 0.41014 02388 0.00003 71719
2 0.29717 45163 0.00265 32644
3 0.26212 69438 0.01107 32061
4 0.24497 10624 0.02270 50356
5 0.23489 87259 0.03497 48389
6 0.22831 70520 0.04666 81491
7 0.22369 66328 0.05735 30955
8 0.22028 14135 0.06694 70201
9 0.21765 70884 —
10 0.21557 86195 —
11 0.21389 22442 —
12 0.21249 67903 —

Fig. 6.1. The rigorous upper and lower estimates (3.1) and (3.2) applied to the pair (A1, A2)
with p = 3.5. The upper estimate requires the computation of 2n matrix products and the lower
estimate 4n products. For n > 8 the lower estimate was omitted due to the large number of products
to be computed and the poor quality of the estimates.
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n Upper estimate bp(n)
1
n Lower estimate d−

1
n ap(n)

1
n

1 0.20779 00346 0.08095 43081
2 0.20474 70800 0.14134 17665
3 0.20294 52224 0.16241 04530
4 0.20180 54158 0.17198 46647
5 0.20104 31937 0.17732 22741
6 0.20050 82647 0.18073 86055
7 0.20011 68386 0.18313 47477
8 0.19982 00191 0.18492 14944
9 0.19958 80621 0.18631 15004
10 0.19940 21599 0.18742 65582
11 0.19924 99839 0.18834 21232
12 0.19912 31811 0.18910 78446

Fig. 6.4. Rigorous upper and lower estimates given by the algorithm of Jungers and Protasov
applied to the pair (A1, A2) with p = 3.5.

Mesh size Estimate

10 0.22765 40788
100 0.19986 86395
1000 0.19785 78266
10000 0.19774 13329
100000 0.19773 40963

Fig. 6.2. Estimates of %3.5(A1, A2) given by the eigenvalue method described in §3.4.

Sample length Number of runs Resampled Monte Carlo estimate

10 10 0.20663 64774
10 100 0.19336 14906
10 1000 0.19472 39505

100 10 0.19078 48295
100 100 0.19724 80647
100 1000 0.19706 73206

1000 10 0.19171 01011
1000 100 0.19752 20499
1000 1000 0.19768 32282

10000 10 0.19460 13140
10000 100 0.19737 86045
10000 1000 0.19766 64507

Fig. 6.3. Some representative instances of J. Vanneste’s resampled Monte Carlo scheme applied
to the pair (A1, A2) with p = 3.5 over various parameter ranges.

7. Conclusions. We have introduced a new method for estimating the p-radius
of low-cardinality sets of positive or dominated matrices and investigated its effective-
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n Estimate 1/rn

1 0.50193 86416 68481 22831 92327
2 —
3 0.25470 11941 19890 64296 65247
4 —
5 0.19747 18486 52733 86575 36851
6 0.19773 76208 73169 67676 89071
7 0.19773 30386 40809 03204 40047
8 0.19773 29865 81371 43318 96314
9 0.19773 29868 07433 20636 81181
10 0.19773 29868 07532 62503 56803
11 0.19773 29868 07531 90980 60910
12 0.19773 29868 07531 90957 29023

Fig. 6.5. Estimates of %3.5(A1, A2) provided by Theorem 2.1. For n = 2, 4 the polynomial∑n
k=0 akx

k has no real roots and the quantity 1/rn is undefined.

ness in the case of a particular pair of matrices considered by Jungers and Protasov in
connection with applications to Chaikin’s subdivision scheme. We have compared its
results to those of a number of other estimation methods in the case of that example
and obtained results apparently accurate to within an absolute error of approximately
10−20, versus approximately 10−2 to 10−6 for rival methods.

The new method has the disadvantage that the number of matrix products whose
leading eigenvalue and characteristic polynomial must be computed in order to obtain
the nth approximation to %p(A1, . . . , AN ) grows at an exponential rate of Nn with
respect to the integer n. Since those two properties of a matrix product are invariant
with respect to cyclic permutation of the product concerned, each coefficient thus tn
requires the consideration of about Nn/n distinct matrix products, one for each equiv-
alence class modulo cyclic permutation. Computing all d eigenvalues of each product
by the QR method may be expected to take a total time of order d3 per eigenvalue,
making d4 per product; and since the nth approximation requires the computation of
the first n coefficients tk this suggests a complexity on the order of d4Nn. In particular
if the number of matrices N being considered is greater than around 4, the computa-
tional burden of producing accurate results may be prohibitively large. On the other
hand this disadvantage of a factor of Nn in the complexity is shared by the methods of
§3.1 and §3.3. In view of this consideration, when N is large the methods of §3.2 and
§3.4 may be preferable. Our method also, as presently formulated, does not provide
a rigorous estimate of its own accuracy, and if rigorous bounds are sought then the
method of §3.3, possibly in combination with the logarithmic-convexity bound (3.4)
may be applied instead.

The constants K and γ of Theorem 2.1 both depend on the estimate in Theorem
4.1(i) for the singular values of the operator Lp, and those estimates in turn are
functions of the strength of contractiveness of the action of the matrices A1, . . . , AN
on the associated multicone. In the case of two-dimensional positive matrices it is
possible to give explicit estimates for the decay of the singular values of Lp, and this
is attempted in [24] at the parameter value p = 0. On the other hand the constant K is
further affected by factors such as the distance separating the largest two eigenvalues
of the operator Lp, and as such it may be more difficult to obtain a priori estimates
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for this constant. Furthermore, in dimensions higher than two even the constant γ
is not obtained in a fully constructive manner since it is affected by the cardinality
of the relative covers arising in the application of [3, Theorem 4.7] to the domain Ω
which arises from certain slices of complex cones, and the finiteness of that cardinality
is established nonconstructively. The problem of obtaining explicit estimates of γ in
higher dimensions is therefore substantially more challenging.
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