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Abstract 

Electroencephalographic responses to unexpected musical events allow researchers to test 

listeners’ internal models of syntax. One major challenge is dissociating cognitive syntactic 

violations—based on the abstract identity of a particular musical structure—from unexpected 

acoustic features. Despite careful controls in past studies, recent work by Bigand et al. (2014) has 

argued that ERP findings attributed to cognitive surprisal cannot be unequivocally separated 

from sensory surprisal. Here we report a novel EEG paradigm that uses 3 auditory short-term 

memory models and 1 cognitive model to predict surprisal as indexed by several ERP 

components (ERAN, N5, P600, and P3a), directly comparing sensory and cognitive 

contributions. Our paradigm parameterizes a large set of stimuli rather than using categorically 

“high” and “low” surprisal conditions, addressing issues with past work in which participants 

may learn where to expect violations and may be biased by local context. The cognitive model 

(Harrison & Pearce, 2018) predicted higher P3a amplitudes, as did Leman’s (2000) model, 

indicating both sensory and cognitive contributions to expectation violation. However, no model 

predicted ERAN, N5, or P600 amplitudes, raising questions about whether traditional 

interpretations of these ERP components generalize to broader collections of stimuli or rather are 

limited to less naturalistic stimuli. 

Keywords: EEG, ERP, Music and language, Cognitive neuroscience, Statistical learning 
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Reassessing syntax-related ERP components using popular music chord sequences:  

A model-based approach 

Like natural language, music does not consist of a randomly ordered collection of sounds; 

rather, musical events and structures are combined into sequences according to constraints that 

characterize a musical style (Patel, 2003; Rohrmeier & Pearce, 2018a). A set of such constraints 

may be described as the syntax of a musical style, similar to how the constraints determining 

word order in natural language constitute the syntax of the language. Music syntactic constraints 

operate at different hierarchical levels, applying to notes, chords, motifs, or other aspects of tonal 

structure and musical form.  

Internal models of the syntactic structure of musical styles are thought to be acquired 

through experience and it has been argued that this process of enculturation reflects implicit 

statistical learning of sequential structure, subject to certain innately specified limits (Pearce, 

2018). In contrast to language syntax (but akin to linguistic semantics), constraints on the 

structure of music tend not to be wholly categorical (grammatical versus ungrammatical), but 

rather probabilistic: most sequential contexts allow for a range of different continuations varying 

in likelihood. Internal syntax models are therefore thought to model the likelihood of various 

different continuations to a given context, allowing listeners to generate expectations about the 

likely (and unlikely) continuations at each point in a piece of music as it proceeds. Enculturated 

listeners possessing such an internal cognitive model are therefore able to identify the extent to 

which continuations of a sequential context confirm or disconfirm their expectations by the 

extent to which they conform to or violate the (internalised) probabilistic syntax of the style. 

Here, we primarily consider harmonic elements of syntax, though such violations can also occur 

for other symbolic musical parameters such as melody. 
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Measuring listeners’ sensitivity to these violations has been the traditional way to test 

such theories of musical syntax (see Musical Syntax Related ERPs); however, investigating the 

underlying cognitive models of statistical regularities is difficult. In studies of language, the 

surprisal of a word in a given context due to its syntactic category or meaning can be effectively 

dissociated from the sound of the word (although, there are certainly cases where the sound of a 

word can affect syntax, such as by adding pluralization suffixes). By contrast, in music, expected 

chords—due either to explicit knowledge of music-theoretic rules or mere statistical exposure—

tend to have acoustic features (such as harmonics) in common with their context, too. Indeed, 

part of what constitutes the identity of any given syntactic element in music is its sound. This 

presents a major hurdle to the study of musical syntax because acoustic changes may be 

confounding syntactic unexpectedness, leading to potential misattribution of purported 

sensitivity to syntactic responses to what is actually sensory surprisal.  

Further, for a harmony to be unexpected, a piece of music must first establish a local 

harmonic context, which has its own local distribution of pitch classes. An unexpected harmony 

may thus not only differ from global probabilistic expectations acquired in the long-term, but 

also in features relative to this local context. Sensory surprisal may also arise relative to this local 

context. Several researchers have noted this issue and have controlled for it by constructing local 

contexts that control features of acoustic similarity independent of harmonic classification. 

Bigand, Poulin, Tillmann, Madurell, & D’Adamo (2003) controlled whether or not the target 

chord occurred in the priming context and considered the number of shared pitch classes between 

target chords and their priming sequence. Koelsch, Jentschke, Sammler, & Mietchen (2007) 

controlled for pitch commonality, pitch repetition, and roughness (using the IPEM toolbox, 

Leman et al., 2005) across syntactically regular and irregular chords. Regnault, Bigand, and 



REASSESSING SYNTAX VIOLATION ERPS 5 
 

Besson (2001) compared violations based on acoustic dissonance (by raising the fifth of a target 

chord by a half step) with syntactic differences (based on the harmonic function of the target 

chord). In all of these cases, unexpected harmonies were still found to evoke neurophysiological 

responses corresponding to long-term internalized models of musical syntax distinct from those 

evoked by sensory expectation violations. 

Despite these careful controls, some issues have yet to be unequivocally resolved. 

Notably, Bigand, Delbe, Poulin-Charronnat, Leman, & Tillmann (2014) revisited many past 

music syntax studies and provided a sophisticated computational analysis of the stimuli that had 

been used, arguing that while some acoustic characteristics were controlled in the stimuli, others 

were not adequately considered. In particular, they argued that the auditory short-term memory 

(ASTM) model of Leman (2000) could explain findings from several previous experiments, 

suggesting that the reportedly syntactic expectation violations could not be unequivocally 

dissociated from sensory surprisal, despite carefully crafted experimental controls. 

To be clear, by sensory surprisal, we mean simple and low-level aspects of perceptual 

processing that do not rely on cognitive representations of the statistical regularities of a musical 

style, but instead are driven exclusively by short-term acoustic properties of the stimulus on 

timescales that can be processed in sensory memory. By cognitive surprisal, we mean higher-

level aspects of processing that, in the examples we consider here, do depend on prior learned 

familiarity with a given musical style, acquired over longer periods of previous exposure to a 

large number of stylistic examples and stored in long-term memory, which allows the generation 

of expectations based on comparison with longer extracts of the musical context stored in short-

term memory (rather than sensory memory). Huron (2006) outlines how cognitive surprisal can 

result from four different kinds of expectation, each relying on different kinds of memory. 
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Schematic expectations arise from learning the regularities making up the syntax of a musical 

style through extensive long-term exposure to a large number of pieces of music in the style. 

Dynamic expectations arise from short-term learning of regularities occurring within a piece of 

music (e.g., thematic and motivic structure). Veridical expectations arise from episodic 

memories of pieces that we are familiar with from previous listening. Finally, conscious 

expectations arise from explicit mental prediction of forthcoming musical structures. In the 

present research, we are concerned specifically with schematic and dynamic expectations. 

Another related issue concerns the listening contexts characteristic of many syntactic 

surprisal paradigms. In many previous event related potential (ERP) studies of syntax violation 

(as reviewed below), experimenters contrasted categorical violation versus non-violation 

conditions that differed by degree of violation. Such designs require repeating stimuli within 

each condition, to accommodate ERP paradigms that require such repetition, and then averaging 

across trials. One consequence of this is that participants may listen differently at certain points 

in the harmonic progressions once they have learned—over the course of doing the experiment—

where the violations occur in the stimuli, and what those violations might be (because there are 

limited types of chord progressions used as stimuli). This may bias how participants listen, and 

may differ from ecological music listening in which syntactic violation, as indexed by sensory or 

cognitive surprisal, may vary continuously while listening to an unfamiliar piece of music (in a 

familiar style). Thus, whether sensitivity to syntactic violations—as indexed by various ERP 

components—generalizes to chord sequences extracted from actual music presented without 

repetition is an open question that deserves further attention. Demonstrating this generalizability 

would allow a more precise attribution of the physiological responses: if the same 

neurophysiological responses were to be evoked when participants listen to stimuli that do not 
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have distinct points where strong violations occur, it would be less plausible that such effects 

could be attributed to artifacts of listening strategies present only in experimental settings, or 

characteristics of the particular stimuli used in these studies. 

This manuscript aims to address these concerns and is organized as follows. First we will 

review previous electroencephalography (EEG) literature on event related potentials (ERPs) 

theorized to be evoked by syntax violations. Then we will review four computational models that 

have been used to simulate the sensory and syntactic surprisal of musical stimuli. We then 

present our own experimental study which measures ERPs evoked by a broad set of stimuli 

sampled from a popular music corpus that have been evaluated using both sensory and cognitive 

models of surprisal, investigating which models best predict the ERPs that have been associated 

with violations of harmonic expectation, and addressing limitations of previous ERP research 

that we have identified. 

Musical Syntax Related ERP Components  

ERAN/EAN 

Perhaps the most studied response to violations of harmonic syntax in music is the Early 

Right Anterior Negativity (ERAN). Listeners are typically presented with chord progressions 

that either conform to or violate the syntax of a musical style (usually Western tonal music). The 

ERAN occurs 150–280 ms after the onset of the unexpected chord and is maximal over the right 

anterior portion of the scalp (Koelsch, Gunter, Friederici, & Schröger, 2000; Koelsch, Kilches, 

Steinbeis, & Schelinski, 2008; Pearce & Rohrmeier, 2018b), although it is sometimes referred to 

as the EAN or E(R)AN because it has not always been found to be right lateralized (e.g., Loui, 

Grent-'t-Jong, Torpey, & Woldorff, 2005). Here we retain the original ERAN terminology. The 

amplitude is larger when the unexpected chord follows a larger number of expected chords that 
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more firmly establish the context, and the amplitude is smaller for less unlikely substitutions in 

the context (Leino, Brattico, Tervaniemi, & Vuust, 2007). The amplitude of this component is 

insensitive to task relevance (Koelsch et al., 2000), though it is sensitive to attentional load (Loui 

et al. 2005). The ERAN has been observed for artificially introduced chords that are highly 

stylistically incongruent with the context (e.g., a Neapolitan sixth taking the place of a tonic triad 

in an authentic cadence) but also for stylistically unlikely but not entirely ungrammatical chords 

appearing in the chorales harmonized by J. S. Bach (Steinbeis, Koelsch & Sloboda, 2006) as well 

as expressively performed classical and romantic piano sonatas (Koelsch et al., 2008).  

The ERAN has been localized to Broca’s area and its right hemisphere homologue, with 

a bias towards activity in the right hemisphere (Maess, Koelsch, Gunter, & Friederici, 2001) 

whereas the early left anterior negativity (ELAN), elicited by syntax violations in language, 

show similar source localization but with a left-hemisphere bias (Friederici, 2011). Carrus et al. 

(2013) show that the ELAN (or, in their terminology, the left anterior negativity, or LAN) to 

syntactic violations in language (but not the N400 to semantic incongruity, see next section) is 

reduced in amplitude when presented simultaneously with a low-probability melodic note. 

Kunert, Willems, Casasanto, Patel, & Hagoort (2015) used fMRI to demonstrate that a task 

involving both music syntactical processing and language syntactical processing share neural 

resources in Broca’s area. These results reinforce the association between the ERAN and syntax-

related cognitive processes, although increasing evidence suggests that interactive effects of 

musical and linguistic structure are not specific to syntax and may reflect shared use of general-

purpose cognitive control processes rather than overlapping processing of syntax per se (Slevc & 

Okada, 2015).  



REASSESSING SYNTAX VIOLATION ERPS 9 
 

Compared with the mismatch negativity (MMN) which has a similar latency and 

topography, but is not right lateralized (Näätänen, Paavilainen, Rinne, & Alho, 2007), it has been 

argued that the ERAN reflects sensitivity to the long-term acquired knowledge of statistical 

regularities characteristic of music-syntactic processing rather than sensitivity to local violations 

(Koelsch, 2009). The MMN, by contrast, has traditionally been thought to be related to sensory 

memory (although, further research has shown that long-term memory and top-down processing 

play a role, Näätänen et al., 1997). Evidence comes from studies showing that the amplitude of 

the ERAN is related to the long-term transition probability of the chord (Kim, Kim, & Chung, 

2011), is attenuated (though still present) in 5-6 year-old children compared to adults, and is 

accentuated in adult musicians, relative to adult non-musicians (Koelsch, Schmidt, & Kansok, 

2002). Furthermore, in an artificial grammar learning study using unfamiliar stimuli, the 

amplitude of the ERAN was found to increase with greater learning of the grammar measured 

both by degree of exposure and performance in a grammaticality decision task (Loui, Wu, 

Wessel, & Knight, 2009). In addition, Miranda and Ullman (2007) describe a functional 

dissociation between an ERAN associated with out-of-key violations in both familiar and 

unfamiliar melodies, and a subsequent (220-380 ms) posterior negativity elicited by both in-key 

and out-of-key violations of familiar melodies only.  

Finally, in a study of melodic expectation, Omigie, Pearce, Williamson, & Stewart (2013) 

used a computational model of auditory expectation based on statistical learning and 

probabilistic prediction (Pearce, 2005; 2018) and found that the amplitude of an early negative 

component—which usually occurs earlier at around 100-150 ms for violations of melodic 

expectation (Koelsch & Jentschke, 2010; Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya, 

2010)—correlated positively with the unexpectedness of the note according to the model.  
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N5 

In conjunction with the ERAN, violations of harmonic syntax also evoke a later bilateral 

negativity maximal around 500–570ms (Koelsch et al., 2000; Loui et al., 2005), termed the N5 

(or N500). This component is thought to reflect the subsequent integration of unexpected 

information into the ongoing processing of a chord sequence such that each successive expected 

chord requires less processing, and shows decreasing N5 amplitudes. Koelsch (2011) interprets 

the N5 as a process by which the interrelation between musical structures gives rise to meaning, 

thus implicating the N5 as sensitive to what can be thought of as musical semantics. Steinbeis & 

Koelsch (2008) showed that the N5 is reduced when presented alongside language semantic 

violations, suggesting that the N5 shares neural resources with processing of semantics in 

language. This is reinforced by Sun et al., (2018) who found that amusics—participants with 

impairment in discriminating pitch—showed attenuated ERAN and ELAN but intact N5 and 

P600 to syntactic violations of melody and language respectively. The N5 has an analogue in 

language, the N400, which is elicited by words that are syntactically correct but semantically 

implausible, e.g., the final word in “she drinks her coffee with sugar and pepper” (Kutas & 

Hillyard, 1980). N400s are elicited by every word in a sentence, but show reduced amplitude as 

context accumulates (see Swaab, Ledoux, Camblin, and Boudewyn, 2012 for a review).  

P600 

Another ERP component associated with syntactic violation in language is the P600, a 

posteriorly distributed positivity maximal around 600 ms after the stimulus onset (Osterhout & 

Holcomb, 1992, 1993). Patel, Gibson, Ratner, Besson, & Holcomb (1998) reported increased 

P600 amplitude in response to chords that violate Western tonal harmonic syntax, given the 

preceding harmonic context. This has been interpreted as indicating that the P600 indexes how 
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easily a chord can be integrated into the ongoing harmonic context.  Featherstone, Morrison, 

Waterman, & MacGregor (2013) observed a P600 in musicians and non-musicians for 

unexpected chords but found that only musicians showed a P600 when expectations were not 

subsequently fulfilled by returning to the initial key. They suggested that the P600 reflects 

conscious analytical detection of a contextual incongruity. Compared with classical musicians, 

jazz musicians show a smaller P600, suggesting enhanced ability to integrate unexpected events 

into the ongoing context (Przysinda, Zeng, Maves, Arkin, & Loui, 2017). 

P3 

Early EEG studies of melodic expectation (Besson & Faita, 1995; Nittono, Bito, Hayashi, 

Sakata, & Hori, 2000; Paller, McCarthy, & Wood, 1992; Schön & Besson, 2005; Verleger, 1990) 

identified a P3 component (sometimes called a P300 or late positive component) peaking 

between 300-500 ms at central and posterior sites in response to stylistically unexpected notes in 

a melody. The amplitude and latency of the P3 are sensitive to musical expertise, the familiarity 

of the melody, the degree of expectancy violation (Besson & Faita, 1995), and also to the timing 

of the unexpected note (Nittono et al., 2000).  The P3 is now understood to consist of two 

functionally distinct components: the P3a, an earlier and more frontally/centrally distributed 

response to novelty per se, including attentional orienting to novel stimuli (musical or 

otherwise); and the P3b, a later and more parietally distributed response to low-probability 

events that is dependent on the event in question being task relevant, e.g., requiring the 

participant to explicitly identify it (Comerchero & Polich, 1999; Polich, 2007; Walsh, 

Gunzelmann, & Anderson, 2016). Koelsch & Jentschke (2010) argue that the P3 observed in 

early EEG studies of melodic expectation reflected a task-related P3b rather than a response to 

violation of syntactic expectation per se. However, some research that has focused on the ERAN 
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(see above) has also reported both P3a and P3b to violations of harmonic expectation (Koelsch et 

al., 2000; Steinbeis, Koelsch, & Sloboda, 2006), though the P3 is not significant in all cases (e.g., 

Koelsch et al., 2008). Furthermore, in a magnetoencephalography (MEG) study, Vuust, 

Ostergaard, Pallesen, Bailey, & Roepstorff (2009) report a P3am (the MEG analogue of the P3a 

in EEG recordings) using drum patterns containing violations of metrical expectation, which is 

interpreted to reflect the integration of a prediction error into a larger processing network. 

Trainor, McDonald, & Alain, (2002) report a P3a elicited when the melodic contour or interval 

of a standard melody was changed.  

Computational models of harmonic expectation 

The ERP study reported in this paper reconsiders the components described above in the 

context of four models of harmonic expectation, each formalising different hypotheses about 

how listeners process chord sequences. Three of these models may be described as Auditory 

Short-Term Memory (ASTM) models, positing that harmonic expectation derives from the short-

term retention and comparison of auditory images; these models represent sensory accounts of 

harmonic expectation. The fourth model treats harmonic expectation as the outcome of culturally 

informed statistical learning and probabilistic prediction, thereby representing a cognitive 

account of harmonic expectation. We used each model to calculate the degree of unexpectedness 

(be it sensory or syntactic) of chords we use as stimuli in the experiment reported below. 

Milne, Sethares, Laney, & Sharp’s (2011) Spectral Distance Model 

Milne et al.’s (2011) spectral distance model is the least complex of the ASTM models 

evaluated here. The model estimates the perceptual dissimilarity of sets of pitches or pitch 

classes by expanding each pitch(-class) into its implied harmonic series, blurring the resulting 

spectrum by convolution with a Gaussian distribution to match the resolution of human pitch 
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perception, and computing the cosine distance between the resulting spectra. The resulting model 

has proved effective in predicting various aspects of tonal perception (Milne & Holland, 2016; 

Milne, Laney, & Sharp, 2016; Milne, Laney, & Sharp, 2015). Because the model outputs a value 

describing the similarity of different spectra, it can be used as a predictive model: less similar 

spectra are less predictable in terms of acoustic features. 

Leman’s (2000) Periodicity Pitch Model 

Leman’s (2000) periodicity-pitch model is broadly similar to Milne et al.’s (2011) model, 

but includes three additional features. First, it is not constrained to inputs of pitch or pitch-class 

sets, but can take arbitrary audio input. Second, it includes a detailed simulation of how the audio 

signal is transformed by the peripheral auditory system, including acoustic filtering by the outer 

and middle ear, frequency analysis in the cochlea, conversion to neural rate-coding by inner hair 

cells, and periodicity analysis for pitch inference. Third, its memory extends past the most recent 

chord, accumulating every incoming sound in an echoic memory buffer (termed the global 

image) that decays exponentially over time. Leman’s (2000) model may be used to predict the 

expectedness of an incoming chord by correlating the auditory image in the short-term memory 

buffer (the global image) with the auditory image evoked by the incoming chord (termed the 

local image). In this model, chords eliciting high correlations should be perceived as more 

expected (less surprising). Note that this is in contrast to the three other models described here, 

where high values correspond to more surprising events. 

Collins, Tillmann, Barrett, Delbé, & Janata’s (2014) Tonal Expectation Model.  

Collins et al.’s (2014) tonal expectation model represents a hybrid sensory-cognitive 

account of harmonic expectation. Like the previous two models, it is an auditory short-term 

memory model, predicting harmonic expectation by accumulating and comparing auditory 
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images in short-term memory. However, it includes a wider variety of auditory representations, 

some of which are derived from cognitive processing. 

The first auditory representation is a periodicity-pitch representation identical to that used 

in Leman’s (2000) model. This representation describes the pitch content of the stimulus as a 

function of time. The second representation is a chroma-vector representation, derived from the 

periodicity-pitch representation by collapsing pitches to pitch classes, and thereby capturing the 

music-theoretic principle of octave invariance. The third representation is the tonal-space 

representation from Janata et al. (2002), intended to capture the listener’s implicit knowledge of 

Western tonality. The tonal-space representation projects the periodicity-pitch representation 

onto the surface of a torus, a three-dimensional ring-like structure shown by Krumhansl and 

Kessler (1982) to capture perceptual distances between Western musical keys. The mapping 

between periodicity pitch and tonal space is defined by a self-organising map (Kohonen, 1995), a 

type of artificial neural network that uses competitive learning to reduce the dimensionality of 

input data. This self-organising map is pretrained on a melody designed to modulate through all 

24 major and minor diatonic keys over the course of eight minutes. At a given timepoint, each of 

these three representations defines a vector (or, in the case of the tonal-space representation, a 

two-dimensional array) of numbers corresponding to the activation pattern of that representation 

at that timepoint. For example, elements in the periodicity-pitch vector represent activations of 

different auditory nerve fibres, whereas elements in the tonal-space array represent activations of 

particular tonal regions, such as G major or B minor.  

Analogous to Leman (2000), local and global images are created for each of these three 

representations, with the local image capturing the current sound and the global image capturing 
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the tonal context as maintained in short-term memory. A 0.10 s half-life is used for accumulating 

the local images, and a 4.00s half-life for the global images. 

For each time point, two types of features are computed from the local and global images. 

The first type of feature corresponds to the maximum value found within the global image, and is 

intended as a measure of tonal clarity. The second type of feature is based on correlations 

between local and global images, similar to Leman (2000). In particular, the model computes the 

difference in local-global correlations immediately before and just after the target chord; large 

increases in correlation imply that the new chord induces significant tonal resolution. Collins et 

al. (2014) define a large number of features through the factorial combination of these 

representations and feature types. 

The model then predicts the expectedness of the target chord as a linear combination of 

these derived features—thus producing a single value—using coefficients from a stepwise 

regression analysis of seven empirical studies (Collins et al., 2014). These empirical studies were 

harmonic priming studies, quantifying tonal expectedness as the speed with which listeners 

perform simple perceptual judgements (e.g. timbre discrimination) on the target chord. 

The Information Dynamics of Music Model.  

The Information Dynamics of Music (IDyOM) model embodies a statistical-learning 

account of musical expectation, originally developed in the context of melody perception (Pearce, 

2005; Pearce & Wiggins, 2012) and subsequently extended to the harmonic domain by Harrison 

and Pearce (2018). The model represents the hypothesis that listeners learn statistical properties 

of a musical style through passive exposure, and use these learned statistics to generate 

probabilistic predictions for successive musical events. We categorize the IDyOM model as 

“cognitive” rather than “sensory” because it simulates high-level cognitive processes involved in 
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statistical learning and probabilistic prediction of musical structure, symbolically encoded at the 

level of musical notes rather than lower-level acoustic features, with both learning and prediction 

taking place over time scales greater than the capacity limits of sensory memory (up to about 4 s). 

This includes top-down expectations derived from musical knowledge acquired through listening 

to hundreds or thousands of pieces of music over periods of years as well as knowledge acquired 

within individual pieces of music over periods of seconds and minutes. 

 The underlying prediction engine of IDyOM is the Prediction by Partial Match (PPM) 

algorithm, a variable-order Markov model initially presented by Cleary and Witten (1984) and 

subsequently developed by Moffat (1990), Cleary and Teahan (1997), and Bunton (1997). PPM 

learns the statistical structure of a set of sequences composed from some alphabet of elements by 

recording the frequency with which each element in the alphabet follows each subsequence of 

the input, and then using these learned statistics to compute distributions that estimate the 

conditional probability of each symbol appearing at each point in every sequence. In the present 

use of PPM within IDyOM, the elements are musical chords which are organised into sequences 

in the pieces of music making up the corpus. The PPM algorithm works by blending together 

many n-gram models of different orders, where an n-gram model predicts the next symbol in a 

sequence by defining the context as the previous n - 1 symbols, and tabulating the different 

continuations to that context previously observed in the training data. These n-gram models are 

blended together using interpolated smoothing, with the maximum value of n depending on the 

amount of training data available (Bunton, 1997; Pearce, 2005). 

The original PPM algorithm is domain-agnostic, being originally developed for general-

purpose data compression. For example, applied to chord symbols, PPM cannot incorporate the 

intuition that G7 and G9 chords share the same root and are therefore likely to have similar 
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statistical properties. IDyOM addresses this problem using the multiple-viewpoint technique of 

Conklin and Witten (1995). Multiple-viewpoint models operate over sequences of abstract 

symbols, such as chord symbols, and compute various derived features (termed viewpoints) from 

these symbols. A good feature equates symbols with similar function; for example, a chord root 

feature combines all chords with the same root into one symbol.  Each derived feature is 

modelled using a separate PPM model. Predictions from these different PPM models are then 

combined using an ensembling technique; after Harrison and Pearce (2018), we use a supervised 

arithmetic weighting scheme, where the weight of each viewpoint is optimised to maximise the 

likelihood of the stimulus set, and viewpoint weights are optimised separately—in the case of 

our experiment reported below, for each of the eight chord positions in each of our stimulus. 

The selected viewpoints included four features (Figure 1). Absolute pitches is a 

representation of the chord’s exact pitch content. Pitch-class set relative to bass expresses the 

chord as a pitch-class set where each pitch class is expressed relative to the bass note. Pitch-class 

set relative to previous bass expresses the chord as a pitch-class set relative to the bass note of 

the previous chord. Scale degrees expresses each pitch class in the chord relative to the local 

tonic, where the local tonic is estimated using Albrecht and Shanahan’s (2013) key-finding 

algorithm with a sliding window of 16 quarter notes, and preserving inversion information (i.e. 

the knowledge of which pitch class was the bass note). 

In Harrison and Pearce’s (2018) IDyOM model, models can be trained in two different 

ways. Long-term models are pre-trained on a musical corpus intended to represent the listener’s 

prior musical exposure; short-term models are trained from scratch on each stimulus (in our case, 

individual chord progressions), and are intended to capture local regularities in the musical 

extract. The predictions generated by the long- and short-term IDyOM models simulate 
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respectively schematic and dynamic expectations, as outlined by Huron (2006). For each 

stimulus in our experiment reported below, the musical corpus for the long-term model is the 739 

compositions in the Billboard popular music corpus, minus the particular composition from 

which the particular stimulus is excerpted; the short-term model is then trained incrementally on 

the eight chords in the stimulus (see Methods). Here, the optimized model comprises a short-

term model for the viewpoint absolute pitches and long-term models for all four selected 

viewpoints (absolute pitches, pitch-class set relative to bass, pitch-class set relative to previous 

bass, and scale degrees). The different viewpoints are assigned different weights over the course 

of the 8 chords in each stimulus in such a way that maximizes the ability to predict the given 

chord (see Figure 1 and Methods). For example, the absolute pitch model starts with zero weight, 

reflecting the fact that it is not yet possible to predict any pitch classes from a local distribution 

because none have occurred yet; as the stimulus progresses, the model accords absolute pitch 

successively more weight because it becomes possible to predict pitch classes on the basis of the 

local (short-term, stimulus specific) distribution. By contrast, pitch class set relative to bass 

contributes substantially to the model at chord 1 because it accurately captures the prevalence of 

different chord types, but it contributes little after chord 1 because its transposition invariance 

makes it poorly suited to capturing phenomena such as local tonality and root progressions. 

Thus, each chord in the stimulus is associated with a conditional probability distribution 

over the set of possible chords, representing the model’s predictions at the previous timestep. We 

operationalise expectedness as the probability assigned to the chord that actually occurred; 

following Pearce (2005), we transform this probability by taking the negative logarithm (base 

two), terming the result harmonic information content (Harmonic IC). High information content 

means that a chord is considered to be unexpected. The IDyOM-derived information content for 



REASSESSING SYNTAX VIOLATION ERPS 19 
 

a given chord in a chord progression thus represents a weighted combination of the four 

viewpoints based on the local distribution of features (short term model) as well as based on a 

larger representative sample—i.e., the entire corpus of stimuli (long term model). Additional 

details about this calculation are reported below (see Methods). 

Finally, we note that IDyOM models a low-level constrained grammar (i.e., finite-state as 

opposed to less constrained grammars such as context-free). Thus, in using IDyOM to model 

psychological surprisal, we do not claim to be modeling all possible aspects of syntactic 

processing, and we do not claim that psychological syntactic processes are purely finite-state.  

[Insert Figure 1 around here]  

Summary of Harmonic Expectation Models 

 The four models of harmonic expectation—Milne et al., Leman, Collins et al., and 

IDyOM—thus cover a range of different possible contributions to expectation violation. The 

Milne et al. model covers information about spectral content, and is thus a purely acoustic model. 

The Leman model filters spectral information according to ear physiology, representing a 

psychoacoustic model. The Collins model incorporates elements of both sensory and cognitive 

features. The IDyOM model is a purely cognitive model. There are other models in the literature 

that would cover additional elements of acoustic processing, e.g., Thompson and Parncutt (1997) 

model masking effects. However, the models we have selected cover a range from sensory to 

cognitive effects of expectation violation, and have been widely used in existing literature; thus, 

they are suitable for our purposes. 

Melodic Features 

In addition to the four main models described above, here we also considered model 

predictions based on melodic features as an additional exploratory analysis. To be clear, our 
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main aim is to test the harmonic models, but there are two reasons to investigate melodic models 

as well. The first is simply a matter of convenience: with our experimental paradigm, we are able 

to test melodic models just as easily as harmonic ones. Second, and more importantly, melodic 

models act as an experimental control. Even in studies that use chords as stimuli, listeners may 

be surprised by features associated with melody (Hansen & Pearce, 2014; Hansen et al., 2016) as 

well as contrapuntal features of the voice leading between chords. We thus considered four 

measures of melodic surprisal. Melodic entropy measures the predictive uncertainty of the 

melody notes only, calculated using the IDyOM model; higher values mean more predictive 

uncertainty in the melody notes. Melodic information content is analogous to the Harmonic IC 

used in the main analysis, but uses only the melody notes (the top notes in each chord) and is 

also calculated using IDyOM, after Pearce (2005); higher values mean more surprisal in that 

melody note. We also included metrics of melodic distance and voice-leading distance (see 

Methods). The inclusion of these metrics in part acts as a control so that we can properly 

attribute any observed effects to our primary variables of interest: models of harmonic 

expectation. Of course models of syntax for other musical parameters deserve their own studies, 

but our focus here is primarily on harmonic features. 

The Present Study 

The aim in the present experiment is to examine whether the four models reviewed above 

predict ERP components associated with harmonic expectation. We investigate whether the three 

ASTM models can account for the four ERP components reviewed above, and compare these to 

a cognitive model (IDyOM) designed to control for sensory confounds in its evaluation of the 

surprisal of harmony. We hypothesize that more unexpected chords according to each model 

should elicit larger ERAN, N5, P600, and P3a components, though the previous literature does 
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not permit confident predictions about which model will best predict these amplitudes, nor how 

the sensory models will compare with the cognitive model. Given the nature of our linear 

statistical modeling in the experiment reported below— i.e., comparing across a range of stimuli 

rather than measuring difference waves between two categories (see Method)—ERAN and N5 

component amplitude effects could manifest as larger negativities or smaller positivities, and for 

the P600 and P3a, component amplitude effects could manifest as larger positivities or smaller 

negativities.  

We measure component amplitude based on pre-determined latency ranges in the ERP 

waveform. We note that changes in the ERP waveform are not equivalent to changes in ERP 

component amplitude (because a given latency range may contain a number of independently 

varying components). However, past ERP studies have also measured component amplitudes by 

examining ERP waveforms without necessarily using statistical techniques to dissociate 

components (such as Independent Components Analysis). By using a priori predefined latency 

ranges, based on the literature, we make our findings comparable with previous results.  

We presented listeners with chord progressions randomly sampled from the McGill 

Billboard corpus of commercially successful Western pop music (Burgoyne, Wild & Fujinaga, 

2011). Each of the 4 models produced a surprisal value for each chord in each progression. As 

explained in Methods, we also included four measures of melodic expectation as an additional 

exploratory analysis. We note that using the Billboard corpus as the basis of a study on 

prediction—particularly with regard to IDyOM’s cognitive modeling—presumes that listeners 

are enculturated in popular music to a sufficient extent to have internalized the structural 

regularities inherent in the corpus.  
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This experiment expands on previous research in three ways. First, we directly compare 

sensory and cognitive models as explanations for neural signatures of harmonic expectations. 

Second, by using a broad range of chord progressions from real-world pop songs, we examine 

the extent to which ERP components previously reported for a limited range of stimuli, often 

artificially manipulated, generalize to commercially successful popular music. In doing so, we 

assess a wide range of stimuli that parameterize expectedness across a broader and more nuanced 

range (rather than having only 2 or 3 categorical conditions of expected vs. unexpected), which 

is more characteristic of—albeit not equivalent to—ecological listening, and allows for the 

theories to be generalized across a wider range of real-world stimulus contexts (see Discussion 

for a consideration of the so-called fixed-effect fallacy in psychological research). Third, because 

we use a large number of stimuli that are not repeated, we avoid the possibility (present in 

previous ERP studies of syntax violation) that participants may learn where to expect violations 

in the stimuli and what violations might occur. 

This approach may lead to less pronounced ERP component amplitude differences 

because we are not exclusively sampling the extremes of the expectation range (i.e., the most 

likely versus the least likely chord continuations). Also, estimates of ERP amplitudes for 

individual stimuli will have low reliability due to the large amount of variation in EEG signals. 

However, by including many chord progressions (see Methods) each with its own set of sensory 

and cognitive model predictions, we gain the ability to draw statistical inferences across a wide 

range of responses to the different stimuli. If the theory is that the ERP components are really 

responses to syntax processing, it is important to show that these effects can be evoked by a 

range of ecologically valid stimuli. Our approach provides for this. 
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Method 

Participants 

Thirty participants, recruited in the greater New York City metropolitan area took part in 

the study (mean age = 29.93 years, SD = 9.02, 13 Male, 16 Female, 1 other). The inclusion 

criteria required participants to be aged 18–64 years, right handed (note that one participant 

scored as ambitextrous on the handedness questionnaire), and to have no history of neurological 

disease. Participants gave informed consent to participate in the study in accordance with the 

ethical policies of Columbia University, and were compensated $20/hr for participating.  

Five participants’ data were eliminated from the final analysis (see Data Analysis below). 

The 25 participants included in the final analysis ranged in age from 18–43 years old (M = 28.24, 

SD = 6.18). All participants scored as right-handed on the Edinburgh Handedness Inventory 

(M = 87.65, SD = 14.94). Participants’ scores on the Goldsmith Musical Sophistication Index 

musical training subscale ranged from 2–47, M = 28.00, SD = 14.69. Participants were not 

selected on the basis of their musical experience and this information is provided only for 

purposes of replicability; further, we are not confident that we would have enough statistical 

power to detect effects of the MSI scores. We do not conduct any analyses of putative effects of 

Goldsmith MSI scores on ERPs. 
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Materials 

Questionnaires. Participants completed two questionnaires before undertaking the 

experimental task. The first was the Musical Training subscale from the Goldsmiths Musical 

Sophistication Index self-report questionnaire (Müllensiefen, Gingras, Musil, & Stewart, 2014). 

The second was the Edinburgh Handedness Inventory (Oldfield, 1971).  

Corpus. We derived our corpus from the McGill Billboard corpus (Burgoyne, Wild, & 

Fujinaga, 2011), which (at the time of writing) comprised transcriptions of 739 unique 

compositions sampled from the Billboard ‘Hot 100’ charts between 1958 and 1991. The original 

corpus represents chords using textual labels such as “Db:maj7”; we translated these chords to a 

pitch-class chord representation, defined as a tuple of the chord’s bass pitch class and the set of 

non-bass pitch classes, using the chord dictionary from the hrep R package (Harrison & Pearce, 

2020). Under this representation, the textual label “Db:maj7” would be mapped to the tuple ‘(1, 

{0, 5, 8})’. As part of this preprocessing we collapsed consecutive chord repetitions into single 

chords and removed section repeats. The resulting dataset is available in the hcorp R package 

(https://github.com/pmcharrison/hcorp). 

Stimuli. Three hundred 8-chord sequences were randomly sampled from the corpus 

described above. Each chord lasted one second each and was synthesized with a piano timbre 

using the software Timidity (v. 2.14.0; http://timidity.sourceforge.net).1 On 50% of trials, the 

final chord of the progression was panned to the left (25% of trials) or the right (25% of trials); 

panning was implemented by increasing the sound pressure level at one ear by 0.83 dB, and 

decreasing it at the other ear by the same amount. For the other 50% of trials, the final chord had 

                                                
1We note that previous studies, such as Koelsch et al., 2007, used shorter chord durations (In their case, 
for 5-chord-long progressions, 600ms / chord for chords 1–4, and 1200ms for the final chord.) We used 
longer inter-chord time intervals because we are investigating ERP components extending beyond 600ms, 
and are measuring the ERPs evoked by each chord. 
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equal sound pressure level in both ears. These manipulations were performed using the audio 

software SoX (http://sox.sourceforge.net/). Each stimulus was randomly assigned to one or the 

other of these conditions individually for each participant. The task described below (see 

Procedure) involved detecting these differences in order to ensure participants remained alert 

during the course of the experiment.  

Model Predictions. For each of the 8 chords in each of the 300 progressions, we 

calculated the surprisal prediction from the three ASTM models and the one cognitive model 

(see Background). From here on, we term these “Leman”, “Milne”, “Collins”, and “Harmonic IC” 

(harmonic information content derived from the IDyOM model). We thus had 3 ASTM sensory 

predictors and one cognitive predictor whereby we could examine their relationship to the ERP 

components of interest. 

Milne. This model simulates harmonic expectation by computing the spectral 

dissimilarity between each chord and its immediate predecessor (thus the first chord in each 

progression does not have a defined value). High model predictions correspond to less expected 

events.  

Note that this model can be applied either to pitch or pitch-class representations of 

chords. Pitch-class representations, common in music theory, embody the well-established 

principle of octave invariance, which holds that a given note’s musical function is largely 

preserved under octave transpositions (i.e. frequency manipulations of the form 𝑓 → 2!𝑓, where 

𝑛 is an integer). We used pitch-class representations, consistent with prior harmonic applications 

of the model (Milne & Holland, 2016). 

We implemented the model in R (R Core Team, 2018), verifying a selection of outputs 

against the original author’s MATLAB implementation 
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(http://www.dynamictonality.com/probe_tone_files/). We parametrized the model according to 

the optimised configuration reported in Milne and Holland (2016): each pitch was represented as 

12 harmonics (including the fundamental frequency), with the ith harmonic (1 ≤ 𝑖 ≤ 12) having 

a magnitude of 𝑖!!.!", and blurred by a Gaussian distribution of standard deviation 6.83.  

Leman model. We used the model implementation provided in the IPEM toolbox 

(http://www.ipem.ugent.be/Toolbox; Leman, Lesaffre, & Tanghe, 2001), which is parametrized 

by two decay constants determining the half-lives of the local and global images. In Leman 

(2000) these decay constants were optimized to 0.10 s and 1.50 s respectively, but Bigand et al. 

(2014) have subsequently argued for exploring different parameter combinations. Here we 

evaluated the model for six parameter combinations (0.1/1.5; 0.1/2.5; 0.1/4.0; 0.5/1.5; 0.5/2.5; 

0.5/4.0) and found that model predictions were affected little by parameter choice (mutual 

correlations > .95), so we retained the original parameter set of 0.10 s and 1.50 s. Note that for 

this model, lower values correspond to more unexpected events (in contrast to the other three 

models used in this experiment). 

Collins. To calculate these model predictions, we used the model implementation 

provided in the Janata lab music toolbox (http://atonal.ucdavis.edu/resources/software/jlmt/), an 

extension to the IPEM toolbox (Leman et al., 2001). We left all parameters at their default 

values. 

Harmonic IDyOM model. We pretrained the IDyOM model on the popular music corpus 

described above to represent the prior musical exposure of the average Western listener. Though 

individual listeners will differ in their musical backgrounds, and will typically be exposed to 

additional styles outside Western popular music, we reasoned that the average Western listener 

will have received significant exposure to Western popular music over their lifetimes, whether 
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through incidental exposure (e.g. radio, TV) or active listening (e.g. CDs, concerts), and will use 

this internalized knowledge when listening to our stimuli. Naively generating IDyOM 

predictions for compositions within the training set would be problematic, however, because the 

model would memorize the compositions perfectly and generate predictions reflecting veridical 

knowledge of the specific compositions rather than schematic knowledge of the musical style. 

We therefore used a leave-one-out cross-validation scheme for generating predictions from the 

long-term models. This means that, for each stimulus, the long-term models are pretrained on all 

chord progressions in the corpus except the composition from which the stimulus was originally 

extracted, thereby avoiding overlap between the models’ training and test datasets. Having 

generated predictions for the individual viewpoint models using leave-one-out cross validation, 

we then optimized the viewpoint weights to maximize the likelihood of the stimulus set (i.e., the 

ability to predict each chord conditioned on the previous chords), after Harrison and Pearce 

(2018). Eight sets of viewpoint weights were estimated in total, corresponding to the eight chord 

positions in the stimuli. The resulting viewpoint weights are plotted in Figure 1. We then used 

these weights to generate final model outputs for the stimulus set, computing model surprisal 

(Harmonic IC) for each chord in each stimulus conditioned on the preceding chords in that 

stimulus.  

Melodic IDyOM model. We also analyzed the stimuli using the melodic IDyOM model 

of Pearce (2005). In particular, we supposed that listeners hear a melodic line joining the 

uppermost pitches of each chord in the stimulus, and develop probabilistic expectations for this 

melodic line that reflect their prior experience with Western tonal melodies. Correspondingly, we 

pretrained the melodic IDyOM model using a dataset of 1,000 European folksongs encoded by 

Damien Sagrillo and publicly available on KernScores (https://kern.humdrum.org/), intended to 
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reflect general principles of melody construction in Western music. Note that IDyOM has 

successfully predicted listeners’ melodic expectations in a variety of styles, even when trained on 

folksongs, indicating that folksongs provide a good general approximation of melodic 

expectation in Western tonal music (Egermann et al. 2013; Omigie et al., 2019). We then used 

this model to generate predictions for the implied melody lines of each chord sequence in the 

stimulus set, configuring the model with the two viewpoints chromatic pitch (i.e. the MIDI note 

number) and chromatic pitch interval (i.e. the signed interval from the previous pitch in 

semitones), otherwise retaining the default settings from Pearce (2005). As before, we 

summarised model predictions as the model surprisal (Melodic IC) for each melody note 

conditioned on the previous melody notes in the stimulus. After Pearce (2005), we also 

computed the model’s uncertainty for predicting each note in the melody (Melodic Entropy), 

operationalised as predictive entropy (i.e. the expected information content, conditioned on the 

prior melody notes, in advance of observing the next melody note). 

Other melody features. We also calculated two additional predictors relating to melody: 

melodic distance measures the unsigned distance in semitones from one melody note to the next, 

and voice-leading distance (VL Distance) calculates the minimal voice-leading distance between 

the chord and the next chord, as estimated by Tymoczko’s (2006) algorithm using a taxicab 

pitch-distance metric. For both of these models, high values mean a greater distance. These 

metrics allowed us to assess whether melodic features including voice-leading characteristics—

as an alternative to our main theoretical interest in harmonic features—might also predict ERP 

components.  
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EEG Apparatus. Participants’ EEG was acquired while listening to the chord 

progressions through 64 active scalp electrodes arranged according to the 10-20 system, sampled 

at 2048 Hz using a BioSemi ActiveTwo AD Box ADC-12 amplifier (BioSemi, The Netherlands) 

in an electrostatically shielded room (ETS-Lindgren, Glendale Heights, IL, USA). EEG data 

were recorded using Actiview (v. 8.6.1). 

Stimulus Presentation Apparatus. During the experiment, participants were seated at a 

table. They listened to stimuli over Bose in-ear noise cancelling headphones (Model QC-20). 

Volume was adjusted to a comfortable level for each participant. Stimuli were presented using 

Psychtoolbox v. 3.0.12 (Brainard, 1997) in MATLAB. Behavioral responses were collected in 

MATLAB via a wireless computer keyboard. Instructions and feedback were displayed on a 

monitor placed at a comfortable viewing distance from the participants. 

Procedure 

After giving informed consent, the participants completed the questionnaires and the 

experimenters outfitted participants with the EEG cap. Participants were then seated in the 

shielded room. Experimental instructions were displayed on the screen and read by an 

experimenter. Participants were instructed to look at a fixation cross on the screen while listening 

to the chord progressions, and to press a key as quickly and accurately as possible if the final 

chord of each progression was louder in one ear, and a different key if the final chord was 

equally loud in both ears. The keys were “K” and “L” on the computer keyboard, and 

participants were instructed to use their right index finger and right middle finger respectively for 

the keys. The key and associated finger that corresponded to each kind of stimulus (distractors 

vs. targets) were counterbalanced across participants. Following their response, feedback was 

displayed on the screen as either “correct!” in green font, “incorrect!” in red font, or “too slow!” 
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(also in red) if participants did not respond within 3 seconds. If a participant responded in less 

than one second, i.e., before the audio file finished playing, the audio file finished playing before 

displaying the feedback. Participants heard pink noise during the feedback period, generated with 

SoX (http://sox.sourceforge.net/), to avoid sensory memory affecting the following trial, 

followed by a silent inter-stimulus interval of 250–500 ms, uniform-randomly jittered, during 

which a fixation cross was displayed. The next trial then began. See Figure 2 for a graphical 

depiction of a single trial. Note that Figure 2 diaplys a trial with only 3-note chords, whereas 

some stimuli had more than 3 notes (for such stimuli, pitch classes were never doubled).  

Before beginning the experiment, participants had 3 practice trials in which they were 

told the correct answer in advance (to familiarize them with the timing of the trial, and to alert 

them to what the difference in loudness would sound like). Then, they completed 3 additional 

practice trials without being told the correct answer. If participants required further practice 

following these 6 trials, they were allowed to practice again. 

The 300 chord progressions were divided into 6 blocks of 50 trials each (randomly for 

each participant). After each block, a screen instructed participants to take a break, and press a 

key when they were comfortable and ready to continue with the experiment. Including setup, 

participation, and a short debriefing session in which we asked participants for comments on the 

task and explained the purpose of the study, the experimental session took approximately 2 

hours. 

[Insert Figure 2 around here] 

Data Analysis 

Behavioral. We collected data on participants’ reaction times and accuracy in identifying 

the presence of inter-aural lateralization of the final chord in each progression. While it could be 
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possible to analyze behavioral data with respect to our hypotheses (e.g., whether the degree of 

surprisal according to different models predicts response times), we note that the behavioral task 

was primarily intended to make sure participants remained alert. We do not analyze or report 

additional behavioral analyses in the present manuscript. However, we do report descriptive 

statistics about task performance below.  

EEG Preprocessing. EEG data were processed using the MATLAB toolbox EEGLAB 

v.13.5.4b (Delorme & Makeig, 2004). We did not include data from five participants: one 

participant did not complete the experiment, another closed their eyes during the experiment, and 

three had poor recording quality. Data were low-pass filtered using a finite impulse response 

(FIR) filter with passband edge 50.00Hz (-6dB/octave, cutoff frequency = 56.23 Hz), 

downsampled from 2048 Hz to 128 Hz, high-pass filtered with an FIR filter with passband edge 

0.05 Hz (-6dB/octave, cutoff frequency = 0.025 Hz), and epoched from 250 ms before the onset 

of the first chord of the progression to 8000 ms after that onset (which is 1000 ms after the onset 

of the eighth chord of the progression). Bad epochs were rejected by eye under the criterion of 

severe, obvious non-cognitive artifacts (excluding eye movements). Bad channels were identified 

by eye by examining their power spectral density to find very noisy electrodes, as well as using 

EEGLAB’s automatic detection algorithm using the kurtosis measure (> 5 standard deviations); 

the electrodes selected for rejection were interpolated spherically. We then used Independent 

Components Analysis (ICA), computed using the Infomax algorithm (EEGLAB’s runica 

function), to further identify artifacts, and rejected components corresponding to eye movements 

and other muscular activity by eye, only when it was possible to cleanly separate them from 

cognitive activity (i.e., if the power spectral density of the independent component did not 

resemble the smooth decrease characteristic of artifacts, we left it in). The number of rejected 
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independent components ranged from 0 to 4 (M = 1.16, SD = 1.14). After rejecting these artifacts, 

we used EEGLAB’s automatic epoch rejection algorithm (using probability as a measure, > 5 

SDs within channel and across all channels). We then re-referenced the data to the common 

average reference. Out of 7500 possible trials to include (25 included participants x 300 

progressions), we rejected 1323 of them (17.64%). 

Each long epoch was then further divided into eight 1000 ms epochs, one for each chord 

within each progression. Each 1000 ms epoch had a 50ms baseline correction. Each participant’s 

EEG data was normalized using z-scores over the entire distribution of all samples from all 

epochs. Then, the EEG data for each specific chord in the experiment was averaged over all 

participants (excluding rejected trials), yielding 2400 ERPs (300 trials x 8 chords/trial). Because 

some chord progression epochs had been rejected, this means that a given individual chord’s 

ERP would be averaged over a maximum of 25 participants. Finally—keeping in mind that each 

progression had 8 chords—we did not include chords in positions 1, 7, or 8 in our final analysis. 

The reason for this is because we had reason to believe these chord positions would 

systematically differ from the others in ways that did not pertain to our hypotheses: chord 1 

would be preceded by a longer period of silence potentially leading to heightened sensory ERP 

components and reduced cognitive components due to the lack of a musical context; chord 7 

could contain contingent negative variation due to participants preparing to respond to the 

following chord; and chord 8 had altered auditory characteristics as described above and would 

contain ERP components pertaining to target detection (such as a P3b), as well as related to the 

movement of the response itself. Thus, 1500 of the 2400 ERPs were included in the final 

analysis. 
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ERP Component Calculation. As illustrated in Figure 3, we divided the scalp into 6 

spatial regions of interest (ROIs): anterior left (electrodes AF3, AF7, F3, F5, F7, FC3, FC5, and 

FC7), anterior middle (electrodes AFz, Fz, F1, F2, FCz, FC1, and FC2), anterior right (electrodes 

AF4, AF8, F4, F6, F8, FC4, FC6, and FC8), posterior left (electrodes CP3, CP5, CP7, P3, P5, P7, 

PO3, and PO7), posterior middle (electrodes CPz, CP1, CP2, Pz, P1, P2, and POz), and posterior 

right (electrodes CP4, CP6, CP8, P4, P6, P8, PO4, and PO8). 

[Insert Figure 3 around here] 

We also predesignated four latency ranges: 150-300 ms (ERAN), 250-450 ms (P3a), 450-

600 ms (N5), and 600-900 ms (P600). We are aware that our latency ranges for the ERAN and 

P3a overlap. Predefining latency ranges allows us to make our analysis more confirmatory than 

exploratory. We note that variations in an experimental task can shift ERP component latencies; 

while our task differs from previous EEG studies of musical syntax, we argue that it is similar 

enough to investigate similar latency ranges. We also note that restricting the ERAN range to 

150–250ms (as opposed to the 150-300 ms range that we report below) does not change which 

effects bear out as statistically significant. For each latency range, we calculated the mean 

amplitude for each scalp ROI (yielding 4 x 6 = 24 values per epoch). These values served as the 

dependent variables in our analysis. Each of these values had an associated laterality level (left, 

middle, or right), and an associated anterior-posterior level (anterior or posterior); these location 

factors were used as predictors in our statistical analysis. Each epoch (i.e., each individual chord 

presented over the course of the experiment) also had a set of harmonic and melodic model 

predictions: Leman, Milne, Collins, Harmonic IC, Melodic entropy, Melodic IC, Melodic 

distance, and VL Distance. We normalized each predictor’s ratings across its own distribution of 
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values. In addition to the categorical topographic location factors, these model ratings served as 

continuous predictor variables in our analysis. 

Note that ERP amplitudes are often calculated from a difference wave; in the case of the 

ERAN, for example, the difference between a syntactically irregular stimulus and a control 

stimulus. In our study, there was no single control condition, but rather a set of stimuli with a 

range of values from our different model predictions. Thus, instead of looking for categorical 

differences (and conducting a repeated measures ANOVA with categorical variables), we looked 

for a linear relationship between the component amplitudes (as defined by their scalp ROIs and 

latency ranges) and the model predictions (see Statistical Models).  

Statistical Models 

We constructed linear mixed-effects models for each component, and for each set of 

model predictions (melodic and harmonic). Note that we prespecified the anteriority: i.e., for the 

early and middle latency ranges (corresponding to hypotheses about the ERAN, N5, and P3a 

components), we only examined frontal regions, and for the late latency range (corresponding to 

hypotheses about the P600), we only examined posterior regions. For the analysis of the 

harmonic models, the fixed effects were laterality (left, middle, or right) and the four models 

(Harmonic IC, Leman, Collins, and Milne). The random effect was stimulus number, a unique 

identifier for each of the 1500 chords used in the analysis. This random effect was necessary 

because there were multiple observations in our models corresponding to the different scalp 

ROIs (3 levels of laterality for each of anterior and posterior). The statistical models for the 

melodic model predictions were similar, but used the melodic model predictions instead of the 

harmonic ones. In Wilkinson notation, the model with the harmonic predictors for each of the 

three specified latency ranges was as follows: 
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𝐸𝐸𝐺𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒  ~   𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝐼𝐶 + 𝐿𝑒𝑚𝑎𝑛 + 𝐶𝑜𝑙𝑙𝑖𝑛𝑠 +𝑀𝑖𝑙𝑛𝑒 ∗ 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦 + 1|𝑠𝑡𝑖𝑚𝑁𝑢𝑚 (1) 

The model with the melodic predictors was as follows: 

𝐸𝐸𝐺𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒  ~   𝑀𝑒𝑙𝑜𝑑𝑖𝑐𝐼𝐶 +𝑀𝑒𝑙𝑜𝑑𝑖𝑐𝑒𝑛𝑡𝑟𝑜𝑝𝑦 +𝑀𝑒𝑙𝑜𝑑𝑖𝑐𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑉𝐿𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗

𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦 + 1|𝑠𝑡𝑖𝑚𝑁𝑢𝑚  (2) 

We constructed a harmonic model and a melodic model for each of the four ERP time ranges 

(ERAN, N5, P600, and P3a). For example, for the ERAN component model with the harmonic 

predictors, “EEG amplitude” corresponded to the average amplitude in the 150–300 ms range 

over anterior regions of the scalp. As another example, the melodic model for the P600 

component used the melodic predictors to predict the average EEG amplitude between 600-

900 ms over posterior regions. 

We considered including the ordinal position of the chord in the progression (2–6 after 

rejecting chords 1, 7, and 8; see ERP Component Calculation above) as a fixed effect in our 

model. On the one hand, there could be differences in the ERPs corresponding to the chord 

position, independent of the model predictions, so chord position could be a potential confound. 

On the other hand, this context was precisely what we wished to measure, and in fact, some 

models were significantly correlated (using Spearman tests) with chord position: Harmonic IC 

(rs = -.29, p < .001), Collins (rs = -.72, p < .001), Melodic IC (rs = -.15, p < .001), and Melodic 

entropy (rs = -.60, p < .001). We wanted to know if any of the models predict ERP amplitudes 

independent of mere chord position, despite being partially determined by it. Thus, we did not 

include chord position in the initial models, but where effects were present, we checked whether 

they were explained by chord position in a post-hoc analysis that also included chord position as 

a fixed effect. This way, we could check both whether the models predicted the ERP amplitudes, 

and whether or not those effects could be explained by an effect of chord position. 
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Further, where there were interactions between the various models and laterality, we 

conducted post-hoc tests to assess whether there were main effects in the relevant individual 

laterality region. For example, if there was an interaction between a particular model rating and 

the middle region, we conducted a post-hoc test on the middle region only, and the left region 

only (because interactions were calculated by comparing against the left region in all cases). For 

these models, we also included chord position as a factor. These models focus on single regions 

of interest, obviating the need for a random effect of stimulus number in the model (because each 

stimulus corresponds to only one dependent variable measurement). Thus, these models 

constituted multiple linear regression models on specific ROIs. In these post-hoc tests, we also 

included any predictor models that had significant main effects in the multiple linear regression 

models, as this allowed us to assess whether the effect of chord position mediated the predictive 

power of the model ratings. Note that for the post-hoc multiple linear regression models, we 

report the Bonferroni corrected p value, multiplying by the number of post-hoc tests performed. 

For the sake of brevity and clarity, if a statistical model returned no significant effects of the 

model predictions, we note this in the results, but do not report the full regression table. The full 

data and analysis tools are available on the Open Science Framework (OSF) page associated with 

this manuscript (see Appendix) should the reader wish to review these full tables. 

Interquartile comparisons 

 Our main statistical analysis might appear to lack a control condition: there are no 

categorically “expected” stimuli against which to compare “unexpected” stimuli. However, in 

place of a categorical control condition, we compare across a range of levels of unexpectedness 

allowing us to test multiple points along this range (for each model) rather than only the 

extremes. This approach might appear to lack statistical sensitivity: with inter-stimulus variation, 
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the lack of a significant regression coefficient might be the result of too much variance across 

measurements of ERP components for individual stimuli. But, in such a situation, regression 

analyses are at least as powerful (if not more so) in detecting an effect than comparing the 

extreme ends of the range. In other words, our regression approach is at least as powerful as 

categorically comparing the stimuli for the top and bottom parts of the model ranges with 

categorical statistical tests. We demonstrate this point with a simulation script included on this 

project’s OSF page.2 

Still, as an additional complementary analysis, we include here an analysis of 

interquartile comparisons for each of the predictor metrics. We grouped the top and bottom 

quartile of stimuli according to each predictor metric (i.e., the stimuli in the top versus bottom 

25% of values for each model), and contrasted the ERAN, N5, P600, and P3a amplitudes evoked 

by the stimuli in these groups using independent samples t-tests. This effectively considers all 

top quartile stimuli for a given metric as the same condition and increases the reliability because 

we can reduce the within-subject variability by collapsing together multiple trials. In other words, 

we can compare stimuli with generally “high” and “low” values for each of the metrics. In total, 

this meant we conducted 3 t-tests for each of the 8 metrics (4 harmonic models plus 4 melodic 

models), one for each of the laterality levels (the three anterior regions for the ERAN, N5, and 

P3a, and the three posterior regions for the P600). We Bonferroni-corrected the p values by a 

factor of 24 (8 metrics x 3 ROIs). This is conservative, but the risk of type-I errors is high here 

given how many comparisons we are making. We report the corrected p values only for 

significantly different comparisons.  

Visualization analyses 

                                                
2See the script entitled “public_Regression_v_ttest.m at https://osf.io/xw9v5/ 
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For visualization purposes, we constructed topography regression models. For these, we 

used the average values in each of the latency ranges for each individual electrode, giving us 

1500 1-by-64 vectors (one for each chord) per participant (again, omitting rejected trials). We 

constructed linear mixed-effects models for each electrode using the same model predictions as 

in our main analysis. This allowed us to visualize the contribution of each predictor rating to 

each electrode’s amplitude, and plot the beta coefficients topographically. We did this for both 

the harmonic and the melodic predictors. We thresholded these plots to include only the beta 

coefficients with p values less than .01, with the rest of the coefficients displayed as 0. 

Finally, as another visualization of the data, we calculated the average ERP for the 

anterior 3 scalp ROIs and the posterior 3 scalp ROIs for the top and bottom quartile of each 

metric. This gave us an ERP corresponding to relatively high and low values of each metric so 

that the difference in the ERPs can be more familiarly visualized (i.e., it contrasts “high” and 

“low” expectedness conditions).  

Results 

[Insert Tables 1-4 around here] 

Behavioral  

All participants responded to the stimuli throughout the task, indicating that they were 

awake and alert throughout the experiment. The task was relatively difficult (range: 49.00%–

94.00% correct, M = 70.43%, SD = 15.99%). 4 participants were below 50% accuracy (150 

correct out of 300) and 8 failed to exceed chance performance past a 95% probability threshold 

(165 correct out of 300) calculated from a binomial distribution (n = 300, p = .50). Mean reaction 

times varied across participants (range: 524.43-1819.71 ms, M = 1110.57 ms, SD = 373.62 ms). 
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ERAN Latency Range Results 

Harmonic models. Table 1 reports the full results of the linear mixed effects model 

predicting early latency range amplitudes (150 ms–300 ms) corresponding to the ERAN 

amplitude in the anterior scalp ROIs from the various harmonic models. There was a significant 

interaction between the Leman rating and laterality-middle, β = -0.02 ± 0.01, p = .006. None of 

the other models predicted amplitude differences in this latency range. A post hoc linear model 

was constructed with the Leman rating and chord position as predictors for both the anterior-left 

and anterior-middle regions. There were no effects of the model for the anterior-left region. The 

anterior-middle region showed a significant effect of the Leman rating, β = -0.01 ± 0.01, p = .010 

(Bonferroni corrected). Higher Leman ratings (less surprising chords) showed greater negativity 

in this latency range, i.e., more surprising chords predicted relatively greater positivity. 

Melodic models. There were no significant main effects of or interactions with the 

melodic predictor variables. None of the melodic predictors predicted amplitude differences in 

this latency range. 

N5 Latency Range Results 

Harmonic models. Table 2 reports the full results of the linear mixed effects model 

predicting middle latency range amplitudes (450 ms–600 ms) in the anterior scalp ROIs from the 

various harmonic models. There was a significant interaction between the Leman rating and 

laterality-middle, β = -0.02 ± 0.01, p = .046, as well as between the Collins rating and laterality-

middle, β = 0.02 ± 0.01, p = .003. There was also a significant interaction between laterality-right 

and Collins, β = 0.01 ± 0.01, p = .012. Post hoc linear models were constructed with the Leman 

and Collins ratings, also including chord position, for the anterior-left, anterior-middle, and 
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anterior-right ROIs. None of these post-hoc models showed significant main effects for any of 

the predictor ratings.  

Melodic models. There were no significant main effects of or interactions with the 

melodic predictor variables. None of the melodic predictors predicted amplitude differences in 

this latency range. 

P600 Latency Range Results 

Harmonic models. Table 3 reports the full results of the linear mixed effects model 

predicting late latency range amplitudes (600 ms–900 ms) in the posterior scalp ROIs from the 

various harmonic models. There was a significant main effect of the Collins rating, β = -0.01 ± 

0.004, p = .011, and a significant interaction between the Leman rating and laterality-middle 

(compared to left), β = -0.02 ± 0.01, p = .047. Post-hoc linear models examining the posterior-

middle and posterior-left ROIs separately with the Collins and Leman predictors were 

constructed along with chord position as a predictor. The posterior-left model did not show any 

significant main effects of the predictors (though the Leman rating was marginally significant 

after Bonferroni correction, p = .068). For the posterior-middle model, there were no significant 

effects for the predictor ratings. Thus, the Collins model predicted P600 amplitude (more 

surprising chords had higher P600 amplitudes), but this effect is explained by chord position. 

Melodic models. There were no significant main effects of or interactions with the 

melodic predictor variables. None of the melodic predictors predicted amplitude differences in 

this latency range. 
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P3a Latency Range Results 

Harmonic models. Table 4 reports the full results of the linear mixed effects model 

predicting the P3a latency range amplitudes (250 ms–450 ms) in the anterior scalp ROIs from the 

various harmonic models. There was a main effect of Harmonic IC, β = 0.01 ± 0.003, p = .042. 

Higher Harmonic IC (more surprising chords) predicted greater positive amplitude in this latency 

range. There was a significant interaction between the Leman rating and laterality-middle, 

β = -0.03 ± 0.01, p = .003, as well as a significant interaction between Collins and laterality-

middle, β = 0.01 ± 0.004, p = .006. There was also a significant interaction between Collins and 

laterality-right, β = 0.01 ± 0.004, p = .015. 

Post hoc linear models were constructed for the anterior-right, anterior-middle, and 

anterior-left ROIs with the predictors Harmonic IC, Leman, Collins, and chord position to test 

these effects at the individual ROIs. The anterior-left and the anterior-right models returned no 

significant main effects for any of the three predictor ratings. For the anterior-middle model, 

there was a significant main effect of Harmonic IC, β = 0.01 ± 0.003, p = .003 after Bonferroni 

correction. There was also a significant main effect of the Leman predictor, β = -0.017 ± 0.01, 

p = .009 after Bonferroni correction. Higher Harmonic IC values (more surprising chords) and 

lower Leman values (corresponding to more surprising chords for this model) predicted more 

positivity in the anterior-middle scalp ROI during this latency range. In other words, according to 

both of these metrics, more surprising chords predicted greater positivity. 
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Melodic models. There were no significant main effects of or interactions with the 

melodic predictor variables. None of the melodic predictors predicted amplitude differences in 

this latency range. 

Quartile Comparisons 

After Bonferroni correction, the only significant quartile comparison was for the P3a 

component. The P3a amplitudes corresponding to the top quartile of the Harmonic IC predictions 

had significantly higher amplitudes than the bottom quartile, t(721) = 4.34, p < .001 (Bonferroni 

corrected) for the anterior middle ROI. More unpredictable chords according to this model 

elicited greater ERP amplitudes in the latency range of the P3a. None of the other models 

predicted any significant difference between the top and bottom quartiles for any of the ERP 

components, over any of the ROIs. 

Model visualizations 

Topographic representations. Figure 4 shows topographic representations of the 

relationship between all of the predictor models (harmonic and melodic) and the amplitudes 

averaged over each of the four latency ranges. The colors represent beta values from linear 

mixed effects models run on individual electrodes (as opposed to averaging over scalp ROIs for 

our main analysis reported above). The beta values are thresholded at p = .01. If a beta value did 

not reach this significance threshold, it is plotted as 0 (corresponding to the green color on the 

plot). These models include chord position as a predictor.  
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Quartile ERP representations. Figure 5 shows the average ERPs for the top and bottom 

quantile of each of the predictor ratings (harmonic and melodic) along with the resultant 

difference wave. This plot shows more traditional visualizations of the ERPs, allowing the 

effects of the predictor ratings to be visualized by contrasting the ERPs from stimuli with high 

versus low values for each. 

[Insert Figures 4-5 around here] 

Discussion 

Surprisingly, our findings indicate that none of our harmonic predictor ratings, cognitive 

or sensory, predict an ERAN, nor are they predictive of N5 or P600 amplitudes (though the 

Collins model is predictive of the P600 before controlling for chord position). The Leman model 

did predict positivity in the ERAN time range for more surprising chords, contrary to the 

hypothesis that more surprising chords should predict negativity. However, it is likely this 

positivity is actually part of the P3a response, considering that the latency ranges for these 

components overlapped in our analysis, and that there was also a main effect of the Leman 

model for the P3a component. Harmonic information content, derived from the cognitive model, 

also significantly predicted P3a activity along with the Leman rating: more surprising chords 

evoked more anterior positivity in this time range. Finally, it is notable that neither VL-distance 

or melodic-distance were predictive of any components which shows that features of the melody 

and voice leading are not predictive of these effects. 

We identified a reliable P3a effect as explained by the IDyOM and Leman models. 

Although the effect szies for these models are low (R2 = .02), these results nevertheless suggest a 

meaningful connection between the P3a and the psychological processes captured by the 

computational models. Our regression approach means that individual estimates for particular 
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stimuli have low reliability, but because we have many stimuli, we are still able to observe 

statistically significant effects over each model’s range. This explains the low R2 values, but also 

affirms why a signifciant effect still points to a connection between neurophysiological ERP 

responses, and the predictable sensory and cognitive features captured by the models.  

In our experimental design, we traded reliability of ERP amplitudes of individual stimuli 

for generalizability: each of our stimuli was only heard once by each participant, but we had 

1,500 different stimuli (300 chord progressions with 5 chords each included in the final analysis). 

This is an important design feature of our study motivated by a desire to avoid what has been 

termed the “fixed effect fallacy” (Clark, 1973; Yarkoni, 2019), wherein psychological studies 

fail to demonstrate that their observed effects would generalize outside the small stimulus set 

used in their research. In the music expectation ERP literature, this problem manifests as only 

testing a small number of violations (e.g., using the Neapolitan chord in place of a tonic 

harmony) and making claims about harmonic expectation violation that apply to other harmonies 

more generally. In our study, the reliability of our estimates of the ERP amplitudes for individual 

stimuli may be low because we only repeated each stimulus once, but we are instead able to 

examine claims about the generalizability over a wide range of stimuli. This allows us to test 

whether these ERPs are reasonably claimed to be related to harmonic syntax processing in 

general as opposed to being an artifact some kind of previous experimental designs that treat the 

stimuli as fixed effects. We were able to detect an effect for the P3a component with this 

approach, and one that aligns well with the theoretical understanding of this component. P3a 

components are evoked in response to improbable and unexpected stimuli, and can be used as an 

index of people’s statistical knowledge of the world, with unlikely events eliciting a larger P3a 

(Polich, 2007). The IDyOM-derived Harmonic IC predictor, which is based on long-term 
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knowledge of statistical structure of chord sequences, predicted the P3a, suggesting that 

participants do indeed have knowledge of statistical transition probabilities as calculated by this 

model, and that these effects can be evoked across a wide range of harmonic sequences extracted 

from real-world pop music. In other words, the P3a does appear to generalize over a wide range 

of stimuli, and the surprisal component of the harmonic IDyOM model predicts its amplitude. 

The Leman model, which is a sensory model, also predicted P3a amplitude independently, 

suggesting that surprisal is also sensitive to short-term sensory influences at least as captured by 

this particular model. Thus, with regard to our research question concerning cognitive versus 

sensory contributions to syntax violations, we conclude that both types of violation contribute to 

the neural response (specifically, the P3a), and that listeners are sensitive to both sensory and 

cognitive features of unlikely musical events. 

IDyOM predicted P3a amplitudes, but this result does not demonstrate that IDyOM (as 

configured here) is the best possible predictive model, nor is it shown that human cognitive 

processes necessarily use the same features (or weighting of features) that IDyOM uses. 

However, this result does support the conclusion that the computational modeling is at least 

capable of simulating human neural processing, and the P3a physiological response we observed 

may provide a potential bridge between information-theoretic measures of musical structure and 

cognitive information processing of music.  

The Collins model did not predict the P3a even though it has a cognitive component as 

well. The models work in different ways, so although Collins has both sensory and cognitive 

components, these components are not necessarily identical to other sensory or cognitive models. 

For example, IDyOM acquires a finite-context model of musical structure through statistical 

learning of the music to which it is exposed whereas the ‘cognitive’ component in the Collins 
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model reflects tonal stability learned through training on a single artificially constructed melody 

that cycles through different keys. One explanation for why IDyOM predicts the P3a is that it 

makes its cognitive predictions in a way more closely aligned with how humans make 

predictions. 

Is the P3a component a neural correlate of syntactic processing? In our study, we focus 

on the probabilistic aspects of musical syntax that govern the local transitions between 

harmonies. We argue that cognitive processes that detect unlikely harmonic continuations are 

engaging in syntactic processing (again, we are limited to discussing finite-state aspects of 

syntactic processing rather than other less constrained syntactic structures and cognition). We do 

not explain the mechanistic role played by the neural generators of the P3a, or indeed answer 

whether the P3a is merely a correlate of another process. Regardless, we can say that our 

participants were sensitive to harmonic surprisal in certain contexts, and that our cognitive model 

(IDyOM) predicts those contexts.  

The fact that none of the harmonic expectancy models predicted an ERAN, N5, or P600 

(after controlling for chord position), urges reflection on the sensory-cognitive debate recently 

articulated by Bigand et al. (2014). By including statistical surprisal based on long-term 

learning—a cognitive construct—alongside several sensory models, we were able to examine the 

relative ability of each of these models to predict ERP components traditionally associated with 

syntax violations. In our effort to dissociate them, the findings showed that neither type of model 

predicted the ERAN, N5, or P600 amplitudes. Importantly, we do not conclude that there is no 

relationship between syntactic violation and these ERP components, rather, that any effect was 

too small to detect in our study. What this means is that when listening to unpredictable chords in 

a more ecologically valid listening context, and treating stimulus type as a random effect, 
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ERANs, N5s, and P600s are not robustly predicted by the cognitive or sensory models we 

included in our analysis, and effects reported in previous studies may not generalize over a wider 

range of stimuli.  

We note that, in contrast to previous studies in the literature, there was variability in the 

stimuli preceding each time-locked ERP that we analyzed. In other words, the chord preceding 

the ERP for chord 3 was variable, the chord preceding the ERP for chord 4 was variable, etc. In 

many similar past studies, the stimuli preceding the time-locked ERP were controlled. We argue 

that, despite this variability, the stimuli are similar in most acoustic characteristics (e.g., timbre 

and amplitude envelope). What differs is the expectations that the different chords induce, and 

this variability is captured by our sensory and cognitive models.  

Another potential critique of our analysis is how we define ERP components in our 

analysis, and how we pre-define our latency ranges. We predefined our latency ranges based on 

the existing literature, and quantified ERP component amplitudes by averaging EEG samples 

within those ranges. This has advantages: it makes our analysis more confirmatory than 

exploratory and facilitates comparison with previous findings. However, a latency range, of 

course, is not the same as an ERP component—EEG amplitude samples within a latency range 

will be affected by multiple ERP components (i.e., multiple neuroelectrical events propogating to 

the scalp). So, to quantify an ERP component based on an average within a pre-specified latency 

range potentially mixes together different components. The traditional way to avoid this issue is 

to compute difference waves, which are intended to cancel out variance from ERP components 

unrelated to the task. By analogy, in our regression approach, we argue that such variance in 

other ERP components should not vary systematically with the predictors in our regression 

analysis. True, such ERP components unrelated to our task may increase the noise in our data 
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(the same noise that difference waves attempt to cancel), lowering the R2 values, but we are 

concerned primarily with the question of whether the models can predict significant variance in 

the ERP data. The results show significant proportions of amplitude variance in the P3a time 

window are predicted by the IDyOM and Leman models.  

As for ROI latency ranges we chose, one specific concern may be that the ERAN range 

overlaps with the P3a range. We re-ran our analysis with non-overlapping ranges (ERAN: 

150ms–250ms, P3a: 250ms–400ms, with the N5 and P600 ranges remaining the same). The 

results returned the same significant effects. Readers can use our online materials on our OSF 

page to construct models with latency ranges of their own choosing (see Appendix).  

In an alternative interquartile comparison taking the top and bottom 75 stimuli, we still 

did not detect an effect for the ERAN, N5, or P600. These ERP components might thus be more 

dependent on the pecularities of laboratory listening environments than previously thought, 

urging a re-evaluation of the traditional paradigm of syntax violation in music cognition 

research. It is possible that the specific stimuli used in previous experiments evoke these ERPs 

for some other reason than harmonic predictability per se because if it is indeed the degree of 

unpredictability that is truly driving these effects, they should generalize over other stimuli with 

varying predictability. Instead, it is possible that in traditional paradigms that have limited types 

of harmonic expectation violation at limited locations within a chord progression stimulus, some 

additional pecularity of this listening context interacts with harmonic expectation violation to 

produce these effects. This could include knowing when to expect a possible violation and 

paying more attention (after all, the ERAN amplitude is sensitive to attentional load, Loui et al., 

2005). By contrast, in our study, there is no information that could lead a listener to expect 

violations to appear at any given chord position. It could also be due to some other specific 
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feature of the chords typically used to evoke surprise. This latter interpretation seems unlikely—

could there really be something special about Neapolitan chords, or V/V chords?—but should 

not be ruled out a priori. For example, substituting a Neapolitan chord for a tonic chord is 

extremely unlikely; the stimuli in the present study did not include such extreme cases that are 

nigh impossible in real music. Therefore, it is possible that traditional ERP effects of harmonic 

expectation violation may only be evoked by extreme ecologically unlikely stimulus conditions, 

which casts doubt on the ability to make general claims about the association of such neural 

signals and harmonic syntax generally.  

By contrast, the present results suggest that more subtle variations in harmonic 

predictability present within real music reflect combined influence of cognitive and sensory 

influences on expectation and can be detected reliably via the P3a component. Future research 

should try to understand in greater depth the conditions under which different neural responses to 

expectation violation emerge—including expanding the range of types of stimuli and listening 

contexts—and the cognitive processes to which these neural responses correspond.  
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Appendix: Description of OSF Contents 

 This project has an associated Open Science Framework (OSF) website. On the website, 

we share de-identified data, information about our stimuli, and analysis scripts in MATLAB to 

help readers understand our analysis and make their own should they wish. The OSF page can be 

accessed at this URL: https://osf.io/xw9v5/. Below are the contents of the OSF page: 

1. biosemi64.sph This file is for use with EEGLAB and contains information about the 

electrode locations on the scalp. 

2. electrode_num.bmp This file is an image showing which electrode indexes correspond 

to which scalp locations. If readers wish to select electrodes in our associated MATLAB 

scripts, they will need to do so by these indexes. 

3. features-csv-readme.txt This file describes the contents of the features.csv file in detail. 

4. features.csv This file is a spreadsheet showing the stimuli we used and their associated 

metrics. 

5. publicAnalysisScript_R1.m This script is for use with MATLAB and can be run and 

altered by readers to better understand our analyses and to create their own. 

6. publicData_part1.mat – publicData_part4.mat These four files are the de-identified 

processed data we used for our experiment. The publicAnalysisScript_R1.m file contains 

instructions on how to analyze the data. MATLAB is required. 

7. PublicQuestionnaireData.mat This file is a MATLAB table that contains the data from 

our questionnaires. 

8. publicRegressionTable.mat This file is used in the publicAnalysisScript_R1.m file. It is 

a MATLAB table containing the data we used for our regression models. 
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9. public_Regression_v_ttest.m This file compares the statistical power of a linear 

regression model compared to a t-test comparing top and bottom quartiles.  
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Table 1 
ERAN: Early Latency Range (150 ms–300 ms) Model for Anterior ROIs (Linear Mixed Effects Model) 

Predictor Name β SE t-stat df p Sig 
(Intercept) 0.04 0.00 12.70 4485 <.001 *** 
laterality_right 0.02 <0.01 4.67 4485 <.001 *** 
laterality_middle 0.07 <0.01 17.39 4485 <.001 *** 
Harmonic_IC <0.01 <0.01 0.65 4485 .515  
Milne 0.01 <0.01 1.80 4485 .072  
Leman 0.01 0.01 1.22 4485 .222  
Collins <0.01 <0.01 -0.59 4485 .556  
laterality_right:Harmonic_IC <0.01 <0.01 0.79 4485 .429  
laterality_middle:Harmonic_IC <0.01 <0.01 -0.07 4485 .941  
laterality_right:Milne <0.01 <0.01 -0.14 4485 .887  
laterality_middle:Milne <0.01 <0.01 -1.25 4485 .210  
laterality_right:Leman -0.01 0.01 -1.66 4485 .098  
laterality_middle:Leman -0.02 0.01 -2.77 4485 .006 ** 
laterality_right:Collins 0.01 <0.01 1.57 4485 .117  
laterality_middle:Collins 0.01 <0.01 1.73 4485 .084   
ERAN: Early Latency Range (150 ms–300 ms)  
Post-hoc Model for Anterior-Middle ROI (Multiple Linear Regression Model) 
Predictor Name β SE t-stat   p† Sig 
(Intercept) 0.12 0.01 19.84  <.001 *** 
Leman -0.01 0.01 -2.81  .010 * 
chordNum_3 <0.01 0.01 -0.23  1.632†  
chordNum_4 -0.02 0.01 -1.98  .095  
chordNum_5 -0.01 0.01 -1.78  .150  
chordNum_6 -0.01 0.01 -1.24   .428   

 F(5,1494) = 2.75, p = .018, Adjusted R2 = .01 
Note. A post-hoc model on the anterior-left ROI showed no significant main effects of the Leman 
predictor (p = .850 uncorrected). 
* p < .05, ** p < .01, *** p < .001 
† p values for the post hoc model are Bonferroni-corrected, making some p values > 1. 

  



REASSESSING SYNTAX VIOLATION ERPS 65 
 

Table 2 

N5: Middle Latency Range (450 ms–600 ms) Model for Anterior ROIs 

Predictor Name β SE t-stat df p Sig 
(Intercept) <0.01 <0.01 0.24 4485 .814  
laterality_right -0.01 0.01 -1.47 4485 .143  
laterality_middle -0.05 0.01 -10.54 4485 <.001 *** 
Harmonic_IC 0.01 <0.01 1.85 4485 .064  
Milne <0.01 <0.01 0.93 4485 .354  
Leman 0.01 0.01 1.21 4485 .225  
Collins <0.01 <0.01 -1.17 4485 .243  
laterality_right:Harmonic_IC <0.01 <0.01 -0.80 4485 .424  
laterality_middle:Harmonic_IC <0.01 <0.01 -0.04 4485 .965  
laterality_right:Milne <0.01 0.01 -0.02 4485 .981  
laterality_middle:Milne -0.01 0.01 -1.34 4485 .179  
laterality_right:Leman -0.01 0.01 -1.31 4485 .189  
laterality_middle:Leman -0.02 0.01 -2.00 4485 .046 * 
laterality_right:Collins 0.01 0.01 2.53 4485 .012 * 
laterality_middle:Collins 0.02 0.01 2.98 4485 .003 ** 
Note. Post-hoc models on the anterior-right, anterior-middle, and anterior-left ROIs showed no 
significant main effects of the Leman predictor (p = .250, p = .315, and p = .367 uncorrected, 
respectively) nor the Collins predictor (p = .853, p = .395, and p = .362 uncorrected, respectively).  
* p < .05, ** p < .01, *** p < .001 
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Table 3 

P600: Late Latency Range (600 ms–900 ms) Model for Posterior ROIs 

Predictor Name β SE t-stat df p Sig 
(Intercept) 0.02 <0.01 5.41 4485 <.001 *** 
laterality_right -0.01 <0.01 -2.88 4485 .004 ** 
laterality_middle -0.04 <0.01 -8.00 4485 <.001 *** 
Harmonic_IC <0.01 <0.01 -0.66 4485 .508  
Milne <0.01 <0.01 -0.49 4485 .626  
Leman 0.01 0.01 1.34 4485 .179  
Collins -0.01 <0.01 -2.55 4485 .011 * 
laterality_right:Harmonic_IC <0.01 <0.01 0.72 4485 .473  
laterality_middle:Harmonic_IC <0.01 <0.01 0.86 4485 .391  
laterality_right:Milne <0.01 <0.01 0.30 4485 .765  
laterality_middle:Milne <0.01 <0.01 -0.23 4485 .821  
laterality_right:Leman -0.01 0.01 -1.33 4485 .183  
laterality_middle:Leman -0.02 0.01 -1.99 4485 .047 * 
laterality_right:Collins <0.01 <0.01 0.48 4485 .632  
laterality_middle:Collins <0.01 <0.01 1.00 4485 .319   
Note. Post-hoc models on the posterior-middle and posterior-left ROIs showed no significant main 
effects of the Leman predictor (p = .601 and p = .034 uncorrected, respectively) nor the Collins 
predictor (p = .744 and p = .753 uncorrected, respectively). The Leman predictor for the posterior-left 
ROI was only marginally significant after Bonferroni correction (p = .068). 
* p < .05, ** p < .01, *** p < .001 
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Table 4 
P3a Latency Range (250 ms–450 ms) Model for Anterior ROIs 

Predictor Name β SE t-stat df p Sig 
(Intercept) 0.02 <0.01 6.01 4485 <.001 *** 
laterality_right 0.01 <0.01 2.49 4485 .013 * 
laterality_middle <0.01 <0.01 1.01 4485 .313  
Harmonic_IC 0.01 <0.01 2.03 4485 .042 * 
Milne 0.01 <0.01 1.38 4485 .169  
Leman 0.01 0.01 0.91 4485 .364  
Collins <0.01 <0.01 -1.31 4485 .190  
laterality_right:Harmonic_IC <0.01 <0.01 0.06 4485 .952  
laterality_middle:Harmonic_IC <0.01 <0.01 1.15 4485 .251  
laterality_right:Milne <0.01 <0.01 -0.01 4485 .991  
laterality_middle:Milne -0.01 <0.01 -1.68 4485 .092  
laterality_right:Leman -0.01 0.01 -1.15 4485 .251  
laterality_middle:Leman -0.03 0.01 -2.96 4485 .003 ** 
laterality_right:Collins 0.01 <0.01 2.44 4485 .015 * 
laterality_middle:Collins 0.01 <0.01 2.77 4485 .006 ** 
P3a Latency Range (250 ms–450 ms)  
Post hoc Model for Anterior-Middle ROI 
Predictor Name β SE t-stat   p† Sig 
(Intercept) 0.04 0.01 4.83  <.001 *** 
Harmonic_IC 0.01 <0.01 3.33  .003 ** 
Leman -0.02 0.01 -2.98  .009 ** 
Collins <0.01 <0.01 0.12  2.711†  
chordNum_3 <0.01 0.01 0.33  2.231†  
chordNum_4 -0.01 0.01 -1.39  .495  
chordNum_5 -0.01 0.01 -1.34  .538  
chordNum_6 -0.02 0.01 -1.72  .254  
F(7,1492) = 4.69, p < .001, Adjusted R2 = .02 
Note. Post-hoc models on the anterior-right and anterior-left ROIs showed no significant main effects 
of the Harmonic IC model (p = .154 and p = .070 uncorrected, respectively) the Leman model (p = 
.112 and p = .920 uncorrected, respectively) nor the Collins model (p = .844 and p = .334 
uncorrected, respectively). 
* p < .05, ** p < .01, *** p < .001 
†p values for the post hoc model are Bonferroni-corrected. 
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Figure Captions 

Figure 1. Viewpoint weights in Harrison and Pearce’s (2018) IDyOM model as 

optimised on the present stimulus set. Weights are plotted as a function of chord position in the 

stimulus, model type (long-term versus short-term), and underlying feature. ‘PC’ is an 

abbreviation of ‘pitch class’; ‘rel.’ is an abbreviation of ‘relative’. 

Figure 2. Timeline of a trial, showing 1 out of the 300 chord progressions used in the 

experiment. Participants responded whether the final chord was louder in one ear, or equally loud 

in both ears. Feedback did not appear until at least 1000 ms after the onset of the final chord 

(even if response times were < 1000 ms). Each chord has associated model predictions. The 

model ratings shown here are after z-scoring across the range of values for all chords in the full 

stimulus set. The inter-stimulus interval was sampled from uniform random distribution over the 

interval 250–500 ms.  

Figure 3. Scalp ROIs. We divided the scalp into 6 spatial ROIs (anterior left, anterior 

middle, anterior right, posterior left, posterior middle, and posterior right). 

Figure 4. Model predictions for individual electrode activity in the four latency ranges. 

Note that these figures have been thresholded so if beta coefficients have associated p < .01, they 

are displayed as having a value of 0. Note that few electrodes are predictive of amplitude in these 

latency ranges. Compare against the linear model tables (e.g., Harmonic IC is predictive of P3a 

activity). 

Figure 5. Average ERPs for top and bottom quantile of each rating and difference 

between them. The top half of the plots show all anterior electrodes averaged together, and the 

bottom half show the posterior electrode average. The difference waves are subtle, but show 

differences matching the findings from the main analysis: the Leman and Harmonic IC 
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predictors show positivity for more surprising chords in the P3a latency range (lower Leman 

values and higher Harmonic IC values corresopnd to more surprising chords).  
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Figure 1 
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Figure 2 

 

  



REASSESSING SYNTAX VIOLATION ERPS 72 
 

Figure 3 
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Figure 4 
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Figure 5 
 

 


