
Corrigendum to: Large Bayesian Vector Autoregressions with

Stochastic Volatility and Non-Conjugate Priors

Andrea Carriero∗ Joshua Chan† Todd E. Clark‡ Massimiliano Marcellino§

November 2021

Abstract

The original algorithm contained a mistake that meant the conditional distributions

used for the VAR’s coefficients were missing a piece of information. We propose a new

algorithm that uses the same factorization but includes the missing term. The new,

correct algorithm has the same computational complexity as the old, incorrect one (i.e.,

O(N4)), and therefore it still allows the estimation of large VARs.

J.E.L. classifications: C11, C13, C33, C53

Keywords: Big data, forecasting, structural VAR

1 The problem

Consider an N -variable vector autoregression with stochastic volatility

yt = Π′xt +A−1Λ0.5
t εt, (1)

where t = 1, ..., T , yt is an N -dimensional vector, p denotes the lag order, xt is a k =

Np + 1 vector containing the lags of yt and an intercept, Π = (Π0,Π1, ...,Πp)
′ is a k × N

matrix of coefficients, A−1 is a lower triangular matrix with ones on its main diagonal, Λt is

a diagonal matrix with generic j-th element λj,t, and εt ∼ iid N(0, IN ). The reduced-form

∗Queen Mary University of London: School of Economics and Finance, Mile End Road E1 4NS, London,

United Kingdom; a.carriero@qmul.ac.uk
†Purdue University: Department of Economics, 100 Grant St., West Lafayette, IN 47907, United States;

joshuacc.chan@gmail.com
‡(Corresponding author) Federal Reserve Bank of Cleveland: Economic Research Department, P.O. Box

6387, Cleveland, OH 44101, United States; todd.clark@researchfed.org
§Bocconi University, IGIER, and CEPR: Department of Economics, Via Roentgen 1, 20136, Milano, Italy;

massimiliano.marcellino@unibocconi.it

1



error covariance matrix is Σt = A−1ΛtA
−1′. Below we will also make use of the lower-

triangular Cholesky factor of Σt, with elements σ∗j,i,t. In this note, although we focus on the

model with stochastic volatility, the basic results also apply to a homoskedastic version of

the model with non-conjugate priors.

The algorithm used in Carriero, Clark, and Marcellino (2019) aimed to simulate the

conditional joint posterior distribution of the VAR autoregressive coefficients Π:

vec(Π)|y,ΣT ∼ N(µ̄Π,ΩΠ), (2)

where ΣT contains the entire history of the error variance matrix Σt and y contains the

entire history of the observables yt. The algorithm intended to do so by using the following

factorization of the joint distribution:

p(Π | y,ΣT ) = p(π(1) | y,ΣT )

×p(π(2) |π(1), y,ΣT )

...

×p(π(N) |π(N−1), . . . , π(1), y,ΣT ), (3)

with generic element

p(π(j) |π(j−1), . . . , π(1), y,ΣT ), (4)

where π(j) denotes the vector of coefficients for equation j, appearing in the j-th column of

the matrix

Π=
[
π(1)

... π(j−1) π(j) π(j+1)
... π(N)

]
.

This triangular factorization breaks down the joint distribution into a sequence of dis-

tributions of the generic coefficients π(j), i.e., the coefficients appearing in the j-th equation

of the VAR. Therefore, an algorithm drawing in sequence from the distribution at the top

of expression (3) and proceeding step by step toward the last distribution at the bottom

will obtain the desired joint distribution.

In the paper, this strategy was pursued by drawing π(j) from a Gaussian distribution

with mean µ̄Π{j} = ΩΠ{j}

{
Ω−1

Π{j}
µ

Π{j}
+
∑T

t=1 xtσ
∗−2
j,j,ty

∗
j,t

}
and variance Ω

−1
Π{j} = Ω−1

Π{j}
+∑T

t=1 xtσ
∗−2
j,j,tx

′
t, where µ

Π{j}
and Ω−1

Π{j}
denote, respectively, the prior mean and prior vari-

ance of π(j), and y∗j,t = yj,t − (σ∗j,1,tε1,t + · · · + σ∗j,j−1,tεj−1,t).
1 However, this distribution

does not have p.d.f. (4), a fact pointed out in Bognanni (2021). Instead, the distribution

used has p.d.f.

p(π(j) |π(j−1), . . . , π(1), y(1), ..., y(j−1), x,ΣT ), (5)

1In the published version of the paper, the inverse error variance σ∗−2
j,j,t was erroneously written as σ∗−1

j,j,t.

The code and application results did not reflect this typo.

2



where y(j) denotes the time series of the j-th variable and x contains the entire history of

the variables xt that appear on the right-hand side of each equation of the VAR. Therefore,

the distribution generated by the algorithm described in the paper is:

p(π(1) | y(1), x,ΣT )

×p(π(2) |π(1), y(1), y(2), x,ΣT )

...

×p(π(N) |π(N−1), . . . , π(1), y(1), y(2), ..., y(N), x,ΣT ), (6)

and not (3).

The difference between (3) and (6) lies in the conditioning sets for the j-th equation

coefficients π(j), which in (3) includes all the dependent variables (y(1), y(2)..., y(N)), but in

(6) includes the dependent variables only up to equation j (y(1), y(2)..., y(j)). This difference

implies that a term goes missing, involving the information about π(j) contained in the most

recent observations of the dependent variables of equations j + 1, ..., N . To see this more

clearly, consider the simplest case N = 2 with the following triangular system:

y1,t = x′tπ
(1) + σ∗1,1,tε1,t

y2,t = x′tπ
(2) + σ∗2,1,tε1,t + σ∗2,2,tε2,t.

The likelihood is p(y |π, x,ΣT ) ∝ p(ε2| ε1)p(ε1) ∝ p(y(1) |π(1), x,ΣT )p(y(2) | y(1), π(1), π(2), x,ΣT ),

where εj denotes the entire time series of the j-th disturbance. Assuming an independent

prior p(π(1), π(2)) = p(π(1))p(π(2)), the joint posterior distribution of (π(1), π(2)) is:

p(π(1), π(2) |y,x,ΣT )

∝ p(y(1) |π(1), x,ΣT )p(π(1))× p(y(2) | y(1), π(1), π(2), x,ΣT )p(π(2))

= p(π(1) | y(1), x,ΣT )p(y(1)|x,ΣT )× p(π(2)| y(1), y(2), π(1), x,ΣT )p(y(2) | y(1), π(1), x,ΣT )

∝ p(π(1) | y(1), x,ΣT )p(y(2) | y(1), π(1), x,ΣT )× p(π(2)| y(1), y(2), π(1), x,ΣT ) (7)

= p(π(1)|y(1), y(2), x,ΣT )p(y(2)|y(1), x,ΣT )× p(π(2)| y(1), y(2), π(1), x,ΣT )

∝ p(π(1)|y(1), y(2), x,ΣT )× p(π(2)| y(1), y(2), π(1), x,ΣT ). (8)

Note that (8) coincides with expression (3), whereas (7) consists of expression (6) times the

underlined term p(y(2) | y(1), π(1), x,ΣT ), which is therefore missed by the algorithm used in

the paper. The missing term contains information about π(1) embedded in y(2). Since all the

lagged values of all of the variables of the VAR (denoted x) are already in the conditioning

set, the extra information that gets lost is that contained in the contemporaneous values

y
(2)
t . This information must be included in order to obtain the target distribution via the

correct factorization (3).

3



2 The solution

The above derivations show one way forward to correct the paper’s original algorithm: We

could simply add back the missing terms. This is in principle doable, but for general N this

approach might get messy and has computational complexity O(N5). Instead, there is an

alternative approach that is cleaner and keeps the complexity at O(N4).

Consider again the factorization in (3), but this time rather than using it to produce

a single Monte Carlo draw from the joint posterior of π, we use it to build a sequence of

Gibbs sampler draws from the conditional posteriors of π(j), for j = 1, ...N . Specifically,

one can sample from the joint distribution Π|y,ΣT by cycling through the full conditional

distributions

π(j) | y,ΣT , π
(−j) (9)

for j = 1, . . . , N , where π(j) is the j-th column of the k × N matrix Π, i.e., the vector

of coefficients appearing in equation j, and π(−j) = (π(1)′ , . . . , π(j−1)′ , π(j+1)′ , . . . , π(N)′)′

collects all the coefficients in the remaining equations.

Notice that — by virtue of the triangular factorization — at each iteration j, for updating

the value of the sampled π(j), we only need to use information associated with equations j

and higher. Indeed, the kernel of the p.d.f. of (9) can be built by multiplying the N − j +

1 densities appearing in the rows j, ..., N of the factorization in (3):

p(π(j) | y,ΣT , π
(−j)) ∝ p(π(j) |π(1), ..., π(j−1), y,ΣT )

...

×p(π(N) |π(N−1), . . . , π(1), y,ΣT ). (10)

Cycling through (10) for j = 1, ..., N will deliver draws from the desired joint distribution.

This new algorithm is based on the same triangularization (3) for which the incorrect

one was conceived. But there are some key differences: i) Rather than using a sequence of N

equations, it uses a sequence of N systems of N−j+1 equations; and ii) rather than jointly

drawing the VAR’s coefficients Π in a single Gibbs step, it blocks the VAR’s coefficients

equation-by-equation, using N Gibbs steps. These features imply that the algorithm makes

a few more computations than the incorrect one, and that it produces more correlated draws,

which might slow down mixing. However, this new algorithm preserves the main feature

that made the original (but incorrect) algorithm so appealing: It has the computational

complexity of O(N4), which allows estimating and forecasting with very large VARs.

4



3 Practical implementation

To make this approach operational, consider the triangular representation of the system:

ỹt = Ayt = AΠ′xt + Λ0.5
t εt = A(x′tΠ)′ + Λ0.5

t εt, (11)

which can be expressed as the following system of equations:

ỹ1,t = x′tπ
(1) + λ0.5

1,t ε1,t

ỹ2,t = a2,1x
′
tπ

(1) + x′tπ
(2) + λ0.5

2,t ε2,t

ỹ3,t = a3,1x
′
tπ

(1) + a3,2x
′
tπ

(2) + x′tπ
(3) + λ0.5

3,t ε3,t

...

ỹN,t = aN,1x
′
tπ

(1) + · · ·+ aN,N−1x
′
tπ

(N−1) + x′tπ
(N) + λ0.5

N,tεN,t, (12)

where ỹt = Ayt is a vector with generic j-th element ỹj,t = yj,t + aj,1y1,t + · · ·+ aj,j−1yj−1,t.

The recursive system (12) is a re-parameterization of the recursive system appearing

on page 142 of the paper, and it is observationally equivalent to it. It makes clear the

problematic feature that was hidden in the terms σ∗j,1,tε1,t, · · · , σ∗j,j−1,tεj−1,t appearing in

the representation used in the paper: The coefficients π(j) of equation j influence not only

equation j, but also the following equations j + 1, ..., N , which is yet another way of seeing

that these equations have some extra information about π(j) that the old algorithm missed.

Importantly though, it remains true that, when conditioning on ΣT , equations 1, ..., j−1

have no information about the coefficients of equation j. Indeed the kernel of the joint

posterior of Π is:

p(Π | y, x,ΣT ) ∝ exp

−
1

2

T∑
t=1



1
λ1,t

(ỹ1,t − x′tπ(1))2

+ 1
λ2t

(ỹ2,t − a2,1x
′
tπ

(1) − x′tπ(2))2

...

+ 1
λN,t

(ỹN,t − aN,1x′tπ(1) − ...− aN,N−1x
′
tπ

(N−1) − x′tπ(N))2



 p(Π).

With coefficient priors π(j) ∼ N(µ
π(j) ,Ωπ(j)), j = 1, ...N that are independent across equa-

tions,2 the first j−1 elements in the quadratic term above do not contain π(j). It follows that

the conditional posterior density p(π(j) | y,ΣT , π
(−j)) can be obtained as in (10), using the

2The assumption of independence across equations covers most of the practical implementations of VARs.

If necessary, it could be relaxed while maintaining the same triangular structure. This would entail using the

properties of the multivariate normal to derive a triangular factorization for the prior in which π(j) appears

only in equation j, ..., N . While this requires the inversion of large matrices, such inversions need to be

performed only once, outside the main MCMC algorithm, and therefore with not much computational cost.

5



subsystem composed of the last N − j+ 1 equations of (12). This density has a multivariate

normal distribution

(π(j) | y,ΣT , π
(−j)) ∼ N (µπ(j) ,Ωπ(j)), (13)

with

Ω
−1
π(j) = Ω−1

π(j) +
∑N

i=j a
2
i,j

∑T
t=1

1

λi,t
xtx
′
t (14)

µπ(j) = Ωπ(j)

(
Ω−1
π(j)µπ(j) +

∑N
i=j ai,j

∑T
t=1

1

λi,t
xtzi,t

)
, (15)

where zj+l,t = ỹj+l,t −
∑j+l

i 6=j,i=1 aj+l,ix
′
tπ

(i), for l = 0, ..., N − j, and ai,i = 1. The posterior

moments as expressed in equations (14) and (15) make clear that, in estimating equation j,

information is used from not only that equation but also equations j+1 through N . In some

software packages, computations may be fastest using sums of moments as in equations (14)

and (15).

In what follows we provide an alternative expression for the moments (14) and (15) that

works more efficiently in the commonly used Matlab software package. Define

Π[j=0]=
[
π(1)

... π(j−1) 0k×1 π(j+1)
... π(N)

]
as the k×N matrix of coefficients Π , where in column j the coefficient vector π(j) has been

replaced by a 0k×1 vector. The equations of (12) involving π(j) are:

A(j:N,1:N)

(N−j+1)×N

(
yt
N×1
−Π[j=0]′xt

N×1

)
= A(j:N,j)

(N−j+1)×1
π(j)′
1×k

xt
k×1

+ ε
(j:N)
t

(N−j+1)×1

,

where ε
(j:N)
t denotes the sub-vector of Λ0.5

t εt corresponding to variables j through N (here,

for simplicity, we subsume the volatilities into the innovation vector). Transposing and

stacking all of the equations for t = 1, ..., T yields:

(y −XΠ[j=0])Aj:N,1:N) ′ = Xπ(j)A(j:N,j) ′ + ε(j:N),

where the matrices y, X, and ε(j:N) have dimensions T ×N , T × k, and T × (N − j + 1),

respectively. Vectorizing the system yields:

vec((y −XΠ[j=0])A(j:N,1:N)′ ) = (A(j:N,j) ⊗X)π(j) + vec
(
ε(j:N)

)
.

Finally, we need to divide by the standard deviation of the errors. Since vec
(
ε(j:N)

)
∼

N(0, IN−j+1 ⊗ Λ1:T,j:N ), we obtain:

Y (j) = X(j)π(j) + u(j), (16)

6



with

Y (j)

T (N−j+1)×1
= vec((y −XΠ[j=0])A(j:N,1:N)′ )./vec(Λ0.5

(1:T,j:N)) (17)

X(j)

T (N−j+1)×k
= (A(j:N,j) ⊗X)./vec(Λ0.5

(1:T,j:N)), (18)

where u(j) ∼ N(0, IT (N−j+1)) and ./ is the Matlab element-by-element division opera-

tor. The model in (16) is a Gaussian linear regression model, and the likelihood moments

X(j)′X(j) and X(j)′Y (j) can be combined with the prior to obtain an equivalent expression

for the posterior moments appearing in (14) and (15):

Ω
−1
π(j) = (Ω−1

π(j) +X(j)′X(j)) (19)

µπ(j) = Ωπ(j)(Ω−1
π(j)µπ(j) +X(j)′Y (j)). (20)

4 Application results

In the interest of brevity, in this section we limit the presentation of results to those on

computational gains and mixing, computed using the monthly macroeconomic data set

used in Carriero, et al. (2019). (The data set consists of time series from the FRED-MD

data set, for the period January 1960 to December 2014, with 13 lags in each VAR.) A

supplemental online appendix provides a full set of updates of the results of the paper based

on the correct triangular algorithm, along with some additional results. These updated

results are not much different with respect to the ones presented in the paper.

Figure 1 illustrates the computational gains arising from the use of the triangular algo-

rithm. The top panel shows the computational time (on a 3.5 GHz Intel Core i7) needed to

perform 10 draws as a function of the size of the cross-section using the (correct) triangular

algorithm and the system-wide algorithm. The bottom panel compares the gain in theoret-

ical computational complexity (dashed line — which is equal to N2) with the actual gain in

computational time. Since the computational gains become so large that they create scaling

problems, results in this figure are displayed using a logarithmic vertical axis.

Compared to the same Figure 1 of the paper, two things have changed. First, the

performance of the system-wide algorithm (SWA) is much improved: It now takes 33 seconds

to make 10 draws from a model with N = 20, while before it took 255 seconds. This

improvement is due to our use of the Matlab function ./ (element-by-element division of

a matrix object) in computing the analogues of (17) and (18) used for the full system of

equations of the SWA, while before we were using a Kronecker product to perform the

7



same operation.3 Second, the correct triangular algorithm (CTA) is slower than the earlier

incorrect triangular algorithm (TA). For example, for a system of N = 20 variables, the

correct algorithm takes about 3.25 times as long as the original triangular algorithm. This

increased computational cost to the CTA over the original TA comes from the fact that, at

each iteration j of the loop across equations, the CTA uses T × (N − j + 1) observations,

while the TA only used T .

However, the main pattern emerging from Figure 1 is still the same as in the paper: The

CTA is significantly faster than the SWA, with computational gains growing quadratically,

which of course reflects the fact that the SWA and CTA have computational complexity

O(N6) and O(N4), respectively. For the system of N = 20 variables used in the empirical

application of the paper (updated in the online appendix to this paper), the CTA is about

13 times faster than the SWA. For N = 40, it is about 43 times faster. Finally, note that

— in practice, although not documented in Figure 1 — as systems get larger, the CTA

becomes the only available option, because the SWA requires matrices of such a size that

the storage memory requirements quickly exceed the RAM of the typical desktop computer.

As we mentioned above, because the CTA uses conditional posteriors that block the

VAR’s coefficients equation-by-equation, whereas the TA did not use such blocking and

instead treated the full set of coefficients, the draws generated by the new algorithm are

more autocorrelated, which might slow down convergence and reduce mixing. Accordingly,

we have run some checks of convergence and mixing. Figure 2 compares the mixing of

the CTA algorithm with that of the SWA. The results in these figures are obtained by (1)

running the SWA for a total of 22,000 draws, discarding the first 2000 and retaining the

remaining 20,000 draws; and (2) running the CTA for the same amount of clock time as the

SWA, discarding the first 2000 draws, and then adjusting the skip-sampling of the CTA to

reduce the sample to 20,000 retained draws. Note that the scales on the horizontal axes of

the SWA (left) and CTA (right) columns differ substantially. These results show that the

inefficiency factors obtained by running the two alternative algorithms for the same amount

of time are much lower for draws produced by the CTA than those produced by the SWA.

The CTA with appropriate skip-sampling can produce in the same amount of time draws

many times closer to i.i.d. sampling. Instead, the SWA is slower to mix (in a unit of time).

3To the best of our knowledge at the time, the Matlab function ./ required the combined use of the

function “repmat” for computing the element-by-element ratios in (17) and (18), which ended up being

slower than using a Kronecker division. Instead, in the current version of Matlab, the function ./ will fill out

columns of a matrix with the single element of a vector, allowing the element-by-element division of every

row of a matrix by a vector.

8



0 5 10 15 20 25 30 35 40

Size of the cross-section (N)

10
-1

10
0

10
1

10
2

10
3

10
4

S
e
c
o

n
d

s

Time for producing 10 draws as a function of N

System-wide algorithm

Correct triangular algorithm

0 5 10 15 20 25 30 35 40

Size of the cross-section (N)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
o

m
p

u
ta

ti
o

n
a

l 
ti
m

e
, 

N
u

m
b

e
r 

o
f 

e
le

m
e

n
ta

ry
 o

p
e

ra
ti
o

n
s

Gains in actual computational time and theoretical computational complexity

Actual difference

Theoretical difference

X 40

Y 27.3167

X 40

Y 1181.7396

X 20

Y 33.0975

X 20

Y 2.542

Figure 1: Actual computational time and theoretical computational complexity of the

system-wide and correct triangular algorithms. Note that due to the exponential nature

of the gains the y-axes are in logarithmic scale. Computational times are computed as the

average time (over 10 independent chains) required to make 10 draws on a 3.5 GHz Intel

Core i7.

9



0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Conditional mean parameters, system-wide algorithm

-1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Conditional mean parameters, correct triangular algorithm

-10 0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Covariances, system-wide algorithm

-1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
Covariances, correct triangular algorithm

0 5 10 15 20 25 30
0

0.05

0.1

0.15
Volatility factors (averaged across time), system-wide algorithm

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

2.5
Volatility factors (averaged across time), correct triangular algorithm

-50 0 50 100 150 200 250 300 350
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
Volatility innovation variance, system-wide algorithm

-5 0 5 10 15 20 25 30 35

Algorithm 3 is Based on 280000 draws with skip of 14 effective sample of 20000

0

0.05

0.1

0.15

0.2
Volatility innovation variance, correct triangular algorithm

Figure 2: Comparison of inefficiency factors (IF) between the system-wide and correct tri-

angular algorithm. Kernel estimates. Solid, dashed, and dotted lines refer to 4, 8, and

15 percent tapering, respectively. The densities in each sub-plot are computed across the

parameters within a given set (from top to bottom: conditional mean coefficients, covari-

ances, states, and covariances of the states). The graphs on the left refer to the system-wide

algorithm, while the graphs on the right refer to the correct triangular algorithm.
10



5 Conclusions

We presented a new, correct algorithm that actually draws from the joint posterior distri-

bution that was intended. The new algorithm is based on the same triangularization (3)

for which the incorrect one was conceived, but rather than using a sequence of N equations

to obtain a joint draw of the VAR’s coefficients in a single Gibbs step, it uses a sequence

of N Gibbs steps, each based on sub-systems of N − j + 1 equations. While in principle

these differences can slow down the speed and reduce the mixing, the new algorithm is still

faster and mixes better (for a given amount of computation time) than the system-wide

alternative. More importantly, the new algorithm preserves the main feature that made

the original (but incorrect) algorithm so appealing: It has the computational complexity of

O(N4), which allows handling very large VARs. The empirical results presented in the paper

did not change appreciably after re-estimating the model using the correct algorithm. That

being said, in other applications, the algorithm correction could yield more of a difference

in estimates.

Acknowledgments
We would like to thank editors Serena Ng and Elie Tamer for their guidance, Mark Bog-

nanni for identifying and bringing to our attention the problem with the original algorithm,

Elmar Mertens and Tommaso Tornese for many helpful discussions, and Marta Banbura,

a referee, and the associate editor for helpful suggestions. Matlab code for the correct tri-

angular algorithm (including data for an application) is available at https://didattica.

unibocconi.it/mypage/dwload.php?nomefile=Triangular_Example_new20210715105214.

zip. The views expressed herein are solely those of the authors and do not necessarily reflect

the views of the Federal Reserve Bank of Cleveland or the Federal Reserve System.

References

[1] Bognanni, M. 2021. Comment on “Large Bayesian Vector Autoregressions with Stochas-

tic Volatility and Non-Conjugate Priors.” Journal of Econometrics, forthcoming. https:

//doi.org/10.1016/j.jeconom.2021.10.008

[2] Carriero A., Clark, T. and Marcellino, M. 2019. Large Bayesian Vector Autoregressions

with Stochastic Volatility and Non-Conjugate Priors. Journal of Econometrics 212(1),

137-154. https://doi.org/10.1016/j.jeconom.2019.04.024

11

https://didattica.unibocconi.it/mypage/dwload.php?nomefile=Triangular_Example_new20210715105214.zip
https://didattica.unibocconi.it/mypage/dwload.php?nomefile=Triangular_Example_new20210715105214.zip
https://didattica.unibocconi.it/mypage/dwload.php?nomefile=Triangular_Example_new20210715105214.zip
https://doi.org/10.1016/j.jeconom.2021.10.008
https://doi.org/10.1016/j.jeconom.2021.10.008
https://doi.org/10.1016/j.jeconom.2019.04.024

	The problem
	The solution
	Practical implementation
	Application results
	Conclusions

