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We systematically study 4D N = 2 superconformal field theories (SCFTs) that can be con-

structed via type IIB string theory on isolated hypersurface singularities (IHSs) embedded

in C4. We show that if a theory in this class has no N = 2-preserving exactly marginal

deformation (i.e., the theory is isolated as an N = 2 SCFT), then it has no 1-form symmetry.

This situation is somewhat reminiscent of 1-form symmetry and decomposition in 2D quan-

tum field theory. Moreover, our result suggests that, for theories arising from IHSs, 1-form

symmetries originate from gauge groups (with vanishing beta functions). One corollary of

our discussion is that there is no 1-form symmetry in IHS theories that have all Coulomb

branch chiral ring generators of scaling dimension less than two. In terms of the a and c

central charges, this condition implies that IHS theories satisfying a < 1
24
(15r + 2f) and

c < 1
6
(3r + f) (where r is the complex dimension of the Coulomb branch, and f is the rank

of the continuous 0-form flavor symmetry) have no 1-form symmetry. After reviewing the

1-form symmetries of other classes of theories, we are motivated to conjecture that general

interacting 4D N = 2 SCFTs with all Coulomb branch chiral ring generators of dimension

less than two have no 1-form symmetry.
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1. Introduction

While a complete classification of 4D quantum field theories (QFTs) seems well out of reach,

one gets the sense that 4D N = 2 superconformal field theories (SCFTs) may be more

amenable to classification. This feeling arises due to a confluence of factors: 4D N = 2

SCFTs are closely related to special 2D QFTs (e.g., see [1–3]), integrable structures naturally

arise in the study of these theories (e.g., see [4]), 4D N = 2 conformal manifolds (when they

exist) are highly constrained (e.g., see [5]), and N = 2 moduli spaces feature various rigid

structures (e.g., see [6]).

The intersection of these last two points forms a starting point of our story. In particular,

many 4D N = 2 conformal manifolds can be constructed by gauging a G flavor symmetry

of one or more isolated 4D N = 2 SCFTs1 (combined with unitarity, the existence of such a

1In this context, by “isolated” we mean N = 2 theories with no N = 2-preserving exactly marginal

deformation.
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symmetry implies the existence of non-nilpotent moment map operators2 [7] and, by standard

lore, a Higgs branch of moduli space in each of the isolated theories we gauge). The resulting

G gauge group, with vanishing beta functions, is a natural source for line operators (Wilson

and ’t Hooft lines) charged under 1-form symmetries [8].

Therefore, in order to gain an additional handle on the space of 4D N = 2 SCFTs, it is

useful to understand whether these conformal gauge groups are the only sources of 1-form

symmetries. To answer this question, we should study whether (1) isolated N = 2 SCFTs

can have 1-form symmetries and (2) whether all exactly marginal couplings in 4D N = 2 are

indeed gauge couplings.

Our focus in this paper will mostly be on the first point.3 Moreover, we will mainly

restrict our attention to the case of 4D N = 2 SCFTs arising from the low-energy limit

of type IIB string theory on three-complex-dimensional isolated hypersurface singularities

(IHSs) embedded in C4 and characterized by quasi-homogeneous polynomials satisfying [12]

W (xi) := W (x1, x2, x3, x4) = 0 , W (λqixi) = λW (xi) , xi ∈ C , λ ∈ C∗ , qi ∈ Q , (1.1)

with

dW (xi) = W (xi) = 0 ⇔ x1,2,3,4 = 0 , (1.2)

and

qi > 0 ,
∑

i

qi > 1 . (1.3)

In terms of these variables, the holomorphic 3-form is given by

Ω =
dx1 ∧ dx2 ∧ dx3 ∧ dx4

dW
. (1.4)

This vast class of SCFTs includes, among many others, the well-known (g, g′) theories

of [1]. The early Argyres-Douglas (AD) SCFTs [13,14] are prominent members of this family

of theories: the (A1, A2), (A1, A3), and (A1, D4) theories correspond to SCFTs on the Coulomb

branches of SU(2) with Nf = 0, 1, 2 respectively (or alternatively, in the first case, to pure

SU(3) N = 2 SYM).

2By non-nilpotent moment map operators, we have in mind holomorphic µ such that µN 6= 0 in the chiral

ring for any N > 0 (we do not contract indices on µ).
3Regarding the second point in the previous paragraph, we are not aware of gauge coupling interpretations

for most of the conformal manifolds we will come across, but we are also not aware of arguments forbidding

such interpretations (similar comments apply to the vast majority of the theories discussed in [9]). Indeed,

there are conjectures that an N = 2-preserving exactly marginal deformation always corresponds to a gauge

coupling [10, 11].
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For general IHS theories of this type, our main claim in this paper is the following:

Claim 1 (main claim): Any isolated 4D N = 2 SCFT (i.e., a theory without N = 2-

preserving exactly marginal deformations4) arising from type IIB string theory on an IHS

embedded in C4 has trivial 1-form symmetry.5 (Unless otherwise noted, when we refer to IHS

theories below, we mean theories of this type).

We believe this result extends to theories arising on IHSs embedded in other spaces like

C∗ × C3, and we will discuss some of the resulting N = 2 SCFTs explicitly in section 4. We

will also comment on other N = 2 SCFTs which are not realized via IHSs.

A formalism for finding the 1-form symmetries in the context of the theories covered by

our main claim was developed in [15–17]. Using these tools, along with mathematical results

in [18] and their physical interpretation in [19], we give a proof of the main claim for the

subset of IHS theories corresponding to (g, g′) SCFTs in section 2.1. We relegate a complete

proof of our claim for all the IHS theories to the appendix.

However, our results do not fully rely on [18]. In particular, motivated by [15,20], we allow

for potentially more general IHS-defining polynomials with at least five terms. As we describe

in the appendix, we are able to bypass the precise nature of these additional monomials,

because we are only interested in questions regarding 1-form symmetries in isolated theories.

One intriguing aspect of the theories we study is that they are related to 2D N = (2, 2)

Landau-Ginzburg (LG) models via the correspondence in [1] (indeed, the analysis of [20]

mentioned in the previous paragraph proceeds from this connection). Therefore, one may

wonder if there is a relation between the 1-form symmetries we study and symmetries in the

corresponding LG models.

While we do not currently have a precise answer to this question, we note an intriguing

parallel between our story for 4D N = 2 SCFTs and the idea of decomposition in 2D QFT

(e.g., see [21] and the recent workshop [22]). In essence, we are arguing that, on their own,

isolated 4D N = 2 SCFTs arising from IHSs have no 1-form symmetry. Instead, we need

to combine such SCFTs into larger theories via gauging in order to have such symmetry.6

Equivalently, if we start from a gauged collection of such isolated SCFTs and decompose the

theory into its isolated SCFT constituents at zero coupling, each isolated constituent on its

own will lack 1-form symmetry. Somewhat similarly, in the context of 2D QFT, the idea of

4We allow for exactly marginal deformations that only preserve N = 1.
5Note that here we have in mind the SCFTs specified by the singularities themselves. In particular, we do

not consider decoupled U(1) factors that may arise in RG flows emanating from these SCFTs as IHS theories

in their own right.
6Note that this larger theory may or may not have an IHS description.
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decomposition states that a 2D QFT with 1-form symmetry can be rewritten as a disjoint

union of QFTs without 1-form symmetry.

Given this discussion, several immediate questions arise:

• Is the converse of our main claim true? In other words, do all conformal manifolds

arising from IHSs have one-form symmetries? No. For example, we can have local

operators in the isolated matter sectors transforming non-trivially under the centers

of the exactly marginal gauge groups (thereby breaking the 1-form symmetry). More

concretely, consider the realization of (A5, A7) given in [23] as a diagonal SU(3) gaug-

ing of the D7(SU(3)) SCFT and the D7(SU(4)) SCFT.7 The su(4) moment map of

D7(SU(4)) decomposes into the following representations of su(3)

µA : 15 → 8⊕ 3⊕ 3̄⊕ 1 . (1.5)

As a result, the moment map has components that transform under the Z3 center

of SU(3), and the theory does not have 1-form symmetry (e.g., Wilson lines in the

fundamental can end on D7(SU(4)) moment map operators). It is possible to argue

that D7(SU(3)) and D7(SU(4)) have trivial 1-form symmetry,8 and so (A5, A7) has

trivial one-form symmetry even though it has a conformal manifold and a gauge group

with vanishing beta function (the result for (A5, A7) also follows from the methods

in [15–17]).

• Does our main claim hold for more general N = 2 theories? As we will see in section 4,

the arguments in [26–28] suggest that many isolated (as N = 2 SCFTs) class S theories

(here we mean isolated theories coming from the twisted compactification of the 6D (2, 0)

theory on surfaces that do not have irregular punctures) also have no 1-form symmetry.

On the other hand, recent arguments suggest that the N = 3 theory related to the

G(3, 3, 3) complex reflection group [29] might have Z3 1-form symmetry [30]. While, on

general grounds [31], this theory is isolated as an N ≥ 2 theory, it may potentially be

part of an N = 1 conformal manifold with a 1-form symmetry arising from an N = 1

gauging of the E6 Minahan-Nemeschansky (MN) theory coupled to some additional

matter fields. If it is true that the G(3, 3, 3) N = 3 theory has 1-form symmetry, then

perhaps one can show that, for N ≥ 2 theories that are isolated as N = 1 theories and

have no “conformal gauge theory origin” (i.e., do not have a formulation in terms of an

7The Dp(G) theories were discussed in [24].
8For one argument, see [25]. We will discuss these theories further in section 4.
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N = 1 gauge group with vanishing beta function), there is no 1-form symmetry. At

present, we do not have a proof of this statement.9

• Does our result hold more generally for 4D N = 2 SCFTs related to 2D LG theories

via the correspondence in [1]? For example, there are theories of this type involving

more than four variables that don’t typically have a presentation in terms of type IIB

on an IHS. While such a result seems plausible, we do not currently have a conclusive

argument one way or the other.

• Can we deduce any universal constraints from our main claim? As we will discuss in

section 5, there are some tantalizing hints the answer may be yes. Indeed, one corollary

that follows from our claim is that, in our class of SCFTs, any theory with all Coulomb

branch generators of dimension less than two must have trivial 1-form symmetry. After

reviewing other classes of theories in section 4, we are motivated to conjecture that this

statement is more generally true for interacting 4D N = 2 SCFTs. Using results in [32]

(see also the application in [33]) we can then argue this condition implies that for IHS

theories

c <
1

6
(3r + f) , a <

15r + 2f

24
, (1.6)

where r is the complex dimension of the Coulomb branch (i.e., the “rank” of the theory),

and f is the rank of the continuous 0-form flavor symmetry. Note that this discussion

can be phrased abstractly for any 4D N = 2 SCFT,10 and it would be interesting to

understand if these bounds imply lack of 1-form symmetry more generally.

The plan of this paper is as follows. First we briefly review the tools constructed in [15–17]

for 1-form symmetry detection. We then give a proof of our main claim for isolated N = 2

SCFTs arising from the subset of (g, g′) SCFTs and explain how these results fit into our

9One should be careful with such a conjecture. Indeed, if there are N = 3 theories of this type with

1-form symmetry, then the universal mass deformation δW = λµ, with µ the moment map of the U(1) N = 2

flavor symmetry all N = 3 SCFTs possess, will generate flows to theories that have (in the absence of SUSY

enhancement) N = 2 SUSY. These theories may inherit the 1-form symmetry of the UV N = 3 SCFT and

might be isolated (even as N = 1 theories). In this case, a more general conjecture would be that isolated

theories have 1-form symmetry only if they have some (possibly UV) gauge theory origin. However, it is not

clear to us how meaningful this statement is, since it may be that all 4D QFTs can be obtained from RG

flows emanating from gauge theories.
10The flavor symmetry rank is an unambiguous non-perturbative quantity. The rank of the Coulomb

branch may be replaced by the number of generators of the N = 2 chiral ring modulo relations (here we

define the chiral ring operators to be annihilated by the full anti-chiral set of N = 2 supercharges).
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broader proof. After that, we derive some useful general results for our IHS theories including

a lemma on the absence of 1-form symmetries in IHS theories that admit certain bilinears.

Then, we give a very rough sketch of the 1-form symmetry content of more general 4D SCFTs

with N ≥ 2 SUSY (including those arising from IHSs in C∗ × C3). Before concluding and

mentioning open problems, we discuss the corollary described around (1.6) and its potential

implications for the space of 4D N = 2 SCFTs. We relegate a full proof of our main claim

for all theories arising from IHSs in C4 to appendix B.

2. Trivial 1-form symmetries in isolated SCFTs arising from IHSs

Given a realization of a 4D N = 2 SCFT, TX6
, as the low-energy limit of type IIB string

theory on an IHS 3-fold, X6, the authors of [15–17] found a prescription for computing

the corresponding 1-form symmetry. The basic idea is to compute the component of the

defect group, D(1), that arises from D3 branes wrapping certain 3-cycles in X6 (we refer the

interested reader to the original papers for more details). Here we merely state the result:

D(1) = Zκ ⊕
n⊕

i=1

(
Z2gi
ri

)
, (2.1)

where the 4D 1-form symmetry group is determined by choosing maximal isotropic subgroups

of the finite groups in the summand. This procedure ensures mutual locality of the spectrum

(in analogy with the procedure in [34]).

It turns out that these finite groups can be fixed in terms of the singularity data (1.1).

In particular, taking

qi =
Vi

Ui

, gcd(Ui, Vi) = 1 , (2.2)

yields [15–17]

ri = gcd(w1, · · · , ŵi, · · ·w4) , wi := Dqi , D := lcm(U1, U2, U3, U4) , (2.3)

and

2gi = −1 +
D2ri

w1 · · · ŵi · · ·w4

+
∑

j 6=i

gcd(D,wj)

wj

−
∑

j<k,j,k 6=i

D gcd(wj, wk)

wjwk

. (2.4)

Note that in (2.3) and (2.4), “ x̂” refers to dropping the variable x from the corresponding

expressions.

For our purposes below, it is slightly more useful to rewrite the previous two equations

in a way that does not refer directly to D. In particular, as discussed in [35], one has

ri =
Ui

gcd(U1, U2, U3, U4)

∏
k<l,k,l 6=i gcd(Ui, Uk, Ul)∏

j 6=i gcd(Ui, Uj)
, (2.5)
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and

2gi = −1 +
∑

j 6=i

1

Vj
−

∑

k<l,k,l 6=i

gcd(Uk, Ul)

VkVl
+

∏
k<l,k,l 6=i gcd(Uk, Ul)∏

j<k<l,j,k,l 6=iVjVkVl gcd(Uj , Uk, Ul)
. (2.6)

To argue that a theory has no 1-form symmetry, it suffices to show that there is no i such

that ri > 1 and gi > 0.

To check this absence of 1-form symmetry holds for isolated theories, we need to show

that the above conditions hold for any theory that has no dimension-two Coulomb branch

operator (the level-four superconformal descendant arising from the integration over all of

chiral superspace becomes the dimension-four exactly marginal deformation).11 In terms of

the singularity data, this condition amounts to checking that there is no deformation

δW (xi) = λ
4∏

i=1

xmi

i ∈ R , Q =
∑

i

qimi = 1 , (2.7)

in the Milnor ring of the singularity

R := C[x1, x2, x3, x4]/dW . (2.8)

Note that the number of independent deformations in R is given by the Milnor number

µ =
∏

i

(1/qi − 1) , (2.9)

and that these deformations are encoded in the Poincaré polynomial

P (t) =
∑

Q

dimHQ tQ =

4∏

i=1

1− t1−qi

1− tqi
, (2.10)

where each tQ represents a non-trivial deformation of the theory with weight Q.12 In par-

ticular, the marginal deformations correspond to the term dimH1t ⊂ P (t). Therefore, the

condition for the SCFT to be isolated is simply dimH1 = 0.

11By the general discussion in [36], such operators are uncharged under N = 2 flavor symmetry. Therefore,

using the results of [37] (see [38] for a discussion), such deformations in the N = 2 prepotential are, in addition

to being marginal, exactly marginal (these operators cannot pair up with other operators to become long

multiplets).
12Since the qi are rational, (2.10) is not technically a polynomial. On the other hand, to get a polynomial

we can simply replace t → tD. Given this simple relation, we will abuse terminology and refer to (2.10) as

the Poincaré polynomial.
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Equivalently, in the language of the 2D N = (2, 2) SCFT that the LG model of [1] flows

to, there should be no exactly marginal deformation.13 Indeed, we have that the scaling

dimension of the coupling λ vanishes

[λ] =
2(1−Q)

2− ĉ
= 0 , (2.11)

where the 2D central charge, ĉ =
∑4

i=1(1 − 2qi). Therefore, λ can be thought of as corre-

sponding to a coordinate on the conformal manifold.

Before making further comments, let us briefly recapitulate. Our goal is to show that

when a deformation of the form (2.7) does not exist (i.e., when the theory is isolated as an

N = 2 SCFT), we have no i such that ri > 1 in (2.5) and gi > 0 in (2.6).

Note that the 1-form symmetry of an IHS theory is completely fixed in terms of the weights

of the coordinates (i.e., the qi). These weights, in turn, specify the Poincaré polynomial of

the singularity and, therefore, the allowed deformations. Since these geometrical deforma-

tions correspond to N = 2-preserving deformations of the SCFT and since (conformal) gauge

groups often give rise to 1-form symmetry, it is natural to expect some connection between

1-form symmetry and exactly marginal deformations. On the other hand, the 1-form symme-

try itself only depends on a very rough number-theoretical characterization of the weights.

Therefore, very different theories (some isolated and some not) can have the same 1-form

symmetry content. Moreover, given a set of weight vectors, it is not apriori obvious that

there is a well-defined IHS SCFT realizing them.

Therefore, our basic strategy will be to apply the above formulas, in combination with

the classification of IHS theories in [18,19] (allowing for potential generalizations as in [17,20]

alluded to in the introduction), to prove our main claim. In the next section, we apply this

strategy to the (g, g′) subset of IHS theories and leave an exhaustive proof for all IHS theories

to the appendix.

2.1. (g, g′) SCFTs and comments on type I theories

In this section we will explicitly focus on the case of the (g, g′) SCFTs [1]. Our main reasons

for doing so are that these theories are well-studied (as described in the introduction, they

include the original AD theories; in addition, [15–17] explicitly studied 1-form symmetries

in these SCFTs), they illustrate some of the main techniques of this paper, and they also

provide a neat entry to the classification of [18–20].

13It would be interesting to understand if theories with conformal 4D gauge couplings translate into special

2D conformal manifolds.
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g Wg(x, y) Milnor ring monomial element Qg

Ap−1 x2 + yp yk (k = 0, · · ·p− 2) k/p

Dp+1 x2y + yp x , yk (k = 0, · · · p− 1) (p− 1)/(2p) , k/p

E6 x3 + y4 xkyl (k = 0, 1, l = 0, 1, 2) k/3 + l/4

E7 x3 + xy3 xkyl (k, l = 0, 1, 2, k + l ≤ 2 or k = 2, l = 1) k/3 + 2l/9

E8 x3 + y5 xkyl (k = 0, 1, l = 0, 1, 2, 3) k/3 + l/5

Table 1: Useful data for the (g, g′) SCFTs.

To that end, consider type IIB string theory on a hypersurface singularity defined via

W(g,g′)(x, y, u, v) = Wg(x, y) +Wg′(u, v) , (2.12)

where Wg and Wg′ are given in table 1. Here Wg is chosen so that w2 +Wg is the g-type Du

Val singularity.

Let us go through these theories in turn. First we impose absence of exactly marginal

couplings as in the discussion around (2.7). Then, we check that the 1-form symmetry is

indeed trivial.

Let us first consider the (Ap−1, Aq−1) SCFTs. Although the 1-form symmetry here is

known to be trivial [15–17], these simple theories form a good starting point. A generic

deformation in such a theory comes from taking a product of entries in the first row of table

1 (one for Ap−1 and another for Aq−1). The corresponding weight for this term takes the form

Q =
k

p
+

l

q
, k = 0, · · · , p− 2, l = 0, · · · , q − 2 . (2.13)

To find a solution of Q = 1, and therefore an exactly marginal deformation, we need to solve

1 =
k

p
+

l

q
, k = 0, · · · , p− 2 , l = 0, · · · , q − 2 . (2.14)

Clearly, k, l cannot both be zero. Moreover, when gcd(p, q) = 1, this equation has no solution

(as can be seen by multiplying both sides by a factor of p or q and using the fact that p/q, q/p

are never integer if p, q are co-prime14).

Therefore, theories with gcd(p, q) = 1 are isolated N = 2 SCFTs. Are they the only

isolated (Ap−1, Aq−1) SCFTs? To see this is indeed true, we can proceed by considering

14More precisely, pl/q, qk/p 6∈ Z. For these quantities to be integers, we need to have q|pl, which is

equivalent to gcd(q, pl) = q. However, gcd(pl, q) = gcd(l, q) < q as l < q and p, q are coprime.
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s = gcd(p, q) > 1 and defining p = sp′, q = sq′. Then we have

s =
k

p′
+

l

q′
, k = 0, · · · p− 2 , l = 0, · · · q − 2 . (2.15)

Since gcd(p′, q′) = 1, the only possible solution is given by

k = ap′ = ap/s , l = bq′ = bq/s , s.t.
a

s
+

b

s
=

k

p
+

l

q
= 1 . (2.16)

However, we also need to take into account that k, l are in the restricted set of integers

k = 0, · · · , p − 2 and l = 0, · · · , q − 2. As a result, when p = 2 or q = 2 or (p, q) = (3, 3),

there is no solution to (2.16). Otherwise, one can always find a solution to (2.16).

To summarize, the isolated SCFTs of type (Ap−1, Aq−1) are given by

gcd(p, q) = 1 , or p = 2 , or q = 2 , or (p, q) = (3, 3) . (2.17)

By plugging these results into (2.5) and (2.6) it is easy to check that either ri = 1 or gi = 0 for

all i and so there is no 1-form symmetry. Alternatively one can, say, consult table 1 in [16].

Therefore, our main claim is true in these theories (as discussed above, this statement is

somewhat trivial given the fact that all (Ap−1, Aq−1) SCFTs have no 1-form symmetry, even

if they are not isolated).

Next let us consider the (Ap−1, Dq+1) SCFTs. This time, from table 1, we see that the

Q’s are given by

Q =
k

p
+

l

q
, k = 0, · · · , p− 2, l = 0, · · · , q − 1 ,

Q =
k

p
+

q − 1

2q
, k = 0, · · · , p− 2 (2.18)

Let us consider the first case (which arises from terms independent of u). The equation we

want to study is

1 =
k

p
+

l

q
, k = 0, · · · , p− 2 , l = 0 , · · · , q − 1 . (2.19)

This equation is almost identical to (2.14), except for the range of l. Therefore, it has no

solution if and only if (note we consider q ≥ 3 here)

gcd(p, q) = 1 , or p = 2 . (2.20)

This is a necessary condition for having an isolated SCFT. To find a sufficient condition, we

must also consider the second equation in (2.18) with Q = 1, namely

2k

p
=

q + 1

q
, k = 0, · · · , p− 2 , (2.21)

10



which arises from u-dependent deformations. For gcd(p, q) = 1 this equation obviously has

no solution. Moreover, for p = 2, it also has no solution because (q + 1)/q is not an integer

for q ≥ 3.

Therefore we conclude that the isolated SCFTs of type (Ap−1, Dq+1) are given by (see also

the recent results in [39])

gcd(p, q) = 1, or p = 2 . (2.22)

Using (2.5) and (2.6) it is again easy to check that these isolated theories have no 1-form

symmetry. Alternatively, one can again consult table 1 of [16] to verify this statement. This

result is somewhat more non-trivial, since there are non-isolated (Ap−1, Dq+1) SCFTs with

1-form symmetry (see [15–17]). Our discussion suggests this 1-form symmetry might arise

from a conformal gauge group.

Let us now move on to the (Dp+1, Dq+1) SCFTs. From table 1, the set of Q’s are given

by

Q =
k

p
+

l

q
, k = 0, · · · , p− 1, l = 0, · · · , q − 1

Q =
k

p
+

q − 1

2q
, k = 0, · · · , p− 1

Q =
l

q
+

p− 1

2p
, l = 0, · · · , q − 1

Q =
p− 1

2p
+

q − 1

2q
. (2.23)

Much as before, absence of a solution to setting the first set of Q’s to one is equivalent to

requiring

gcd(p, q) = 1 . (2.24)

This is a necessary condition for having an isolated SCFT. To see it is also sufficient, note

that it immediately implies that none of the remaining three sets of Q’s in (2.23) can equal

one.

Therefore, we conclude that the isolated SCFTs of type (Dp+1, Dq+1) are given by

gcd(p, q) = 1 . (2.25)

It is again easy to check that (2.5) and (2.6) imply that the 1-form symmetry is trivial in

these cases. As before, one may also verify this statement by consulting table 1 of [16]. Note

that non-isolated (Dp+1, Dq+1) theories can, in general, have non-trivial 1-form symmetry.
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Let us move on to the exceptional cases. In particular, consider (Ap−1, E6). In this case,

table 1 implies that

Q =
k

p
+

l

3
+

h

4
, k = 0 , · · · , p− 2 , l = 0, 1 , h = 0, 1, 2 . (2.26)

Setting Q = 1 is equivalent to

0 = 1−k/p , 2/3−k/p , 3/4−k/p , 1/2−k/p , 5/12−k/p , 1/6−k/p .

(2.27)

Obviously, when 2 and 3 are coprime to p, the above equation has no solution. But we also

need to take into account the range of k. It is not difficult to find that a sufficient and

necessary condition for isolated (Ap−1, E6) SCFTs is

gcd(2, p) = gcd(3, p) = 1 , or p = 2 , or p = 3 . (2.28)

Equivalently, this condition can be written as

p = 2 , or p = 3 , or p = 6k ± 1 , k = 1, 2, 3, · · · . (2.29)

Either by consulting table 1 of [16] or explicitly checking (2.5) and (2.6), it is easy to see that

these isolated SCFTs have no 1-form symmetry. Again, non-isolated theories in this class

can have 1-form symmetry.

Next we check (Ap−1, E7). From table 1 we read off the monomial weights

Q =
k

p
+

l

3
+
2h

9
, k = 0 , · · ·p−2 , h, l = 0, 1, 2 , l+h ≤ 2 or l = 2, h = 1 . (2.30)

An analysis similar to the one in the previous case leads to the following necessary and

sufficient condition for isolated SCFTs:

gcd(3, p) = 1 . (2.31)

It is again easy to check that (2.5) and (2.6) imply that the 1-form symmetry is trivial in

these cases. As before, one may also verify this statement by consulting table 1 of [16]. Note

that non-isolated (Ap−1, E7) theories can, in general, have non-trivial 1-form symmetry.

Let us move on to (Ap−1, E8). From table 1 we read off the monomial weights

Q =
k

p
+

l

3
+

h

5
, k = 0 , · · · p− 2 , l = 0, 1 , h = 0, 1, 2, 3 . (2.32)

Analogously to the (Ap−1, E6) case, the isolated SCFTs in this class are given by

gcd(3, p) = gcd(5, p) = 1 , or p = 3 . (2.33)

12



Yet again we can use (2.5) and (2.6) to check that these theories have no 1-form symmetry.

Equivalently, we may verify this statement by consulting table 1 of [16]. Note that non-

isolated (Ap−1, E8) theories can, in general, have non-trivial 1-form symmetry.

Next we discuss the (Dp+1, E6) SCFTs. From table 1 we need to study solutions of

1 = Q =
k

p
+

l

3
+

h

4
, k = 0 , · · · p− 1 ,

p− 1

2
, l = 0, 1 , h = 0, 1, 2 , (2.34)

where k = (p − 1)/2 is for the case in which x appears in the deformation. To be isolated,

we have the necessary and sufficient condition

gcd(2, p) = 1 , gcd(3, p) = 1 , (2.35)

where the p = 2 or p = 3 option in the (Ap−1, E6) case no longer exists here due to the larger

range of k. Again, we an check using either (2.5) and (2.6) or table 1 of [16] that such theories

have no 1-form symmetries. This is again in contrast to the general exactly marginal case

where such 1-form symmetries are allowed.

Now we move on to the (Dp+1, E7) SCFTs. From table 1 we need to study solutions of

1 = Q =
k

p
+

l

3
+

2h

9
, k = 0, · · · , p− 1 ,

p− 1

2
, l, h = 0, 1, 2 , l + h ≤ 2 or l = 2 , h = 1 .

(2.36)

Similarly to the (Ap−1, E7) case, the condition of being isolated is given by

gcd(3, p) = 1 . (2.37)

As in the previous examples, using either (2.5) and (2.6) or table 1 of [16] shows that such

theories have no 1-form symmetries. This is again in contrast to the general exactly marginal

case where such 1-form symmetries are allowed.

Let us now discuss the (Dp+1, E8) SCFTs. From table 1, we need to study solutions of

1 = Q =
k

p
+

l

3
+

h

5
, k = 0, · · · p− 1,

p− 1

2
, l = 0, 1 , h = 0, 1, 2, 3 . (2.38)

To be isolated, a sufficient and necessary condition is

gcd(3, p) = gcd(5, p) = 1 . (2.39)

The p = 3 option in the (Ap−1, E8) case is absent here due to the larger range of k. As in

the previous examples, using either (2.5) and (2.6) or table 1 of [16] shows that such theories

have no 1-form symmetries. This is again in contrast to the general exactly marginal case

where such 1-form symmetries are allowed.

13



Finally, we come to the (En, Em) cases. For these 6 types, we note that
{
1

3
,
1

2

}
⊂ QE6

,

{
1

3
,
2

3

}
⊂ QE7

,

{
1

3
,
2

5
,
3

5

}
⊂ QE8

, (2.40)

Since Q(En,Em) = QEn
+ QEm

, obviously (E7, E6,7,8), (E6, E6), and (E8, E8) are not isolated.

On the other hand, one can verify that the isolated set is given by

(n,m) = (6, 8) ≃ (8, 6) . (2.41)

From (2.5) and (2.6) or table 1 of [16], we see that such theories have no 1-form symmetries.

In fact, since the (En, Em) theories more generally cannot have 1-form symmetry, this result

is somewhat trivial.

Therefore, we see that all isolated (as N = 2 SCFTs) (g, g′) theories have no 1-form

symmetry. This establishes our main claim in this subset of the theories. In the next

section, we explain how this statement fits into a similar result for type I IHS theories in

the nomenclature of [19] (or the related S×4
1,1 LG theories in [20]). We also discuss certain

facts about 1-form symmetries in a subclass of type I IHS theories with exactly marginal

deformations and relate these results to ones discussed in [15, 17, 40, 41]. These conformal

manifolds all have known gauge coupling interpretations, which gives us an opportunity to

discuss certain global properties of the corresponding matter sectors (this type of analysis

will be relevant when discussing a particular N = 3 theory in section 4). In the appendix we

consider the remaining IHS theories discussed in [17, 19, 20] and complete the general proof

of our main claim.

2.1.1. More general type I theories

In this section, we briefly discuss how some of the (g, g′) theories fit into the classification

scheme of [17–20] and explain phenomena associated with some of the non-isolated theories

that will be useful later. To that end, note that the (Ap−1, Aq−1), (D4, Ak−1), (E6, Ak−1), and

(E8, Ak−1) SCFTs can all be written in the following form

W (x, y, u, v) = xa + yb + uc + vd , (2.42)

with a, b, c, and d as in table 2.15

More generally, [19] classified so-called type I theories that come from singularities of the

form in (2.42). Requiring that the singularity is at finite distance in moduli space yields the

15For the case of (D4, Ak−1), we use a change of variables to bring it to this form.
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(a, b, c, d) other name

(2, 2, p, q) (Ap−1, Aq−1)

(2, 3, 3, k) (D4, Ak−1)

(2, 3, 4, k) (E6, Ak−1)

(2, 3, 5, k) (E8, Ak−1)

(3, 3, 3, k) (3, k)

(2, 4, 4, k) (4, k)

(2, 3, 6, k) (6, k)

Table 2: The various infinite sequences of type I singularities. Here the entries of the four-

component vector in the left-hand column represent, respectively, the different powers of x,

y, u, and v in (2.42). Each set of solutions leads to an isolated singularity at a finite distance

in moduli space [18, 19]. The first four entries are of the (g, g′) type indicated in the second

column. The (3, k), (4, k), and (6, k) theories are studied in [15,17,40,41] (we use the notation

of [41]). There is some overlap between the different theories (e.g., (D4, A2) ≃ (3, 2)). There

are also a finite set of additional sporadic type I singularities and corresponding theories.

This table is adapted from [19].

seven infinite sequences of singularities in table 2 in addition to a finite collection of sporadic

solutions. We have checked that the sporadic solutions satisfy our main claim.

The three remaining classes of solutions are studied in [15, 17, 40, 41] and are called the

(3, k), (4, k) and (6, k) theories (here we use the nomenclature of [41]). These theories all

have exactly marginal gauge couplings and so our main claim does not apply to them. Still

it is interesting to investigate some of these theories further for reasons that will become

apparent in section 4.

In particular, the (3, k) theories consist of an exactly marginal diagonal su(k) gauging

of a collection of three D3(SU(k)) theories (these latter theories are defined in [24]). For

gcd(3, k) = 1, the D3(SU(k)) matter sectors are isolated N = 2 theories. The resulting IHSs

take the form

W (x, y, u, v) = x3 + y3 + u3 + vk . (2.43)

From these equations, it is easy to check that the finite part of (2.1) is Z2
k ⊂ D(1) in the

case of gcd(3, k) = 1. In particular, the 1-form symmetry can be fixed by picking a maximal

isotropic sub-group.

That this result is exactly the same as for su(k) N = 4 super Yang-Mills (SYM) does
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not seem to be a coincidence. For example, let us take k = 2. The (3, 2) theory has been

studied in detail in [41]. There it was shown that a subset of the local operator content (i.e.,

the Schur sector) is in one-to-one correspondence (via a special map) with the Schur sector

of su(2) N = 4 SYM.

Moreover, just as the adjoint hypermultiplet matter of SU(2)N = 4 SYM ensures that the

Z2 one-form symmetry is unbroken, we can argue the same is true for the D3(SU(2)) matter

in the (3, 2) SCFT with gauge group SU(2). In particular, we claim that none of the local

operators (even unprotected operators in long multiplets) of the D3(SU(2)) theory transform

under the center of SU(2). Therefore, the flavor symmetry of this theory is SO(3) (see [42,43]

for related recent discussions in other classes of theories from a different perspective).16

To understand this statement, let us define D3(SU(2)) in the way it was first constructed

in [14]: as the maximally singular point on the Coulomb branch of SU(2) N = 2 SQCD

with Nf = 2. In this case, the UV matter hypermultiplets can be written as Qa
i ⊕ Q̃j

b,

where i, j = 1, 2 are color indices and a, b = 1, 2 are su(2) flavor indices. The remaining

SQCD degrees of freedom (in the N = 2 vector multiplet) do not transform under the flavor

symmetry. In terms of these variables, the IR flavor symmetry of the D3(SU(2)) theory

is already manifest in the UV. Now, it is easy to show that there are no UV operators

transforming in odd-spin representations of the flavor su(2). Indeed, all gauge-invariant

operators transforming under flavor must have an even number of hypermultiplet fields. Since

this flavor symmetry is not anomalous, we see that the IR D3(SU(2)) theory has no local

operators tranforming in the center of SU(2) (i.e., the flavor symmetry group is SO(3)). In

particular, this logic implies that if we choose an SU(2) gauge group for the (3, 2) theory,

the Z2 1-form symmetry corresponding to the center is preserved.

We will return to a similar discussion in a different non-Lagrangian theory in section 4.

In any case, we see that (modulo explicit checks we have done in the case of sporadic theories

and have not discussed here), our claim 1 in the introduction is true for type I IHS theories.

In the appendix, we deal with the remaining cases and complete the proof of our main claim.

In the next section we introduce some broader results that apply to certain theories we have

just discussed and are also helpful in the proof of our main claim for more general theories

appearing in the appendix.

16This statement is compatible with the 2D chiral algebra related to the theory via the general corre-

spondence in [2]: it is generated by the su(2) moment map [44]. This statement is also consistent with the

dimensional reduction: the 3D theory is U(1) with Nf = 2 and has a manifest SO(3) global symmetry [45].
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3. Useful results beyond (g, g′) and type I

Recall from the introduction that our 4D N = 2 SCFTs are related to 2D LG models via

the correspondence in [1]. In particular, these latter theories are described by 2D chiral

superfields x, y, u, and v with superpotential given by the W describing our IHS.

From this perspective, it is intuitively clear that if W ⊃ XiXj , where Xi,j ∈ {x, y, u, v}

are distinct and satisfy qi+qj = 1, the theory and symmetry content should simplify (e.g., we

expect a simpler Seiberg-Witten description). Indeed, from the 2D perspective we can then

integrate out two of the four fields describing our theory without changing any of the scaling

dimensions of operators (similar comments apply if W admits a deformation δW = λXiXj

preserving the U(1)R symmetry).

It turns out this intuition is correct, in the sense that the 1-form symmetry content of

such a theory is trivial:

Lemma: If the sum of any two weights equals one, then the 1-form symmetry is trivial.

Proof: Without loss of generality, we can assume that

~q =

(
V1

U1

,
V2

U2

,
V3

U3

,
U3 − V3

U3

)
. (3.1)

This weight vector is irreducible as long as gcd(Vi, Ui) = 1. In particular, the last fractional

number is irreducible.

Applying the formula (2.5), (2.6) directly, one finds

r3 = r4 = 1, 2g1 = −1 +
1

V2
, 2g2 = −1 +

1

V1
. (3.2)

Obviously g1, g2 ≤ 0. This statement implies that the 1-form symmetry is always trivial. �

This claim is independent of any IHS SCFT classification. Of course, not all IHS theories

satisfy the conditions of the lemma.17 However, we will see that in large classes of seemingly

complicated theories considered in the appendix, SCFTs that do not satisfy this lemma also

have an exactly marginal deformation. This fact will lead to many simplifications.

More generally, any IHS theory either satisfies the conditions of the lemma or else admits

a relevant mass deformation of the form δW = mXiXj . Indeed, suppose qXi
+ qXj

> 1.

Without loss of generality, we can assume qXi
> 1/2. Then, from the argument of lemma 2.5

17Examples of theories satisfying this lemma include the (Ap−1, Aq−1) SCFTs. In particular, the lemma

gives a simple proof that these theories have trivial 1-form symmetry (even when there is an exactly marginal

deformation).
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of [20], there must be a field Xk with qXi
+qXk

= 1 (otherwise W will not describe an isolated

singularity). On the other hand, if qXi
+ qXj

< 1, the deformation δW = mXiXj is relevant

and initiates an RG flow. The end point of this RG flow will be a W corresponding to an

SCFT with trivial 1-form symmetry (although there will typically be other sources of 1-form

symmetry in the IR; for example, we will generically have various decoupled U(1) factors).

Another simple consequence of the above lemma is the following claim that will be useful

later and is entirely independent of any classification of IHS theories:

Claim 2: Any IHS theory with at most two different weights has trivial 1-form symmetry or

else admits a conformal manifold.

Proof: See appendix A. �

4. Comments on 1-form symmetries in more general isolated N ≥ 2 SCFTs

In this section, we briefly discuss 1-form symmetries in more general isolated 4D N ≥ 2

SCFTs. We leave a more detailed accounting for later work.

Let us start with the maximal amount of SUSY: N = 4 SCFTs. These theories may or

may not have 1-form symmetry (e.g., g2 N = 4 SYM does not have 1-form symmetry, but

su(N) does). However, if we assume locality, then N = 4 SCFTs are never isolated, since

the energy-momentum tensor is in the same multiplet with an exactly marginal deformation.

As a result, our claim has nothing to say about local N = 4 theories.18

Next let us discuss N = 3 theories. On general grounds, these theories are isolated as

N ≥ 2 SCFTs [31]. However, they may be non-isolated as N = 1 SCFTs.

In fact, from the N = 1 Lagrangian conformal manifold construction in [30], one can

argue that a c = 5/4 rank-one N = 3 theory (related to the G(3, 1, 1) complex reflection

group in the language of [29]) has trivial one-form symmetry.

On the other hand, the proposed N = 1 conformal manifold for the N = 3 rank-three

theory related to the G(3, 3, 3) complex reflection group has Z3 one-form symmetry [30]. This

statement follows from the fact that the N = 1 theory involves gauging a diagonal SU(3)3 ⊂

E6 flavor subgroup of the E6 MN theory along with some additional chiral superfields that are

manifestly invariant under the diagonal Z3 center. To check whether the strongly interacting

18We expect non-local N = 4 theories to be quite constrained in their structure. For example, it seems

unlikely that we can engineer them as boundaries of 5D QFTs, since Nahm’s classification [46] forbids bulk

SCFTs with sufficiently many supercharges. Similar comments apply if we try to engineer non-local N = 4

theories on defects in D ≥ 5 dimensional QFTs.
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E6 MN sector is invariant under this diagonal center is not too difficult. Indeed, since the

fundamental of E6 decomposes as 27 = (3, 3̄, 1) ⊕ (3̄, 1, 3) ⊕ (1, 3, 3̄), no local operator in

the E6 MN theory is charged under the diagonal Z3 center (this agrees also with discussions

in [26,42]).19 This conclusion on the local operator spectrum is reminiscent of our discussion

for the D3(SU(2)) matter sector of the (3, 2) SCFT in the previous section (although the

argument here is purely group theoretical while our argument in the previous section involved

invoking an RG flow).

As a result, if the G(3, 3, 3) SCFT indeed lies on this N = 1 conformal manifold, it would

likely be an example of an N = 3 theory with a non-trivial one-form symmetry. Clearly, it is

worth answering this question definitively (perhaps by a computation in the associated chiral

algebra).

Finally, it might be that some of the N = 3 theories that can be engineered by gaug-

ing certain discrete su(N) N = 4 SYM 0-form symmetries may potentially have non-trivial

1-form symmetry (whether such 1-form symmetry is inherited or not would clearly be inter-

esting to check). If these theories possess 1-form symmetry, then one might be able to argue

that isolated N ≥ 2 theories have 1-form symmetry only if they have a gauge theory origin

(i.e., via flowing from a gauge theory and/or discrete gauging of global symmetries of a gauge

theory). Of course, this seems like a very expansive class of theories.

Next let us focus on other constructions of N = 2 theories. In particular, let us briefly

discuss how some of the class S results of [26,28] fit in with our discussion. Of the theories we

have checked in these references, all have trivial one-form symmetry when they are isolated.

For example, consider (4.6) of [28], which describes the abelian group of line operators, L,

(including mutually non-local lines) of the (2, 0) theory compactified on a genus g surface

with n regular twisted punctures

L ≃ Z
g
2 × Z

g
2 . (4.1)

Since L is trivial for g = 0, we require g > 0 in order to have 1-form symmetry. Having

non-trivial genus leads in turn to a theory with an exactly marginal gauge coupling.

Somewhat more generally, consider (4.21) in [28]

L ≃
k−1∏

i=1

LA
i,i+1 ×

k−1∏

i=1

LB
i × Ẑg

A × Ẑg
B . (4.2)

This expression corresponds to L for the case of the (2, 0) theory compactified on a Riemann

surface of genus g with n regular twisted punctures and 2k Z2-twisted regular punctures. In

19We thank G. Zafrir for this argument.
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order for L to be non-trivial, we require that g > 1 or k > 1. If g > 1, then the theory is not

an isolated N = 2 SCFT. On the other hand, if g = 0 and k > 1, then the theory again has

an exactly marginal gauge coupling. Therefore, these theories seem to be compatible with a

generalization of our claim on isolated IHS N = 2 SCFTs.

Finally, we come to a set of theories that flow to the (Ak−1, G) theories we have studied

in section 2.1. In particular, there are well-known RG flows of the following type [47, 48]20

Dh∨

k (G) ≃ Dk(G) → (Ak−1, G) ≃ Gh∨

(k) , (4.3)

where Dk(G) are 4D N = 2 SCFTs with (at least) G ∈ {An, Dn, En} global symmetry defined

in [24], h∨ is the dual Coxeter number, and Dh∨

k (G), Gh∨

(k) are alternate names for the UV

and IR theories that will connect with further generalizations we will discuss.

As emphasized in [48,49], the UV Dk(G) theory has a type IIB string theory realization in

terms of the same IHS singularity as the IR (Ak−1, G) SCFT provided we embed the former

in C∗ × C3

WGh∨ (k)(x, y, u, v) := WAk−1
(x, y) +WG(u, v) , G ∈ {An, Dn, En} ,

WDh∨

k
(G)(x, t, u, v) := WAk−1

(x, t) +WG(u, v) , t = ey ∈ C∗ , (4.4)

where t 6= 0 and x, y, u, v ∈ C. In terms of these variables, we have

ΩGh∨ (k) =
dx ∧ dy ∧ du ∧ dv

dW
, ΩDh∨

k
(G) =

dx ∧ dt ∧ du ∧ dv

tdW
. (4.5)

It is natural to ask if the UV theories in (4.3) obey our main claim as well. We will shortly

see that the answer is yes, provided we can identify the UV and IR 1-form symmetries.21 The

reason is that the UV and IR Milnor rings are closely related:

RGh∨ (k) := C[x, y, u, v]/〈∂xW, ∂yW, ∂uW, ∂vW 〉 ,

RDh∨

k
(G) := C[x, t, u, v]/〈∂xW, t∂tW, ∂uW, ∂vW 〉 . (4.6)

In particular, we see that the UV Milnor ring is larger than the IR Milnor ring since, in

essence, we take ∂yW → t∂tW . Said differently, monomials involving tk−1 are non-trivial

20Here we drop decoupled matter fields.
21Note that under the RG flow (4.3), the UV and IR ranks are the same, so there is no possibility of

decoupled free U(1)’s and accidental continuous IR 1-form symmetry. This statement means that (up to

caveats we omit) one can reasonably guess that the UV and IR 1-form symmetries match. This guess is

confirmed by the BPS quiver computations in [25] for all the many cases that were checked.
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in the UV, while monomials involving yk−1 are trivial in the IR. Hence, we can canonically

identify the IR ring with the UV subring involving monomials with tβ and β < k − 1.22

While the scaling dimensions of the UV coordinates differ from those of the IR (this fact

follows from demanding that the different Ω in (4.5) have scaling dimension one), the weight

vectors, ~q, are the same. Therefore, we see that if the UV theory lacks a marginal deformation

(i.e., a parameter, λ, with weight zero), then so too does the IR theory.23 Assuming we

can equate the UV and IR 1-form symmetry (see footnote 21 for evidence in favor of this

hypothesis for general Dk(G) and conclusive proof in certain cases), we see that our UV

theories can have 1-form symmetry only if they have conformal manifolds. Therefore, we

strongly suspect that the Dk(G) theories satisfy our main claim as well, even though they

are related to singularities embedded in a different ambient space.24

More generally, we have flows of the form [48]

Db
k(G) → Gb(k) , (4.7)

where we can have b 6= h∨, and Gb(k) is in our class of SCFTs. We may use similar logic to

that used for b = h∨ to conclude that, if we can equate the UV and IR 1-form symmetries

(as assumed in [25] and as hinted at by the agreement of the UV and IR ranks), the Db
k(G)

theories have 1-form symmetry only if they are part of a conformal manifold.

Furthermore, if one can identify 1-form symmetry in certain more general flows between

theories related to IHSs embedded in C∗ × C3 and those related to IHSs embedded in C4,

then we expect the above comments to generalize.

22As a concrete example, consider the Maruyoshi-Song flow (see also [50]) D4
2(SU(4)) → A4

3(2) (where

the UV is N = 2 SU(2) SQCD with Nf = 4, and the IR is the (A1, A3) SCFT). The UV theory admits six

deformations (four related to mass parameters, one related to the dimension two Coulomb branch vev, and

one related to the gauge coupling) while the IR theory admits three deformations (one related to the SU(2)

mass parameter, one related to the dimension 4/3 vev, and one related to the corresponding dimension 2/3

coupling). The UV deformations λ0, λ1v, and λ2v
2 can be identified with the three IR deformations (though

they are related to UV mass parameters!), while λ̃0t, λ̃1vt, and λ̃2v
2t are set to zero in the IR Milnor ring

(after substituting t → y).
23Note that the converse does not hold. Indeed, see the example in footnote 22. The issue is that UV

deformations may trivialize in the IR.
24Note that some Dp(G) theories can be realized via (different) IHSs embedded in either ambient space.

For example, D3(SU(2)) also has a realization as (A1, A3) ≃ A4
3(2). This subset of Dp(G) theories is, of

course, directly subject to our main claim.
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5. Some rigorous bounds and a (less rigorous) conjecture

In this section, we first establish a simple but useful claim showing that theories with
∑

i qi >

3/2 are isolated SCFTs. From this result and claim 1, it follows that theories with
∑

i qi > 3/2

have no 1-form symmetry. Using these results we suggest a few conjectures for more general

4D N = 2 SCFTs.

Claim 3: IHS theories with
∑

i qi > 3/2 are isolated 4D N = 2 SCFTs.25

Proof: We give two proofs of this statement. The first follows from unitarity bounds in the

(possibly trivial!) (2, 2) 2D SCFT that the LG model with superpotential W flows to.26 The

second proof follows from an analysis of the Poincaré polynomial.

Let us consider the proof by unitarity bounds first. To that end, take an IHS 4D N = 2

SCFT described by W (x, y, u, v) = 0. The corresponding LG model with chiral superfields

x, y, u, v and superpotential W will flow to some (possibly trivial) (2, 2) SCFT in the IR.

In this IR SCFT, unitarity bounds require that (2, 2) chiral operators have left scaling

dimension (e.g., see [51])27

h ≤
c2d
6

, (5.1)

where c2d is the 2D central charge. Using the fact that c2d = 3ĉ = 6(2 −
∑

i qi) via the

correspondence in [1] and the fact that the superconformal R-charge for a chiral operator

satisfies Q = 2h, we see that

Q ≤ 2

(
2−

∑

i

qi

)
. (5.2)

In particular, if
∑

i qi > 3/2, we are done since all chiral operators have Q < 1 and therefore

cannot give rise to exactly marginal deformations.

Alternate proof: We can arrive at the same result by considering the Poincaré polynomial

introduced in (2.10). In particular, the weights appearing in (2.10) are bounded [19]

0 ≤ Q ≤ 4− 2
∑

i

qi . (5.3)

Therefore, if
∑

i qi > 3/2, we see that Q < 1, and the SCFT is isolated. �

Combining this result with the proof of our main claim (see the appendix), we have that

25Again, we allow for the possibility that they are special points on an N = 1 conformal manifold.
26We thank Z. Komargodski for bringing these bounds to our attention in an unrelated context.
27If the IR SCFT is trivial, c2d = 0, and all chiral operators have h = 0. This is consistent with the

statement that the 2D theory is trivial.
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Corollary 1: IHS theories with
∑

i qi > 3/2 have no 1-form symmetry. Equivalently, IHS

theories with all N = 2 chiral ring generators (i.e., Coulomb branch chiral ring generators)

having scaling dimension less than two have trivial 1-form symmetry.

This corollary follows from our main claim, but we can also prove it directly:

Direct proof: First, we should require all qi ≤ 1/2 in order to have a hope of finding non-

trivial 1-form symmetry.28 Then, if there are two or more weights equal to 1/2, the 1-form

symmetry is still trivial because 1/2 + 1/2 = 1.

Without loss of generality, consider the case that q4 = 1/2 with all other qi < 1/2. Clearly,

we should have q1 + q2 + q3 > 1 in order for
∑

i qi > 3/2. As a result, at least one of the

weights, say q1, should be bigger than 1/3 (i.e., 1/2 > q1 > 1/3). Lemma 2.8 of [20] then

implies that, say, q2 = 1 − 2q1. As a result, 1/2 > q3 > 1/3.29 The same argument again

implies that there must be an i such that qi = 1− 2q3 < 1/3. Only q2 < 1/3, but q3 > q1, so

this is impossible. Therefore, we need to have all qi < 1/2.

If no weight is bigger than 1/3, namely all qi ≤ 1/3, then
∑

i qi ≤ 4/3 < 3/2, violating

the assumption.

If there are at least two weights 1/2 > q1, q2 > 1/3, then, without loss of generality, we

should have q3 = 1− 2q1 < 1/3 and q4 = 1− 2q2 < 1/3 according to lemma 2.8 of [20]. Thus

we have
∑

i qi = 2− q1 − q2 < 2− 2/3 < 3/2, again violating the assumption.

Thus we only need to consider the case where there is just one weight bigger than 1/3.

Let us assume that 1/2 > q1 > 1/3 and q2,3,4 < 1/3. Then we must have q2 = 1− 2q1. Thus

q1+ q2 = 1−q1 < 2/3. To have
∑

qi > 3/2, we have, without loss of generality, q3+ q4 > 5/6.

This is in contradiction with the assumption q3, q4 < 1/3. �

Assuming the discussion in [32] applies to our theories of interest we can rephrase the above

corollary in terms of bounds on a and c. To understand this statement, we substitute
∑

i qi >

3/2 into (4.5) and (4.6) of [33] to obtain

c <
1

6
(3r + f) , a <

11

24
r +

4r + 2f

24
=

15r + 2f

24
, (5.4)

where r is the complex Coulomb branch dimension of our SCFT (i.e., the rank of the theory),

and f is the rank of its continuous 0-form flavor symmetry.

28If there is a j such that qj > 1/2, then lemma 2.5 of [20] implies there is a k such that qk = 1− qj . The

1-form symmetry is trivial by the lemma in section 3.
29More explicitly, substituting q2 = 1 − 2q1 into q1 + q2 + q3 > 1 shows that q3 > q1. Therefore,

1/2 > q3 > 1/3.
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One may wonder how robust (5.4) is. For example, recall that for theories arising from

gauging a discrete 0-form symmetry in a parent SCFT, the formalism of [32] need not apply

[29,52]. However, we do not expect discrete gauging to increase r or f . Moreover, the central

charges are unaffected. Now, if we start from a parent theory that has 1-form symmetry and

therefore does not obey (5.4), the daughter theory will not obey (5.4) either. As a result, we

believe that for theories satisfying (5.4), the one-form symmetry is indeed trivial.30

How general can we make the above statements? One reasonable conjecture is as follows:

Conjecture: Interacting 4D N = 2 SCFTs with all N = 2 chiral ring generators (i.e.,

Coulomb branch chiral ring generators) of scaling dimension less than two have trivial 1-form

symmetry.

We have assembled some evidence for this conjecture. Indeed, it is satisfied by theories related

to IHSs embedded in C4 (we have also seen evidence that this statement extends to more

general ambient spaces).31 Moreover, typical class S theories (with regular punctures) involve

at least some N = 2 chiral ring generators with scaling dimensions ∆ ≥ 3 and therefore

satisfy the conjecture trivially. Finally, N = 3 SCFTs (and, in particular, the potentially

troublesome G(3, 3, 3) theory discussed in section 4) satisfy this conjecture trivially as well.

Indeed, all Coulomb branch operators in these theories have ∆ ≥ 3.32 The fact that N = 3

theories—and particularly those related to N = 4 SCFTs via discrete gauging—satisfy this

constraint is important. Indeed, this statement implies that the fate of the conjecture does not

depend on what happens to any N = 4 1-form symmetries in the discrete 0-form symmetry

gauging process (i.e., on whether there are mixed 0-form / 1-form ’t Hooft anomalies).

In the case of IHS theories (and any discrete gaugings thereof), we have seen that the

central charge bounds (5.4) also imply trivial 1-form symmetry. It would be interesting to

understand if this statement is more universally true in the space of interacting 4D N = 2

SCFTs.

Finally, let us conclude with a discussion of other possible bounds and their implications

30Since our theories are strongly coupled, it is natural to give a more universal criterion for when the

analysis in [32] applies. We are agnostic on this point, but one interesting possibility, following the discussion

in [29], is that the correct criterion is the absence of 2-form symmetry (and that gauging this 2-form symmetry

takes us back to the parent theory where [32] applies).
31More explicitly, here we have [O] = 2(1 − Q)/(2 − ĉ) < 2 for Coulomb branch operator O as ĉ =

4− 2
∑

i qi < 1 and 0 < Q ≤ ĉ < 1.
32This statement follows from the fact that Coulomb branch operators in N = 3 theories have integer

dimension [53]. Since these operators cannot have dimension one (this would correspond to a free decoupled

vector multiplet) or two (N = 3 theories are isolated as N = 2 SCFTs), we have ∆ ≥ 3.

24



for 1-form symmetry. For example, it may well be true that, for sufficiently small a or

c (independently of the rank and flavor symmetry of the theory), interacting 4D N = 2

SCFTs do not have 1-form symmetry. Indeed, we know from [54] that for interacting theories

c ≥ 11/30 and that this value of the central charge is saturated by the (A1, A2) SCFT. We

know this AD theory has trivial 1-form symmetry. Therefore, if one can show that (A1, A2)

is the unique lowest c theory, we have the somewhat trivial result that for sufficiently small

c (i.e., c = 11/30), interacting SCFTs have no 1-form symmetry.

On the other hand, we do not expect an absolute a or c bound on 1-form symmetry to

be much larger than 11/30. Indeed, su(2) N = 4 SYM has a Z2 1-form symmetry and

has a = c = 3/4. Still, it would be interesting to use a version of the bootstrap including

extended operators and prove from first principles that interacting theories with a, c < 3/4

have no 1-form symmetry (or else to find a counterexample).

6. Conclusions

We have argued that 4D N = 2 SCFTs arising from type IIB string theory on IHSs have

1-form symmetry only if they also have an exactly marginal deformation (see the appendix

for the bulk of the proof). We saw some evidence that this behavior extends to certain

other classes of N ≥ 2 theories, but there are some potential obstructions for the G(3, 3, 3)

N = 3 theory. It would be interesting to understand whether this N = 3 theory has 1-form

symmetry or not. If one could indeed prove that it has 1-form symmetry, then one possibility

might be that our main claim applies to N = 2 theories subject to the 4D/2D correspondence

in [1] and that the N = 3 theory in question does not fall into this class (one consequence of

our results here is that this theory would not have a realization as an IHS theory).33

In section 5 we saw that by focusing on theories with all N = 2 chiral ring generators of

dimension less than two we could formulate a conjecture for interacting SCFTs having no 1-

form symmetry that is compatible with all the data we are aware of (including being trivially

satisfied by theories for which we are not able to explicitly compute the 1-form symmetry).

Moreover, we argued that for IHS theories, this statement could be reformulated in terms of

bounds on a and c (it would be interesting to understand if this is true more generally).

In addition to trying to prove (or disprove) the conjecture, there is much work to be done.

For example, it would be interesting to explore what happens with less (or no) supersymmetry

33Perhaps ideas related to those in [21] will be relevant for demonstrating this claim. In addition, perhaps

one can make contact with the discussion in [55].
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or to understand if constraints discussed in [11] and [56] are relevant here.
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Appendix A. Theories with at most two different weights

In this section we consider SCFTs with at most two distinct qi and prove claim 2 in section

3. While these theories are also covered by the proof we give in section 2.1 and appendix

B, our result here is entirely independent of any IHS classification. Therefore, we consider it

worthwhile to exhibit this proof independently. Moreover, we will see that this result has its

uses in appendix B.

To that end, without loss of generality, we may take qx ≥ qy ≥ qu ≥ qv. Let us first

discuss the case where all qi = q. Then all Ui = U and so, from (2.5), we have that ri = 1

for all i and the 1-form symmetry is trivial.

Next let us consider the situation in which there are two different weights. This scenario

breaks up into various cases:

Case 1 (qx > qy = qu = qv = q): We have qx = Nq for N > 1. Let us define q := V/U and

qx := Vx/Ux (where all fractions are reduced).

First, suppose that N ∈ Z. It then follows that U = pUx for some integer p ≥ 1 and so

gcd(U, Ux) = Ux. As a result, applying (2.5) yields

ry = ru = rv =
U

gcd(U, U, U, Ux)
·
gcd(U, Ux, U) gcd(U, U, Ux) gcd(U, U, U)

gcd(U, Ux) gcd(U, U) gcd(U, U)
= 1 ,

rx =
Ux

gcd(U, U, U, Ux)
·
gcd(Ux, U, U) gcd(Ux, U, U) gcd(Ux, U, U)

gcd(Ux, U) gcd(Ux, U) gcd(Ux, U)
= 1 , (A.1)

and so the 1-form symmetry is trivial.

Let us now consider N 6∈ Z.34 An upper bound on the number of independent constraints

on marginal (i.e., Q = 1) terms arises from considering35

0 = {∂yW, ∂uW, ∂vW} × {y, u, v} , 0 = x∂xW . (A.2)

This amounts to at most ten constraints. How many marginal terms can we generate? Let

us first recall that any variable appearing in W must be a root or a pointer [20, 57].36

Suppose first that x is a root so that xNx ⊂ W . Let us also suppose that xN ′

xya is marginal

for some value of the exponents. Then

N ′
xqx + aq = 1 ⇒ q =

1

a
(Nxqx −N ′

xqx) =
1

a
(Nx −N ′

x)qx < qx . (A.3)

34In this case, we can have gcd(U,Ux) = 1. Then we would find ry = ru = rv = 1 and rx = Ux > 1.
35In principle, some of these constraints could be redundant.
36Recall that a variable is a root if it appears as W ⊃ XNx and is a pointer if W ⊃ XN ′

xY . In this latter

case, we say that X points to Y .
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As a result, a > 1 since otherwise we contradict the statement that q < qx. In fact a 6= 2

since otherwise we would have Nx−N ′
x = 1 which would imply that N = 2, which contradicts

N 6∈ Z. Therefore, xN ′

xyeufvg are all marginal for e + f + g = a ≥ 3. In all this amounts to

at least eleven marginal monomials and at most ten constraints. So, the theory has at least

one exactly marginal deformation.

Let us now suppose that there is no a such that the above holds. In this case, we still

need marginal terms built out of y, u, and v. Since Nx ≥ 2 (otherwise the singularity is not

isolated; from the 2D perspective, x would be a supersymmetry-breaking Polonyi field), we

must have terms of the form yeufvg with e + f + g ≥ 3 (since qx > q). This again amounts

to at least eleven marginal monomials and at most ten constraints. Therefore, we have a

conformal manifold.

Finally, let us consider the case that x is a pointer. Without loss of generality, we may

assume xN ′

xy ⊂ W . Then clearly xN ′

xu and xN ′

xv are also marginal. Therefore, we need at

least one more marginal term and it cannot depend on x (otherwise, setting x = 0 implies

that ∂uW = ∂vW = ∂yW = 0, and the singularity will not be isolated). As a result, we

need an x-independent term. Since qx > q, we need again at least ten marginal terms of the

form yeufvg with e+ f + g ≥ 3. This gives at least thirteen marginal terms and at most ten

constraints. Therefore the theory has a conformal manifold.

Case 2 (q′ = qx = qy > qu = qv = q): We have q′ = Nq for N > 1. Let us define q′ := V ′/U ′

and q := V/U (where all fractions are reduced). As a result, applying (2.5) yields

ru = rv =
U

gcd(U, U, U ′, U ′)
·
gcd(U, U ′, U) gcd(U, U ′, U) gcd(U, U ′, U ′)

gcd(U, U) gcd(U, U ′) gcd(U, U ′)
= 1 ,

rx = ry =
U ′

gcd(U, U, U ′, U ′)
·
gcd(U ′, U ′, U) gcd(U ′, U ′, U) gcd(U ′, U, U)

gcd(U ′, U) gcd(U ′, U) gcd(U ′, U ′)
= 1 , (A.4)

and so the 1-form symmetry is trivial.

Case 3 (q′ = qx = qy = qu > qv): We have q′ = Nqv for N > 1. Let us define q′ := V ′/U ′

and qv := Vv/Uv (where all fractions are reduced).

First, suppose that N ∈ Z. It then follows that Uv = pU ′ for some integer p ≥ 1 and so

gcd(U ′, Uv) = Uv. As a result, applying (2.5) yields

rx = ry = ru =
U ′

gcd(U ′, U ′, U ′, Uv)
·
gcd(U ′, Uv, U

′) gcd(U ′, U ′, Uv) gcd(U
′, U ′, U ′)

gcd(U ′, Uv) gcd(U ′, U ′) gcd(U ′, U ′)
= 1 ,

rv =
Uv

gcd(U ′, U ′, U ′, Uv)
·
gcd(Uv, U

′, U ′) gcd(Uv, U
′, U ′) gcd(Uv, U

′, U ′)

gcd(Uv, U ′) gcd(Uv, U ′) gcd(Uv, U ′)
= 1 , (A.5)

and so the 1-form symmetry is trivial (if N 6∈ Z, this statement need not hold).
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Let us now consider N 6∈ Z. An upper bound on the number of independent constraints

on marginal (i.e., Q = 1) terms arises from considering

0 = {∂xW, ∂yW, ∂uW} × {x, y, u} , 0 = v∂vW . (A.6)

This amounts to at most ten constraints. How many marginal terms can we generate? As in

case 1, x must be a root or a pointer.

First suppose that x is a root so that xNx ⊂ W (with Nx ≥ 2). If Nx > 2, we are done:

we get at least ten marginal terms of the form xeyfug with e + f + g ≥ 3. In addition, we

require at least one more term involving v (otherwise the singularity is not isolated). On

the other hand, if Nx = 2 we are also done: q′ = 1/2 and lemma 1 guarantees the 1-form

symmetry is trivial.

Next, suppose that x is a pointer. If we have xN ′

xy ⊂ W we are again done if Nx > 2 by

the same logic as above. Similarly, if N ′
x = 1, we are done by lemma 1 (again q′ = 1/2), since

the 1-form symmetry is trivial. The same argument applies if x points to u instead.

The final case to check is that xN ′

xv ⊂ W , where N ′
x > 1 (otherwise lemma 1 again

guarantees trivial 1-form symmetry). We need a v-independent term to add to W since

otherwise the singularity is not isolated (setting v = 0 solves ∂xW = ∂yW = ∂uW = 0 without

any further constraints). Such a term cannot be consistent with qv < q′ and marginality. �

Appendix B. Completing the proof of the main claim

The authors of [19] argued for a classification of 4D N = 2 SCFTs realized via type IIB

string theory based on the classification of singularities in [18]. In parts B.1 and B.2 of the

appendix, we follow this classification and prove our main claim in this set of theories.

In appendix B.3, we give arguments that do not depend on the classification of [18]. In

particular, we allow for potentially more general terms in the IHS polynomials than those

considered in B.2 (compatible with discussion in [17, 20]).

Up to these subtleties which we will address in B.3, there are 19 types of theories we need

to consider (see table 3). To define an SCFT, one needs to impose the constraint
∑

i qi > 1.

For each type of singularity, the solution falls into two classes: some infinite sequences and

a finite number of sporadic cases. To check the conjecture, one can consider the sporadic

cases one by one since there are only a finite number of them. Indeed, we have checked the

conjecture is true for these sporadic cases. Therefore, in the following, we will only explicitly

discuss the infinite sequences.37

37More precisely, our treatment in B.2 implicitly covers all sporadic cases for this subset of theories. For
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The 19 types of singularities can be divided into two broad classes. In the first class, there

are only four monomials in the defining polynomials (e.g., as in the case of type I discussed in

(2.42)). We discuss these theories in section B.1. In the second class, there are five or more

monomials in the defining polynomials (e.g., as in type VIII). We will discuss these theories

in section B.2. We consider generalizations of these latter theories in section B.3.

Throughout this appendix, we will make use of the notion of reduction or of reducing

one theory to an other. By this we mean that the weights of the singularities corresponding

to the theories in question coincide. As a result, the Poicaré polynomials and deformation

spectra coincide as well.

B.1. Singularities with four monomials

In this section we prove our main claim for IHS theories with at most four monomials in

W . In the body of the paper we already showed that theories of type I satisfy our claim.

Therefore, after briefly recapitulating this case, we move onto the remaining types of theories

with four monomials.

Before discussing each singularity one by one, we observe that the type I–VI singulari-

ties in table 3 can be regarded as the composition of two subpolynomials in terms of x, y

and u, v. More precisely, we can think of the singularities of types I, II, · · · , VI as types

XX,XY,XZ,YY,ZY,ZZ where the X,Y,Z data is given in table 4.

With this decomposition, one has W (x, y, u, v) = W ′(x, y) + W ′′(u, v) where W ′,W ′′ ∈

WX,Y,Z, and Q = Q′ + Q′′ where Q′, Q′′ ∈ QX,Y,Z (recall that Q is the scaling weight of a

monomial deformation built from sub-monomials of scaling weights Q′ and Q′′ in x, y and

u, v respectively). To find the isolated set of SCFTs, we need to find the set where Q = 1

has no solution in the Milnor ring. In particular, this means Q′ = 1 or Q′′ = 1 also have no

solutions in their own Milnor rings.

For type X, the condition for the theory being isolated is just the condition for (Ap−1, Aq−1)

SCFTs discussed in (2.17)

gcd(a, b) = 1 , or a = 2 , or b = 2 , or (a, b) = (3, 3) . (B.1)

For type Y, the equation Q = 1 is equivalent to (a− 1)l = b(a− k), which can be further

rewritten as
k′

a− 1
=

l

b
, k′ = a− k = 1, · · · , a , l = 1, · · · , b− 2 . (B.2)

the theories in B.1 and B.3, we omit a discussion of sporadic cases (which we have checked separately).
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Type W (x, y, u, v) qx + qy + qu + qv

I xa + yb + uc + vd 1
a
+ 1

b
+ 1

c
+ 1

d

II xa + yb + uc + uvd 1
a
+ 1

b
+ 1

c
+ c−1

cd

III xa + yb + ucv + uvd 1
a
+ 1

b
+ d−1

cd−1
+ c−1

cd−1

IV xa + xyb + uc + uvd 1
a
+ a−1

ab
+ 1

c
+ c−1

cd

V xay + xyb + uc + uvd b−1
ab−1

+ a−1
ab−1

+ 1
c
+ c−1

cd

VI xay + xyb + ucv + uvd b−1
ab−1

+ a−1
ab−1

+ d−1
c

+ cd−1
cd

VII xa + yb + yuc + uvd 1
a
+ 1

b
+ b−1

bc
+ b(c−1)+1

bcd

VIII xa + yb + yuc + yvd + upvq, 1
a
+ 1

b
+ b−1

bc
+ b−1

bd
p(b−1)

bc
+ q(b−1)

bd
= 1

IX xa + ybv + ucv + yvd + ypuq, 1
a
+ d−1

bd−1
+ b(d−1)

c(bd−1)
+ b−1

bd−1
p(d−1)
bd−1

+ qb(d−1)
c(bd−1)

= 1

X xa + ybu+ ucv + yvd 1
a
+ d(c−1)+1

bcd+1
+ b(d−1)+1

bcd+1
+ c(b−1)+1

bcd+1

XI xa + xyb + yuc + uvd 1
a
+ a−1

ab
+ a(b−1)+1

abc
+ ab(c−1)+(a−1)

abcd

XII xa + xyb + xuc + yvd + ypuq 1
a
+ a−1

ab
+ a−1

ac
+ a(b−1)+1

abd
p(a−1)

ab
+ q(a−1)

ac
= 1

XIII xa + xyb + yuc + yvd + upvq 1
a
+ a−1

ab
+ a(b−1)+1

abc
+ a(b−1)+1

abd
p(a(b−1)+1)

abc
+ q(a(b−1)+1)

abd
= 1

XIV xa + xyb + xuc + xvd + ypuq + urvs 1
a
+ a−1

ab
+ a−1

ac
+ a−1

ad
p(a−1)

ab
+ q(a−1)

ac
= 1 = r(a−1)

ac
+ s(a−1)

ad

XV xay + xyb + xuc + uvd + ypuq b−1
ab−1

+ a−1
ab−1

+ b(a−1)
c(ab−1)

+ c(ab−1)−b(a−1)
cd(ab−1)

p(a−1)
ab−1

+ qb(a−1)
c(ab−1)

= 1

XVI xay + xyb + xuc + xvd + ypuq + urvs b−1
ab−1

+ a−1
ab−1

+ b(a−1)
c(ab−1)

+ b(a−1)
d(ab−1)

p(a−1)
ab−1

+ qb(a−1)
c(ab−1)

= 1 = r(a−1)
ac

+ s(a−1)
ad

XVII xay + xyb + yuc + xvd + ypvq + xrus b−1
ab−1

+ a−1
ab−1

+ a(b−1)
c(ab−1)

+ b(a−1)
d(ab−1)

p(a−1)
ab−1

+ qb(a−1)
d(ab−1)

= 1 = r(b−1)
ab−1

+ sa(b−1)
c(ab−1)

XVIII xau+ xyb + yuc + yvd + upvq b(c−1)+1
abc+1

+ c(a−1)+1
abc+1

+ a(b−1)+1
c(abc+1)

+ c(a(b−1)+1)
d(abc+1)

p(a(b−1)+1)
abc+1

+ qc(a(b−1)+1)
d(abc+1)

= 1

XIX xau+ xyb + vuc + yvd b(d(c−1)+1)−1
abcd−1

+ d(c(a−1)+1)−1
abcd−1

+a(b(d−1)+1)−1
abcd−1

+ c(a(b−1)+1)−1
abcd−1

Table 3: The canonical form for IHSs with a good C∗ action. This table is adapted from [19].

Note that for those types of singularities with five or more monomials, the specific monomials

are chosen to make the singularity isolated following [19]. But there are also other choices of

these additional monomials, as mentioned in [17, 20]. Our proof in B.3 does not rely on the

structure of these additional terms.
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W (qx, qy) monomial basis in Milnor ring Qk,l

X xa + yb ( 1
a
, 1
b
) xkyl (k = 0, · · ·a− 2, l = 0, · · · , b− 2) k

a
+ l

b

Y xa + xyb ( 1
a
, a−1

ab
)

xkyl (k = 0, · · ·a− 1, l = 0, · · · , b− 2

or k = 0, l = b− 1)
k
a
+ (a−1)l

ab

Z xay + xyb ( b−1
ab−1

, a−1
ab−1

) xkyl (k = 0, · · ·a− 1, l = 0, · · · , b− 1) (b−1)k+(a−1)l
ab−1

Table 4: The building blocks of the first six types of singularities. We list the defining

polynomials, the weights, the monomial basis in the Milnor ring, and their corresponding

Qs.

Then the resulting condition for the theory to be isolated can be found to be

gcd(a− 1, b) = 1 , or b = 2 . (B.3)

For type Z, the equation Q = 1 is equivalent to (a− 1)(b− l) = (b− 1)(k − 1) which can

be further rewritten as

k′

a− 1
=

l′

b− 1
, k′ = k − 1 = −1, · · · a− 2, l′ = b− l = 1 , · · · b . (B.4)

It is then easy to find the condition for the theory to be isolated

gcd(a− 1, b− 1) = 1 . (B.5)

Type I: The type I singularity is given by

W (x, y, u, v) = xa + yb + uc + vd , (B.6)

where a, b, c, d ≥ 2 so that there is an isolated singularity at the origin. The weights and the

Milnor number are given by

~q =
(1
a
,
1

b
,
1

c
,
1

d

)
, µ = (a− 1)(b− 1)(c− d)(d− 1) . (B.7)

The condition
∑

i qi > 1 imposes constraints on the possible values of a, b, c, d. The

solution was found in [19]. It includes several infinite sequences listed in table 2 and a finite

number of sporadic cases. Since the sporadic cases are finite in number, one can check the

conjecture explicitly case-by-case. Henceforth, we will not list the solution corresponding to

the sporadic cases.
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As discussed in the main text, from table 2, we learn that the infinite sequences of Type

I singularities are just certain (g, g′) theories and the (p, k) SCFTs considered before. We

have already shown how they satisfy our main claim. Therefore, in addition to the checks

of the sporadic cases we have performed, the conjecture holds for SCFTs realized via type I

singularities.

Type II: The type II singularity is given by

W = xa + yb + uc + uvd , (B.8)

where we require a, b, c ≥ 2, d ≥ 1 in order to have an isolated singularity at the origin. The

weights and the Milnor numbers are given by

~q =

(
1

a
,
1

b
,
1

c
,
c− 1

cd

)
, µ = (a− 1)(b− 1)(c(d− 1) + 1) . (B.9)

A monomial basis of the Milnor ring can be obtained from that of Xa,b and Yc,d in Table 4.

Note that there are actually some overlaps with Type I singularities. If there exits an

integer n such that n(c−1)
dc

= 1, then vn is an exactly marginal deformation and the singularity

can be put in the equivalent form W̃ = xa+ yb +uc+ vn. In this case, the type II singularity

reduces to the type I singularity. The reducibility condition is38

d

c− 1
∈ Z . (B.10)

Imposing the condition
∑

qi > 1 as well as a ≤ b and c ≤ d to remove redundancy, one

gets the infinite sequences in table 5 and a finite number of sporadic cases which will not

be listed explicitly. In particular, we have marked all the reducible cases satisfying (B.10)

in gray. Note that exchanging (c, d) leaves
∑

i qi invariant, but this is not a symmetry of

the SCFTs. Therefore, in table 5 we also list another sub-table where the entries of (c, d)

are exchanged. In this way, we give a complete list of SCFTs of type II (for the infinite

sequences).

The finite sporadic cases can be checked explicitly one by one and indeed our claim holds.

So we next check the infinite sequences in table 5. In particular, we only need to consider

the irreducible ones there because reducible entries in gray are just the type I we considered

already.

38In particular, this means that if c > 2, the condition (B.3) is volated, implying that the SCFTs is not

isolated.

33



(a, b, c, 1) (2, 2, c, d) (2, b, 2, d) (3, b, 2, 2) (4, b, 2, 2)

(2, 3, 3, d) (2, 3, 4, d) (2, 3, 5, d) (2, 3, 6, d) (2, 4, 3, d)

(2, 5, 3, d) (2, 6, 3, d) (2, b, 3, 3) (2, b, 3, 4) (3, 3, 2, d)

(3, 4, 2, d) (3, 5, 2, d) (3, 6, 2, d) (3, b, 2, 3) (2, 4, 4, d)

(4, 4, 2, d) (3, 3, 3, d)

(2, b, c, 2)

(2, 3, c, 3) (2, 3, c, 4) (2, 3, c, 5) (2, 3, c, 6) (2, 4, c, 3)

(2, 5, c, 3) (2, 6, c, 3) (2, b, 4, 3) (3, 3, c, 2)

(3, 4, c, 2) (3, 5, c, 2) (3, 6, c, 2) (3, b, 3, 2) (2, 4, c, 4)

(4, 4, c, 2) (3, 3, c, 3)

Table 5: Infinite sequences of type II singularities. The reducible cases are marked in gray.

The lower table is obtained from the upper table by exchanging c and d, and the empty

entries are either symmetric under exchange or have c = 1. This table is adapted from [19].

We will first need to find the isolated set and then check the 1-form symmetry. In practice,

our procedure is as follows: by considering specific types of monomials in the Milnor ring,

we can find some necessary condition for the theory being isolated; then for an irreducible

weight (namely a weight satisfying (2.2)) we apply our formulas (2.5) and (2.6) to compute

the 1-form symmetry. As discussed in the main text, to show the absence of 1-form symmetry,

we only need to show that gi = 0 or ri = 1 for each i = 1, 2, 3, 4.

(a, b, c, 1) The weight vector

~q =

(
1

a
,
1

b
,
1

c
,
c− 1

c

)
, (B.11)

is irreducible, so r3 = r4 = 1, g1 = g2 = 0 and this theory has no 1-form symmetry.

(2, 2, c, d) The weight vector can be written as an irreducible form

~q =

(
1

2
,
1

2
,
1

c
,
c− 1

cd

)
=

(
1

2
,
1

2
,
1

c
,
c̃

cd̃

)
, gcd(c̃, d̃) = 1 . (B.12)

Then one finds r1 = r2 = r3 = 1, g4 = 0, so this theory has no 1-form symmetry.

(2, 3, 3, d) There is always a marginal term yu2 with Q = 1.
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(2, 3, 4, d) A necessary condition for being isolated is d = 2 or gcd(3, d) = 1. In both cases,

there is no 1-form symmetry.

(2, 3, 5, d) For d = 1, 2 there is no 1-form symmetry as gi = 0. Consider the monomial

yu2vl in the Milnor ring. Q = 1 leads to d = 3l. It is then easy to figure out a necessary

condition for being isolated: gcd(3, d) = 1, in addition to the condition (B.3) gcd(4, d) = 1,

which is equivalent to gcd(2, d) = 1. Then one finds gi = 0 and trivial 1-form symmetry.

(2, 3, 6, d) There is always a marginal term yu4 with Q = 1.

(2, 4, 3, d) From the necessary condition for being isolated (B.3), we have gcd(2, d) = 1

(the d = 2 case leads to trivial 1-form symmetry). Then we find g1 = g2 = g4 = 0, r3 = 1,

meaning no 1-form symmetry.

(2, 5, 3, d) For d = 1, 2, 3, we find gi = 0, implying trivial 1-form symmetry. For d > 3,

consider y3vl. Q = 1 leads to 3d = 5l. Then a necessary condition for being isolated is found

to be gcd(5, d) = gcd(2, d) = 1. The weight vector is thus irreducible. This leads to gi = 0,

implying no 1-form symmetry.

(2, 6, 3, d) It is easy to see y4u has Q = 1, so this theory is never isolated.

(2, b, 3, 3) For b = 2, 3, it has no 1-form symmetry. For b > 3, the y, u part gives a necessary

isolated condition gcd(3, b) = 1. Then g1 = g2 = g4 = 0, r3 = 1. Thus the theory has no

1-form symmetry.

(3, 3, 3, d) The monomial xyu has Q = 1, so this theory is never isolated.

(2, b, c, 2) Consider ykul. The condition Q = 1 leads to b(c− l) = kc, namely

l′

c
=

k

b
, k = 0, · · · , b− 2, l′ = c− l = 1, · · · , c . (B.13)

So a necessary condition for being isolated is gcd(b, c) = 1 or b = 2.

If c is even, gcd(c, 2) = 2, and the weight is irreducible. We then have r1 = r3 = 1, g2 =

0, g4 = gcd(b, c)− gcd(b, 2) = 0 for either gcd(b, c) = 1 or b = 2. So the 1-form symmetry is

always trivial.
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If c is odd, c = 2p+ 1, the weight vector

~q =

(
1

2
,
1

b
,

1

2p+ 1
,

p

2p+ 1

)
, (B.14)

is irreducible. Then gcd(b, c) = gcd(b, 2p+1) = 1 leads to g1 = g2 = g4 = 0, r3 = 1, implying

no 1-form symmetry.

(2, 3, c, 3) For c = 2, 3, one can check that the 1-form symmetry is trivial. For c > 3,

considering the y, u and u, v part respectively, one finds a necessary condition for being

isolated is gcd(3, c) = gcd(c − 1, 3) = 1. Next, consider yukv. Q = 1 leads to c + 1 = 3k

which leads to another necessary condition for being isolated: gcd(c+ 1, 3) = 1. These three

conditions cannot be satisfied simultaneously. So this theory cannot be isolated.

(2, 3, c, 4) For c = 2, 3, one can check that the 1-form symmetry is trivial. For c > 3,

considering the y, u and u, v parts respectively, one finds a necessary condition for being

isolated is gcd(3, c) = gcd(c − 1, 4) = 1, which is equivalent to gcd(3, c) = 1, gcd(2, c) = 2.

Then gi = 0 and thus the one-form symmetry is trivial.

(2, 3, c, 5) For c = 2, 3, one can check that the 1-form symmetry is trivial. For c > 3, one

finds that a necessary condition for being isolated is gcd(3, c) = gcd(c−1, 5) = 1, which leads

to gi = 0 and thus trivial 1-form symmetry.

(2, 3, c, 6) For c = 2, 3, one can explicitly check that it has a marginal deformation. For

c > 3, as above, one finds that a necessary condition for being isolated is gcd(3, c) = 1 and

gcd(c − 1, 6) = 1 which is equivalent to gcd(c − 1, 2) = gcd(c − 1, 3) = 1. Next consider

yukv2. Q = 1 leads to c + 1 = 3k which leads to another necessary isolated condition:

gcd(c+ 1, 3) = 1. These three conditions gcd(c+ 1, 3) = gcd(c− 1, 3) = gcd(c, 3) = 1 cannot

be satisfied simultaneously. So this theory cannot be isolated.

(2, 4, c, 3) For c = 2, the 1-form symmetry is trivial. For c > 2, one finds that a necessary

condition for being isolated is gcd(4, c) = gcd(c − 1, 3) = 1, which leads to g1 = g2 = g4 =

0, r3 = 1 and thus trivial 1-form symmetry.

(2, 5, c, 3) For c = 2, the 1-form symmetry is trivial. For c > 2, one finds that a necessary

condition for being isolated is gcd(5, c) = gcd(c − 1, 3) = 1. Then g1 = g2 = g4 = 0, r3 = 1,

and the 1-form symmetry is trivial.
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(2, 6, c, 3) For c = 2, the 1-form symmetry is trivial. For c > 2, one finds that a necessary

condition for being isolated is gcd(6, c) = gcd(c − 1, 3) = 1, which leads to gcd(3, c) =

gcd(2, c) = 1. Then r1 = r2 = r3 = 1, g4 = 0 and 1-form symmetry is trivial.

(3, 3, c, 2) For c = 2, 3, the 1-form symmetry is trivial. For c > 3, a necessary condition

for being isolated is gcd(3, c) = gcd(c− 1, 2) = 1. Then the weight vector is irreducible. As

a result, r1 = r2 = r3 = 1, g4 = 0, and 1-form symmetry is trivial.

(3, 4, c, 2) For c = 2, 3, the theory has a marginal deformation. For c > 3, the y, u part

leads to the condition gcd(4, c) = 1. So c is odd and we can set c = 2p + 1 and get the

irreducible weight vector

~q =

(
1

3
,
1

4
,

1

2p+ 1
,

p

2p+ 1

)
. (B.15)

Consider xuk. Q = 1 leads to 2c = 3k. To be isolated, we also need gcd(3, c) = 1. Then

gi = 0, and the 1-form symmetry is trivial.

(3, 5, c, 2) If c = 2, the 1-form symmetry is trivial. For c > 2, a necessary condition for

being isolated is gcd(5, c) = gcd(c−1, 2) = 1. So c is even and the weight vector is irreducible.

Then g1 = g2 = g4 = 0, r3 = 1, leading to trivial 1-form symmetry.

(3, 6, c, 2) For c = 2, the theory has a marginal deformation. For c > 2, a necessary

condition for being isolated is gcd(6, c) = 1, gcd(c − 1, 2) = 1, which leads to gcd(2, c) =

gcd(2, c− 1) = 1. Obviously there is no solution. So the theory can not be isolated.

(4, 4, c, 2) This is not isolated as gcd(4, 4) = 4 > 1.

(3, 3, c, 3) For c = 2, 3, the theory is not isolated. For c > 3, a necessary condition for

being isolated is gcd(3, c) = 1, gcd(c− 1, 3) = 1. Then we have r1 = r2 = r3 = 1, g4 = 0 with

trivial 1-form symmetry.

Type III: In this case,

W = xa + yb + ucv + uvd , (B.16)

and we require a, b, c, d ≥ 2 in order to have an isolated singularity at the origin. The weights

and Milnor number are

~q =
(1
a
,
1

b
,
d− 1

cd− 1
,
c− 1

cd− 1

)
, µ = (a− 1)(b− 1)cd . (B.17)
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The reducibility condition is
c− 1

d− 1
or

d− 1

c− 1
∈ Z . (B.18)

Imposing the constraint
∑

i qi > 1 as well as b ≥ a and d ≥ c to remove redundancy, one gets

the infinite sequences in table 6 as well as sporadic cases we do not list but have checked are

consistent with our claim.

(2, 2, c, d) (2, b, 2, d) (3, b, 2, 2) (2, 3, 3, d) (2, 3, 4, d)

(2, 3, 5, d) (2, 3, 6, d) (2, 4, 3, d) (2, 5, 3, d) (2, 6, 3, d)

(2, b, 3, 3) (3, 3, 2, d) (3, 4, 2, d) (3, 5, 2, d) (3, 6, 2, d)

(2, 4, 4, d) (4, 4, 2, d) (3, 3, 3, d)

Table 6: Infinite sequences of type III singularities. Gray entries are reducible to the previous

types of singularities. This table is adapted from [19].

In this case, the monomial basis of the Milnor ring can be obtained from that in Xa,b and

Zc,d in Table 4. A necessary condition for being isolated is given by equations of the form

(B.1) and (B.5).

(2, 2, c, d) A necessary condition for the theory being isolated is gcd(c− 1, d− 1) = 1. In

this case, the weight vector is irreducible and ri = 1, which implies trivial 1-form symmetry.

(2, 3, 3, d) A necessary condition for being isolated is gcd(2, d − 1) = 1. Then one finds

gi = 0, implying no 1-form symmetry.

(2, 3, 4, d) A necessary condition for being isolated is gcd(3, d − 1) = 1. Then one finds

gi = 0, implying no 1-form symmetry.

(2, 3, 5, d) A necessary condition for being isolated is gcd(4, d−1) = 1, which is equivalent

to gcd(2, d − 1) = 1. Furthermore, consider yu2vk. Q = 1 leads to 1 + d = 3k. So another

necessary condition is gcd(3, d+1) = 1. Then one finds gi = 0, implying no 1-form symmetry.

(2, 3, 6, d) The weight is is irreducible and gi = 0, so the 1-form symmetry is trivial.

(2, 4, 3, d) A necessary condition for being isolated is gcd(2, d − 1) = 1. One finds g2 =

0, r1 = r3 = r4 = 1, so the 1-form symmetry is trivial.
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(2, 5, 3, d) A necessary condition for being isolated is gcd(2, d − 1) = 1. Consider y3vk.

Q = 1 is equivalent to 3d−1 = 5k. So to be isolated, one should also have gcd(3d−1, 5) = 1.

Then gi = 0, so 1-form symmetry is trivial.

(2, 6, 3, d) A necessary condition for being isolated is gcd(2, d − 1) = 1. Then we have

r1 = r3 = r4 = 1, g2 = 0, implying trivial 1-form symmetry.

(2, 4, 4, d) We have g1 = g2 = 0, r3 = r4 = 1, implying trivial 1-form symmetry.

(3, 3, 3, d) We have ri = 1 and thus trivial 1-form symmetry.

Type IV: In this case

W = xa + xyb + uc + uvd . (B.19)

We require a, c ≥ 2 and b, d ≥ 1 in order to get an isolated singularity at the origin. The

weights and Milnor number are given by

~q =

(
1

a
,
a− 1

ab
,
1

c
,
c− 1

cd

)
, µ = (a(b− 1) + 1)(c(d− 1) + 1) . (B.20)

The reducibility condition is

b

a− 1
∈ Z or

d

c− 1
∈ Z . (B.21)

Imposing the constraint
∑

i qi > 1 as well as d ≥ b, b ≥ a, d ≥ c, one gets the infinite sequences

in table 7 as well as sporadic cases we have checked separately. Note that exchanging a ↔ b

or c ↔ d gives rise to different SCFTs in general.

The monomial basis in this case can be obtained from that in Ya,b and Yc,d in Table 4.

(a, 1, c, d) We can rewrite the weight vector in an irreducible form

~q =

(
1

a
,
a− 1

a
,
1

c
,
c− 1

cd

)
=

(
1

a
,
a− 1

a
,
1

c
,
c̃

cd̃

)
, gcd(c̃, c) = gcd(c̃, d) = 1 . (B.22)

Then we can compute r1 = r2 = r3 = 1, g4 = 0. Therefore there is no 1-form symmetry.

(a, 1, c, 1) In this case, the weight vector is irreducible. Then we find ri = 1, so there is

no 1-form symmetry.
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(a, 1, c, d) (a, 1, c, 1) (2, 2, 2, d) (2, 2, 3, d) (2, 2, 4, d)

(2, b, 2, d) (2, 3, 3, d) (2, b, 3, 3) (2, b, 3, 4)

(a, 2, 2, d) (3, 2, 3, d) (a, 2, 3, 3) (a, 2, 3, 4)

(2, 2, c, 2) (2, 2, c, 3) (2, 2, c, 4)

(2, b, c, 2) (2, 3, c, 3) (2, b, 4, 3)

Table 7: Infinite sequences of type IV singularities. The second and third tables are obtained

from the first by the exchanges (a, b) and (c, d) respectively. The empty entries correspond

to either a = 1 or c = 1 or invariance under exchange. Gray entries are reducible to previous

types of singularities. This table is adapted from [19].

(a, 2, 3, 3) For a = 2, the weight is irreducible. Then we can compute g1 = g2 = g4 =

0, r3 = 1, giving rise to trivial 1-form symmetry.

If a > 2, consider xku with k = 0, · · · , a− 1 in the Milnor ring. Q = 1 leads to 2a = 3k.

It is then easy to figure out a necessary condition for being isolated is gcd(a, 3) = 1.

If a is even, the weight vector

~q =

(
1

a
,
a− 1

2a
,
1

3
,
2

9

)
(B.23)

is irreducible. Then one finds r1 = r3 = 1, g2 = g4 = 0 due to gcd(3, a) = 1. So the 1-form

symmetry is trivial.

If a is odd, a = 2p+ 1, the weight vector becomes

~q =

(
1

2p+ 1
,

p

2p+ 1
,
1

3
,
2

9

)
(B.24)

and is irreducible. Then we find r1 = r2 = r3 = 1, g4 = 0. Again, the 1-form symmetry is

trivial.

Type V: Here the singularity is given by the polynomial

W = xay + xyb + uc + uvd , (B.25)

and we need a, b, c ≥ 2, d ≥ 1 to ensure an isolated singularity at the origin. The weights

and Milnor number are given by

~q =

(
b− 1

ab− 1
,
a− 1

ab− 1
,
1

c
,
c− 1

cd

)
, µ = ab(c(d − 1) + 1) . (B.26)
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The reducibility condition is

a− 1

b− 1
∈ Z or

b− 1

a− 1
∈ Z or

d

c− 1
∈ Z . (B.27)

Imposing
∑

i qi > 1 and d ≥ c, b ≥ a leads to table 8 as well as sporadic cases we have

checked separately. In general, exchanging c ↔ d gives different SCFTs.

(a, b, c, 1) (2, 2, 2, d) (2, 2, 3, d) (2, b, 2, d) (3, b, 2, 2)

(4, b, 2, 2) (2, b, 3, 3) (2, b, 3, 4) (3, 3, 2, d) (3, b, 2, 3)

(2, 2, c, 2) (2, 2, c, 3) (2, b, c, 2)

(2, b, 4, 3) (3, 3, c, 2) (3, b, 3, 2)

Table 8: Infinite sequences of type V singularities. The second table is obtained from the

first by exchanging c, d. The empty entries are either invariant under exchange or have c = 1.

Gray entries are reducible to previous types of singularities. This table is adapted from [19].

A monomial basis of the Milnor ring can be obtained from that in Za,b and Yc,d in Table 4.

(a, b, c, 1) From (B.5), we learn that a necessary condition to have an isolated theory is

gcd(a− 1, b− 1) = 1. The weight vector is then irreducible, and ri = 1. Therefore the theory

has no 1-form symmetry.

Type VI: Here

W = xay + xyb + ucv + uvd , (B.28)

and a, b, c, d ≥ 2 in order to have an isolated singularity at the origin. The weights and

Milnor number are given by

~q =

(
b− 1

ab− 1
,
a− 1

ab− 1
,
d− 1

cd− 1
,
c− 1

cd− 1

)
, µ = abcd . (B.29)

Imposing
∑

i qi > 1, b ≥ a, d ≥ c, and c ≥ a leads to table 9 and sporadic solutions

(which we have checked separately). However, all of the entries in the table are reducible to

previous types.

Type VII: The singularity has the form

W = xa + yb + yuc + uvd . (B.30)
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(2, 2, 2, d) (2, 2, 3, d) (2, b, 2, d) (2, b, 3, 3)

Table 9: Infinite sequences of type VI singularities. Gray entries are reducible to previous

types of singularities. This table is adapted from [19].

Here a, b ≥ 2, c, d ≥ 1 in order to have an isolated singularity at the origin.

The weights and Milnor number are

~q =

(
1

a
,
1

b
,
b− 1

bc
,
b(c− 1) + 1

bcd

)
, µ = (a− 1)(bc(d− 1) + b− 1) . (B.31)

The singularity can be reduced to type II if
c

b− 1
∈ Z . (B.32)

Solving
∑

i qi > 1 and d ≥ b, one gets the infinite sequences in table 10 and sporadic

solutions (which we have checked separately). In general, exchanging b ↔ d leads to different

SCFTs.

(a, b, 1, d) (a, b, c, 1) (2, b, 2, d) (2, 2, c, d) (3, 2, 2, d)

(4, 2, 2, d) (a, 2, 2, 2) (a, 2, 2, 3) (a, 2, c, 2) (2, 3, 3, d)

(2, 4, 3, d) (3, 3, 2, d) (2, 3, 4, d) (2, 3, c, 3) (2, 3, c, 4)

(2, 3, c, 5) (2, 3, c, 6) (3, 2, 3, d) (3, 2, c, 3) (3, 2, c, 4)

(3, 2, c, 5) (3, 2, c, 6) (4, 2, c, 3) (5, 2, c, 3) (6, 2, c, 3)

(2, 4, c, 4) (4, 2, c, 4) (3, 3, c, 3)

(a, 1, c, d) (2, b, c, 2) (3, b, 2, 2)

(4, b, 2, 2) (a, 3, 2, 2) (2, b, 3, 3)

(2, b, 3, 4) (3, b, 2, 3) (2, b, 4, 3) (2, 4, c, 3)

(2, 5, c, 3) (2, 6, c, 3) (3, b, 3, 3) (3, 3, c, 2) (3, 4, c, 2)

(3, 5, c, 2) (3, 6, c, 2) (4, 3, c, 2) (5, 3, c, 2) (6, 3, c, 2)

(4, 4, c, 2)

Table 10: Infinite sequences of type VII singularities. The second table is obtained from

the first by exchanging b, d. Gray entries are reducible to previous types of singularities or

b = 1. This table is adapted from [19].

The monomial basis of the Milnor ring is xmynukvl where

m = 0, · · · , a− 2, n = 0, · · · , b− 1, k = 0, · · · , c− 1, l = 0, · · · d− 2 , (B.33)
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or

m = 0, · · · , a− 2, n = 0, · · · , b− 2, k = 0, l = d− 1 . (B.34)

(a, b, 1, d) The weight vector is irreducible and one finds r2 = r3 = 1, g1 = g4 = 0. So the

1-form symmetry is trivial.

(a, b, c, 1) The weight vector can be rewritten in the form

~q =

(
1

a
,
1

b
,
b− 1

bc
,
b(c− 1) + 1

bc

)
=

(
1

a
,
1

b
,
b̃

bc̃
,
bc̃− b̃

bc̃

)
, gcd(b̃, c̃) = gcd(b̃, b) = 1 ,

(B.35)

which is irreducible now. Then one finds r2 = r3 = r4 = 1, g1 = 0, implying trivial 1-form

symmetry.

(2, b, 2, d) Consider yku with k = 0, · · · b − 1. Q = 1 leads to b + 1 = 2k. So a necessary

condition for being isolated is gcd(2, b + 1) = 1, which is equivalent to gcd(2, b) = 2. The

weight vector can be written in an irreducible form

~q =

(
1

2
,
1

b
,
b− 1

2b
,

b̃

2bd̃

)
, gcd(b̃, b) = gcd(b̃, d) = gcd(b̃, d) = 1 . (B.36)

Then r1 = r2 = r3 = 0, g4 = 0, implying trivial 1-form symmetry.

(2, 3, 3, d) Consider yvk. Q = 1 leads to 6d = 7k. So a necessary condition for being

isolated is gcd(7, d) = 1. Then the weight

q =

(
1

2
,
1

3
,
2

9
,
7

9d

)
(B.37)

is irreducible. As a result, r2 = r3 = 1, g1 = g4 = 0, implying trivial 1-form symmetry.

(2, 4, 3, d) In this case, y2u2 has Q = 1, so the theory is not isolated.

(3, 3, 2, d) This theory is not isolated because it has an exactly marginal deformation xyu

with Q = 1.

(2, 3, 4, d) One can show that y2u2 with Q = 1 is in the Milnor ring. So this theory is not

isolated.
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(2, 3, c, 3), (2, 3, c, 4), (2, 3, c, 5), (2,3, c,6) Consider y2uk. Q = 1 leads to c = 2k. So a

necessary condition for being isolated is gcd(c, 2) = 1.

Then one can show that for d = 2, 3, 4, 6, gcd(3c − 2, d) = 1. For d = 5, consider ukv3.

Q = 1 leads to 3(c+ 1) = 5k. So a necessary condition for being isolated is gcd(c+1, 5) = 1.

Then gcd(3c− 2, d) = 1 also holds for d = 5.

In all cases, the weight

~q =

(
1

2
,
1

3
,
2

3c
,
3c− 2

3cd

)
, (B.38)

is irreducible, and we have r2 = r3 = 1, g1 = g4 = 0, which gives trivial 1-form symmetry.

(2, 4, c, 4) Consider y3uk. Q = 1 leads to c = 3k. So we get a necessary condition for being

isolated: gcd(3, c) = 1. Then the weight is irreducible and r1 = r2 = r3 = 1, g4 = 0, giving

no 1-form symmetry.

(4, 2, c, 4) In this case x2y has Q = 1, and we see this theory is not isolated.

(3, 3, c, 3) In this case xy2 has Q = 1, and we again see this theory is not isolated.

(2, b, c, 2) From yb + yvc, which is of Y type, we learn a necessary condition for being

isolated (B.3): gcd(b− 1, c) = 1 or c = 2.

For c = 2, consider yku. Q = 1 leads to b + 1 = 2k. So another necessary condition for

the theory to be isolated is gcd(2, b+1) = 1, which is equivalent to gcd(2, b) = 2. The weight

is also irreducible. Then r1 = r2 = r3 = 1, g4 = 0, meaning trivial 1-form symmetry.

In the case of gcd(b− 1, c) = 1, one can check that 1− b+ bc is always odd. Furthermore,

we have gcd(1− b+ bc, 2bc) = 1. Therefore, the weight

~q =

(
1

2
,
1

b
,
b− 1

bc
,
bc− b+ 1

2bc

)
, (B.39)

is irreducible. Then r1 = r2 = r3 = 1, 2g4 = gcd(2, bc) − gcd(2, b). If gcd(b, 2) = 1 then

gcd(c, 2) = 1 because gcd(b− 1, c) = 1 and thus g4 = 0. If gcd(b, 2) = 2, we also have g4 = 0.

As a result, the 1-form symmetry is always trivial.

(3, b, 2, 2) Consider yku. Q = 1 leads to b + 1 = 2k. So another necessary condition to

be isolated is gcd(2, b + 1) = 1. The weight is irreducible, and g1 = g2 = g4 = 0, r3 = 1.

Therefore, we have trivial 1-form symmetry.

44



(4, b, 2, 2) As in the previous case, we still have even b which is a necessary condition for

being isolated. But then x2yb/2 has Q = 1. So this theory is not isolated.

(2, b, 3, 3) Considering the y, u part gives a necessary condition for being isolated: gcd(b−

1, 3) = 1. The weight vector is irreducible, and we have g1 = g2 = g4 = 0, r3 = 1. As a result,

the 1-form symmetry is trivial.

(2, b, 3, 4) Again, we have a necessary condition of being isolated: gcd(b− 1, 3) = 1. The

weight is irreducible and r1 = r2 = r3 = 1, g4 = 0, implying no 1-form symmetry.

(3, b, 2, 3) If b = 2, then yuv is marginal. If b = 3, then xyu is marginal. So in order to

have an isolated theory, we need to have b > 3 and a necessary condition is gcd(3, b) = 1

(B.1).

Consider yku with k = 0, · · · , b − 1. Q = 1 leads to b + 1 = 2k, so another necessary

condition to be isolated is gcd(b+ 1, 2) = 1. Next, consider ykuv. Q = 1 leads to b+ 1 = 3k,

so a further necessary condition for an isolated theory is gcd(b+ 1, 3) = 1. Then the weight

is irreducible and r1 = r2 = r3 = 1, g4 = 0. The 1-form symmetry is thus trivial.

(2, b, 4, 3) A necessary isolated condition is gcd(b − 1, 4) = 1, which is equivalent to

gcd(b, 2) = 2. This guarantees that the weight is irreducible. Then we find r1 = r2 =

r3 = 1, 2g4 = 0, and the 1-form symmetry is trivial.

(2, 4, c, 3) A necessary condition for being isolated is gcd(3, c) = 1. Then one finds the

weight is irreducible. We can compute r1 = r2 = r3 = 1, g4 = 0, implying the 1-form

symmetry is trivial.

(2, 5, c, 3) The first necessary condition for being isolated is gcd(4, c) = 1, which is equiv-

alent to gcd(2, c) = 1. Consider y2ukv. Q = 1 leads to c + 1 = 3k. Therefore, another

necessary condition for being isolated is gcd(c + 1, 3) = 1. The weight is irreducible and

r2 = r3 = 1, g1 = g4 = 0, implying no 1-form symmetry.

(2, 6, c, 3) A necessary condition for being isolated is gcd(5, c) = 1. The weight is irre-

ducible and r1 = r2 = r3 = 1, g4 = 0, implying no 1-form symmetry.
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(3, b, 3, 3) For b = 2, xyu has Q = 1, so this theory is not isolated. For b = 3, one can

check this theory is also not isolated.

If b > 3, two necessary conditions for being isolated are gcd(3, b) = 1 and gcd(b−1, 3) = 1,

as one can see from x, y part and y, u part. Consider xyku. Q = 1 leads to b + 1 = 3k. So

another necessary condition for being isolated is gcd(b + 1, 3) = 1. These three conditions

cannot hold simultaneously. As a result, this theory is always part of a conformal manifold.

(3, 3, c, 2) A necessary condition for being isolated is gcd(2, c) = 1. Then the weight is

irreducible and r1 = r2 = r3 = 1, g4 = 0, implying no 1-form symmetry.

(3, 3, c, 2), (3, 4, c, 2), (3, 5, c, 2), (3,6, c,2) In these (3, b, c, 2) theories, a necessary con-

dition for being isolated is gcd(b− 1, c) = 1 as can be seen from yb−1uk. Then one can show

that gcd(bc−b+1, 2bc) = gcd(bc−b+1, 2), which can be further shown to be 1 for b = 3, 4, 5, 6.

So in all cases, the weight is irreducible, and r2 = r3 = 1, g1 = 0, 2g4 = gcd(3, bc)− gcd(3, b).

For b = 3, 4, 6, one can easily show that g4 = 0. For b = 5, consider xy2uk. Q = 1 leads to

c = 3k. So another necessary isolated condition is gcd(c, 3) = 1, which gives g4 = 0.

Therefore, in all cases the 1-form symmetry is trivial.

(4, 3, c, 2) A necessary condition for being isolated is gcd(2, c) = 1. Then the weight is

irreducible and r2 = r3 = 1, g1 = 0, g4 = 0. This gives no 1-form symmetry.

(5, 3, c, 2) The first condition for being isolated is gcd(2, c) = 1. Then the weight is irre-

ducible. Furthermore, consider x2yuk. Q = 1 leads to 2c = 5k. So another condition for

being isolated is gcd(5, c) = 1. This gives r2 = r3 = 1, g1 = g4 = 0 and therefore no 1-form

symmetry.

(6, 3, c, 2), (4, 4, c, 2) These theories have conformal manifolds because of the x, y part.

Type X: The singularity is given by

W = xa + ybu+ ucv + yvd , (B.40)

and we require a ≥ 2 and b, c, d ≥ 2 to get an isolated singularity at the origin. The weights

and Milnor number are given by

~q =

(
1

a
,
(c− 1)d+ 1

bcd+ 1
,
b(d− 1) + 1

bcd+ 1
,
(b− 1)c+ 1

bcd+ 1

)
, µ = (a− 1)bcd . (B.41)
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The singularity is reducible to a previous type if

b(d− 1) + 1

d(c− 1) + 1
∈ Z , or

c(b− 1) + 1

b(d − 1) + 1
∈ Z or

d(c− 1) + 1

c(b− 1) + 1
∈ Z . (B.42)

Imposing
∑

i qi > 1 and b ≤ c ≤ d leads to the infinite sequences in table 11 and the

sporadic solutions we have checked separately. Note that (B.40) is cyclically symmetric in

b, c, d. In general, there is another inequivalent SCFTs obtained by exchanging any two in

b, c, d.

In this case, the Milnor ring is generated by the following monomials:

xmypukvl , m = 0, · · · a− 2 , p = 0, · · · , b− 1 , k = 0, · · · , c− 1 , l = 0, · · · , d− 1 .

(B.43)

(a, 1, c, d) (2, 2, c, d) (3, 2, 2, d) (4, 2, 2, d) (a, 2, 2, 2)

(2, 3, 3, d) (2, 3, 4, d) (2, 3, c, 4) (3, 2, 3, d) (3, 2, c, 3)

Table 11: Infinite sequences of type X singularities. The table is invariant under exchanging

two of b, c, d. Gray entries are reducible to previous types of singularities. This table is

adapted from [19].

(2, 2, c, d)

~q =

(
1

2
,
cd− d+ 1

2cd+ 1
,
2d− 1

2cd+ 1
,

c+ 1

2cd+ 1

)
. (B.44)

Consider yukvl. Q = 1 leads to (1+ c)(d− l) = (2d− 1)k. So a necessary condition for being

isolated is gcd(c + 1, 2d − 1) = 1. Then one can show that the weight above is irreducible.

This enables us to find gi = 0, implying that the 1-form symmetry is trivial.

(3, 2, 2, d)

~q =

(
1

3
,
d+ 1

4d+ 1
,
2d− 1

4d+ 1
,

3

4d+ 1

)
(B.45)

Consider yuvk. Q = 1 leads to d + 1 = 3k. So a necessary condition for being isolated

is gcd(3, d + 1) = 1. Then one can show that the weight above is irreducible. As a result

g1 = 0, r2 = r3 = r4 = 1, implying that the 1-form symmetry is trivial.

(4, 2, 2, d) As in the above (3, 2, 2, d) case, a necessary condition for being isolated is

gcd(3, d + 1) = 1. Then one can show that the weight above is irreducible. As a result

gi = 0, implying that the 1-form symmetry is trivial.
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(2, 3, 3, d)

~q =

(
1

2
,
2d+ 1

9d+ 1
,
3d− 2

9d+ 1
,

7

9d+ 1

)
(B.46)

Consider yu2vk. Q = 1 leads to d + 4 = 7k. Therefore, a necessary condition for being

isolated is gcd(7, d− 3) = 1. Then the weight vector can be shown to be irreducible, and we

find r2 = r3 = r4 = 1, 2g1 = 0, which implies trivial 1-form symmetry.

(2, 3, 4, d)

~q =

(
1

2
,
3d+ 1

12d+ 1
,
3d− 2

12d+ 1
,

9

12d+ 1

)
. (B.47)

The weight vector above is always irreducible, and we have r2 = r3 = r4 = 1, g1 = 0, giving

trivial 1-form symmetry.

(2, 3, c, 4)

~q =

(
1

2
,
4c− 3

12c+ 1
,

10

12c+ 1
,
2c+ 1

12c+ 1

)
. (B.48)

Consider yv2uk. Q = 1 leads to 2c + 1 = 5k. So a necessary condition for being isolated is

gcd(5, 2c+ 1) = 1. As a result, the weight vector above is irreducible. Then we find gi = 0,

which implies trivial 1-form symmetry.

(3, 2, 3, d)

~q =

(
1

3
,
2d+ 1

6d+ 1
,
2d− 1

6d+ 1
,

4

6d+ 1

)
. (B.49)

The weight above is irreducible and leads to gi = 0, implying no 1-form symmetry.

(3, 2, c, 3)

~q =

(
1

3
,
3c− 2

6c+ 1
,

5

6c+ 1
,
c+ 1

6c+ 1

)
(B.50)

Consider yv2uk. Q = 1 leads to c + 1 = 5k. So a necessary condition for being isolated is

gcd(c + 1, 5) = 1. The weight above is then irreducible and gi = 0. Therefore, the 1-form

symmetry is trivial.

Type XI: The singularity is given by

W = xa + xyb + yuc + uvd , (B.51)

and we require a ≥ 2, b, c, d ≥ 1 in order to get an isolated singularity at the origin. The

weights and Milnor number are given by

~q =
(1
a
,
a− 1

ab
,
a(b− 1) + 1

abc
,
ab(c− 1) + (a− 1)

abcd

)
, µ = abc(d − 1) + a(b− 1) + 1 . (B.52)

48



The singularity can be reduced to the previous type VII if

b

a− 1
∈ Z . (B.53)

Imposing
∑

i qi > 1, one gets the infinite sequences in table (12) and sporadic solutions

we have checked separately.

(a, 1, c, d) (a, b, 1, d) (a, b, c, 1) (2, 2, 2, d) (2, 2, 3, d)

(2, 2, c, 2) (2, 2, c, 3) (2, 2, c, 4) (2, b, 2, d) (3, 2, 2, d)

(a, 2, c, 2) (a, 2, 2, 2) (a, 2, 2, 3) (3, b, 2, 2) (4, b, 2, 2)

(a, 3, 2, 2) (2, 3, c, 3) (3, 2, c, 3) (2, b, 3, 3) (2, b, 3, 4)

(2, b, 4, 3) (3, 3, b, 2) (3, 4, c, 2) (4, 3, c, 2) (3, b, 2, 3)

(3, b, 3, 2)

Table 12: Infinite sequences of type XI singularities. Gray entries are reducible to previous

types of singularities. This table is adapted from [19].

The monomial basis of the Milnor ring is given by

xmynukvl, m = 0, · · · , a− 1, n = 0, · · · , b− 1, k = 0, · · · , c− 1, l = 0, · · · , d− 2 ,

(B.54)

or

xmynvd−1, m = 0, · · · , a− 1, n = 0, · · · , b− 2, k = 0, l = d− 1 , (B.55)

or

bb−1vd−1 = ynvl, m = 0, n = b− 1, k = 0, l = d− 1 . (B.56)

(a, 1, c, d)

~q =

(
1

a
,
a− 1

a
,
1

ac
,
ac− 1

acd

)
(B.57)

Consider ukvl with k = 0, · · · ac− 1, l = 0, · · · , d− 2. The condition Q = 1 leads to

k′

ac− 1
=

l

d
, k′ = ac− k = 1, · · ·ac . (B.58)

So a necessary condition for being isolated is gcd(ac− 1, d) = 1 or d = 2.

If gcd(ac− 1, d) = 1, then the weight above can be shown to be irreducible, and we have

r1 = r2 = r3 = 1, g4 = 0, which implies trivial 1-form symmetry.
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If d = 2 and ac is even, then the weight above is irreducible, and we have r1 = r2 = r3 =

1, g4 = 0, which implies trivial 1-form symmetry.

If d = 2 and ac is odd, ac = 2p+ 1, then the weight vector becomes

~q =

(
1

a
,
a− 1

a
,

1

2p+ 1
,

p

2p+ 1

)
. (B.59)

and is irreducible. One can compute ri = 1, implying trivial 1-form symmetry.

(a, b, 1, d)

~q =

(
1

a
,
a− 1

ab
,
a(b− 1) + 1

ab
,
a− 1

abd

)
(B.60)

For b = d = 1, the weight vector is irreducible and ri = 1, so there is no 1-form symmetry.

For b = 1, d = 2 or b = 2, d = 1, one can also check that the 1-form symmetry is trivial.

For bd > 2, consider xkvl with k = 0, · · ·a− 1, l = 0, · · · bd− 2. Q = 1 leads to

l

bd
=

k′

a− 1
, k′ = a− k = 1, · · · , a . (B.61)

So a necessary condition for being isolated is gcd(bd, a − 1) = 1, which is equivalent to

gcd(b, a − 1) = gcd(d, a − 1) = 1. Then one can show that the weight vector above is

irreducible, and one can find r1 = r2 = r3 = 1, g4 = 0. As a result, the 1-form symmetry is

trivial.

(a, b, c, 1)

~q =

(
1

a
,
a− 1

ab
,
ab− (a− 1)

abc
,
abc− ab+ (a− 1)

abc

)
(B.62)

Consider xkyl. Q = 1 leads to

k′

a− 1
=

l

b
, k′ = a− k . (B.63)

Therefore, a necessary condition for being isolated is gcd(a− 1, b) = 1.

We can rewrite the weight vector as

~q =

(
1

a
,
a− 1

ab
,
s̃

abc̃
,
abc̃− s̃

abc̃

)
,

ab− (a− 1)

c
=

s̃

c̃
, gcd(s̃, c̃) = gcd(s̃, ab) = 1 .

(B.64)

Then the above weight vector is irreducible. One can show that ri = 1, which implies no

1-form symmetry.
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(a, 2, c, 2)

q =

(
1

a
,
a− 1

2a
,
a+ 1

2ac
,
2ac− a− 1

4ac

)
(B.65)

If c = 1, we can check that the 1-form symmetry is always trivial. This can be seen by

observing that qy + qu = 1 and using the lemma in section 3.

For a, c > 1, consider xluk with l = 0, · · · , a − 1, k = 0, · · · , c − 1. Q = 1 leads to

(a+ 1)k = 2c(a− l) which can be rewritten as

l′

a+ 1
=

k

2c
, l′ = a− l = 1, · · · , a . (B.66)

Then it is easy to figure out a necessary condition for being isolated is gcd(a + 1, 2c) = 1,

which is equivalent to gcd(a + 1, 2) = gcd(a + 1, c) = 1. Then one can show the weight is

irreducible. And we have r1 = r2 = r3 = 1, g4 = 0, which implies no 1-form symmetry.

(a, 2, 2, 2) Consider xky. Q = 1 leads to a + 1 = 2k. So a necessary condition for being

isolated is gcd(a+1, 2) = 1. Then one can show the weight vector is irreducible, and we have

r1 = r2 = r3 = 1, g4 = 0, which implies no 1-form symmetry.

(a, 2, 2, 3) The discussion is identical to the previous (a, 2, 2, 2) case.

(3, b, 2, 2)

~q =

(
1

3
,
2

3b
,
3b− 2

6b
,
3b+ 2

12b

)
. (B.67)

The x, y part in the form of (B.3) gives the necessary condition for being isolated gcd(2, b) = 1.

Then the weight vector is irreducible, and r1 = r2 = r3 = 1, g4 = 0. Therefore, the 1-form

symmetry is trivial.

(4, b, 2, 2) The x, y part in the form of (B.3) gives the necessary condition for being isolated

gcd(3, b) = 1. The weight vector is then irreducible, and r1 = r2 = r3 = 1, g4 = 0, implying

trivial 1-form symmetry.

(a, 3, 2, 2) The x, y part in the form of (B.3) gives the necessary condition for being isolated

gcd(a − 1, 3) = 1. Then one can show that the weight vector is irreducible, and r1 = r2 =

r3 = 1, g4 = 0, implying trivial 1-form symmetry.

51



(3, 3, c, 2)

~q =

(
1

3
,
2

9
,
7

9c
,
9c− 7

18c

)
. (B.68)

Consider xyuk. Q = 1 leads to 4c = 7k. So a necessary condition for being isolated is

gcd(4c, 7) = gcd(c, 7) = 1.

If c is even, then the weight vector above is irreducible. One finds r1 = r2 = r3 = 1, g4 = 0,

giving no 1-form symmetry.

If c is odd, c = 2p+ 1, the weight vector becomes

~q =

(
1

3
,
2

9
,

7

18p+ 9
,
9p+ 1

18p+ 9

)
, (B.69)

and is irreducible. Then one finds ri = 1, meaning no 1-form symmetry.

(3, b, 2, 3)

~q =

(
1

3
,
2

3b
,
3b− 2

6b
,
3b+ 2

18b

)
. (B.70)

The x, y part in the form of (B.3) gives a necessary condition for being isolated: gcd(2, b) = 1.

Then the weight vector is irreducible and we have r1 = r2 = r3 = 1, g4 = 0, which implies

trivial 1-form symmetry.

(3, b, 3, 2)

~q =

(
1

3
,
2

3b
,
3b− 2

9b
,
3b+ 1

9b

)
. (B.71)

The x, y part in the form of (B.3) gives a necessary condition for being isolated: gcd(2, b) = 1.

Then the weight vector is irreducible, and we have ri = 1, meaning trivial 1-form symmetry.

Type XIX: The singularity is defined by

W = xau+ xyb + vuc + yvd . (B.72)

The weight vector is

~q =

(
b(d(c− 1) + 1)− 1

abcd− 1
,
d(c(a− 1) + 1)− 1

abcd − 1
,
a(b(d− 1) + 1)− 1

abcd − 1
,
c(a(b− 1) + 1)− 1

abcd− 1

)
,

(B.73)

and the Milnor number is µ = abcd. There are some sporadic cases that we have checked

separately, and we include the infinite sequences in table 13.

A monomial basis in the Milnor ring is

xmynukvl, m = 0, · · · , a− 1, n = 0, · · · , b− 1, k = 0, · · · , c− 1, l = 0, · · · , d− 1 .

(B.74)
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(1, b, c, d) (2, b, c, 2) (2, 2, c, 3)

Table 13: Infinite sequences of type XIX singularities. This table is adapted from [19].

(1, b, c, d) The weight vector vector becomes

~q =

(
b((c− 1)d+ 1)− 1

bcd− 1
,
d− 1

bcd− 1
,
b(d− 1)

bcd− 1
,
bc− 1

bcd− 1

)
, bc, d ≥ 2 . (B.75)

The Milnor ring is

R = C[v, y]/〈b(−1)cc vybc−1 + vd, (−1)c ybc + d yvd−1〉 . (B.76)

The monomial basis can be chosen as

ykvl , k = 0, · · · , bc− 1 , l = 0, · · · , d− 1 . (B.77)

The equation Q = 1 is equivalent to

k′

bc− 1
=

l′

d− 1
, k′ = bc− k = 1, · · · bc , l′ = l − 1 = −1, · · · d− 2 . (B.78)

Then it is not difficult to show that the condition for an isolated theory is

gcd(bc− 1, d− 1) = 1 . (B.79)

This guarantees that the weight vector (B.75) is irreducible, and one can check ri = 1, so the

1-form symmetry is trivial.

(2, b, c, 2)

~q =

(
−2bc + b+ 1

1− 4bc
,
2c+ 1

4bc− 1
,
2b+ 1

4bc− 1
,
−2bc + c+ 1

1− 4bc

)
, bc ≥ 2 . (B.80)

The Milnor ring has monomial basis

ykulxmvn , k = 0, · · · , b− 1 , l = 0, · · · , c− 1 , m, n = 0, 1 . (B.81)

The equation Q = 1 leads to

B(C(m+n−2)+2l−2m−n+2)+C(2k−m−2n+2) = 0 , B = 2b+1 , C = 2c+1 .

(B.82)

Then one can show that the condition to be isolated is gcd(B,C) = gcd(2b+ 1, 2c+ 1) = 1.

This result also implies gcd(2c + 1, c − b) = gcd(2c + 1, b + c + 1) = 1. These conditions

are enough to show that the weight is irreducible. Moreover, we can compute ri = 1, which

implies vanishing 1-form symmetry.
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(2, 2, c, 3)

~q =
( 6c− 5

12c− 1
,
3c+ 2

12c− 1
,

9

12c− 1
,
3c− 1

12c− 1

)
(B.83)

In this case, the weight is always irreducible. Moreover, we can compute ri = 1, showing the

absence of 1-form symmetry.

B.2. Singularities with more than four monomials

In this section, we consider theories with more than four monomials in W , following the

classification of [18]. We will extend our discussion to theories arising in a refinement of

this classification in B.3 (although, as we will see, our goal does not require us to make this

classification explicit).

By analyzing the weights of each type of singularity, we find that if any of a, b, c, d are

allowed to equal one, then there are two weights whose sum equals one. Then using the

lemma in section 3, we learn that there is no 1-form symmetry. In particular, the case
∑

i qi > 3/2, which corresponds to isolated SCFTs according to Claim 3 in section 5, only

arises when a specific a, b, c, d equals to 1. As a consequence, Corollary 1 in section 5 holds

in these situations.

As a result, we only need to consider cases where all a, b, c, d ≥ 2. For these cases, we

have numerically checked that, for all 2 ≤ a, b, c, d ≤ 13 giving an isolated singularity,39

the corresponding Milnor ring always has a monomial with weight 1. This numerical result

motivates us to make the following conjecture:

Conjecture: For the isolated singularities in table 3 defined with 5 or more monomials in

W and a, b, c, d ≥ 2, the corresponding Milnor ring always has a marginal monomial with

weight one.

In the rest of this appendix, we will prove a slightly weaker statement. Namely, we will

show that the conjecture holds in most situations, except for some special values of a, b, c, d.

For those exceptional case we show that the singularities reduce to previous types or that the

SCFTs have no 1-form symmetry. This statement is enough for us to establish a complete

proof of our main claim for SCFTs related to all these singularities. We complete our proof

for the most general theories in B.3.

We begin with a simple observation:

Claim: Consider those singularities involving 5 or more monomials in W . The weights are

fixed by a, b, c, d in table 3 and are independent of the remaining parameters. If no entry

39More explicitly, we impose (i) the Milnor number is an integer, (ii) the solution p, q (and r, s) to the

weight 1 condition exists, and (iii) dW = 0 ⇔ xi = 0.
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in the weight vector can be written as a non-negative linear combination of the rest of the

entries, namely, ∀i, qi 6=
∑

j 6=iMijqj , Mij ∈ N, then the theory has a conformal manifold.

Proof: We need to consider elements of the Milnor ring (i.e., monomials which are non-trivial

even when dW = 0 is imposed). We are particularly interested in weight-one constraints

since these will affect the exactly marginal elements of the Milnor ring. Such constraints take

the following form

0 = Xi∂Xi
W , Xi ∈ {x, y, u, v} . (B.84)

Since we assume that
∑

j 6=i njqj/qi 6= 1, these are the only constraints.40

Therefore, at weight one there are at most four constraints. However, for these types of

singularities, by construction, we have at least five monomials with weight one appearing in

W . As a result, there is at least one non-trivial element with weight one in the Milnor ring.

This is an exactly marginal deformation, so the theory is not isolated. �

The more difficult situation to deal with then is one in which there are integral relations

among weights:

qi =
∑

j 6=i

Mijqj , Mij ∈ N . (B.85)

We denote the number of such distinct relations for each i as Ni ≥ 0. Each such relation

enables us to generate an additional weight-one constraint on the Milnor ring:41

0 =
(∏

j 6=i

X
Mij

j

)
∂Xi

W . (B.86)

As a result, we generate (at most) Nx +Ny +Nu +Nv additional constraints at weight one

on top of the four constraints, Xi∂Xi
W .

Therefore, to show that a theory of the type we are considering has a marginal deformation,

it is enough to show that we can generate one more distinct weight one monomial for each

relation in (B.85). In such a case, we are always left with at least one non-trivial element

with weight one in the Milnor ring, which thus gives rise to a marginal deformation.

Type VIII: Let us start with type VIII

W = xa + yb + yuc + yvd + upvq . (B.87)

40If, say, qi/qj = k ∈ N, then we can have a further constraint, qkj ∂xi
W , which is trivial in the Milnor ring

and has weight 1.
41Some of these constraints may be redundant.
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We want to show that for a, b, c, d ≥ 2, the theory has a marginal deformation (c, d ≥ 2 or

else the lemma of section 3 guarantees the 1-form symmetry is trivial; the singularity cannot

be isolated unless a, b ≥ 2). Instead of directly analyzing the Milnor ring, R, of W , we

consider the subring Rsub = R/〈x〉. Our strategy will be to show that there is a weight one

monomial in this subring. Therefore, the Milnor ring R itself will have at least one weight

one monomial. Practically speaking, going to the subring can be done by setting x → 0. As

a result, (B.87) reduces to

yb + yuc + yvd + upvq . (B.88)

To simplify the discussion, we introduce the notion of a monomial vector, which represents

each monomial in terms of a vector of entries corresponding to the power of a given variable

in the monomial. For example, we can represent the monomials in (B.88) as

Vb = (b, 0, 0) , (B.89)

Vc = (1, c, 0) , (B.90)

Vd = (1, 0, d) , (B.91)

Vpq = (0, p, q) . (B.92)

There are also replacement vectors, which represent each weight relation (B.85) in terms

of a vector

Sj
b = (−1, mj , nj) , j = 1 , · · · , Nb , (B.93)

Sj
c = (ej, −1, fj) , j = 1 , · · · , Nc , (B.94)

Sj
d = (kj, lj , −1) , j = 1 , · · · , Nd , (B.95)

where m,n, e, f, k, l are non-negative integers subject to ~q ·S = 0. The meaning of (−1, m, n)

is that we can replace y → umvn.

Therefore, we can use the V +S combinations to generate new monomials. Each replace-

ment vector enables us to generate one more monomial. To show that there are marginal

deformations, it is enough to show that the new monomial vectors generated in this way are

all different from each other (and from the five terms appearing in W ).

It turns out we can consider the following special combinations:

Ṽ j
b = Vb + bSj

b = (0, ⋆, ⋆) , ⋆ 6= 1 , (B.96)

Ṽ j
c = Vc + (c− 1)Sj

c = (#, 1, ∗) , # ≥ 1 , (B.97)

Ṽ j
d = Vd + (d− 1)Sj

d = (#, ∗, 1) , # ≥ 1 , (B.98)
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where ∗, ⋆,# ∈ N, and # > 0, ⋆ 6= 1. Comparing all the V, Ṽ above, it is not difficult

to see that they are distinct except for the possibilities that Vpq = Ṽb and Ṽc = Ṽd (note

a, b, c, d ≥ 2).

First consider the case Vpq = Ṽb. This scenario arises if and only if

(0, p, q) = (b, 0, 0) + b(−1, m, n) ⇒ p = mb , q = nb . (B.99)

We assume p, q > 0 (if either p = 0 or q = 0, this theory reduces to type II, which we have

dealt with in section B.1). So m,n ≥ 1 and we can replace

Vpq = (0, p, q) → (b, 0, 0) + (b− 1)(−1, m, n) = (1, (b− 1)m, (b− 1)n) . (B.100)

Since (b − 1)m, (b − 1)n > 0, the new vector may only overlap with Ṽc, Ṽd. If b ≥ 3, (b −

1)m, (b− 1)n ≥ 2, and it would be different from all the rest of monomial vectors (including

Ṽc, Ṽd). So we only need to worry about b = 2.

For b = 2, we have y2 + yuc + yvd + upvq. In this case, the weight vector is given by

~q =

(
1

a
,
1

2
,
1

2c
,
1

2d

)
. (B.101)

This reduces to a type I theory, and it also has an exactly marginal deformation since the

u, v part has gcd(2c, 2d) > 1.

For the case Ṽc = Ṽd, we have

(1, c, 0) + (c− 1)(e,−1, f) = (1, 0, d) + (d− 1)(k, l,−1) = (∗, 1, 1) . (B.102)

It is easy to find that this equation implies

c = d = 2 , f = l = 1 . (B.103)

Solving p(b − 1)/(2b) + q(b − 1)/(2b) = 1, one finds that b = 2 or b = 3. We have already

considered b = 2. For b = 3, we have

y3 + yu2 + yv2 + uv2 . (B.104)

Since qy = qu = qv, claim 2 (proven in appendix A) implies that the one-form symmetry is

trivial (it is also easy to check there is an exactly marginal deformation).

Type IX: In this case, we can again consider the subring gotten by setting x → 0. For

convenience, we reshuffle the variables by exchanging y ↔ v, b ↔ d, p ↔ q. Then the

problem boils down to analyzing the subring corresponding to

vyb + yuc + yvd + upvq . (B.105)
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This is almost identical to (B.88) in the type VIII case except for the first monomial, vyb.

The monomial vectors are

Vb = (b, 0, 1) , (B.106)

Vc = (1, c, 0) , (B.107)

Vd = (1, 0, d) , (B.108)

Vpq = (0, p, q) , (B.109)

and the replacement vectors are

Ṽ j
b = Vb + bSj

b = (0, ⋆, #) , ⋆ 6= 1 , # ≥ 1 , (B.110)

Ṽ j
c = Vc + (c− 1)Sj

c = (#, 1, ∗) , # ≥ 1 , (B.111)

Ṽ j
d = Vd + (d− 1)Sj

d = (#, ∗, 1) , # ≥ 1 , (B.112)

where ∗, ⋆,# ∈ N, and # > 0, ⋆ 6= 1. All the vectors above are distinct except possibly when

Ṽb = Vpq, Ṽc = Ṽd, or Vb = Ṽd.

In the case that Ṽb = Vpq, we have

(b, 0, 1) + b(−1, m, n) = (0, p, q) ⇒ p = mb , q = nb+ 1 . (B.113)

If b = 2, we have (d − 1)/(b − 1) ∈ Z, and this reduces to the previous type VII. Thus we

just need to consider b > 2. For b > 2, we can replace

Ṽb → V̂b = (b, 0, 1) + (b− 2)(−1, m, n) = (2, m(b− 2), n(b− 2) + 1) . (B.114)

It may happen that this still coincides with Ṽc, Ṽd.

If V̂b = Ṽc, one can show that b = 3, c = 2. Solving the equation for p, q, one further finds

that d = 2s + 1 must be odd. This case is reducible to the previous type VII singularity as

(d− 1)/(b− 1) = s ∈ Z [19].

If V̂b = Ṽd, namely

(2, ∗, 1) = (2, m(b− 2), n(b− 2) + 1) = (1, 0, d) + (d− 1)(k, l,−1) , (B.115)

then we should have d = 2, k = 1, and we can replace

Ṽd → (1, 0, 2) + 2(1, l,−1) = (3, 2l, 0) . (B.116)

This vector is different from all the rest.
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In the case that Ṽc = Ṽd, we are led to c = d = 2. Solving the equation for p, q we find

the only solution b = 2, p + q = 3. So we have vy2 + yu2 + yv2 + uv2. One can explicitly

check that this theory has a weight 1 marginal monomial in the Milnor ring.

Finally if Vb = Ṽd, then

(b, 0, 1) = (1, 0, d) + (d− 1)(k, 0,−1) −→
b− 1

d− 1
= k ∈ Z . (B.117)

Therefore this case reduces to the type VII considered before [19].

Type XII: We can consider the subring R/〈v〉 and therefore set v → 0. The resulting W is

identical to (B.88) in the type VIII case after reshuffling the variables.

Type XIII: The monomial vectors are given by

Va = (a, 0, 0, 0) , (B.118)

Vb = (1, b, 0, 0) , (B.119)

Vc = (0, 1, c, 0) , (B.120)

Vd = (0, 1, 0, d) , (B.121)

Vpq = (0, 0, p, q) . (B.122)

Using replacement vectors, we can generate the new weight 1 monomial vectors in the follow-

ing form

Ṽa = (0, ⋆, ⋆, ⋆) , ⋆ 6= 1 , (B.123)

Ṽb = (#, 1, ∗, ∗) , # ≥ 1 , (B.124)

Ṽc = (∗, #, 1, ∗) , # ≥ 1 , (B.125)

Ṽd = (∗, #, ∗, 1) , # ≥ 1 . (B.126)

where ⋆,#, ∗ ∈ N and ⋆ 6= 1,# ≥ 1, ∗ ≥ 0. All the vectors V, Ṽ above are distinct except

possibly Vpq = Ṽa, Ṽb = Ṽc, Ṽb = Ṽd, or Ṽc = Ṽd.

If Vpq = Ṽa, then

(0, 0, p, q) = (a, 0, 0, 0) + a(−1, k,m, n) , (B.127)

and we have k = 0, p = ma, q = na. These equalities enable us to replace

Ṽa → (a, 0, 0, 0) + (a− 1) (−1, k,m, n) = (1, 0, (a− 1)m, (a− 1)n) . (B.128)

Obviously this new vector is distinct from all the rest of the vectors above.
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In the case of Ṽb = Ṽc or Ṽb = Ṽd, we must have b = 2. If Ṽc = Ṽd, we should have

c = d = 2.

Let us discuss the case of c = d = 2 first. In this case, the weight vector can be rewritten

as

~q =

(
1

a
,
a− 1

ab
,
a(b− 1) + 1

2ab
,
a(b− 1) + 1

2ab

)
=

(
1

a
,
ã

ab̃
,
ab̃− ã

2ab̃
,
ab̃− ã

2ab̃

)
, (B.129)

where gcd(ã, a) = gcd(ã, b̃) = 1. Thus gcd(ã, ab̃) = 1 and gcd(ab̃, ab̃− ã) = 1. If gcd(2, ab̃−

ã) = 1, then the above weight vector is irreducible. One can check ri = 1 and so the 1-form

symmetry is trivial. If gcd(2, ab̃ − ã) = 2, we can set ab̃ − ã = 2k and rewrite the weight

vector as

~q =

(
1

a
,

ã

ã + 2k
,

k

ã + 2k
,

k

ã+ 2k

)
, (B.130)

which is irreducible as gcd(ã, k) = 1. One then finds ri = 1, implying trivial 1-form symmetry.

If Ṽb = Ṽc and Ṽb 6= Ṽd, then b = 2 and

(∗, 1, 1, ∗) = (1, 2, 0, 0) + (n,−1, 1, m) = (0, 1, c, 0) + (c− 1)(k, 0,−1, l) . (B.131)

Therefore, we can replace

Ṽb → (1, 2, 0, 0) + 2(n,−1, 1, m) = (#, 0, 2, ∗) , # ≥ 1 . (B.132)

This new vector is different from all the rest except, potentially, for (B.128) which happens

when a = b = 2.

Similarly if Ṽb = Ṽd and Ṽb 6= Ṽc, then b = 2, and we can replace

Ṽb → (#, 0, ∗, 2) , # ≥ 1 . (B.133)

This vector is also different from all the rest except, potentially, for (B.128) which happens

when a = b = 2.

If Ṽb = Ṽd and Ṽb = Ṽc, we then have Ṽc = Ṽd with c = d = 2 which we have already

considered.

Therefore, we only need to study the case a = b = 2, which has weight vector

~q =

(
1

2
,
1

4
,
3

4c
,
3

4d

)
. (B.134)

The weights coincide with those of the type VIII theory.

Type XIV: We can consider the subring R/〈v〉 and thus set v → 0. The resulting W is

identical to (B.88) for the type VIII case after reshuffling the variables.
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Type XV, XVI, XVII: For these three types of singularities, we can consider the subring

R/〈v〉 and thus set v → 0. The resulting W is identical to (B.105) for the type IX case after

reshuffling the variables.

Type XVIII: The monomial vectors are given by

Va = (a, 0, 1, 0) , (B.135)

Vb = (1, b, 0, 0) , (B.136)

Vc = (0, 1, c, 0) , (B.137)

Vd = (0, 1, 0, d) , (B.138)

Vpq = (0, 0, p, q) . (B.139)

Using the replacement vectors, we can generate the new weight one monomial vectors of the

following form

Ṽa = (1, ∗, #, ∗) , (B.140)

Ṽb = (#, 1, ∗, ∗) , (B.141)

Ṽc = (∗, #, 1, ∗) , (B.142)

Ṽd = (∗, #, ∗, 1) , (B.143)

where #, ∗ ∈ N and # ≥ 1, ∗ ≥ 0.

One can easily check that for a, b, c, d ≥ 2, all the monomial vectors above are distinct

unless a, b, c, d equals to 2. More precisely, the two vectors above coincide if: Ṽa = Ṽb : a = 2;

Ṽa = Ṽc : c = 2; Ṽa = Ṽd : d = 2; Ṽb = Ṽc or Ṽb = Ṽd : b = 2; Ṽc = Ṽd : c = d = 2.

Therefore for all a, b, c, d ≥ 3, the corresponding SCFTs always have exactly marginal

deformations, and our claim on isolated SCFTs and 1-form symmetry trivially holds. We

need only check the case when any of a, b, c, d equals to 2.

In the case of a = b = c = d = 2, we have

W = xy2 + ux2 + u2y + v2y + u2v , ~q =

(
1

3
,
1

3
,
1

3
,
1

3

)
. (B.144)

The singularity is isolated and one can explicitly check that all the monomials in W are in

the Milnor ring.

On the other hand, we expect the Milnor ring has the property that it increases with

increasing a, b, c, d (where we define “increasing" to be in the sense of (B.145) below).42 This

42One simple explicit example illustrating this property is when a = b = c = 2. The singularity is isolated
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is because whenever one increase the value of a, b, c, d, the constraints dW = 0 become weaker

due to the higher power of the variables. The only concern is that p, q may not increase with

a, b, c, d. However, the Milnor ring should be independent of the specific value of p, q as long

as the singularity is isolated. This statement is consistent with the fact that the Milnor

number µ is a monotonically increasing function of a, b, c, d. As a consequence, we have

{xy2, ux2, u2y, v2y} ⊂ R(2,2,2,2) ⊂ R(a,b,c,d) , a, b, c, d ≥ 2 . (B.145)

We can then immediately show that as long as at least one of a, b, c, d equals to two, there

is a weight one monomial in the Milnor ring. For example, when a = 2, we have ux2 ∈

R(2,2,2,2) ⊂ R(2,b,c,d), and ux2 has weight one. Therefore, we justify that even when one of the

a, b, c, d equal two, there is still at least a marginal monomial with weight one in the Milnor

ring. The corresponding SCFT thus has a conformal manifold.

Alternatively, we can also justify our claim without relying on the property (B.145).

Indeed, if three of a, b, c, d equal to two, we have explicitly checked the conjecture holds.

Then, if two of a, b, c, d equal to 2, by analysing the cases where Ṽ ’s coincide, one can show

that the possibilities are (a, b, 2, 2),(a, 2, c, 2), and (a, 2, 2, d). For (a, b, 2, 2), one can show

the the 1-form symmetry of the corresponding SCFT is always trivial.43 The (a, 2, c, 2) and

(a, 2, 2, d) cases are more complicated to analyze directly, but can be discussed by imposing the

further requirement that
∑

qi > 1 for SCFTs (which we did not impose explicitly before).44

Finally, we can discuss the case when only one of a, b, c, d equals two. If a = 2, we have

Ṽa = Ṽb = (1, 1, ∗, ∗) = (2, 0, 0, 0) + (−1, 1, ∗, ∗). We can then replace Ṽa → (2, 0, 0, 0) +

2(−1, 1, ∗, ∗) = (0, 2, ∗, ∗). This new vector never coincides with any other vectors. In

particular, it is different from Ṽc, Ṽd due to our assumption that c, d > 2. If b = 2, and

Ṽb = Ṽd, we can replace Ṽb → (∗, 0, ∗, 2). If b = 2 and Ṽb = Ṽc, we can replace Ṽb → (∗, 0, 2, ∗).

If c = 2, namely Ṽa = Ṽc, we can replace Ṽc → (2, ∗, 0, ∗). If d = 2, namely Ṽa = Ṽd, we can

and defined by W = uvd + yvd + u2y + ux2 + xy2. One can check that the Milnor ring has monomial basis

xkylumvn with k, l = 0, 1, m = 0, 1, 2, n = 0, · · · , d − 2 or k, l = 0, 1, m = 0, n = d − 1. The Milnor ring

and the Milnor number µ = 12d− 8 increase with d.
43This is because the denominators of all the weights are the same.
44The requirement

∑
i qi > 1 then leads to two infinite sequences, a = 2 or c = 2 (or d = 2), as well as a

finite number of cases with a, c ≥ 3 (or a, d ≥ 3). If either of a, c, d equals two, we have at least three twos

in (a, b, c, d) which was already considered. For the finite set, we also need to have a solution for p, q in order

to get an isolated singularity (within the scheme of [19]). For (a, 2, c, 2) with a, c > 3, we get the unique case

(4, 2, 3, 2) which indeed has weight one monomial in the Milnor ring. While for (a, 2, 2, d) wtih a, d > 3, there

is no solution. We can also use the extra condition,
∑

i qi > 1 for SCFTs, to discuss the case of (a, b, 2, 2) as

well as other types of singularities.
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replace Ṽd → (2, ∗, ∗, 0).

To conclude, we have shown that for a, b, c, d ≥ 2, the theory has marginal deformations

and our claim holds. This completes the proof of our main claim for the theories discussed

in [19].

B.3. 1-form symmetry and more general singularities with five or more monomials

In this appendix, we wish to study the theories covered in B.2 having five or more monomials

in W while allowing for more general possibilities regarding the extra monomials rendering

the singularities isolated (e.g., see the recent discussion in [17, 20]).

Therefore, we study these singularities directly from their weight vectors without relying

on particular choices for the extra monomials. Since the weights are determined by a, b, c, d,

they are independent of the extra monomials. As a result, we neither need nor attempt to

perform a classification of the extra terms.

To have a well-defined SCFT, the condition
∑

i qi > 1 should be imposed as well, and

the resulting solutions were classified in [19] (here we only allow for more general additional

monomials rendering the singularity isolated than those considered in [19]). We will use the

results there and discuss each set of solutions one-by-one. Note that not all the solutions

in [19] give well-defined SCFTs. In particular, we will impose the condition that the corre-

sponding Milnor number is integral and that the corresponding Poincare polynomial indeed

truncates to a polynomial (instead of an infinite series). These are all necessary conditions

for a well-defined SCFT.

Type VIII: The singularity is defined by the polynomial45

W = xa + yb + yuc + yvd + · · · , a, b ≥ 2 , c, d ≥ 1 , (B.146)

where the dots represent extra weight 1 monomials to make the singularity isolated. It is easy

to show that, as discussed in [17, 20], these extra terms must include monomials of the form

upvq or xupvq (we have explicitly carried out an analysis akin to that conducted in B.2 for

upvq → xupvq).46 Besides similar cursory comments in the type IX case, we will not attempt

to systematically classify the possible additional terms.

45Note that we can impose c ≥ d, because exchanging c ↔ d is a symmetry.
46To understand this statement, let us denote the ellipses in (B.146) as f(x, y, u, v). Suppose that upvq 6⊂

f(x, y, u, v) and that there is no x-dependent and y-independent term in f(x, y, u, v) either, i.e., xαupvq 6⊂

f(x, y, u, v). Then, setting x = y = 0, we solve ∂uW = ∂vW = ∂xW = 0. This means that the final constraint

yields 0 = ∂yW |x=y=0 = g(u, v), and the singularity is not isolated. Similar comments apply if all xαupvq

terms appear with α > 1.
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The weight vector and Milnor number are

~q =

(
1

a
,
1

b
,
b− 1

bc
,
b− 1

bd

)
, µ =

(a− 1)(b(c− 1) + 1)(b(d− 1) + 1)

b− 1
. (B.147)

Note that
∑

i qi > 3/2 only holds when c = 1 or d = 1 (therefore, the corresponding SCFTs

are isolated by our claim 3).47 If c = 1, we have qy + qu = 1. If d = 1, we have qy + qv = 1.

This gives trivial 1-form symmetry. So we only need to focus on a, b, c, d ≥ 2. Finally, note

that the singularity is reducible if

c

b− 1
∈ Z , or

d

b− 1
∈ Z . (B.148)

In addition to the finite number of sporadic cases which we have checked separately, the

infinite sequences solving the condition
∑

i qi > 1 are given in Table 14.

(a, b, 1, d) (a, b, c, 1) (2, 2, c, d) (3, 2, 2, d) (4, 2, 2, d)

(2, b, 2, d) (a, 2, 2, 2) (a, b, 2, 2) (2, 3, 3, d) (2, 3, 4, d)

(3, 2, 3, d) (2, 4, 3, d) (2, b, 3, 3) (2, b, 3, 4) (2, b, 3, 5)

(2, b, 3, 6) (3, 3, 2, d) (3, b, 2, 3) (3, b, 2, 4) (3, b, 2, 5)

(3, b, 2, 6) (4, b, 2, 3) (5, b, 2, 3) (6, b, 2, 3) (2, b, 4, 4)

(4, b, 2, 4) (3, b, 3, 3)

Table 14: Infinite sequences of type VIII singularities. The gray entries are either reducible

to previous types or have at least one of c, d = 1, which gives trivial 1-form symmetry. This

table is adapted from [19].

(2, b, 2, d) The Milnor number is

µ = 2d− 1 + b(d− 1) +
2d

b− 1
. (B.149)

If d/(b− 1) ∈ Z then it reduces to previous types. So we just need to consider d/(b− 1) 6∈ Z

but 2d/(b− 1) ∈ Z in order to have an integral Milnor number. Thus

d

b− 1
=

2m+ 1

2
⇒ b = 2k + 1 , d = (2m+ 1)k . (B.150)

47Note that this is a necessary but not sufficient condition. There may still be no p, q leading to an

isolated singularity. On the other hand,
∑

i qi > 3/2 does not lead to an empty set of well-defined SCFTs.

One example is W = uv3 + uy + v6y + x2 + y3 which has isolated singularity and satisfies
∑

i qi > 3/2.
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Then

~q =

(
1

2
,

1

2k + 1
,

k

2k + 1
,

2

(2k + 1)(2m+ 1)

)
. (B.151)

In order to make the singularity isolated, we need to have a weight-one term of the form

upvq.48 So

kp+ 2
q

2m+ 1
= 1 + 2k . (B.152)

We must have
q

2m+ 1
= s ∈ N, kp = 1 + 2(k − s) (B.153)

Clearly k = 2k̃ + 1 must be odd. Then, we find

s = k̃ + 1 , p = 1 , q = (k̃ + 1)(2m+ 1) , (B.154)

and

W = uv(k̃+1)(2m+1) + yv(2k̃+1)(2m+1) + y2(2k̃+1)+1 + u2y + x2 . (B.155)

One can compute the Milnor ring and find that there is always an exactly marginal deforma-

tion. 49

(a, b, 2, 2) If b = 2, 3, the theory reduces to type I. Since qu = (b − 1)/(2b) = qv, we

have 1
3
< qu,v < 1

2
for b > 3. According to lemma 2.8 of [20], we should have another

qi = 1− 2qu = 1/b, qj = 1− 2qv = 1/b. Therefore a = b, and there is no 1-form symmetry by

the discussion in appendix A.

(2, 3, 3, d) The Milnor number is

µ =
21d

2
− 7 , (B.156)

and so we must have d = 2n in order to have an integer. Then d/(b − 1) = n ∈ Z, and the

singularity reduces to a previous type.

(2, b, 3, 3) By requiring the Milnor number to be integral, we find b = 2, 4, 10. By com-

puting the Poincare polynomial, one finds that for b = 2, 4 there is a weight 1 term. For

b = 10, the Poincare polynomial does not truncate to a polynomial, so the singularity is not

well defined.

48As discussed in footnote 46, the ellipses in (B.146) must include either a term of the form upvq or else

a term of the form xupvq. Since qx = 1/2 in this case, we see that if we have a term of the form xupvq, then

we have u2pv2q as well.
49There is a simpler way to show this by noticing that u2y ∈ R(2,3,2,3) ⊂ R(2,b,2,d). Since u2y always has

weight 1 for (2, b, 2, d), it is thus an exactly marginal deformation.
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(2, b, 3, 4) One finds the solutions b = 2, 3, 4, 5, 7, 13. By computing the Poincare polyno-

mial, one finds there is always a weight one term in the Milnor ring.

(2, b, 3, 5) The integral Milnor number requirement leads to b = 2, 4, 6, 16, and there is

always a weight-one term in the Milnor ring.

(2, b, 3, 6) One finds b = 2, 3, 4, 7, 10, 19. In the first four cases, there is a weight-one term

in the Milnor ring. For the last two, the singularity is not well defined.

(3, b, 2, 3) One finds b = 2, 3, 4, 5, 7, 13. The first five cases have a weight one term, while

the last one is not well defined.

(3, b, 2, 4) One finds b = 2, 3, 5, 9, 17. The first four cases have a weight one term, while

the last one is not well defined.

(3, b, 2, 5) One finds b = 2, 3, ✁5, 6, 11, 21.50

(3, b, 2, 6) b = 2, 3, 4, 5, 7, ✁9,✚✚13,✚✚25.

(4, b, 2, 3) b = 2, 3, 4, 7, 10,✚✚19.

(5, b, 2, 3) b = 2, 3, 4, 5, 7, ✁9,✚✚13, 25.

(6, b, 2, 3) b = 2, 3, 4, 6, 7,✚✚11,✚✚16,✚✚31.

(2, b, 4, 4) b = 2, 3, 5, ✁9,✚✚17.

(4, b, 2, 4) b = 2, 3, 4, 5, ✁7, ✁9,✚✚13,✚✚25.

50From now on, we will use the notation ✁x to indicate that the corresponding singularity is not well-defined

due to a lack of truncation in the Poincare polynomial. For the rest of the cases, there is always a weight-one

term, but we will not repeat this statement any more.
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(3, b, 3, 3) b = 2, 3, 4, ✁7,✚✚10,✚✚19.

Type IX: The singularity is defined by the polynomial

W = xa + vyb + vuc + yvd + · · · , a, b, d ≥ 2 , c ≥ 1 . (B.157)

The weight vector and Milnor number are

~q =

(
1

a
,
d− 1

bd− 1
,
b(d − 1)

c(bd − 1)
,
b− 1

bd − 1

)
, µ =

(a− 1)d(b(c− 1)d+ b− c)

d− 1
. (B.158)

We have that
∑

i qi > 3/2 holds only when c = 1. This theory has trivial 1-form symmetry

since qu + qv = 1.

Our singularity reduces to previous types if

b− 1

d− 1
∈ Z ,

d− 1

b− 1
∈ Z ,

c(b− 1)

b(d − 1)
∈ Z . (B.159)

(a, b, 1, d) (2, 2, c, d) (2, b, 2, d) (a, 2, 2, d) (3, 2, c, 2)

(3, b, 2, 2) (4, b, 2, 2) (2, 3, 3, d) (2, 3, 4, d) (2, 3, 5, d)

(2, 3, 6, d) (2, 3, c, 3) (3, 2, 3, d) (3, 2, 4, d) (3, 2, 5, d)

(3, 2, 6, d) (2, 4, 3, d) (2, 5, 3, d) (2, 6, 3, d) (4, 2, 3, d)

(5, 2, 3, d) (6, 2, 3, d) (2, b, 3, 3) (2, b, 3, 4) (2, b, 4, 3)

(3, 3, 2, d) (3, 4, 2, d) (3, 5, 2, d) (3, 6, 2, d) (4, 3, 2, d)

(5, 3, 2, d) (6, 3, 2, d) (3, b, 2, 3) (3, b, 3, 2) (2, 4, 4, d)

(4, 2, 4, d) (4, 4, 2, d) (3, 3, 3, d)

Table 15: Infinite sequences of type IX singularities. The gray entries are either reducible

to previous types or have c = 1, which gives trivial 1-form symmetry. This table is adapted

from [19].

(2, b, 2, d) The Milnor number is

µ =
2(b− 1)

d− 1
+ b(d+ 2)− 2 . (B.160)

If (b− 1)/(d− 1) ∈ Z it reduces to previous types. So we must have

b− 1

d− 1
=

2m+ 1

2
⇒ d = 2k + 1 , b = (2m+ 1)k + 1 . (B.161)
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In this case, the weight vector is

~q =

(
1

2
,

2

k(4m+ 2) + 2m+ 3
,

2km+ k + 1

4km+ 2k + 2m+ 3
,

2m+ 1

4km+ 2k + 2m+ 3

)
, (B.162)

We need to add weight one term ypuq to make the singularity isolated: k(2m+ 1)(q − 2)−

2m + 2p + q − 3 = 0. When k is odd one can show that it has no solution. So k = 2k̃ and

one solution is

q = 1, p = 1 + k̃ +m+ 2k̃m . (B.163)

One can compute the Milnor ring and find that there is always an exactly marginal deforma-

tion.

(2, 3, 3, d) d = 2, 3, ✁4, ✁7.

(2, 3, 4, d) d = 2, 3, 5, 9.

(2, 3, 5, d) d = 2, 3, 6, 11.

(2, 3, 6, d) d = 2, 3, ✁4, 5, ✁7,✚✚13.

(2, 4, 3, d) d = 2, 4, 10.

(2, 5, 3, d) d = 2, 3, 4, 5, 7, 13.

(2, 6, 3, d) d = 2, 4, 6, 16.

(2, b, 3, 3) The Milnor number is µ = 3
2
(7b − 3). To be an integer, we should require

b = 2k + 1 to be odd. Then (b− 1)/(d− 1) = k ∈ Z, so this case reduces to previous types.

(2, b, 3, 4) To be isolated, we must have an extra ypuq term (this statement follows from

an argument analogous to the one in footnotes 46 and 48). Using an argument similar to one

in the previous subsection after eq. B.105, we conclude this theory has an exactly marginal

deformation.

(2, b, 4, 3) The same as above.

(3, 3, 2, d) d = 2, 3, 5, ✁9.
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(3, 4, 2, d) d = 2, ✁3, 4, ✁5, 7, ✁13.

(3, 5, 2, d) d = 2, 3, 5, 9, 17.

(3, 6, 2, d) d = 2, ✁3, ✁5, 6,✚✚11,✚✚21.

(4, 3, 2, d) d = 2, 3, ✁4, 5, 7,✚✚13.

(5, 3, 2, d) d = 2, 3, 5, ✁9, 17.

(6, 3, 2, d) d = 2, 3, 5, ✁6,✚✚11,✚✚21.

(3, b, 2, 3) If b is odd, the singularity reduces to previous types. Therefore, we can consider

b = 2k. One finds r2 = r3 = r4 = 1, 2g1 = 1, which is not meaningful. This result implies

that the theory cannot have 1-form symmetry. One can check that the Poincare polynomial

is not finite, so the singularity is actually not well-defined.

(2, 4, 4, d) d = 2, ✁3, 4, ✁5, ✁7,✚✚13

(4, 4, 2, d) d = 2, ✁3, 4, ✁7,✚✚10,✚✚19.

(3, 3, 3, d) d = 2, 3, ✁4, ✁5, ✁7,✚✚13.

Type XII: The singularity is defined by the polynomial

W = xa + xyb + xuc + yvd + · · · , a ≥ 2 , b, c, d ≥ 1 . (B.164)

The weight vector and Milnor number are

~q =

(
1

a
,
a− 1

ab
,
a− 1

ac
,
a(b− 1) + 1

abd

)
, µ =

(a(c− 1) + 1)(ab(d− 1) + a− 1)

a− 1
. (B.165)

We find that
∑

i qi > 3/2 holds only when c = 1 or d = 1. If c = 1, we have qx + qu = 1. If

d = 1, we have qy + qv = 1. When b = 1, we also have qx + qy = 1, but
∑

i qi > 3/2 does not

hold. Therefore, by our lemma, 1-form symmetry is trivial in all three cases.

If a = 2 the singularity reduces to type II. Moreover, it reduces to type IV if

b

a− 1
∈ Z . (B.166)
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(a, 1, c, d) (a, b, 1, d) (a, b, c, 1) (2, 2, 2, d) (2, 2, c, 2)

(2, 2, c, 2) (2, 2, c, 3) (2, b, c, 2) (a, 2, 2, d) (3, 2, c, 2)

(2, b, 2, 2) (2, b, 2, 3) (2, b, 2, 4) (a, 2, 3, 2) (a, 2, 4, 2)

(a, b, 2, 2) (2, b, 3, 3) (a, 2, 3, 3) (3, b, 2, 3) (3, b, 3, 2)

(3, b, 4, 2) (a, 3, 2, 3) (a, 3, 2, 4) (a, 3, 3, 2) (4, b, 3, 2)

(a, 3, 3, 2) (4, b, 3, 2) (a, 4, 2, 3)

Table 16: Infinite sequences of type XII singularities. The gray entries are either reducible

to previous types or have at least one of b, c, d = 1, which gives trivial 1-form symmetry. This

table is adapted from [19]

(a, 2, 2, d) If a = 2, 3, the singularity reduces to type II. If a > 3, we have 1/3 < qy = qu =

(a− 1)/(2a) < 1/2, so we must have qx = qv = 1− 2qy = 1/a. According to the lemma, this

theory has no 1-form symmetry.

(a, 2, 3, 2) a = 2, 3, 4, 7.

(a, 2, 4, 2) a = 2, 3, 5, ✁9.

(a, b, 2, 2)

µ = 1 + a+ 2b+ ab+ 2
b

a− 1
(B.167)

To have an irreducible singularity and integral Milnor number, we should satisfy

b

a− 1
=

2m+ 1

2
⇒ b = (2m+ 1)k, a = 2k + 1 . (B.168)

One finds that if k is even, the singularity is not well-defined. So k = 2k̃ + 1 and a =

4k̃ + 3, b = (2m + 1)(2k̃ + 1). Then, one has an extra weight-one monomial y(2m+1)(k̃+1)u.

Adding this to W makes the singularity isolated. Furthermore, one finds that there is a

weight 1 monomial in Milnor ring, so the SCFT has a conformal manifold.

(a, 2, 3, 3) a = 2, 3, 4, 5, 7,✚✚13.

(3, b, 2, 3) We can assume b = 2k+ 1 is odd, otherwise the singularity is reducible. In this

case, one finds r1 = r2 = r3 = 1, g4 = 0, implying trivial 1-form symmetry.
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(3, b, 3, 2) Since µ = 7 + (21b)/2, we must have even b. Then this case is reducible since

b/(3− 1) ∈ Z.

(3, b, 4, 2) We can assume b = 2k+ 1 is odd, otherwise the singularity is reducible. In this

case, one finds ri = 1, implying trivial 1-form symmetry

(a, 3, 2, 3) a = 2, 3, 4, ✁5, 7, 13.

(a, 3, 2, 4) a = 2, 3, 4, 7,✚✚10,✚✚19.

(a, 3, 3, 2) a = 2, 4,✚✚10.

(4, b, 3, 2) If b = 3k, this singularity is reducible. For b = 3k + 1, 3k + 2, one always finds

r1 = r2 = r3 = 1, g4 = 0, implying trivial 1-form symmetry.

(a, 4, 2, 3) a = 2, 3, 5, ✁9,✚✚17.

Type XIII: The singularity is defined by the polynomial

W = xa + xyb + yuc + yvd + · · · , a ≥ 2, b, c, d ≥ 1 (B.169)

Before proceeding as in the other cases, let us give a quick proof that the corresponding

SCFTs have trivial 1-form symmetry or an exactly marginal deformation if a, b, c, d ≥ 2. We

will do this by directly building on our results in B.2:

Proof: Let us denote the ellipses in (B.169) as f(x, y, u, v). By the discussion in B.2, we either

have trivial 1-form symmetry or can compensate all possible relations amongst variables with

new marginal monomials in (B.123), (B.124), (B.125), and (B.126) that have the following

property: if the monomial depends on x, then it will also depend on y. Now, if we have

a marginal term of the form upvq ⊂ f(x, y, u, v), we are back to the case analyzed in B.2.

Therefore, let us assume there is no such term. In order for the singularity to be isolated,

we still need f(x, y, u, v) to contain some y-independent term that is, at the same time, x

dependent (otherwise, setting x = y = 0 solves ∂uW = ∂vW = ∂xW = 0). We have seen

there is no such candidate amongst (B.123), (B.124), (B.125), and (B.126). �

Alternatively, we can proceed as in other cases treated here and first note that we can impose

c ≥ d (this exchange is a symmetry). The weight vector and Milnor number are

~q =

(
1

a
,
a− 1

ab
,
a(b− 1) + 1

abc
,
a(b− 1) + 1

abd

)
,
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µ =
(ab(c− 1) + a− 1)(ab(d− 1) + a− 1)

a(b− 1) + 1
. (B.170)

We find that
∑

i qi > 3/2 only holds when c = 1 or d = 1. If c = 1, we have qy + qu = 1. If

d = 1, we have qy + qv = 1. When b = 1, qx + qy = 1 and
∑

i qi ≤ 3/2. In all three cases, the

1-form symmetry is trivial by our lemma.

The singularity reduces to type VIII if

b

a− 1
∈ Z . (B.171)

(a, 1, c, d) (a, b, 1, d) (a, b, c, 1) (2, 2, 2, d) (2, 2, 3, d)

(2, b, 2, c) (3, 2, 2, d) (a, 2, 2, 2) (a, b, 2, 2) (2, b, 3, 3)

(2, b, 3, 4) (2, b, 3, 5) (2, b, 3, 6) (3, b, 2, 3) (3, b, 2, 4)

(3, b, 2, 5) (3, b, 2, 6) (4, b, 2, 3) (5, b, 2, 3) (6, b, 2, 3)

(2, b, 4, 4) (4, b, 2, 4) (3, b, 3, 3)

Table 17: Infinite sequences of type XIII singularities. The gray entries are either reducible

to previous types or have at least one of b, c, d = 1, which gives trivial 1-form symmetry. This

table is adapted from [19].

(a, 2, 2, 2) a = 3, 7,✚✚15.

(a, b, 2, 2) For b ≥ 3, we have 1/3 < qu = qv = (1 + a(−1 + b))/(2ab) < 1/2. Therefore,

by lemma 2.8 in [20], we must have qx = qy = 1 − 2qu. Therefore b = a− 1, and the 1-form

symmetry is trivial according to our lemma.

(3, b, 2, 3) b = 2.

(3, b, 2, 4) b = 2, 6.

(3, b, 2, 5) b = 2, 4, 14.

(3, b, 2, 6) b = 2, ✁6.

(4, b, 2, 3) b = 3.
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(5, b, 2, 3) b = 2, 4, 20.

(6, b, 2, 3) b = 5.

(4, b, 2, 4) b = 3.

(3, b, 3, 3) b = 2.

Type XIV: The singularity is defined by the polynomial

W = xa + xyb + xuc + xvd + · · · , a ≥ 2, b, c, d ≥ 1 (B.172)

We can impose b ≥ c ≥ d, as this exchange is a symmetry. The weight vector and Milnor

number are

~q =

(
1

a
,
a− 1

ab
,
a− 1

ac
,
a− 1

ad

)
, µ =

(a(b− 1) + 1)(a(c− 1) + 1)(a(d− 1) + 1)

(a− 1)2
.

(B.173)

We find that
∑

i qi > 3/2 holds only when b = 1, c = 1, or d = 1. In these cases, qx + qy = 1,

qx + qu = 1, or qx + qv = 1, respectively. Therefore, the 1-form symmetry is trivial.

(a, 1, c, d) (a, b, 1, d) (a, b, c, 1) (2, 2, 2, d) (a, 2, 2, d)

(a, 2, 3, 3) (a, 2, 3, 4) (a, 2, 3, 5)

Table 18: Infinite sequences of type XIV singularities. The gray entries are either reducible

to previous types or have at least one of b, c, d = 1, which gives trivial 1-form symmetry. This

table is adapted from [19].

(2, 2, 2, d) This case reduces to type I, and it has a weight-one term in the Milnor ring.

(a, 2, 2, d) In this case, we have

~q =

(
1

a
,
a− 1

2a
,
a− 1

2a
,
a− 1

ad

)
. (B.174)

If a = 3, it reduces to type II. If a > 3, then 1/3 < qy = qu < 1/2, so we should have

qx = qv = 1 − 2qu = 1/a according to lemma 2.8 of [20]. As result, we have qu = qy, qx = qv,

which gives no 1-form symmetry

(a, 2, 3, 3) Imposing integral Milnor number gives a = 2, 3, 4, 7.
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(a, 2, 3, 4) Imposing integral Milnor number gives a = 2, 3, 4, 5, 13.

(a, 2, 3, 5) Imposing integral Milnor number gives a = 2, 3, 4, 6, 31.

Type XV: The singularity is defined by the polynomial

W = yxa + xyb + xuc + uvd + · · · , a, b ≥ 2 , c, d ≥ 1 . (B.175)

The weight vector and Milnor number are

~q =

(
b− 1

ab− 1
,
a− 1

ab− 1
,
(a− 1)b

c(ab− 1)
,
c(ab− 1)− (a− 1)b

cd(ab− 1)

)
,

µ =
a(b(ac(d− 1) + a− 1) + c(−d) + c)

a− 1
(B.176)

We have that
∑

i qi > 3/2 holds only when c = 1 or d = 1. We then have qx + qu = 1 and

qu + qv = 1 respectively.

If a = 2, the singularity reduces to type XI(2b − 1, 2, c, d). If b = 2, it reduces to

XII(2a− 1, c, 2, d).

(a, b, 1, d) (a, b, c, 1) (2, 2, 2, d) (2, 2, c, 2) (2, 2, c, 3)

(2, b, c, 2) (a, 2, 2, d) (2, b, 2, 2) (2, b, 2, 3) (3, b, 2, 2)

(a, 3, 2, 2) (a, 3, 2, 2) (a, 4, 2, 2) (a, 2, 3, 3) (a, 2, 3, 4)

(a, 2, 4, 3) (3, 3, c, 2) (a, 3, 2, 3) (a, 3, 3, 2)

Table 19: Infinite sequences of type XV singularities. The gray entries are either reducible

to previous types or have at least one of c, d = 1, which gives trivial 1-form symmetry. This

table is adapted from [19].

(3, b, 2, 2) For b = 2k+1, one finds r1 = r2 = r3 = 1, g4 = 0, giving trivial 1-form symmetry.

For b = 2k, one finds r1 = r2 = r3 = 1, 2g4 = 1 which is not meaningful. In fact, one can

compute the Poincare polynomial in this case, and it turns out that it does not truncate

(thereby implying that the singularity is not well-defined).

(a, 3, 2, 2) a = 2, 3, 5.

(a, 4, 2, 2) a = 2, ✁3, 4, ✁7.

(3, 3, c, 2) This case is reducible to VII(4, 4, c, 2).
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(a, 3, 2, 3) a = 2, 3, 5, 9.

(a, 3, 3, 2) a = 2, 3, ✁4, ✁7.

Type XVI: The singularity is defined by the polynomial

W = yxa + xyb + xuc + xvd + · · · , a, b ≥ 2 , c, d ≥ 1 . (B.177)

We can impose c ≥ d, as this is a symmetry.

The weight vector and Milnor number are

~q =

(
b− 1

ab− 1
,
a− 1

ab− 1
,
(a− 1)b

c(ab− 1)
,
(a− 1)b

d(ab− 1)

)
,

µ =
a(ab(c− 1) + b− c)(ab(d − 1) + b− d)

(a− 1)2b
. (B.178)

We find that
∑

i qi > 3/2 holds only when c = 1 or d = 1. Then, qx + qu = 1 or qx + qv = 1

respectively.

If a = 2 the singularity reduces to type XIII. On the other hand, if b = 2 it reduces to

type VIV.

(a, b, 1, d) (a, b, c, 1) (2, 2, 2, d) (a, 2, 2, d) (2, b, 2, 2)

(a, b, 2, 2) (a, 2, 3, 3) (a, 2, 3, 4) (a, 2, 3, 5) (a, 3, 2, 3)

(a, 3, 2, 4) (a, 3, 2, 5) (a, 4, 2, 3) (a, 5, 2, 3)

Table 20: Infinite sequences of type XVI singularities. The gray entries are either reducible

to previous types or have at least one of c, d = 1, which gives trivial 1-form symmetry. This

table is adapted from [19].

(a, b, 2, 2) In this case, we have

~q =

(
b− 1

ab− 1
,
a− 1

ab− 1
,
(a− 1)b

2(ab− 1)
,
(a− 1)b

2(ab− 1)

)
. (B.179)

Since a = 2 is reducible, let us consider a ≥ 3. Then 1/3 < qu = qv < 1/2, and we must have

qx = qy = 1− 2qu. Therefore a = b, and the 1-form symmetry is trivial.

(a, 3, 2, 3) a = 2, 3, 5.

(a, 3, 2, 4) a = 3, 9.
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(a, 3, 2, 5) a = 3, 21.

(a, 4, 2, 3) a = 2, 4, 10.

(a, 5, 2, 3) a = 5, 25.

Type XVII: The singularity is defined by the polynomial

W = yxa + xyb + yuc + xvd + · · · , a, b ≥ 2 , c, d ≥ 1 . (B.180)

The weight vector and Milnor number are

~q =

(
b− 1

ab− 1
,
a− 1

ab− 1
,
a(b− 1)

c(ab− 1)
,
(a− 1)b

d(ab− 1)

)
,

µ =
(ab(c− 1) + a− c)(ab(d− 1) + b− d)

(a− 1)(b− 1)
. (B.181)

We find that
∑

i qi > 3/2 holds only when c = 1 or d = 1. In these cases, qy + qu = 1 or

qx + qv = 1 respectively. Therefore, the 1-form symmetry is trivial.

The reducibility condition to type XII is

b− 1

a− 1
∈ Z , or

a− 1

b− 1
∈ Z . (B.182)

(a, b, 1, d) (a, b, c, 1) (2, 2, 2, d) (2, 2, c, 2) (2, b, 2, d)

(a, 2, c, 2) (2, b, 3, 2) (2, b, 4, 2) (a, 2, 2, 2) (a, 2, 2, 3)

(a, 2, 2, 4) (a, b, 2, 2) (2, b, 3, 3) (a, 2, 3, 3) (3, b, 2, 3)

(3, b, 2, 4) (3, b, 3, 2) (a, 3, 2, 3) (a, 3, 3, 2) (a, 3, 4, 2)

(4, b, 2, 3) (a, 4, 3, 2)

Table 21: Infinite sequences of type XVII singularities. The gray entries are either reducible

to previous types or have at least one of c, d = 1, which gives trivial 1-form symmetry. This

table is adapted from [19].

(a, b, 2, 2) We find that the Milnor number satisfies

µ = 2b+ a(2 + b) + 2
a− 1

b− 1
+ 2

b− 1

a− 1
. (B.183)

In order for this to be an integer, one can show that either a−1
b−1

is an integer or b−1
a−1

is an

integer. In both cases, the singularity is reducible.
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(3, b, 2, 3) b = 3, 5, 9.

(3, b, 2, 4) b = 2, 3, ✁4, 5, ✁7,✚✚13.

(3, b, 3, 2) b = 2, 3, ✁4, ✁7.

(a, 3, 2, 3) a = 2, 3, ✁4, ✁7.

(a, 3, 3, 2) a = 3, 5, 9.

(a, 3, 4, 2) a = 2, 3, ✁4, 5, ✁7,✚✚13.

(4, b, 2, 3) b = 2, ✁3, 4, ✁5, ✁7,✚✚13.

(4, b, 3, 2) b = 4, 10.

(a, 4, 3, 2) a = 2, ✁3, 4, ✁5, ✁7,✚✚13.

Type XVIII: The singularity is defined by the polynomial

W = uxa + xyb + yuc + yvd + · · · , a, b, c, d ≥ 1 . (B.184)

The weight vector and Milnor number are

~q =

(
b(c− 1) + 1

abc + 1
,
(a− 1)c+ 1

abc + 1
,
a(b− 1) + 1

abc + 1
,
c(a(b− 1) + 1)

d(abc + 1)

)
,

µ =
ab(c(ab(d − 1) + a− 1) + d)

a(b− 1) + 1
. (B.185)

It is easy to check that
∑

i qi > 3/2 holds for a = 1 or d = 1. When a = 1, qx + qu = 1, and

when d = 1, qy + qv = 1. If b = 1, qx + qy = 1, and if c = 1, qy + qu = 1. In these two cases,

we have
∑

i qi ≤ 3/2. On the other hand, all four cases have trivial 1-form symmetry by our

lemma.

(1, a, c, d) (a, 1, c, d) (a, b, 1, c) (a, b, c, 1) (2, 2, 2, d)

(2, 2, c, 2) (2, 2, c, 3) (2, b, c, 2) (3, 2, c, 2) (2, b, 2, 2)

(2, b, 2, 3) (2, b, 2, 4) (a, 2, 2, 2) (a, b, 2, 2) (2, b, 3, 3)

(3, b, 2, 3) (3, b, 3, 2) (3, b, 4, 2) (4, b, 3, 2)

Table 22: Infinite sequences of type XVIII singularities. The gray entries have at least one

of a, b, c, d = 1, which gives trivial 1-form symmetry. This table is adapted from [19].
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(2, 2, 2, d) This case is reducible to type II.

(2, 2, c, 2) In order to have integral Milnor number, we should have c = 3k + 2. Then

there is a weight 1 monomial uk+1v2 which can make the singularity isolated. Then, one

finds that there is a weight 1 term in the Milnor ring. Actually, this case reduces to type

XI(3 + 4k, 2, 2, 2).

(2, 2, c, 3) For c = 3k, 3k+1 one can show that there is no 1-form symmetry. For c = 3k+2,

one can add an extra monomial u4k+3 to W to make the singularity isolated. By computing

the Milnor ring, one finds that there is always a marginal term with weight one. Actually,

this case reduces to type XI(3 + 4k, 2, 2, 3).

(2, b, c, 2) The Milnor number is given by

µ =
2(c+ 1)

2b− 1
+ 2(bc + c+ 1) . (B.186)

To be an integer, we must have c = (2b− 1)k − 1. Then it is easy to show that this reduces

to type XI(2bk − 1, 2, b, 2).

(3, 2, c, 2) The weight vector is irreducible and one finds ri = 1, implying trivial 1-form

symmetry.

(2, b, 2, 2) b = 2.

(2, b, 2, 3) b = 2, 5.

(2, b, 2, 4) b = 2.

(a, 2, 2, 2) Considering a = 3k, 3k + 1, 3k + 2 separately, we always find ri = 1, which

implies the 1-form symmetry is trivial.

(a, b, 2, 2) If b = 2, one finds that the 1-form symmetry is always trivial, as ri = 1. If

b ≥ 3, we have qu = qv = (1 + a(−1 + b))/(1 + 2ab). Since 1/3 < qu = qv < 1/2, we must

have qx = qy = 1− 2qu. As a result, we have b = 2a− 2, and the 1-form symmetry is trivial.

(2, b, 3, 3) b = ✁2.
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(3, b, 2, 3) b = 4.

(3, b, 3, 2) b = 2, 3, 10.

(3, b, 4, 2) b = ✁2.

(4, b, 3, 2) b = 2.

This concludes our proof of the main claim in this paper. �
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