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ABSTRACT. In this paper we obtain Hardy, weighted Trudinger-Moser and Caffarel-
li-Kohn-Nirenberg type inequalities with sharp constants on Riemannian manifolds
with non-positive sectional curvature and, in particular, a variety of new estimates
on hyperbolic spaces. Moreover, in some cases we also show their equivalence with
Trudinger-Moser inequalities. As consequences, the relations between the constants
of these inequalities are investigated yielding asymptotically best constants in the
obtained inequalities. We also obtain the corresponding uncertainty type principles.
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1. INTRODUCTION

Recall the classical Caffarelli-Kohn-Nirenberg inequality | |:

Theorem 1.1. Let n € N and let py, ps, ps, a, b, d, 6 € R be such that py,ps > 1,
p3>0,0<06<1, and
1 a 1 b 1 ¢
—+ = —+ -, —+—=>0, (1.1)
pr nm p2 M p3 N

where ¢ = dd + (1 — §)b. Then there exists a positive constant C' such that

2] fllracgny < 2l FIlzor oy Ml F 1l o ey (1.2)
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holds for all f € C5°(R™), if and only if the following conditions hold:

"),
R e e A

a—d>0 if 60, (1.4)
1 1 a-1

a—d<1 if §>0 and —+ =2 4972 (1.5)
b3 n D1 n

It is a natural problem, also important for applications, to find an analogue of
the above Caffarelli-Kohn-Nirenberg inequalities on Lie groups or on Riemannian

manifolds. On Lie groups, we refer, for example, to | | for Heisenberg groups,
to [ | for Lie groups of polynomial volume growth, to | | and to | | for
stratified groups, to [ ], to | | and to [ | for general homogeneous
groups. On Riemannian manifolds, in | | and | ] the authors assuming that

Caffarelli-Kohn-Nirenberg type inequalities hold, investigated the geometric property
related to the volume of a geodesic ball on an n-dimensional (n > 3) complete
open manifold with non-negative Ricci curvature and on an n-dimensional (n > 3)
complete and noncompact smooth metric measure space with non-negative weighted
Ricci curvature, respectively.

Recently, the following Caffarelli-Kohn-Nirenberg type inequalities have been ob-
tained on Cartan-Hadamard manifolds M, that is, complete simply connected man-

ifolds of non-positive sectional curvature, in | |: Let n>2,p>1,r >0,
a,f,y€Rand vy= (14 «)/r+ (p—1)5/(pr) be such that
1 1
Looogtoosogi-foy (1.6)
r o n P n n

p—1

Then we have for all f € C§°(M)

r p
/ F@ T (/ |af ) / !f NG
wm (p()" n—r \Ju (p(z)
for r # 1, where 0, is the radial derivation along geodesic curves, and p(x) =
dist(z, xp) is the geodesic distance to any fixed point xg of M.

Now, on the hyperbolic space H" with n > 2, let us recall the following another
recent result on Caffarelli-Kohn-Nirenberg type inequalities for radially symmetric
functions | |: Let 2 < p < 0o, then there exists a positive constant ¢, = ¢,.(n, p)
such that for all f € Wo (H™) we have

rad

[ 19arav, > o) (/ Ap\fwvz,)p, (18)
H"» H~»

where
2 1— 2\2 1
(f(r)) ( p+27ﬂ ) ) 1 S p < 09, AOO(T) = T =
(G(r)) = G(r)
and dVj is the volume form (see Section 2), and G(r) = fr A=) gt (note that

tnl

G/ (nwy,—_1) is the fundamental solution of the hyperbolic Laplacian). Here, W&fa ,H™)

Ap(r) =
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is the subspace of radially symmetric functions of Wy*(H"). Moreover, ¢,(n,2) =
1/16 and ¢,(n,00) = 2" %w,,_1, and c,(n, p) < ¢.(n,2)(c.(n,00))P~2 with 2 < p < oo.

In this paper, we introduce a class of new Caffareli-Kohn-Nirenberg type inequal-
ities with sharp constants on hyperbolic spaces. We also do not assume that any of
the functions are radially symmetric. Moreover, our method allows us to show their
equivalence with Trudinger-Moser inequalities. Using this method, we actually prove
Hardy type inequalities on complete, simply connected Riemannian manifold M with
negative curvature, and on hyperbolic space H" for n > 2 with sharp constants. Fur-
thermore, we show extended versions of weighted Trudinger-Moser inequalities on H"
for n > 2 with sharp constants. We refer to Section 2 for precise definitions. Now,
let us briefly state our main results: Let w,_1 be the area of the surface of the unit
n-ball. Then we have

e (Hardy type inequalities on M) Let M be a complete, simply connected
Riemannian manifold of dimension n > 2 with negative curvature. Let 0 <
B < n. Then for any n < ¢ < oo there exists a positive constant C; =
Ci(n, 8,q, M) such that

f .
E < Cig" VM| fllwn any (1.9)
P La(ar
holds for all functions f € Wol’"(M), and such that limsup Cy(n, 5,q, M) <
q—o0

oo. The asymptotically sharp constant for (1.9) is given in Remark 3.3. Here,
p(x) = dist(z, ) is the geodesic distance to any fixed point z of M. More-
over, the Hardy type inequalities (1.9) with relation (3.3) are equivalent to
the weighted Trudinger-Moser inequalities (3.1) with 0 < a < ag.

e (Hardy type inequalities on H" (n > 2)) Let 0 < 8 < n. Then for any
n < g < oo there exists a positive constant Co = Cy(n, 3, q) such that

L a1l (1.10)
P 1l pa(mn)
holds for all functions f € W™ (H"), and such that limsup Cy(n, §,q) < co.

q— o0
The asymptotically sharp constant for (1.10) in the sense of Remark 4.3 is
given in Theorem 4.2. Furthermore, the Hardy type inequalities (1.10) with
relation (4.3) are equivalent to the weighted Trudinger-Moser inequalities (4.1)
with 0 < a < Qag.
e (Uncertainty type principle on H" (n > 2)) Let 0 < § < n. Then we
have

!

1/n ) ) 1/q
( / Ing(w)l”dVg) ( [ |f<x>|wg)
B " (1.11)
> Cytgt/m ! / P f(@)2dV,

holds for all functions f € W, (H") and any n < ¢ < oo, where 1/¢+1/¢ = 1,
and C} is the constant from (1.10).
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e (Weighted Trudinger-Moser inequalities on H" (n > 2) I) Let 0 < 8 <
n and let 0 < a < ag with ag = nwl/(n 1)( — B/n). Then there exists a
positive constant C5 = C5(3, n, &) such that

: n/(n—1
/H"(1+|f( )|)n/ (=1 pf (exp(al f ()1
_Zaklf(a:)lkn/ml)) dVgg@;/ @) S

!
k=0 k! P’

(1.12)

holds for all functions f € W,"(H") with |V, f
power n/(n — 1) in the denominator is sharp.
e (Weighted Trudinger-Moser inequalities on H" (n > 2) II) Let 0 <

f1 <nand By € R Let 0 < a < ag, Wlthagl—nwl/" 1( — p1/n). Let §

be as in (5.4). Then there exists a positive constant Cy = Cg(n a, f1, 52,0)
such that

1 n—2 kn/(n—1)
[ (exp<a|f<x>|“/<“—”> -y S Y,
k=0 (1.13)

n 1-6
S

holds for all functions f € Wy™(H") with ||V, f||zrem) < 1. Moreover, the
constant ag, is sharp.
¢ (Caffareli-Kohn-Nirenberg inequalities on H" (n > 2) I) Let b, ¢ € R,

0<ps<ooandl < py <oo. Letd € (O,l]ﬂ(’%,l] Let 0 < b(1—9)—c <

n(1/ps — (1 —46)/p2) and n < 1%. Then we have

r@ry < 1. Moreover, the

167 Fllzaamy < Call Vg f gz 12 F ot (1.14)

for all functions f € Wy"(H"), where Cg = Cg(pg,pg,b, ¢,n,d) is given in
Theorem 5.1.

e (Caffareli-Kohn-Nirenberg inequalities on H" (n > 2) II) Let 0 <
f1 < mnand By € R. Let § be as in (5.4). Then for any n < g < oo there exists
a positive constant Cs = C3(n, f1, B2, ¢, ) such that

n(1-4)
n(1-4)

“1/n ===
< Csq" Y IV g fll )
La(Hn)

holds for all functions f € W, (H"), and such that limsup Cs(n, 81, Ba, q,0) <

q—00
00. The asymptotically sharp constant for (1.15) in the sense of Remark 5.6
is given in Theorem 5.5. Furthermore, the Caffarelli-Kohn-Nirenberg type in-
equalities (1.15) with relation (5.10) are equivalent to the weighted Trudinger-
Moser inequalities (1.13).

f

A1
pa

f

B2
pn

(1.15)

Ln(Hn)
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¢ (Caffareli-Kohn-Nirenberg inequalities on H" (n > 2) IIT) Let 0 < 8 <
n. Then for any n < ¢ < oo there exists a positive constant Cs = C5(n, 3, q)
such that

n/q

f

—1/n 1-n
N U— < Cs¢" ||v9f”L”(]}{IZ)
pi(L+[f])e

La(Hn)

el (1.16)

Ln(Hm)

holds for all functions f € Wy ™(H"), and such that limsup Cs(n,3,q) <

q— o0
00. The asymptotically sharp constant for (1.16) in the sense of Remark
5.12 is given in Theorem 5.11. Moreover, the Caffarelli-Kohn-Nirenberg type
inequalities (1.16) with relation (5.24) are equivalent to the weighted Trudin-
ger-Moser inequalities (1.12).

We note that the obtained Caffarelli-Kohn-Nirenberg type inequalities are not cov-
ered by (1.7) and (1.8). For example, the obtained inequality (1.15), after the change
of variables 1 —n/q = n/t for ¢ > n, has the following form

in

[ My,

ph

t(n
[ tn t=n
<o (¢25)

—1) —_—(1-5) n 1-5
. 1
([ waswray,) ([ ) 0

tn

and holds for all functions f € W, " (H"). Moreover, the constant B:~" is asymptot-
ically sharp for (1.17) in the sense of Remark 5.6, where Bs is given in Theorem 5.5.
Here, we see that (1.17) is not covered by (1.7), actually being completely different
from (1.7) in terms of parameters. We also note that (1.14) gives different inequalities
than (1.7). Indeed, for example when py = p3 =n if wetake 1 +6<0or14+¢ <0
in (1.14), then the condition (1.6) fails:

<Qorl—==1+—=1+b<0.
p3 ™M n n n

v 1 psc l4c B bpa
S 4 = =
n

We also note that the obtained weighted Trudinger-Moser inequalities (1.12) and
(1.13) generalise the known results in | , Theorem 1] and | , Theorem 1.3],
respectively.

Of course there exist a variety of different functional and other inequalities on
hyperbolic spaces. For example we can refer to | | for some spectral and isoperi-
metric inequalities for different classes of integral operators on H", as well as to other
works referred to in this paper.

This paper is organised as follows. In Section 2 we briefly recall the main concepts
of Riemannian manifolds with negative curvature and hyperbolic spaces. The Hardy
type inequalities with sharp constants on M and H" are discussed in Section 3 and
in Section 4, respectively. In Section 5 we introduce Caffarelli-Kohn-Nirenberg type
and weighted Trudinger-Moser inequalities with sharp constants.
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2. PRELIMINARIES

In this section we briefly review some main concepts of Riemannian manifolds
with negative curvature and refer to | ], [L193] and | ] for more detailed
information.

Let M be an n-dimensional complete Riemannian manifold with the Riemannian
metric

for the local coordinate system {z'};<;<,, where g = det(g;;). Let dV} be the volume
form associated to the metric g, and V,f is the gradient with respect to the metric
g. Let K be the sectional curvature on M. We say that M has negative curvature,
if K < 0 along every plane section at every point of M. Moreover, M contains no
points conjugate to any point xq of M. If M is simply connected, then the exponential
mapping

exp,, : LeyM — M

is a diffeomorphism, where 7, M is the tangent space to M at a point zy.

We will work on complete, simply connected Riemannian manifold with negative
curvature. Let zy € M. Then, p(z) = dist(x, o) is smooth on M\{z¢}, and satisfies
the condition

[Vop(2)l =1, 2 € M\{xo},
where dist(-, -) is the geodesic distance.

In particular, we will also work on the Poincaré ball model (coordinate map) of
the hyperbolic space H" (n > 2), that is, when M has constant curvature equal to
—1. This is the unit ball B in R centered at the origin and equipped with the
Riemannian metric

ds? — 4300, da?
(1= faf?)*”
where | - | is the Euclidean distance.

The Riemannian measure, the gradient and the hyperbolic distance in the Poincaré
ball model are, respectively,

2n
dV, = ——dx,
S (1= [z
1—|z]*)?
7= (kY.
and
1+ |z
=1

where V is the usual gradient, and dz is the Lebesgue measure in R"™.
We also use the polar coordinate change formula

+o0o
fdv, = / f - (sinh p)" 'dpdo (2.1)
H" 0 sn-1

for f € L'(H"), where S"™! is the unit sphere in H".
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The Sobolev space W™ (M) is defined as the completion of C§°(M) in the norm
1/n
wrean = ([ (¥a @ +15@,)

3. HARDY TYPE INEQUALITIES ON MANIFOLDS

In this section we prove a family of Hardy type inequalities on complete, simply
connected Riemannian manifold M with negative curvature.
Let us first recall the Moser-Trudinger inequality on M:

Theorem 3.1 (| , Theorem 1.3]). Let M be a complete, simply connected Rie-
mannian manifold of dimension n > 2 with negative curvature. Let 0 < 5 < n and

let 0 < o < g with ag = nwl/ b ( — B/n). Then there exists a positive constant
O, = ( ,B,m, M) such that

n—2 n/(n—
a¥ | f ()[Fn/ =1

/1 (exp<a|f<x>|”/<"—”>—2 g )d‘@ =66

k=0

holds for all functions f € Wy™ (M) with || fllwinan < 1, where wy,_y is the area of
the surface of the unit n-ball in M. Moreover, the constant cg is sharp.

Now we give our result on the Hardy inequalities, and on their equivalence with
(3.1) when 0 < o < as.

Theorem 3.2. Let M be a complete, simply connected Riemannian manifold of di-
mension n > 2 with negative curvature. Let 0 < 8 < n. Then for anyn < g < o0
there exists a positive constant C1 = Cy(n, 3,q, M) such that

/ i/n
7 < Cig" | fllwrnay (3.2)
P\ La(m)
holds for all functions f € Wy"™(M). Moreover, we have
1 , ,
= A} =B} 3.3
ozgn/e ! L ( )

where
ag = nwl/ " 1)( — B/n),

Ay =inf{C; > 0;3Ir =r(n,5,C1) withr >n:
(3.2) holds Vf € Wy™(M),¥q with r < ¢ < 0o},

il
B
ll

La(M)

B; = limsup sup (3.4)

1o feWy " (M)\{0} ¢V fllwrnan)

The weighted Trudinger-Moser inequalities (3.1) with 0 < o < g are equivalent to
the Hardy type inequalities (5.2) with relation (3.3).
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Remark 3.3. By (3.3) and (3.4), we see that the constant
By = (nw/ "Y1 = g/n)n’e) "™

is asymptotically sharp for (3.2), i.e. (3.2) does not hold for 0 < C} < B;.

In fact, (3.2) implies (3.1) for 0 < a < @ for some a@ > 0, while (3.2) and (3.3)
together imply (3.1) for all 0 < @ < az. The same remark applies to Theorems 4.2,
5.5 and 5.11
Proof of Theorem 3.2. Since B; < Ay, in order to obtain (3.3) it is enough to show
that (3.1)=(3.2) with ag < (en’A})™" and (3.2)=(3.1) with 1/ag < n’eBY. Let us
start to prove (3.1)=(3.2) with ag < (en’A7)~L. In the case || f|lw1ns) = 0 taking
into account the definition of f € Wy ™ (M) we have f = 0, that is, (3.2) is trivial.

Therefore, we can assume that || f||winn # 0. Replacing f by f/|| fllwinan in (3.1)
with 0 < a < ag we get

OO k|f |kn __
dV < (. (3.5)
/Mpﬁ Z KUy
It implies that for any ¢ with 0 < e < ag there exists C; such that
(e — &)*[ f(=)[*™
~ av, < C.. (3.6)
/J\‘/[:O'B kgl k'Hle%/l,n(M) !
In particular, it follows that
f n —1/n’
< Gy o — e s (37)
PE Al ()

for all £ > n—1. Moreover, for any ¢ > n, there exists an integer £k > n — 1 satisfying
n'k < q < n/(k+1). Then, using Hélder’s inequality for 9,‘2 + ((k+)1) 1 with
0 < 6 <1 we calculate

q q (1-0)q
If(f;)\ qv, — |f(f2q| .\f(xﬂ()1|_9)q av,
M p M pm pn’(k+1)
F (@) I (@) 6+ |n GH) L\ WD
() L) (/ )
M p°
0q
_ /
=|-= — 7
Pr* N ey 11 R™ *FD | por ety ()
that is,
f f 0 f 1-60
B < B B (3‘8)
Pellaary NP Mlpareqary 1™ D ooty (o)
Combining this with (3.7), we obtain
/ < Co “w((k+ 1)) 3.9
5 < Cdag —e) 7 ((k+ DY) |l fllwrn . (3.9)
Pl La(ar)
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Since ¢ > n'k we have (k + 1)! <T'(¢/n’ +2), then (3.9) implies that

S

2 < (C.P(g/n' +2)) (g — )7 || fllwrnqany (3.10)
pq

La(M)

for any ¢ > n and for all f € W, "™(M), which is (3.2). Now applying the Stirling
formula for ¢ — +o0, one gets

n' a/n'+1 a
wlg+ 2% = (1100 Bra T (21

(3.11)
q 1/n'
— (1+o0(1 (—) .
(1 +o(1) (L
Combining this with (3.10), we have as ¢ — 400, asymptotically
f q l/n'
5 <A4+oW) | ————= [ f lwn
B ’ _ ’
that is, for any 0 > 0 there exists » > n such that
f —1/n' —1/n
5 < ((We(ag — &)™ +0)g" V" fllwrnan (3.12)
P 1l La(nr)

holds for all f € W, ™(M) and all ¢ with r < ¢ < occ.

Thus, we see that A; < (n'e(ag —))~Y/™ 44, then by the arbitrariness of ¢ and &
we obtain ag < (en/A}V)~!

Now we show that (3.2)=(3.1) with 1/as < n’eBY. By (3.2), for any ¢ with

n < g < oo there is Cy = Ci(n, 8,q, M) > 0 such that
f <C 1-1/n
5 < Ciq If lwim ary (3.13)
Pl La(nr)
holds for all f € W, (M). With the help of this and || f|lwin(ar < 1, we write
n—2 ’
1 1 (an'kC)*
/MP_B (exp alf(x o (alf(x ) dv, < Z Tl (3.14)
k=0 n'k>n, keN

The series in the right hand side of (3.14) converges when 0 < a < 1/(n’eC}"). Thus,
we have obtained (3.1) with 0 < a < 1/(n’eCt"). Hence ag > 1/(n'eCt) for all
Cy > By, which gives ag > 1/(neB}).

Thus, we have completed the proof of Theorem 3.2. O

4. HARDY TYPE INEQUALITIES ON HYPERBOLIC SPACES

In this section we show Hardy type inequalities with sharp constants on hyperbolic
spaces and prove their equivalence with the Trudinder-Moser inequalities. Let us
start by recalling the following result on H" (n > 2):
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Theorem 4.1 (| , Theorem 1.1]). Let H" (n > 2) be the n-dimensional hyper-
bolic space. Let 0 < B <n and let 0 < a < ag with ag = nw 1/(n b ( — B/n). Then

n—

there exists a positive constant C’g C’g( ,B,n) such that
—2 Oék|f(x>|kn/(nfl)

[ <exp<a\f<x>|”/<"”> X ) MG Wy

k=0

holds for all functions f € Wy (H") with \Vofllonmny < 1, where w,—y is the area
of the surface of the unit n-ball in H". Furthermore, the constant ag is sharp.

We now show that this is equivalent to the following Hardy inequality.

Theorem 4.2. Let H" (n > 2) be the n-dimensional hyperbolic space and let 0 <
B < mn. Then for any n < q < oo there exists a positive constant Cy = Cy(n, 3,q)
such that

f ~1/n
- < Cog" VMV o f || am) (4.2)
P Nl paqam)
holds for all functions f € Wy (H"). Furthermore, we have
1 / /
= A} =B} 4.3
O[ﬁn,e 2 2 ( )

where
ap = nw,/ TV (1 = 8/n),

Ay = inf{Cy > 0; Ir = r(n,B,Cs) withr >n :
(4.2) holds Vf € Wy (H"),Yq with r < q < 0o},

f
B
P |l La(Hn)

By = limsup sup (4.4)

goo pewtm@nn o} ¢ NV fllnany
The weighted Trudinger-Moser inequalities (4.1) with 0 < o < g are equivalent to
the Hardy type inequalities (4.2) with relation (4.3).

Remark 4.3. An analogue of Remark 3.3 holds, in particular, B, is asymptotically
sharp for (4.2).

The proof is similar to that of Theorem 3.2 but we give it here for clarity.

Proof of Theorem /J.2. Since By < A, in order to obtain (4.3) it suffices to show that
(4.1)=(4.2) with ag < (en’A3)™! and (4.2)=(4.1) with 1/ag < n'eB}y. We first
show that (4.1)=>(4.2) with ag < (en’A3)~!. The case |V, f||ro@ny = 0 is trivial,
since we have f = 0 by the definition of f € W, (H"). Therefore, we can replace f
by f/IIVgfllzn@ny in (4.1) with 0 < o < g to get

0 k’f ’kn/

AV, < Cy. 45
Lo 7 2 R e = O (45)
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In other words, it means that there exists C, for any ¢ with 0 < e < ag such that
(4.6)

ag — )" f ()"
dVy, < C..
/n PB Zl NIV, f”L"H”) !

&) NV g ) (4.7)

In particular, it follows that
(1-6)q

J
Ry

s < (Csk!)l/(k")(
pkn Lkn’ (Hn)
for all £ > n—1. Moreover, for any ¢ > n, there exists an 1nteger k > n —1 satisfying

= 1 with

'k < q <n'(k+1). Then, applying Holder’s inequality for

nNrK >
0 < 8 <1 one calculates
g (1-0)q
[ My [ U e,
8 B6q (1-0)q g
nop "opnk p (1)
fq
n'k 'k n/(k+1) T(k+1)
([ Lt ) ([ e ) s
"o P n p
Oq (1-6)q
i /
=|I-= —5— ’
pn k L”/k(H”) pn (k+1) L”/(k“'l)(H")
which implies that

; s 0 / 1-6

5 < = : (4.9)

pq Lq(H") IOn k L"/k(H”) pn (k+1) Ln/(kJrl)(Hn)

We can combine this with (4.7) to derive that
f o 1 1
Ll < cres— o (ke D) IV, (4.10)
P\ La(an)
&) VNV g f | iy (4.11)

that is,
< (CI(g/n’ +2))(

I

B
P Lamn)

for any ¢ > n and for all f € W, (H"), which is (4.2), where we have used (k+1)! <

(g/n’ + 2) when ¢ > n’k. Now taking into account the behavior of T'(¢/n’ 4+ 2) for

) /
q — +o0 by (3.11) (_4 11) gives that for any § > 0 there exists » > n such that
(4.12)

< (('eag — €)™ +0)g |V £l aany

5
B
PN La(n)
holds for all f € W, (H") and all ¢ with r < ¢ < oo.
Thus, we get Ay < (n'e(ag —€))™/™ 4 5. Since € and ¢ are arbitrary, it implies
that ag < (en’ A5 )~}
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It remains to show that (4.2)=(4.1) with 1/as < n'eBy . Since we have (4.2), we
can write that for any ¢ with n < ¢ < oo there is Cy = Cy(n, 3, q) > 0 such that

f ~1/n
5 S ngl 1/ ||ng||Ln(Hn) (413)
Pl La(mm)
holds for all f € W, (H"). Employing this and ||V f|| @) < 1, we get
n—2 ’
1 1 'kCY )"
/ - (exp alf(x o (o] f(z > dV, < Z WT”. (4.14)
H~ P k=0 n'k>n, kEN :

The series in the right hand side of (4.14) converges when 0 < a < 1/(n/eC%"). Thus,
we have obtained (4.1) with 0 < a < 1/(neCy’). Hence, ag > 1/(n'eCy’) for all
Cy > By, that is, ag > 1/(n’eBY’). This completes the proof of Theorem 4.2. O

Now let us show the corresponding uncertainty type principle on hyperbolic spaces.

Theorem 4.4. Let H" (n > 2) be the n-dimensional hyperbolic space and let 0 <
B < n. Then we have

1/n / , 1/q
([ warwray) ([ siswray,)
> ¢y [ PP, (415)
for all functions f € Wy ™ (H"), where 1/q + 1/¢' = 1, and Cs is the constant from
(4.2).
Proof of Theorem 4./. Using (4.2) and Hélder’s inequality, we calculate

1/n ) / 1/q
(/ \%f(@!”@%) (/ p? | f(z)]? d:r)
H~» n
1/q 1/q
> 02—1q1/n—1 (/n |f(pﬂ)| dV) </Hn pql|f(x)|q,d‘/;])

> Oy gt/ / pT | (2) 2V,

which gives (4.15). O]

5. CAFFARELLI-KOHN-NIRENBERG INEQUALITIES ON HYPERBOLIC SPACES

In this section we give new Caffarelli-Kohn-Nirenberg inequalities on hyperbolic
spaces, and show their equivalence with the weighted Trudinger-Moser inequalities.

Let us first show that the obtained Hardy inequalities in turn imply the following
Calffarelli-Kohn-Nirenberg type inequalities on hyperbolic spaces.

Theorem 5.1. Let H" (n > 2) be the n-dimensional hyperbolic space. Let b, ¢ € R,

0 <ps <ooandl < py < oo. Let5€(0,1]ﬂ<p3p;3p?,1]. Let 0 < b(1—9) —c <
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n(1/ps — (1 —06)/p2) and n < %. Then we have

16° Fllorsny < ColIV g f s 10 F | 2 e (5.1)
for all functions f Edeln(H”), where
Cy = 9 (%) " and Cy is the constant from (4.2).

Proof of Theorem 5.1. Case 6 = 1. In this case, we have 0 < —c < n/p3, n < p3 < 00
and Cj = Cops " so (5.1) is equivalent to (4.2).

Case § € (0,1)N (’%, 1). Using Holder’s inequality for pz_(;;d)p‘?’ + U=0es g

p2 ’

we calculate
1

E
16 ey = ([ o Ispan,)

1
_ @ @) "
= . p(spg(b(lféa)fc) p_bp3(1 3) g

p2—(1-9)p3g (5'2)
_ Opop3 a3 s
<[ SO O
= b(1-8)—c dpap3 g _— f
np S5 p27(175)p3 n p
H f o f 1-6
0 L%(Hn) P LP2 (H™)

Since we have § > =2 that is, n < ‘m—m < oo, and 0 < bl—9)—c ”<p2_(1_6)p3),
P3 —(1=0)ps d dp2p3

then using (4.2) in (5. 2) we obtain the desured inequality (5.1).

Now we show other types of Caffarelli-Kohn-Nirenberg inequalities with sharp con-
stants, which are equivalent to Moser-Trudinger inequalities. First, let us start by
recalling the following Moser-Trudinger inequality on H" (n > 2):

Theorem 5.2 (| , Theorem 1.3]). Let H" (n > 2) be the n-dimensional hyperbolic
space. Let 0 < B <n andlet 0 < a < ag with ag = nwl/ n=1) ( — /n). Then there
exists a positive constant C’4 = 04(n, a, ) such that

n—2 okl £ () |Fn/(n=1) /\ )|
/,,% (exp(a| o) - 5 el )d% .G / SO 1y (5.3

k=0 P

holds for all functions f € Wy (H") with ||V f||tr@ny < 1, where w,_y is the area
of the surface of the unit n-ball in H". Moreover, the constant ag is sharp.

First, we establish an extension of this result allowing weights of different orders.

Theorem 5.3. Let H" (n > 2) be the n-dimensional hyperbolic space. Let0 < p; <n
and By € R. Let 0 < o < v, with ag, = nw' T (1 = By /n). Let

_ {07 if By = [Ba;

5:0< 1~ Bo(l—8) <nd <. if B # B, (5:4)
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Then there exists a positive constant 53 = @(n, a, f1, B2, 0) such that

n-2 kn/(n—1)
[ 5 <exp<a|f<x>|”/<”—”> -y e ) W,

h < Cy (/ 'fs;j'"dvg)l_é (5.5)

holds for all functions f € Wy (H") with \Vofllonmny < 1, where w,—y is the area
of the surface of the unit n-ball in H". Moreover, the constant o, is sharp.

Remark 5.4. We note that the Theorem 5.3 implies Theorem 5.2 when 8 = fs.
Proof of Theorem 5.3. By (5.3) we have

1 n-2 kn/(n—1) e n
| = <exp(a|f(x)l"/(”‘”)—§a Sl >dvg <o [ M,
(5.6)

When 0 < 51 < n and 5y € R, we have by (5.1) with po = p3 =n > 2, b = —f/n,
c=—p1/nand 0 < fB1 — fo(1 —6) < nd < n that

| |f[<ﬁ1)’"dv <G (/ |f£B3|"dv)l_6 (5.7)

for all f € W™ (H") with ||V, f|lpr@n < 1, where Cs = Cs(n, 81, 55,0) is the
constant from (5.1). Then, by this we note that there exists a positive constant
C = C(n, 1, P2,0) such that

/n |f§;1>|ndvg <¢C (/ |f;53| dV)H (5.8)

holds for all f € W™ (H") with ||V, f| zr@m) < 1, where 0 < 81 < n, 32 € R and § is
given in (5.4). Then, combining (5.6) and (o 8), we obtain (5.5).

Now we show the sharpness of the constant ag, in (5.5), that is, we prove that
(5.5) fails when a > a,. By | ], we know that if we take the sequence {f;}32, €

Wy " (H") as follows

0,ifp>1;
n—p1—1 .
f](x) = w;_lénDj g n—}zl (*3“/’) , ife 7 < p<1;

n—pB1—1

g if0< p<e,

where

1 n
Dj = (j_"-ﬁl / p‘”(sinhp)"‘ldp) :

P .
Djj n=f0 — 1 as j— oo,

N i@ (1
/Hn|vgfj(x)| 4V, =1 and / - dVg—O<j>.

then we have
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Plugging f;(z) into the left hand side of (5.5) and using the polar coordinates (2.1),

we calculate
n—2
1 n/(n— ak|f(l‘)|kn/(n71)
/H % (exp(alfj(x)| o 1)) _Z ’ Ll Vv,

k=0

OO k|f |kn/(n 1)

k=n—1

1 f|fi()[F/nD)
> — J A%
B /psw po 2 k! !

k=n—1

nepy -1y kn/(n—1)
o ot (s, )

/e_j (sinh p)"‘ldp
k‘ 0 pﬁl

= Wn-1

k!
k=n—1
k!
k=0

Thus we obtain that
n/(n— n—2 of|f:(x kn/(n—1)
S 7z (explal (@) /) = Yooy <L) ay,

N 1-6
(Jon 2 av7)

1 — Y2 2Bt —j(n—py)

as j — 00. 0

We now show that this is equivalent to the following Caffarelli-Kohn-Nirenberg
type inequalities.
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Theorem 5.5. Let H" (n > 2) be the n-dimensional hyperbolic space. Let0 < f; < n
and By € R. Let § be as in (5./). Then for any n < q < oo there exists a positive
constant Cs = Cs(n, (1, B2, q,0) such that

n(1—4)
f . n(l 5) f q

i < gV ety |5 (5.9)

P9 | pa(mn) Pl Ly

holds for all functions f € Wy (H"). Moreover, we have
1 / /

— A" = BV, 5.10
e =4 = B (5.10)

where
ag, = nwl/ b ( — p1/n),
Az = inf{C5 > 0;3r = r(n, B1,Ps,C3) withr > n :
(5.9) holds Vf € Wy™(H"),Vq with r < q < oo},

A1

q q n
Bs =limsup  sup e (5.11)
g—oo  feWwln(H")\{0} n(1=3) s
gi-1/n ||ng||Ln(Hn) p@ )
"l on(En

The weighted Trudinger-Moser inequalities (5.5) are equivalent to the Caffarelli-
Kohn-Nirenberg type inequalities (5.9) with relation (5.10).

Remark 5.6. An analogue of Remark 3.3 holds, in particular, Bs is asymptotically
sharp for (5.9).

Remark 5.7. In | ], similar inequalities to (5.5) and (5.9) are investigated for
radially symmetric functions in R"™.

Proof of Theorem 5.5. Since By < Ajs, then, as in the proof of Theorem 4.2, we
show the following two cases: (5.5)=(5.9) with ag, < (en’A5)~' and (5.9)=(5.5)
with 1/ag < n'eBy. So, we start to show (5.5)=(5.9) with ag, < (en’A%)!
In the case ||V, f|r@n) = 0 we have f = 0 by taking into account the definition
of f € VVO1 "™(H"), so there is nothing to prove. Therefore, we can assume that

Vg fllLn@ny # 0. Replacing f by f/||Vgf|lLrmny in (5.5) we get

k
alf( )|"/ —n(1-6) ( |f (@ )I" )1_5
| dV} C \Y% n (Hm) ———dV, )

k=n—1
(5.12)
It implies that for any € with 0 < € < ag, there exists C. such that

k
1 o 1 ((ag —2)f(@)™ 18 )\
= 2w\ e dV, < CL|V, s / )
/n pﬁl k;l k:' < ||vgf||Ln(Hn) g9 L (H Hn pﬁQ q
(5.13)
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In particular, we get from this that

n(1—4)
f L) Lt (- 5) f 'k
5 < (CR) ) (g, — &)V Vo f iy | (5.14)
prn LFn! (Hn) pr Lm(H")

for all K > n—1. Moreover, for any ¢ > n, there exists an integer k > n — 1 satisfying
n'k < q < n'(k+1). Then, combining (4.9) with (5.14), one gets

n(1—5)
¥ 1 L n(l ol f q
LI < Coap =y (o DDA IV oy || (5.15)
P 1 M Lagm) * e (E)
Since (k + 1)! <T'(¢/n’ 4 2) for ¢ > n’k, we rewrite (5.15) as
n(1-9)
/ < (CI'(g/n' +2))"* v pocl R 5.16
o < (CT(a/n' +2) " (ap, — ) IV Fll ety || 5 (5.16)
P9 | pagam) Pl Lo mn)

for any ¢ > n and for all f € W,"(H"), which is (5.9). With the help of (3.11) for
q — 400 and (5.16), we know that for any 6 > 0 there exists r > n such that

n(1-—4)
f N . n(1-5) f q
Y < ((W'efap, — )V + g IV fll gty |5 (5.17)
P N Lamn) 1D %6 )

holds for all f € W, ™ (H") and all ¢ with r < ¢ < occ.

Thus, we note that Az < (n’e(as, —e))~Y™ + 4, then by the arbitrariness of ¢ and
§ we obtain ag, < (en/Ay)~!

Now let us show that (5.9)=(5.5) with 1/ag, < n'eB} . By (5.9), for any ¢ with
n < g < oo there exists C5 = C3(n, 1, 52,q) > 0 such that

n(1—4)
f . n(1—9) f q
2 < Cog" NVl || (5.18)
P4l La@n) " Al (mn)

holds for all f € W, (H"). Using this and |V, f||zr@m) < 1, we arrive at

n—2
Jo g (omrrorE

) 3 (an’Z?QI)k (/n |f ()" dv)l_d‘ (5.19)

B2
n'k>n, keN P

The series in the right hand side of (5.19) converges when 0 < o < 1/(n’eC¥"). Thus,
we have obtained (5.5) with 0 < a < 1/(n'eCy’). Hence ag, > 1/(n'eCy’) for all
C3 > Bs, which gives ag, > 1/(n'eBy).

Thus, we have completed the proof of Theorem 5.5. O

IA

We now recall another version of the weighted Trudinger-Moser inequality with a
more explicit expression for the exponent for radially decreasing functions.
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Theorem 5.8 ([ , Theorem 1]). Let H" (n > 2) be the n-dimensional hyperbolic
space. Let 0 < 3 <n and let 0 < a < ag with ag = nwl/(n 1)( — B/n). Then there

exists a positive constant Cy = Cy(B,n,a) such that

H + 1 n/(n—1
/n (1 |f( )l)n/ — 1)p/3 (eX[)(()g|f(x)| /( ))
n— k|f($)|kn/(n1)> d‘/g <6;/ |f(:pﬁ)|n Vg (520)

!
k=0 Kl P

holds for all radially decreasing functions f € Wy (H") with |V f || try < 1, where
Wn_1 s the area of the surface of the unit n-ball in H™. Moreover, the power n/(n—1)
in the denominator is sharp.

Remark 5.9. In | , Theorem 1.1}, the authors proved that the constant ag in
(5.20) is sharp when 8 = 0 for all functions, not necessarily being radially decreasing.

Let us show that actually Theorem 5.8 holds for any function f € Wy (H") drop-
ping the radial assumption.

Theorem 5.10. Let H" (n > 2) be the n-dimensional hyperbolic space. Let0 < 5 <n
andlet0 < o < ag with ag = nwl/(n Y (1—8/n). Then there exists a positive constant
C’5 = 05(5, n,a) such that

H 1 n/(n—1
/n (1 + ’f( )l)n/ n— l)pﬁ (exp(a|f(x)| /( ))
n—2 k;|f(l‘)|k‘n/(n—1)> d%<55/ |f( )| V (5.21)

|
k=0 ! P’

holds for all functions f € Wy (H") with ||V, f || zrny < 1, where w,_; is the area of
the surface of the unit n-ball in H"™. Moreover, the powern/(n—1) in the denominator
s sharp.

Proof of Theorem 5.10. By Theorem 5.5 with 8; = 53 = 3, hence § = 0 by (5.4), we
obtain

n/q
f f n 1-n/q || S

< |L < By IV Flnh |5 ,

Pq(1+|f|) La(Hn) P | La(un) "l Ln )

where Bj is given in Theorem 5.5. Then, using this and ||V f||r@n) < 1, one gets

n—2 ’
1 / (alf(@)]")*

exp(alf(z)|™) — dv,
| =i ( (alf@I =2 =5 g

k!
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The series in the right hand side of (5.22) converges when 0 < a < 1/(n'eBY).
Thus, we have obtained (5.21) with 0 < a < 1/(n’eBY"). Since Bs = (agn’e)""/" by
Remark .6, then we have (5.21) for 0 < o < ag.

The sharpness of the power n/(n — 1) in the denominator is obtained by Theorem
5.8, since this constant is sharp for radially decreasing functions in (5.21). O

Now we show that (5.21) is equivalent to the following Caffarelli-Kohn-Nirenberg
type inequalities.

Theorem 5.11. Let H" (n > 2) be the n-dimensional hyperbolic space and let 0 <
B < n. Then for any n < q < oo there exists a positive constant Cs = Cs(n, 3, q)
such that

f 2
n 1-n
|| < Csd" VSl | 7 (5.23)
pr(L+ () |l Lagun) Ln(H")
holds for all functions [ € WOM(H”) Moreover, we have
1 / /
~ = Al =B, 5.24
R (5.24)

where

ag = sup{a > 0; 3C; = Cs(B,n,a) : (5.21)
holds for all functions
f e Wy (H") with ||V f || ngamy < 13,

As = inf{Cs > 0;3Ir = r(n,5,C5) withr > n :
(5.23) holds Vf € Wy ™ (H"),Vq with r < q < 00},

f
B
q n
B —lmsm s P Il pagem) — (5.25)
00 1,n n
I o, g |
P™ I Ln(Hn)

The weighted Trudinger-Moser inequalities (5.21) are equivalent to the Caffarelli-
Kohn-Nirenberg type inequalities (5.23) with relation (5.24).

Remark 5.12. An analogue of Remark 3.3 holds, in particular, Bj is asymptotically
sharp for (5.23). When S = 0, by Remark 5.9 we have ag = ag = nw,ll/_(?_l), which

gives explicit expression for By = (nwi/_(?’l) —1/n'

n'e)
Proof of Theorem 5.11. Since By < As, then, we need to show the following two cases:
(5.21)=(5.23) with as < (en’AZ)~! and (5.23)=(5.21) with 1/as < n'eBY. So, we
start to show (5.21)=(5.23) with az < (en’AZ ). As in the proof of Theorem 5.5
it suffices to show (5.23) for ||V, f||Lr@n) # 0. Then, we replace f by f/[|Vgf| o
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in (5.21) with 0 < o < @ to get

k
1 =1 alf(x)™
: — =L ) av
/n (@) )” k_zn_lk!<llvgf||’£n(w) ’

8 I A
p (1 sNAiETED

(5.26)
f ()"
< GVl (] av,).
Ln(H™) Hn pg g
From this, we note that for any 0 < ¢ < ag there is C. such that
1 =1 ((a \"
/ o S (ear)
Hn |f ()] ——y n(Hn
P (1 + uvgfumn)) hn-1 e (5.27)
n f(@)["
< Ve [ L a1,).
In particular, it implies that
f
2 i \M*
(n—1)/k
< (CR)Y N @y — &)V gy (-7 (5.28)
" Al L En)

holds for all £ > n — 1. Moreover, for any ¢ > n, there exists an integer k>n—1
satisfying n'k < ¢ < n/(k + 1). Then, using Holder’s inequality for 4+ ((k+)1) =1
with 0 < 8 <1 we calculate

/ @y
ang< /()] )”

L+ 19, flonam
_ f(@)|" | f (@)= v
e s sl \F s O
prt <1 T IIngIILn(Hn)> prEy (1 + ||vgf||Ln(Hn))
0q (1-6)q
Tk T(k+1)
n'k n'(k+1)
< / | f(z)] v, / |f(z)] v,
He 8 |f ()] ) Hr 3 ( f (@) )
p (1 Sl i P PP\ 1+ 1=, e
0q (1-0)q
_ / f
— % 7] 1/k R/L < I )1/(k+1)
prt (1 + ”ngHL"(H")) L'k (Hn) prt {1+ Vg fllLr @Em) L G+1) (Y
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that is,

[

a K )7
P <1 Tt ) g
0 1-6

S S
£ 1 )1/’“ s ( 1
o (14 ostbbems ey 1P L ol

Combining this with (5.28), we obtain

> 1/(k+1)

L (k+1) (H"™)

f

q /1 )7
P <1 Tt ) g

T~ _1 1-n f
< G2 (@ — &) ((k+ D)7V, f g || 7 (5.20)
26 )
Since ¢ > n'k we get (k+ 1)! <T'(¢/n' + 2), then (5.29) gives that
f
8 £ )33
P (1 - Vg fllLnmn La(Hm)
< C @y — &) ¥ (D(g/n’ +2))F |V 1"/qi 5.30
< C2 (a5 — ) v (D(g/n +2))7 Vo fll o z (5.30)
Ln(Hn)

for any ¢ > n and for all f € I/VO1 "(H™), which gives (5.23) after replacing f by
Vg flln@ny f. For ¢ — 400, using (3.11) in (5.30) we see that for any 0 > 0 there is
r > n such that

f
: K )7
o (L4 et Lo

1

f n/q
< ((We(@s =) +8)a IV fll iy | -5

L (Hn)

(5.31)

holds for all f € Wy"(H") and all ¢ with r < ¢ < oco. Here, replacing f by
IV f || 2o mny f We obtain (5.23). We see that A5 < (n’e(a —e))~Y/™ + 4, then by the
arbitrariness of £ and § we obtain ag < (en/ A2 )™
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It remains to show that (5.23)=(5.21) with 1/as < n’eBY. By (5.23), for any q
with n < ¢ < oo there exists C5 = Cs(n, 5,q) > 0 such that
f n 1-n f
S D S— < Csq" MVl IE{IZ) =
pe(L+[f])e La(Hn) P || o)

holds for all f € W, (H"). By this and taking into account Vg fllon@ny < 1, one
gets

n/q

(5.32)

/ ! exp(a|f(z 132 a|f )" dv,
e P+ @) \ 5P ‘
3 (an'kC3)* [ |f(@)]"
Sn/an, kEN k! /" P’ W (539

The series in the right hand side of (5.33) converges when 0 < o < 1/(neC?"). Thus,
we have obtained (5.21) with 0 < a < 1/(n'eC%"). Hence az > 1/(n'eC%") for all
Cs > Bs, which gives ag > 1/(n'eBY).

Thus, we have completed the proof of Theorem 5.11. 0
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