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Abstract. In this paper we study the global well-posedness of the following Cauchy
problem on a sub-Riemannian manifold M :{

ut − LMu = f(u), x ∈M, t > 0,
u(0, x) = u0(x), x ∈M,

for u0 ≥ 0, where LM is a sub-Laplacian of M . In the case when M is a connected
unimodular Lie group G, which has polynomial volume growth, we obtain a critical
Fujita exponent, namely, we prove that all solutions of the Cauchy problem with
u0 6≡ 0, blow up in finite time if and only if 1 < p ≤ pF := 1 + 2/D when
f(u) ' up, where D is the global dimension of G. In the case 1 < p < pF and when
f : [0,∞)→ [0,∞) is a locally integrable function such that f(u) ≥ K2u

p for some
K2 > 0, we also show that the differential inequality

ut − LMu ≥ f(u)

does not admit any nontrivial distributional (a function u ∈ Lploc(Q) which satisfies
the differential inequality in D′(Q)) solution u ≥ 0 in Q := (0,∞)×G. Furthermore,
in the case when G has exponential volume growth and f : [0,∞) → [0,∞) is a
continuous increasing function such that f(u) ≤ K1u

p for some K1 > 0, we prove
that the Cauchy problem has a global, classical solution for 1 < p < ∞ and some
positive u0 ∈ Lq(G) with 1 ≤ q <∞. Moreover, we also discuss all these results in
more general settings of sub-Riemannian manifolds M .
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1. Introduction and results

Let M be a sub-Riemannian manifold with a smooth volume µ. Recall that if
X1, . . . , Xk is a local orthonormal frame, then the horizontal gradient on M is defined
as

∇ϕ =
k∑
i=1

Xi(ϕ)Xi,

where Xi(ϕ) is the Lie derivative of ϕ in the direction of Xi. Denote by divµX
the divergence of a vector field X with respect to a volume µ, and it is defined by
the identity LXµ = (divµX)µ, where LX is the Lie derivative with respect to X.
The sub-Laplacian associated with the sub-Riemannian structure is defined as the
divergence of the gradient, that is, LMϕ = divµ(∇ϕ), and it can be written in a local
orthonormal frame X1, . . . , Xk as

LM =
k∑
i=1

(
X2
i + (divµXi)Xi

)
. (1.1)

Therefore, the sub-Laplacian LM is the natural generalisation of the Laplace-Beltrami
operator defined on a Riemannian manifold. Note that the sub-Laplacian LM always
can be expressed as the sum of squares of the elements of the orthonormal frame plus
a first order term that depends on the choice of the volume µ.

Let ht(x, y) denote the heat kernel for ut − LMu = 0 for x, y ∈ M and t > 0,
that is, for every y ∈ M the function u(t, x) := pt(x, y), x ∈ M , t > 0 is a classical
solution to the heat equation ut−LMu = 0 in (0,∞)×M . Its existence, smoothness,
symmetry, and positivity are guaranteed by classical results, see for instance [Str86]
or [BBN12, Section 2.2] and [BBN16, Section 2.1] for more references.

Let us consider the following Cauchy problem:{
ut − LMu = f(u), x ∈M, t > 0,
u(0, x) = u0(x), x ∈M,

(1.2)

for u0 ≥ 0. Recall that

etLMu0(x) =

∫
M

ht(x, y)u0(y)dµy, x ∈M, t > 0.

In this paper, we show a sufficient condition on the initial data which guarantees
the existence of global solutions of (1.2) on M :

Theorem 1.1. Let M be a sub-Riemannian manifold. Let f : [0,∞) → [0,∞) be
a continuous increasing function such that f(u) ≤ K1u

p for some positive constant
K1 > 0 with 1 < p <∞. Let 0 ≤ u0 ∈ Lq(M) with 1 ≤ q <∞ and assume that∫ ∞

0

‖esLMu0‖p−1L∞(M)ds <
1

K1(p− 1)
. (1.3)

Then there exists a non-negative continuous curve u : [0,∞) → Lq(M) which is a
global solution to (1.2) with initial value u0. Moreover, we have

(etLMu0)(x) ≤ u(t, x) ≤ C(etLMu0)(x), ∀x ∈M, ∀t ≥ 0, (1.4)
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for some C > 1 (depending on u0). For example, (1.4) holds with

C =

(
1−K1(p− 1)

∫ ∞
0

‖esLMu0‖p−1L∞(M)ds

)− 1
p−1

.

Remark 1.2. We refer to [Zha99] and the references therein for the case when LM is
the Laplace-Beltrami operator, M is a noncompact, complete Riemannian manifold
with polynomial volume growth, which include those with nonnegative Ricci curva-
tures. For the case of Riemannian manifolds with negative sectional curvature, we
refer to [Pun12] as well as references therein.

When we know the behavior of the heat kernel, then one can see that to satisfy the
condition (1.3) there appears a condition for the parameter p, which is usually called
a Fujita exponent. For example, when M is a connected unimodular Lie group with
polynomial volume growth of order D, since we have by (2.4) the estimate

‖etLu0‖L∞(G) ≥ ct−D/2, t→∞,
for any nontrivial u0 ≥ 0, then we see that the condition (1.3) cannot be satisfied for
p ≤ pF := 1 + 2/D. Here and in the sequel, when M is a unimodular Lie group, we
will simplify the notation by writing L instead of LM .

Usually, since the heat kernel is tightly connected to the volume growth, we will
demonstrate below results on unimodular Lie groups, where only two situations may
occur for the volume growth: polynomial and exponential. We will also discuss the
obtained results in more general settings in Section 3.

Let G be a connected unimodular Lie group, endowed with the Haar measure,
and let X = {X1, · · · , Xk} be a Hörmander system of left invariant vector fields. Let
ρ(x, y) be the Carnot-Carathéodory distance G×G 3 (x, y) 7→ ρ(x, y) associated with
X. We denote by ρ(x) the distance from the unit element of the group to x ∈ G. Let
V (t) be the volume of the ball B(x, t) centred at x ∈ G and of radius t > 0 for this
distance. In this case, since the left invariant vector fields on G are divergence free
with respect to the (right) Haar measure, as a consequence of (1.1) the sub-Laplacian
associated to the Haar measure has the form of “sum of squares”, that is,

L :=
k∑
i=1

X2
i .

Then, on G, the Cauchy problem (1.2) becomes{
ut − Lu = f(u), x ∈ G, t > 0,
u(0, x) = u0(x), x ∈ G, (1.5)

for u0 ≥ 0.
Recall that we have V (t) ' td for t ∈ (0, 1), where d = d(G, X) ∈ N is the local

dimension. In the case t ≥ 1, as we mentioned above, only two situations may
occur, independently of the choice of X (see e.g. [CRT01] or [Gui73]): either G
has polynomial volume growth of order D, which means that there exists the global
dimension D = D(G) ∈ N0 (i.e. N ∪ {0}) such that V (t) ' tD, t ≥ 1, or G has
exponential volume growth, that is, there exist positive constants c1, C1, c2 and C2

such that c1e
c2t ≤ V (t) ≤ C1e

C2t for t ≥ 1. Note that (see e.g. [CRT01, Page 285])
the dimension D at infinity depends only on the group G but not on the system
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X. Let us also recall that the closed subgroups of nilpotent Lie groups, connected
Type R Lie groups, motion groups, the Mautner group and compact groups are all
examples of polynomial growth groups (see e.g. [Sch93, Section 1.5]). For examples of
the unimodular Lie groups with exponential volume growth we can refer e.g. [CM96,
Section 2] and references therein.

Let us now state the main results on G:

Theorem 1.3. Let G be a connected unimodular Lie group with polynomial volume
growth of order D and let 1 < p <∞.

(i) Let p < pF = 1 + 2/D. Let f : [0,∞) → [0,∞) be a locally integrable
function such that f(u) ≥ K2u

p for some positive constant K2 > 0. Then the
differential inequality

ut − Lu ≥ f(u) (1.6)

does not admit any nontrivial distributional solution u ≥ 0 in (0,∞)×G.
(ii) Let p = pF = 1 + 2/D. Let f : [0,∞)→ [0,∞) be a locally integrable function

such that f(u) ≥ K2u
p for some positive constant K2 > 0. Then the equation

ut − Lu = f(u) (1.7)

does not admit any nontrivial distributional solution u ≥ 0 in (0,∞)×G.
(iii) Let p > pF = 1 + 2/D. Let f : [0,∞) → [0,∞) be a continuous increasing

function such that f(u) ≤ K1u
p for some positive constant K1 > 0. Then, for

any 1 ≤ q < ∞ the Cauchy problem (1.5) has a global, classical solution for
some positive u0 ∈ Lq(G).

Remark 1.4. By a distributional solution, we mean in Parts (i) and (ii) of Theorem
1.3 a function u ∈ Lploc(Q) which satisfies (1.6) and (1.7) in D′(Q), respectively, where
Q := (0,∞)×G.

Theorem 1.5. Let G be a connected unimodular Lie group with exponential volume
growth and let 1 < p < ∞. Let f : [0,∞) → [0,∞) be a continuous increasing
function such that f(u) ≤ K1u

p for some positive constant K1 > 0. Then, for any
1 ≤ q <∞ the Cauchy problem (1.5) has a global, classical solution for some positive
u0 ∈ Lq(G).

Remark 1.6. Consider problem (1.5) with f(u) ' up. Then, combining these The-
orems 1.3 and 1.5, one comes to the following interesting conclusion: In the case
D = 0 (e.g. when G is a compact group), that is, the case when the volume growth
at infinity is constant, we see from Theorem 1.3 that the Cauchy problem (1.5) does
not admit any nontrivial distributional solution u ≥ 0 in (0,∞)×G for 1 < p <∞.
In the case of polynomial volume growth, there exists a global, classical solution of
(1.5) for p > pF = 1 + 2/D and some positive u0 ∈ Lq(G) with 1 ≤ q <∞. When G
has exponential volume growth, then the Cauchy problem (1.5) has a global, classical
solution for p > 1 and some positive u0 ∈ Lq(G) with 1 ≤ q < ∞ by Theorem 1.5.
For compact Lie groups the same kind of phenomenon (blow-up in finite time for all
p > 1 under suitable sign assumptions for the Cauchy data) has been recently proved
also for the semilinear wave and damped wave equations, see [Pal21a, Pal21b].

Concerning the existence in Part (iii) of Theorem 1.3, we actually have the following
much stronger property:
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Theorem 1.7. Let G be a connected unimodular Lie group with polynomial volume
growth of order D. Consider problem (1.5) with pF < p < ∞, u0 ∈ Lq(G) with
1 ≤ q < ∞, and let γ > 0. Let f : [0,∞) → [0,∞) be a continuous increasing
function such that f(u) ≤ K1u

p for some positive constant K1 > 0. There exists
ε = ε(γ) > 0 such that, if

0 ≤ u0(x) ≤ εhγ(x), x ∈ G, (1.8)

then there exists a non-negative continuous curve u : [0,∞) → Lq(G) which is a
global solution to (1.5) with initial value u0. Moreover, we have

u(t, x) ≤ Cht+γ(x), x ∈ G, t ∈ (0,∞), (1.9)

for some C = C(γ) > 0.

Similarly, concerning Theorem 1.5, we have the following stronger property:

Theorem 1.8. Let G be a connected unimodular Lie group with exponential volume
growth. Consider problem (1.5) with 1 < p < ∞, u0 ∈ Lq(G) with 1 ≤ q < ∞, and
let γ > 0. Let f : [0,∞) → [0,∞) be a continuous increasing function such that
f(u) ≤ K1u

p for some positive constant K1 > 0. There exists ε = ε(γ) > 0 such that,
if

0 ≤ u0(x) ≤ εhγ(x), x ∈ G, (1.10)

then there exists a non-negative continuous curve u : [0,∞) → Lq(G) which is a
global solution to (1.5) with initial value u0. Moreover, we have

u(t, x) ≤ Cht+γ(x), x ∈ G, t ∈ (0,∞), (1.11)

for some C = C(γ) > 0.

In the abelian case G = (Rn,+), the phenomenon of finite time blow up was
first considered by H. Fujita in [Fuj66], where in the proof Gaussian test functions
depending only on x (given by the heat kernel with t as a parameter) were involved,
hence requiring more regularity of the solutions in time. Since then, many people
devoted themselves to this problem. For example, we refer to [MP01] and [QP07],
where the proof is based on rescalings of a simple, compactly supported test-function,
depending on x and t. A related proof can be found in [BP85], where the test-
functions were obtained by solving an adjoint problem. We also refer to [HM04, LP76,
Qui91, SW97, Wei80, Wei81] and the references therein for the case of G = (Rn,+),
as well as [JKS16], [GP21] on the Heisenberg group and [Pas98] on stratified Lie
groups. In the case of stratified Lie groups the blow-up result has been studied also
in [GP19]. There is huge literature on such Euclidean problems that we do not even
attempt to review here.

For a comparison principle for weak solutions of p-Laplacian heat equation in a
bounded domain, we refer to recent works [LZZ18] when G = (Rn,+), and to [RS18]
and [RY20] when G is a graded Lie group, the latter two also allowing more general
hypoelliptic differential operators (Rockland operators).

The paper is structured as follows. In Section 2 we give the proof of the main
results. Finally, these results are discussed on more general settings in Section 3.

The authors would like to thank Michinori Ishiwata from Osaka University for
drawing our attention to the important literature on the subject. The authors also
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would like to thank Tommaso Bruno from Ghent University for his comments on the
heat kernel estimates in the exponential volume growth case.

2. Proofs

Proof of Theorem 1.1. Here, the argument required for the extension to the sub-
Riemannian manifold M is virtually the same as employed by Weissler in [Wei81,
Theorem 3], see also [QP07, Section 20] for more details and other arguments. So, as
in [Wei81] we study (1.2) via the following integral equation:

u(t) = etLMu0 +

∫ t

0

e(t−s)LMf(u(s))ds.

Denote

ω(t) :=

(
1−K1(p− 1)

∫ t

0

‖esLMu0‖p−1L∞(M)ds

)− 1
p−1

.

Note that ω(0) = 1 and ω′(t) = K1‖etLMu0‖p−1L∞(M)(ω(t))p. Then we have

ω(t) = 1 +K1

∫ t

0

‖esLMu0‖p−1L∞(M)(ω(s))pds. (2.1)

Let u : [0,∞)→ Lq(M) be a continuous curve with 1 ≤ q <∞ and etLMu0 ≤ u(t) ≤
ω(t)etLMu0 for all t ≥ 0. Noting this, if we denote

Fu(t) := etLMu0 +

∫ t

0

e(t−s)LMf(u(s))ds,

then using f(u) ≤ Kup and the positivity of the heat kernel (see Introduction for the
references), we get

Fu(t) ≤ etLMu0 +K1

∫ t

0

e(t−s)LM (u(s))pds

≤ etLMu0 +K1

∫ t

0

e(t−s)LM (esLMu0)
p(ω(s))pds

≤ etLMu0 +K1

∫ t

0

e(t−s)LM (esLMu0)‖esLMu0‖p−1L∞(M)(ω(s))pds

= etLMu0

(
1 +K1

∫ t

0

‖esLMu0‖p−1L∞(G)(ω(s))pds

)
,

(2.2)

which implies with (2.1) that etLMu0 ≤ Fu(t) ≤ ω(t)etLMu0 for all t ≥ 0.
Now we take the sequence of functions {vk(t)}∞k=0 such that v0(t) = etLMu0 and

vk+1(t) = Fvk(t), and show that this sequence converges to the desired solution. Note
that since etLMu0 ≤ v0(t) ≤ ω(t)etLMu0 then by induction and discussing as in (2.2),
we get etLMu0 ≤ vk(t) ≤ ω(t)etLMu0 for each k. We also note that since v0(t) ≤ v1(t)
for all t ≥ 0, and vk(t) ≤ vk+1(t) ⇒ Fvk(t) ≤ Fvk+1(t) for all t ≥ 0 by monotonicity
of function f , then by induction one obtains vk(t) ≤ vk+1(t) for all t ≥ 0. Then, the
dominated convergence theorem implies that vk(t) converge in Lq(M) to a function
which we call u(t). This with the fact that etLMu0 ≤ vk(t) ≤ ω(t)etLMu0 for each k
gives etLMu0 ≤ u(t) ≤ ω(t)etLMu0 for all t ≥ 0.
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Now we need to prove that the function u(t) is a global, classical solution of (1.2).
Note that since we have vk(t) ≤ ω(t)etLMu0 and f(u) ≤ K1u

p, then the functions
s 7→ e(t−s)LMf(vk(s)) are dominated by

e(t−s)LMf(vk(s)) ≤ K1e
(t−s)LM (vk(s))

p

≤ K1e
(t−s)LM (ω(s)esLMu0)

p

≤ K1e
tLMu0‖esLMu0‖p−1L∞(M)(ω(s))p

in L1(0, t;Lq(M)). These functions converge for every 0 < s < t to e(t−s)LMf(u(s))
monotonically in Lq(M) since the dominating function is in Lq(M) for every 0 < s < t
and the fact that f is a continuous function. Then, the dominated convergence
theorem for Lq-valued functions implies that

lim
k→∞

∫ t

0

e(t−s)LMf(vk(s))ds =

∫ t

0

e(t−s)LMf(u(s))ds,

which gives
u(t) = lim

k→∞
vk+1(t) = lim

k→∞
Fvk(t) = Fu(t),

which means that u(t) is a global solution of (1.2). Continuity of u(t) in Lq(M) easily
follows by standard arguments.

The proof is complete. �

Before giving the proof of the main results on unimodular groups, let us briefly
recall some necessary notations and some facts from [VCS92].

Recall that the heat kernel (t, x) 7→ ht(x) is a positive fundamental solution of
ut − Lu = 0. This heat kernel satisfies the following (see e.g. [VCS92, Section I.3,
Page 5] or [CRT01, Section 2.1.1, Page 295]) property:

‖ht‖L1(G) = 1, ∀t > 0. (2.3)

Let ρ(x, y) be the Carnot-Carathéodory distance G×G 3 (x, y) 7→ ρ(x, y) associated
with the Hörmander system of left invariant vector fields X. We also recall that ρ is
symmetric and satisfies the triangle inequality (see e.g. [VCS92, Section III.4, Page
39]).

We will also use the following fundamental properties:

Theorem 2.1. [VCS92, VIII.2.9 Theorem] Let G be a connected unimodular Lie
group with polynomial volume growth. Then there exist positive constants C1 > 0 and
C2 > 0 such that

C1V (
√
t)−1 exp

(
−C2

(ρ(x))2

t

)
≤ ht(x) ≤ C2V (

√
t)−1 exp

(
−C1

(ρ(x))2

t

)
, (2.4)

for all t > 0 and x ∈ G.

Theorem 2.2. [VCS92, VIII.4.3 Theorem] Let G be a connected unimodular Lie
group with exponential volume growth. Then for every n ≥ d and ε > 0, there exist
Cn,ε such that

|ht(x)| ≤ Cn,εt
−n

2 exp

(
− (ρ(x))2

(4 + ε)t

)
, (2.5)

for all t > 0 and x ∈ G, where d is the local dimension of G.
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In order to prove Parts (i) and (ii) of Theorem 1.3, it is enough to prove the
following result:

Theorem 2.3. Let G be a connected unimodular Lie group with polynomial volume
growth of order D and 1 < p < ∞. Let f : [0,∞) → [0,∞) be a locally integrable
function such that f(u) ≥ K2u

p for some positive constant K2 > 0. Let u0 : G →
[0,∞] be measurable, such that u0 > 0 in a set of positive measure.

(i) If p < pF = 1 + 2/D, then there is no nonnegative measurable global solution
u : [0,∞)×G→ [0,∞] to the integral inequality

u(t, x) ≥
∫
G
ht(y

−1x)u0(y)dy +

∫ t

0

∫
G
ht−s(y

−1x)f(u(s, y))dyds (2.6)

such that u(t, x) <∞ for a.e. (t, x) ∈ (0,∞)×G.
(ii) If p = pF = 1 + 2/D, then there is no nonnegative measurable global solution

u : [0,∞)×G→ [0,∞] to the integral equation

u(t, x) =

∫
G
ht(y

−1x)u0(y)dy +

∫ t

0

∫
G
ht−s(y

−1x)f(u(s, y))dyds (2.7)

such that u(t, x) <∞ for a.e. (t, x) ∈ (0,∞)×G.

Now let us show the following lemma on sub-Riemannian manifold M , which we
will use in the proof of Theorem 2.3 when M is a connected unimodular Lie group:

Lemma 2.4. Let M be a sub-Riemannian manifold with ‖ht‖L1(M) ≤ 1. Let 1 <
p < ∞ and T > 0. Let f : [0,∞) → [0,∞) be a locally integrable function such
that f(u) ≥ K2u

p for some positive constant K2 > 0. Let ϑ0 : M → [0,∞] and
ϑ : [0, T ]×M → [0,∞] be measurable and satisfy

ϑ(t) ≥ etLMϑ0 +

∫ t

0

e(t−s)LMf(ϑ(s))ds (2.8)

a.e. in QM
T := [0, T ] ×M . Assume that ϑ(t, x) < ∞ for a.e. (t, x) ∈ QM

T . Then we
have

t
1
p−1‖etLMϑ0‖L∞(M) ≤ Ap := (K2(p− 1))−

1
p−1 (2.9)

for all t ∈ (0, T ].

Proof of Lemma 2.4. Note that by virtue of Fubini’s theorem for nonnegative mea-
surable functions we will use operations such as interchange of integrals and moving
of e−tLM inside integrals in the proof of this lemma. We notice that

etLMF = e(t−s)LM esLMF (2.10)

for all 0 < s < t and any measurable F : M → [0,∞]. Also, we obtain from Jensen’s
inequality and ‖ht‖L1(M) ≤ 1 that

etLMF p ≥ (etLMF )p (2.11)

for all measurable F : M → [0,∞]. Now, by redefining u on a null set, one may
assume that (2.8) actually holds everywhere in (0, T ) × M . By assumption, we
have ϑ(τ, ·) < ∞ a.e. in M for a.e. τ ∈ (0, T ). Let us fix such τ and denote
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Mτ := {x ∈ M : ϑ(τ, x) < ∞}. Then, (2.8) with f(u) ≥ K2u
p, (2.10) and (2.11)

imply for t ∈ [0, τ ] that

e(τ−t)LMϑ(t) ≥ eτLMϑ0 +K2

∫ t

0

e(τ−s)LM (ϑ(s))pds

≥ eτLMϑ0 +K2

∫ t

0

(e(τ−s)LMϑ(s))pds =: g(t, ·),
(2.12)

where we have also used that the heat kernel is positive (see Introduction for the
references), so that the integration with it preserves inequalities between non-negative
functions. Here, from the second inequality in (2.12) noting (2.8) and f(u) ≥ K2u

p,
we get

g(τ, ·) ≤ eτLMϑ0 +K2

∫ τ

0

e(τ−s)LM (ϑ(s))pds

≤ eτLMϑ0 +

∫ τ

0

e(τ−s)LMf(ϑ(s))ds

≤ ϑ(τ, ·),

(2.13)

and so g(t, x) <∞ for all (t, x) ∈Mτ× [0, τ ]. Fixing x ∈Mτ , we see that the function
φ(t) := g(t, x) is absolutely continuous on [0, τ ], and that (2.12) implies

φ′(t) = K2(e
(τ−t)LMϑ(t))p(x) ≥ K2(φ(t))p (2.14)

for a.e. t ∈ [0, τ ]. For fixed x ∈ Mτ we have φ(t) = g(t, x) ≥ (eτLMϑ0)(x) > 0
by the definition of the function g in (2.12), therefore, we can rewrite (2.14) as
[φ1−p]′ ≤ −K2(p− 1). By integrating this inequality over [0, τ ], we obtain

[(eτLMϑ0)(x)]1−p = φ1−p(0) ≥ φ1−p(τ) +K2(p− 1)τ ≥ K2(p− 1)τ, (2.15)

which implies τ 1/(p−1)‖eτLMϑ0‖L∞(M) ≤ (K2(p−1))−1/(p−1). In particular, this means
that etLMϑ0 ∈ L∞(M) for a.e. t ∈ (0, T ). Since we know that t 7→ ‖etLMυ‖L∞(M) is
continuous for υ ∈ L∞(M) and t > 0, then (2.10) yields that the function

t 7→ t
1
p−1‖etLMϑ0‖L∞(M)

is continuous in (0, T ), hence (2.9). �

Corollary 2.5. Let M be a sub-Riemannian manifold with ‖ht‖L1(M) ≤ 1. Let 1 <
p < ∞ and T > 0. Let f : [0,∞) → [0,∞) be a locally integrable function such
that f(u) ≥ K2u

p for some positive constant K2 > 0. Let ϑ0 : M → [0,∞] and
ϑ : [0, T ]×M → [0,∞] be measurable and satisfy

ϑ(t) = etLMϑ0 +

∫ t

0

e(t−s)LMf(ϑ(s))ds

a.e. in QM
T = [0, T ]×M . Then we have

‖t
1
p−1 etLMϑ(τ)‖L∞(M) ≤ Ap := (K2(p− 1))−

1
p−1

for all t ∈ (0, T − τ ] and a.e. τ ∈ (0, T ).
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Proof of Corollary 2.5. Denote ϑ̃(t) := ϑ(t+τ). Then, by (2.10) and Fubini’s theorem
we have for a.e. τ ∈ (0, T ) and a.e. t ∈ (τ, T ) that

ϑ̃(t) = e(t+τ)LMϑ0 +

∫ t+τ

0

e(t+τ−s)LMf(ϑ(s))ds

= etLM eτLMϑ0 +

∫ τ

0

etLM e(τ−s)LMf(ϑ(s))ds+

∫ t+τ

τ

e(t+τ−s)LMf(ϑ(s))ds

= etLM
(
eτLMϑ0 +

∫ τ

0

e(τ−s)LMf(ϑ(s))ds

)
+

∫ t

0

e(t−s)LMf(ϑ̃(s))ds

= etLMϑ(τ) +

∫ t

0

e(t−s)LMf(ϑ̃(s))ds.

Hence, Lemma 2.4 with ϑ0 replaced by ϑ(τ) and T replaced by T−τ for a.e. τ ∈ (0, T )
completes the proof. �

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. i) By way of contradiction let us assume that there exists
a global solution of (2.6). Then, by Lemma 2.4 when M = G (where we have
‖ht‖L1(G) = 1 by (2.3)) we get

|u0 ∗ t
1
p−1ht| ≤ Ap. (2.16)

For t > 1 from Theorem 2.1 we get that

ht(x) ≥ C1t
−D

2 exp

(
−C2

(ρ(x))2

t

)
for some positive constants C1 and C2. Then, using this for a given measurable
function v : G→ [0,∞], we have

lim
t→∞

v ∗ t
D
2 ht ≥ C‖v‖L1(G) (2.17)

pointwise in G, where ‖v‖L1(G) := ∞ if v /∈ L1(G). In the case p < pF , (2.16) gives

tD/2‖u0 ∗ ht‖L∞(G) → 0 as t→∞ which contradicts (2.17) with v = u0.
ii) In the case p = pF , again by way of contradiction we assume that there exists a

global solution of (2.7). We redefine u on a null set, then assuming that (2.7) actually
holds everywhere in (0,∞)×G, we get

u(t+ t0) = u(t0) ∗ ht +

∫ t

0

f(u(s+ t0)) ∗ ht−sds, (2.18)

for all t, t0 > 0. Note that Corollary 2.5 when M = G (where we have ‖ht‖L1(G) = 1
by (2.3)) and (2.17) guarantee the existence of positive constant C such that

‖u(τ)‖L1(G) ≤ C (2.19)

for a.e. τ > 0. On the other hand, since the Carnot-Carathéodory distance satisfies
the triangle inequality, we have (ρ(x, z))2/(4t) ≤ ((ρ(x))2 + (ρ(z))2)/(2t), and by
Theorem 2.1 we obtain

u(t, x) ≥ (u0 ∗ ht)(x) ≥ C1t
−D

2 e−2C2
(ρ(x))2

t

∫
G
e−2C2

(ρ(z))2

t u0(z)dz
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for t ≥ 1, and

u(t, x) ≥ (u0 ∗ ht)(x) ≥ C1t
− d

2 e−2C2
(ρ(x))2

t

∫
G
e−2C2

(ρ(z))2

t u0(z)dz

for 0 < t < 1, which imply with (2.4) that

u(2C2/C1, x) ≥ C3h1, x ∈ G.

Using this, and the property ht+s = ht ∗ hs for s, t > 0 and (2.18), we deduce that

u(s+ 2C2/C1) ≥ u(2C2/C1) ∗ hs ≥ C3h1 ∗ hs = C3hs+1, s > 0. (2.20)

Now, Theorem 2.1, (p− 1)D/2 = 1 and (2.3) imply that

‖hps+1‖L1(G) ≥ Cp
1 (s+ 1)−pD/2

(
s+ 1

p

)D/2(
s+ 1

p

)−D/2 ∫
G
e−C2p

(ρ(x))2

s+1 dx

≥ C4(s+ 1)−1‖hC1(s+1)
C2p

‖L1(G) = C5(s+ 1)−1
(2.21)

for all s > 1 and some C4, C5 > 0. As in [QP07, Proposition 48.4], one can note that
from (2.3) and Fubini’s theorem we have etLψ ≥ 0 and

‖etLψ‖L1(G) =

∫
G

∫
G
ψ(ζ)ht(ζ

−1η)dζdη =

∫
G
ψ(ζ)

(∫
G
ht(ζ

−1η)dη

)
dζ = ‖ψ‖L1(G)

for any ψ ≥ 0 . This calculation, (2.21), (2.18) with t0 = 2C2/C1 and (2.20) imply

‖u(t+ 2C2/C1)‖L1(G) ≥
∫ t

0

‖f(u(s+ 2C2/C1)) ∗ ht−s‖L1(G)ds

≥ K2

∫ t

0

‖up(s+ 2C2/C1) ∗ ht−s‖L1(G)ds

≥ K2

∫ t

0

‖(C3hs+1)
p ∗ ht−s‖L1(G)ds

= K2C
p
3

∫ t

0

‖hps+1‖L1(G)ds

≥ K2C
p
3

∫ t

1

‖hps+1‖L1(G)ds

≥ K2C
p
3C5

∫ t

1

(s+ 1)−1ds→∞

as t→∞, which contradicts (2.19). �

Now we prove Theorem 1.7.

Proof of Theorem 1.7. To prove Theorem 1.7 we see by Theorem 1.1 that it is enough
to show (1.3). Since by the assumption (1.8) we have u0(x) ≤ εhγ(x) for all x ∈ G,
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and noting that ‖ht‖L1(G) = 1, ∀t > 0, and Theorem 2.1, we obtain∫ ∞
0

‖esLu0‖p−1L∞(G)ds =

∫ ∞
0

‖u0 ∗ hs‖p−1L∞(G)ds

≤ ε

∫ ∞
0

‖hγ ∗ hs‖p−1L∞(G)ds

= ε

∫ ∞
0

‖hs+γ‖p−1L∞(G)ds

= ε

∫ ∞
γ

‖hs‖p−1L∞(G)ds

< Cε

(∫ 1

min(γ,1)

s−
d(p−1)

2 ds+

∫ ∞
1

s−
D(p−1)

2 ds

)
<

1

K1(p− 1)

for small ε > 0 since D(p− 1)/2 > 1 and γ > 0. �

Now let us prove Theorem 1.8.

Proof of Theorem 1.8. Actually, the proof of this theorem is similar to the proof of
Theorem 1.7, we use Theorem 2.2 instead of Theorem 2.1.

By (1.10), ‖ht‖L1(G) = 1, ∀t > 0, and Theorem 2.2, one has∫ ∞
0

‖esLu0‖p−1L∞(G)ds =

∫ ∞
0

‖u0 ∗ hs‖p−1L∞(G)ds

≤ ε

∫ ∞
0

‖hγ ∗ hs‖p−1L∞(G)ds

= ε

∫ ∞
0

‖hs+γ‖p−1L∞(G)ds

< Cε

∫ ∞
0

(s+ γ)−
n(p−1)

2 ds

(2.22)

for small ε > 0 and for every n ≥ d. So, letting n→∞ we observe that in this case
the condition (1.3) holds for 1 < p <∞.

Thus, Theorem 1.1 concludes the proof. �

3. The global well-posedness on sub-Riemannian manifolds

In this section we discuss the obtained results on unimodular groups in more general
settings, namely, on sub-Riemannian manifolds M . To have an analogue of Part (i)
of Theorem 1.3 on M , we need to assume that the following estimate for the heat
kernel from below holds on M (see the proof of Part (i) of Theorem 2.3): assume
that there exist constants C1, C2 > 0 and a ≥ 0 such that

ht(x, y) ≥ C1t
−a

2 exp

(
−C2

(ρ(x, y))2

t

)
, (3.1)

for all t > 1 and x, y ∈M . Therefore, we have
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Theorem 3.1. Assume that (3.1) holds on M for some a ≥ 0 and that
∫
M
ht(x, y)dµy ≤

1 for all x ∈ M and t > 0. Let 1 < p < 1 + 2/a. Let f : [0,∞)→ [0,∞) be a locally
integrable function such that f(u) ≥ K2u

p for some positive constant K2 > 0. Then
the differential inequality

ut − LMu ≥ f(u) (3.2)

does not admit any nontrivial distributional solution u ≥ 0 in (0,∞)×M .

By the proof of Part (ii) of Theorem 2.3, we note that to obtain an analogue of
Part (ii) of Theorem 1.3 on M one needs the following properties:

(1) ht+s(x, y) =
∫
M
ht(x, z)hs(z, y)dµz for all x, y ∈M and s, t > 0;

(2)
∫
M
ht(x, y)dµy = 1, ∀x ∈M, ∀t > 0;

(3) There exist constants {Ci}8i=1 > 0 and a > 0, b ≥ 0 such that

C1t
− b

2 exp

(
−C2

(ρ(x, y))2

t

)
≤ ht(x, y) ≤ C3t

− b
2 exp

(
−C4

(ρ(x, y))2

t

)
, (3.3)

for all 0 < t < 1 and x, y ∈M , and

C5t
−a

2 exp

(
−C6

(ρ(x, y))2

t

)
≤ ht(x, y) ≤ C7t

−a
2 exp

(
−C8

(ρ(x, y))2

t

)
, (3.4)

for all t ≥ 1 and x, y ∈M .

Note that we always have the above property (1) on M whenever the heat kernel
exists.

Therefore, the following theorem can be an analogue of Part (ii) of Theorem 1.3
on M :

Theorem 3.2. Assume that (2)-(3) hold on M for some a > 0 and b ≥ 0. Let
p = 1 + 2/a < ∞. Let f : [0,∞) → [0,∞) be a locally integrable function such that
f(u) ≥ K2u

p for some positive constant K2 > 0. Then the equation

ut − LMu = f(u) (3.5)

does not admit any nontrivial distributional solution u ≥ 0 in (0,∞)×M .

Remark 3.3. By a distributional solution, we mean in Theorems 3.1 and 3.2 a
function u ∈ Lploc(QM) which satisfies (3.2) and (3.5) in D′(QM), respectively, where
QM := (0,∞)×M .

As for an analogue of Theorem 1.7 on M , since we already have Theorem 1.1 on
M , we only need to check (1.3). For this, since we have used the estimate for the
heat kernel from above in the proof of Theorem 1.7, then to obtain an analogue of
Theorem 1.7 on M one needs to assume that the following estimates hold on M :
there exist constants C3, C4, C7, C8 > 0 and a > 0, b ≥ 0 such that

ht(x, y) ≤ C3t
− b

2 exp

(
−C4

(ρ(x, y))2

t

)
, (3.6)

for all 0 < t < 1 and x, y ∈M , and

ht(x, y) ≤ C7t
−a

2 exp

(
−C8

(ρ(x, y))2

t

)
, (3.7)

for all t ≥ 1 and x, y ∈M . Therefore, we have the following theorem on M :
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Theorem 3.4. Assume that (3.6) and (3.7) hold on M for some a > 0 and b ≥ 0.
Consider the problem (1.2) with 1 + 2/a < p <∞. Let u0 ∈ Lq(M) with 1 ≤ q <∞
and γ > 0. Let f : [0,∞) → [0,∞) be a continuous increasing function such that
f(u) ≤ K1u

p for some positive constant K1 > 0. There exists ε = ε(γ) > 0 such that,
for every y ∈M if

0 ≤ u0(x) ≤ εhγ(x, y), x ∈M, (3.8)

then there exists a non-negative continuous curve u : [0,∞) → Lq(M) which is a
global solution to (1.2) with initial value u0. Moreover, we have

0 ≤ u(t, x) ≤ Cht+γ(x, y), x, y ∈M, t ∈ (0,∞), (3.9)

for some C = C(γ) > 0.

In particular, Theorem 3.4 implies an analogue of Part (iii) of Theorem 1.3 on M :

Theorem 3.5. Assume that (3.6) and (3.7) hold on M for some a > 0 and b ≥ 0. Let
1 + 2/a < p < ∞. Let f : [0,∞) → [0,∞) be a continuous increasing function such
that f(u) ≤ K1u

p for some positive constant K1 > 0. Then, for any 1 ≤ q < ∞ the
Cauchy problem (1.2) has a global, classical solution for some positive u0 ∈ Lq(M).

Now we give some examples. Let us first recall the following result from [Sal10]
(see also [Gri91] and [Sal92]) on weighted Riemannian manifolds, that is, complete
non-compact Riemannian manifolds equipped with a measure µ(dy) = σ(y)v(dy),
0 < σ ∈ C∞(M), and the associated weighted Laplacian LσM := σ−1 div (σ grad):

Theorem 3.6. [Sal10, Theorem 3.1] Let M be a weighted complete Riemannian
manifold. Then the following three properties are equivalent:

• The parabolic Harnack inequality (PHI).
• The two-sided heat kernel bound ((t, x, y) ∈ (0,∞)×M ×M):

c̃1

V (x,
√
t)
e−C̃1

(ρ(x,y))2

t ≤ ht(x, y) ≤ C̃2

V (x,
√
t)
e−c̃2

(ρ(x,y))2

t . (3.10)

• The conjunction of
– The volume doubling property

∀x ∈M, r > 0, V (x, 2r) ≤ DV (x, r).

– The Poincaré inequality (∀x ∈M, r > 0, B = B(x, r))

∀f ∈ Lip (B),

∫
B

|f − fB|2dµ ≤ Pr2
∫
B

|∇f |2dµ,

where fB is the mean of f over B.

Remark 3.7. Note that a complete weighted manifold M satisfies (PHI) if and only
if the Riemannian product R×M satisfies the elliptic Harnack inequality (see [HS01]).

We refer to [Sal10, Section 3.2] for more details.
We note by the proof of Theorem 1.1, Lemma 2.4 and Corollary 2.5 that we also

have Theorem 1.1, Lemma 2.4 and Corollary 2.5 on weighted Riemannian manifolds
satisfying the two-sided heat kernel bound (3.10) (hence also on weighted Riemann-
ian manifolds satisfying (PHI) by virtue of Theorem 3.6) with the weighted Lapla-
cian, since (3.10) also implies that we have the positivity of the heat kernel on such



GLOBAL WELL-POSEDNESS FOR A SEMILINEAR HEAT EQUATION ON MANIFOLDS 15

weighted Riemannian manifolds. Examples of such weighted Riemannian manifolds
are complete Riemannian manifolds with non-negative Ricci curvature, convex do-
mains in Euclidean space, complements of any convex domain, connected Lie groups
with polynomial volume growth, Riemannian manifolds which cover a compact man-
ifold with deck transformation group Γ, complete Riemannian manifolds M and N
such that M/G = N , where G is a group of isometries of M , the Euclidean space
Rn, n ≥ 2, with weight (1 + |x|2)α/2 and α > −n. Hence, they are also examples
of weighted Riemannian manifolds satisfying (PHI) because of Theorem 3.6 (see e.g.
[Sal10, Section 3.3]).

Since now we have Lemma 2.4 and Corollary 2.5 on weighted Riemannian manifolds
satisfying the two-sided heat kernel bound (3.10) (hence also on weighted Riemannian
manifolds satisfying (PHI) by virtue of Theorem 3.6), then taking into account the
above discussions for Theorems 3.1, 3.2, 3.4 and 3.5, we obtain these Theorems 3.1,
3.2, 3.4, 3.5 on weighted Riemannian manifolds satisfying the two-sided heat kernel
bound (3.10) with the volume growth, such that ultimately an estimate for the heat
kernel has to has a form as in (3.1) for Theorem 3.1, (3.3)-(3.4) for Theorem 3.2,
and (3.6)-(3.7) for Theorems 3.4-3.5. Here, we want to note that the volume growth
does not have to be polynomial, see for example Theorem 1.8, if the volume growth
is exponential but we have an estimate of the type (2.5).
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