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Abstract—Continuous affect estimation is a problem where
there is an inherent uncertainty and subjectivity in the labels that
accompany data samples – typically, datasets use the average of
multiple annotations or self-reporting to obtain ground truth
labels. In this work, we propose a method for uncertainty-
aware continuous affect estimation, that models explicitly the
uncertainty of the ground truth label as a uni-variate Gaussian
with mean equal to the ground truth label, and unknown
variance. For each sample, the proposed neural network estimates
not only the value of the target label (valence and arousal
in our case), but also the variance. The network is trained
with a loss that is defined as the KL-divergence between the
estimation (valence/arousal) and the Gaussian around the ground
truth. We show that, in two affect recognition problems with
real data, the estimated variances are correlated with measures
of uncertainty/error in the labels that are extracted either by
considering multiple annotations of the data, or by manually
cleaning the dataset.

Index Terms—Affect estimation, uncertainty, noisy labels

I. INTRODUCTION

Affect recognition in the wild is a problem that traditionally
is using the labels assigned by expert annotators or self-
reporting as the ground truth. Even though the labels obtained
in that manner are not as noisy as, for example, through social
media scraping, there is an inherent element of subjectivity
in annotation that can be regarded as noise or bias. This
subjectivity in available affect datasets can have an effect on
generalisation and interpretability of results.

In the recent years, several works have attempted to address
label uncertainty. DivideMix [1] introduces a methodology for
training on noisy labels by leveraging a semi-supervised tech-
nique. The method is simultaneously training two networks
and uses the per-sample training loss to co-divide the data unto
a clean- and a noisy-label subset. However, the methodology
proposes a hard label correction by assigning pseudo-labels on
noisy samples during training and requires co-training of two
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networks. In the regression framework, He et al. [2] model the
difficulty in predicting object boundaries in object detection by
estimating the uncertainty in predicting the bounding box in
the form of variance and introducing a Kullback-Leibler (KL)
based loss term that allows the estimation of the variance for
each predicted boundary. However, none of the above have
been introduced in the domain of affective computing for
continuous arousal and valence estimation.

In this work, we adopt a similar approach and build on the
work of He et al. [2] in order to address the problem of label
uncertainty in the domain of affective computing. We address
the problem of affect estimation as a regression problem
predicting a continuous value for arousal and valence. We
propose to estimate the uncertainty of the label for each sample
in the form of variance, so that the model estimates both
the target and the label variance. By contrast to approaches
such as DivideMix [1] that model the distribution of the loss
over multiple samples, and make a hard decision between
which samples are noisy and clean, our measure is continuous
and is derived per sample by a branch of the network.
Our network is trained on a KL-divergence based loss using
standard back-propagation. We evaluate the methodology on
two continuous affect datasets, namely AMIGOS [3] for video
affect estimation and AffectNet [4] for affect estimation in
static images. We show that the derived measure is positively
correlated to the variance of annotators in AMIGOS where,
multiple annotations are available. In AffectNet, where mul-
tiple annotations are not available, we use the rules proposed
by [5] to obtain a clean and a noisy validation set and show that
the estimated variances in the clean subset are lower than in the
noisy one by performing a statistical significance test. Finally,
we show that the proposed methodology consistently improves
the performance in both datasets against their baselines.

The main contributions of this paper can be summarised as
follows:

1) We propose addressing the problem of continuous af-
fect estimation with label uncertainty, by modelling the
ground truth label as a uni-variate Gaussian distribution
with unknown variance and training a network that



learns to predict it. To the best of our knowledge, this
is the first work doing so in this domain.

2) We show that the proposed methodology improves the
performance upon the adopted baselines on both image
and video data affect recognition problems.

3) We quantitatively evaluate the predicted variance metric
as a measure of uncertainty and show that it is positively
correlated with the variance of multiple human annota-
tors in AMIGOS, and higher in part of AffectNet that
were deemed to contain noisy samples.

The paper is organised as follows. Section II discusses
related literature, Section III introduces our methodology, Sec-
tion IV introduces the experimental setup, Section V reports
the results, and Section VI concludes the paper.

II. RELATED WORK

In this section, we review previous work addressing label
uncertainly and multiple annotators, and review works in
continuous arousal and valence estimation.

A. Addressing Data Uncertainty

Significant amount of work has been done on data un-
certainty in the form of noisy labels for classification tasks.
Methodologies such as MixMatch [6], DivideMix [1], and Fix-
Match [7] are adopting a semi-supervised approach to address
noisy labels and make a decision during training that splits
samples into clean and noisy subsets. However, this approach,
i.e., of making a hard decision on uncertain samples, does
not offer interpretability of the per-sample data uncertainty. In
contrast, the proposed method adopts a continuous measure
which is derived per sample by a branch of the network.

Bayesian deep learning approaches have gained popularity
in dealing with data uncertainty; for instance, for the task of
image segmentation, Kendall and Gal [8] proposed a per-pixel
regression uncertainty-aware approach. Similarly, modelling
data uncertainty in latent space [9], [10] has proven to improve
face recognition. Moreover, in domains such as object detec-
tion [2] and temporal action localisation [11], data uncertainty
is addressed by learning the variance of a continuous pre-
diction value, i.e., the bounding box spatial boundaries of an
object in an image or the temporal boundaries of an action in a
video, by optimising a modified KL divergence loss function.

In these works, uncertainty is modelled per sample as
a set of uni-variate Gaussian distributions of the predicted
regression values with both mean values and variances being
predicted by the network. In contrast, instead of the predic-
tions, the proposed method models the ground truth values
as uni-variate Gaussians, for which the true mean values are
given and the variances are optimised using a KL-divergence
based loss term. Moreover, while data uncertainty modelling
has been implemented in other regression problems, it appears
that none of these works address the problem in continuous
affect estimation.

B. Multiple Annotators

Several works have addressed the issue of uncertainty when
multiple annotations of a given sample are available. Using a
Gaussian process classification approach has been proven to
outperform other approaches (e.g., majority voting) in multiple
domains [12], [13]. These works explicitly handle uncertainty
arising from annotators’ disagreement. Similarly, ensemble ar-
chitectures that model each annotator and implement decision
level fusion [14] for each sample show improvements against
baseline. However, such approaches require a large number of
annotations per sample to model the annotation distribution
and guarantee it is representative. By explicitly handling the
uncertainty in Gaussian processes, the network learns the
annotator’s disagreement rather than the sample ambiguity.
Furthermore, the latter approach of ensembles from individual
annotator models does not provide sufficient information on
the sample’s uncertainty.

C. Continuous Affect Estimation

In the field of emotion and affect estimation, Yannakakis et
al. [15] propose comparing samples and ranking them rather
than using the absolute labels to address data uncertainty. This
is an interesting approach to address label uncertainty, however
most datasets are annotated in a categorical or continuous
manner and not in rankings. A recent work by Toisoul et
al. [5] also evaluates against a clean dataset, where samples
are excluded when deemed noisy by a set of predefined rules.
Their method performs better on the clean evaluation set,
even though noisy sample labels are not corrected or excluded
during training. Resigno et al. [16] propose the use of personal
models for affect recognition to overcome generalisation issues
due to physiological or cultural differences. However, the
aforementioned works do not estimate the level of label
uncertainty in affect estimation, but rather attempt to clean
the dataset of noisy samples. Han et al. [17] propose an
uncertainty aware methodology for continuous affect estima-
tion by explicitly training on the inter-annotator disagreement
as an additional task. Similarly, Chou and Lee [18] propose
an ensemble methodology for speech emotion classification
and use annotators’ disagreement as a target during training.
However, while their methodology improves on the baseline
showing the importance of uncertainty aware models, it is
dependent on individual annotations being available.

III. METHODOLOGY

In tasks where multiple annotations per sample are available
(specifically in emotion and affect recognition), majority vot-
ing or averaging over the given multiple labels approaches are
typically followed in order to obtain a single ground truth label
per sample. Such methods, however, neglect the uncertainty
that is inherent in such annotations and that are introduced by
multiple, usually disagreeing, annotators. Furthermore, multi-
ple annotations per sample are not always available, making
methodologies that explicitly handle label uncertainty in the
data not applicable. In this section, we present our method
for a) modelling the aforementioned uncertainty in the given



Fig. 1: Proposed method overview: A backbone convolutional neural network is applied to input images in order to extract
features which are subsequently used by two MLP heads in order to predict a) the variance σ2 (top branch) and b) the mean
µ̂ (bottom branch) of the annotation y ∼ N

(
µ, σ2

)
for a given training sample. A KL-divergence loss function is then used

to measure the difference between the Gaussian distribution f(y;µ, σ2) and the Dirac delta distribution δ(µ− µ̂).

annotations and b) using it in order to predict both the (ground
truth) mean value of the label and its (unknown) variance.
By doing so, we expect to estimate an interpretable metric
for label uncertainty and improve the performance of affect
estimation. An overview of the proposed method is shown in
Fig. 1.

A. Ground truth uncertainty estimation

We begin by modelling the ground truth annotations as a set
of independent uni-variate Gaussian distributions, for which
we are given the true mean values (ground truth), and we try to
predict both the mean values and the corresponding variances.
More specifically, let y ∼ N

(
µ, σ2

)
denote an annotation

label (e.g., the value of arousal for a given sample) with true
mean value µ and unknown variance σ2. For doing so, we
jointly optimise a convolutional feature extractor backbone
network and two MLP “heads”, one predicting the mean and
the other predicting the variance of the respective Gaussian,
as shown in Fig. 1.

We achieve this by optimising a KL-divergence based loss
function, LKL, which measures the difference between the
predicted Gaussian, which is uniquely expressed by its true
mean µ and the predicted variance σ2 and its density is given
by f(y;µ, σ2), and a Dirac delta distribution centred at the
predicted mean value µ̂, with density given by δ(µ− µ̂) (see
Fig. 1).

It is worth noting that, in order to impose positivity on
the predicted variance and avoid exploding gradients, we
implicitly predict its Napierian logarithm, s = log σ2, and use
it as exp(s) = σ2, as we will show below. That is, as shown
in Fig. 1, the top MLP predicts the logarithm of σ2.

We note that KL-divergence is a distribution-wise asym-
metric measure, which does not satisfy the triangle inequality,
and thus cannot serve as a true metric function. However, it
is widely used for measuring dissimilarity between statistical
distributions [2], [11]. For instance, He et al. [2] incorporate
a similar KL-divergence based loss function for measuring
the distance between a uni-variate Gaussian and a Dirac delta
distribution.

By following similar arguments as in [2], we introduce a
KL-divergence based loss function given by

LKL =
(µ− µ̂)

2

2σ2
+

log σ2

2
, (1)

when |µ− µ̂| ≤ 1, and by

LKL =
1

σ2

(
|µ− µ̂| − 1

2

)
+ log σ2, (2)

when |µ − µ̂| > 1. That is, in the cases where the predicted
mean values are far from their true values (typically during
the early training process), we use the latter modified smooth
L1 loss term shown in (2), while after achieving certain
convergence we use the former fine-grained and uncertainty-
aware loss term (1).

We note that, in contrast to [2] that model their regression
predictions as uni-variate Gaussians and optimise their vari-
ances, we, instead, predict the variance of the ground truth
values for our regression task. This reflects the intuition that
affect labelling is prone to noise. The proposed loss takes into
account the estimated variances of labels unlike other losses
traditionally used for regression problems (eg. Mean Absolute
Error or Mean Squared Error); for more ambiguous or noisy
samples we expect the model to estimate a higher variance.

B. Architectures

As discussed in the previous sections, in this work we
address the problem of data uncertainty on continuous affect
estimation from both static images and videos. For affect
estimation from static images we set the general architecture
presented in Fig. 1 so as the backbone feature extractor is
implemented by a CNN architecture. More specifically, we
have experimented with both VGG16 [19] and ResNet [20]
architectures (see Fig. 2), however, the proposed methodology
can be implemented on any appropriate network, as described
in the previous section.

In the case of continuous affect estimation on untrimmed
videos, our basic architecture (Fig. 1) is set so as video features
are obtained using a CNN with a trainable NetVLAD [21]
layer, as shown in Fig. 3. The NetVLAD architecture [21]
is inspired by the Vector of Locally Aggregated Descriptors



Fig. 2: Residual CNN backbone architecture for extracting
features from static images.

(VLAD), which is a pooling method that captures information
about the statistics of local descriptors over the image, by
storing the sum of residuals from cluster centers.

More specifically, the NetVLAD introduced in [21] can up-
date the cluster centres during training, therefore the layer can
be introduced as a pooling layer in a standard convolutional
architecture. The original NetVLAD layer is used to generate
a K×D vector from a W×H×D convolutional output, where
K is the number of centroids to be used in the VLAD vectors,
D is the number of channels of the last convolutional layer,
and (W,H) are the spatial dimensions of the convolutional
output, as shown in Fig. 3.

In this work, we modify the NetVLAD layer architecture to
perform pooling along the temporal dimension, instead of the
spatial. The input to the network is a set of pre-computed fea-
tures, obtained during pre-training from each video frame. The
network then performs a convolutional and average pooling
operations followed by ReLU activation across the temporal
dimension and then uses the NetVLAD layer as a pooling
layer to standardise the feature vector size. The proposed
architecture using NetVLAD offers certain advantages; more
specifically, it allows for the use of untrimmed video input and
can handle longer sequences. It also offers a good performance
versus simplicity trade off.

IV. EXPERIMENTAL SETUP

A. Datasets

a) AMIGOS: The AMIGOS dataset [3] consists of audio-
visual and physiological responses of participants (either alone
or in a group) to a video stimulus. In this work, we use
the responses of individuals; 40 participants watched 16 short
videos and 4 long ones. The former are defined as videos
with length in the 50-150 second range. The responses are
broken down to 20-second intervals and annotated by three
annotators for arousal and valence on a scale from −1 to
1. We extract the frames from the video with a framerate of
25 frames/sec and calculate the average score of the three
annotators as the ground truth during training for the video
segment. During testing, we use the variance of the annotators
as an indication of uncertain or ambiguous samples and
calculate the Pearson’s Correlation Coefficient (PCC) between
estimated and annotator’s variance.

TABLE I: Correlation Coefficient of Annotators Scores for
Arousal and Valence in the AMIGOS dataset

Arousal Valence
#1 #2 #3 #1 #2 #3

#1 1 0.54 0.62 1 0.7 0.73
#2 0.54 1 0.51 0.7 1 0.63
#3 0.62 0.51 1 0.73 0.63 1

As the individual annotator scores are available, we cal-
culate the correlation matrices for arousal and valence as an
indication of Inter-Annotator Agreement (IAA) in continuous
affect estimation, as shown in Table I. The correlations in the
table indicate that there is disagreement between the annotators
particularly for arousal. Higher disagreement of annotators will
be introducing higher label uncertainty as it is an indication
of the sample’s ambiguity. By examining the histogram of
variances of the available annotations in Fig. 4, we can see
that while most samples will have low disagreement and thus
low uncertainty, particularly for arousal there is a significant
number of samples with higher variance.

b) AffectNet: AffectNet [4] consists of more that one mil-
lion facial images collected from the Internet. Approximately
440,000 are annotated manually for categorical emotions, and
continuous arousal and valence. In this work we use the
manually annotated samples of the eight emotion categories,
namely, Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger,
and Contempt, which include over 290,000 samples. Annota-
tions from multiple annotators are not provided in the dataset.

B. Performance Measures

The performance of the proposed methodology and the
baselines is assessed using three evaluation metrics, depending
on the database. For experiments conducted on the AMIGOS
database [3], we report the Mean Square Error (MSE):

MSE =
1

n

n∑
i=1

(µi − µ̂i)
2
, (3)

where n is the number of videos in the database, µi is the
ground truth and µ̂i is the predicted value, as discussed in
Sect. III. To better assess the performance of the regression
task and to guarantee that results are comparable with other
methods that apply transformations on the labels, we use
Pearson’s Correlation Coefficient (PCC), which for a pair of
variables x, y with means x̄, ȳ is given by

PCC =

∑n
i=1 (xi − x̄i) (yi − ȳi)√∑n
i=1 (xi − x̄i)2 (yi − ȳi)2

. (4)

The above equation is used to evaluate both the performance
of the regression when predicting the level of arousal/valence,
and the quality of the learnt variance. In addition to PCC, we
also evaluate the performance of our method in the regression
task in AffectNet using the Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(µi − µ̂i)
2
, (5)



Fig. 3: Video input architecture: Given an untrimmed video with t number of frames, we extract a vector of Action Units
(AUs) per frame in the preprocessing phase. The AU time-series is then used to train the NetVLAD architecture along with
our uncertainty-aware regressor.

Fig. 4: Histogram of annotators’ variance in the AMIGOS
dataset for arousal and valence.

where n, µi, and µ̂i denote the number of images, the ground
truth, and the predicted value for arousal/valence, respectively.

C. Backbone and Implementation Details

a) Affect estimation in videos: We evaluate the proposed
method in the task of affect estimation in untrimmed videos
using the AMIGOS [3] dataset. For this, we use ResNet50 as
a backbone architecture (Fig. 2), which we have pretrained
on the CelebA [22] and the EmotioNet [23] datasets for the
task of Action Units (AUs) recognition [24]. We use this pre-
trained backbone in our preprocessing phase (Fig. 1) in order
to extract features. Therefore, the input to the model is a time-
series of ten AUs per video segment. The AUs-based features
extracted by the backbone are then used to train a simple
CNN architecture using a NetVLAD [21] layer to produce a
fixed-dimensional feature vector that is then fed forward to the
regression and variance estimation fully connected (FC) layers,
as shown in Fig. 3. We chose a trainable NetVLAD layer as a
baseline since it offers a low simplicity-vs-performance trade
off. The 1D convolutional and average pooling layers are set

with a kernel size of 7 and stride 5 and the same number
of channels according to the input. As we do not down-
sample frames in the video sequence, we assume neighbouring
frames will have similar values and therefore implement a
larger kernel and stride. The NetVLAD layer is initialised
with 8 centroids. The training is performed in an end-to-end
manner, and we follow a leave-one-subject-out cross validation
protocol for each subject in the individual database, until the
network converges. The network is trained using an ADAM
optimiser with an initial learning rate of 0.01 multiplied by a
factor of 0.1 every 100 epochs and a batch size of 512 on two
NVIDIA RTX 2080 GPUs.

b) Affect estimation in static images: In the case of
affect estimation in static images, we evaluate the proposed
method using both the VGG16 [19] and the ResNet50 [20]
architectures as a backbone (Fig. 2), in order to assess the
effect of the variance prediction and KL divergence loss. We
also train a ResNet18 network and initialise convolutional
layers with weights pretrained on ImageNet. All networks are
trained using Stochastic Gradient Descent (SGD) optimisation,
with an initial learning rate of 0.0001 multiplied by 0.8 after
100 epochs, and a batch size of 128 until convergence.

V. RESULTS AND DISCUSSION

In order to assess the impact of the learned variances, we
compare them with the corresponding variances induced by
annotators disagreement – when multiple annotators’ scores
are available we can estimate uncertainty in the form of
variance between annotators’ scores. We propose to evaluate
the learned variances against the annotator’s variances at test
time. It is worth noting that, unlike [12], [13], [17], [18], we
do not use the annotator’s variance in the training phase as a
target, but instead we learn each annotation’s variance from
input and evaluate in the test phase.

TABLE II: PCC of learned variance and annotators variance
on AMIGOS dataset

Arousal Valence
Proposed method 0.34 0.31



In AMIGOS dataset, we use the PCC, given by (4), to cal-
culate the correlation between the learned and the annotators’
variances, and we show the results in Table II. We observe a
higher PCC for arousal, which also had a lower IAA as seen
in Table I. This is an indication of the model’s understanding
of ambiguity. Examples of clips with low and high predicted
variance from the AMIGOS dataset are shown in Fig. 5.

In order to split the evaluation set of AffectNet into a
clean and a noisy subset, we follow the rules proposed in [5].
That is, we split the evaluation set based on the categorical
and continuous affect labels, since multiple annotations per
sample are not available. More specifically, for each sample
in the evaluation set, we compare the categorical emotions to
their theoretical equivalent in the arousal-valence circumplex
and ensure that the assigned label for arousal and valence is
in agreement with the arousal and valence of the categori-
cal emotions. For example, a sample with assigned emotion
“Happy” in the categorical model, but negative arousal, would
be excluded from the clean set. Examples from the two subsets
can be seen in Fig. 7. In the top row, we show examples where
the categorical emotion is consistent with the continuous
arousal and valence, while in the bottom row examples of
noisy samples are presented. In total, 141 samples are flagged
as noisy.

We then estimate the variance for each sample in the subsets
and compare the hypothesised population variances using a
student t-test. The resulting average predicted variance for
each subset is shown in Table III. The estimated variances are
obtained using the ResNet18 architecture initialised with Im-
ageNet weights. Assuming the null hypothesis H0 : σclean =

TABLE III: Mean estimated variance for Arousal and Valence
on AffectNet subsets

Samples Arousal(std) Valence(std)
AffectNet clean 3858 0.0775(0.0025) 0.0787(0.004)
AffectNet noisy 141 0.0820(0.003) 0.0872 (0.002)

σnoisy and the alternative hypothesis H1 : σclean < σnoisy , we
perform a one-tailed Student’s t-test. We compute t as follows

t =
x̂1 − x̂2√
s21
n1

+
s22
n2

, (6)

where xi and si represent the means and variances of the two
samples, respectively, and ni is the respective sample size.
With the values from Table III, t is estimated at −0.91 and
−1.96 for arousal and valence respectively. The calculated p
values with 139 degrees of freedom for arousal and valence are
0.18 and 0.025, respectively. Therefore, we can reject the null
hypothesis for valence at 95% confidence interval, but not for
arousal. As the use of C.I. is dependent on both the problem
and how much uncertainty is acceptable for it, we want to note
that we can reject the null hypothesis for arousal with a lower
C.I. of 80%. While the use of a lower C.I. is atypical for most
tests of statistical significance, we want to emphasize that in
this case a test with lower confidence successfully shows a
relationship between estimated variance and label noise. The

TABLE IV: Results on AffectNet using VGG16 and ResNet
backbones

Arousal Valence
RMSE PCC RMSE PCC

wideResNet 0.3515 0.5394 0.4049 0.5979
wideResNet proposed 0.3483 0.5458 0.4061 0.6136
VGG16 0.351 0.536 0.392 0.616
VGG16 proposed 0.343 0.552 0.404 0.624
ResNet18 (pretrained) 0.3444 0.5540 0.3995 0.6217
ResNet18 (pretrained) 0.3449 0.57 0.387 0.6321
proposed

weak relationship, shown by accepting the null hypothesis with
lower C.I., is also testament to the difficulty of the problem,
as well as evidence of other entangled factors affecting label
noise. The distributions of the estimated uncertainty for the
two subsets are shown in Fig. 7. In the plotted distributions,
we can visually confirm the differences between estimated
uncertainty for arousal and valence between the sets. While
there are some overlapping areas between the distribution of
estimated variances of the clean and noisy sets, the mean of
the distribution is higher for the noisy set on both targets.

In order to evaluate the proposed methodology and the
impact of predicting variance to the overall model perfor-
mance, we compare the architectures against their baseline
trained without variance prediction and an MSE loss. The
results for AffectNet and AMIGOS are shown in Tables IV
and V, respectively. We can see that the improvement in
terms of PCC is consistent on estimation from both static
image input and time-series input. In the AffectNet (static
images), we have experimented with three different back-
bone architectures, namely VGG16 [19] and two variants
of ResNet [20], obtaining consistent improvements in terms
of the PCC. The architectures tested are simple uni-modal
feed-forward networks as we aim to demonstrate the impact
of uncertainty prediction. A higher predicted variance for
an uncertain sample allows the network to learn from less
ambiguous samples as the optimiser will prioritise lowering
the |µ− µ̂| term in (1) and (2). Furthermore, by penalising the
regression prediction less for uncertain samples, the predicted
variance regularises the error.

Finally, for reference we note that the results on AMIGOS
are in line with previous work from [25], although not di-
rectly comparable as different features and architectures are
used. Specifically, in [25] Quantised Local Zernike Moments
(QLZM) computed from the per frame facial landmarks were
used to train an SVR and an LSTM architecture, while in
our case, we used a simple frame-based estimation of a
set of Facial Action Units. Moreover, while there are some
methodological parallels between the NetVLAD architecture
used and Fisher Vectors of QLZM used to train the SVR,
recurrent methodologies better capture the temporal dimension
of features which is significant in continuous affect. The SVR
architecture in [25] achieves a PCC of 0.34 for both arousal
and valence, while the LSTM architecture achieves 0.6 and
0.62 respectively.
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Annotators Variance

Fig. 5: Examples of clips with low predicted variance (left – annotators assessments: 0.36, 0.12, 0.14) and high predicted
variance (right – annotators assessments: 0.77, 0.21, 0.49) from a given subject.

Fig. 6: Examples of samples with clean (top) and noisy
(bottom) labels. Top – from left to right the assigned labels
are: “Contempt, Arousal: 0.65, Valence:-0.65”, “Fear, Arousal:
0.53, Valence: -0.06”, “Sad, Arousal: -0.24, Valence: -0.66”.
Bottom – from left to right the assigned labels are: “Fear,
Arousal: -0.32, Valence: -0.08”, “Neutral, Arousal: -0.23,
Valence: -0.37”, “Neutral, Arousal: -0.29, Valence: 0.36”.

VI. CONCLUSION

Continuous affect estimation is an inherently uncertain prob-
lem due to the subjective and ambiguous nature of continuous
labels. We have proposed estimating the level of continuous
affect along with a certainty metric that represents the true
variance in the label distribution of continuous arousal and
valence. The methodology is inspired by work on other do-
mains with label uncertainty such as bounding box regression,
but to our knowledge this is the first work addressing the
problem in affective computing by treating the ground truth

Arousal Valence

Fig. 7: Distribution of the estimated uncertainty in Arousal
(left) and Valence (right) for clean (blue) and noisy (red) labels
in AffectNet.

TABLE V: Results on AMIGOS using precomputed per frame
Facial Action Units as input and a NetVLAD architecture.

Arousal Valence
MSE (std) PCC MSE (std) PCC

NetVLAD 0.026 (3e−3) 0.499 0.018 (2e−3) 0.47
NetVLAD 0.0354(6e−3) 0.53 0.018(2e−3) 0.52
proposed

as a Gaussian distribution and the predicted level of affect as
a Dirac delta function. We evaluate our methodology on two
datasets, AMIGOS [3] and AffectNet [4] for affect estimation
from video and static images respectively and find that it
improves upon the baselines for all architectures tested. We
also evaluate the learned uncertainty metric, by comparing
the learned variance against the annotators’ variance when
multiple annotations per sample are available. We find a
positive correlation between the estimated uncertainty and the
disagreement between annotators. When multiple annotations
are not available, we compare the distribution of the predicted
variance on a clean and noisy evaluation subsets and find the
estimated uncertainty in the clean set lower using a statistical
test. The proposed methodology offers a measure for label
uncertainty in continuous affect recognition.
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