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Abstract

We study the effect of industrial robots in the presence of offshoring. A simple model

shows that if robots displace foreign-sourced tasks, automation is necessarily welfare-

improving for the domestic economy. If instead robots displace domestically-produced

tasks, automation can lower domestic welfare through a deterioration of the terms of

trade, even when beneficial in autarky. These results underscore the importance of

identifying which workers are in more direct competition with automation. Using

data on imports of industrial robots and exploiting variation across industries, occu-

pations and local labor markets, we find that automation displaces US workers, but

that its effect is weaker in commuting zones that are more exposed to offshoring. In-

dustrial robots also lower the incidence of offshoring and their negative employment

effects are concentrated in non-offshorable occupations. These results are consistent

with the view that automation contributes to the reshoring of economic activity, which

in turn tends to mitigate any adverse labor market effects for US workers.
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1 Introduction

The nature and the organization of production is undergoing a radical transformation.

Advances in robotics technologies have led to the widespread use of automation in tasks

previously performed by workers. At the same time, improvements in communication

technologies have led companies to offshore stages of production to low-wage countries.

These two phenomena are having a profound effect on advanced economies. Although

they are believed to bring about higher productivity and lower costs, they are also often

blamed for the decline in manufacturing employment and stagnation of real wages (see,

for instance, Baldwin, 2019). More recently, a new hypothesis is gaining attention: that

automation, which is much more prevalent in advanced economies, can increase compet-

itiveness and bring back jobs that had been previously relocated to low-wage countries.

Examples of this process of “reshoring” have started to populate the business literature.

Yet, its scope, causes and consequences are still largely unknown.

In this paper, we study the interaction between automation and offshoring, from the

perspective of advanced countries. From a theoretical viewpoint, we show that offshoring

can change the welfare effects of automation. In particular, if robots replace foreign-

sourced tasks, automation is always beneficial for domestic workers. However, if robots

replace domestically-produced tasks, automation can be welfare-reducing for workers in

the adopting country, even if it would have been welfare-improving in autarky. These re-

sults underscore the importance of identifying which workers are competing with robots

more directly. We therefore turn to US data across industries, occupations and local labor

markets to validate the predictions of the model and assess which scenario is empirically

more plausible.1

To illustrate our theoretical result, we start from a simple task-based model of produc-

tion that incorporates the standard effects of automation. In autarky, substituting labor

with cheaper robots has a productivity effect, a capital deepening effect and a displace-

ment effect. While the first two effects raise welfare, the latter one tends to lower real

wages. But the negative effect is always dominated if the supply of robot capital is suf-

ficiently elastic.2 In the presence of offshoring, however, there is a new terms-of-trade

1We define automation as the replacement of human labor with robots. Robots are programmable ma-

chines that have the capability to move on at least three axes. Unlike other pieces of equipment, robots are

designed to replicate human actions.
2Although we study a static model, we follow the literature in referring to the endogenous increase in the

supply of robot as ”capital deepening.” See, for instance, Acemoglu and Restrepo (2021).
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effect that redistributes income across countries: automation lowers the relative wage of

the workers that are displaced by robots the most. If automation substitutes foreign labor,

domestic workers do not suffer any displacement, while they benefit from a higher pro-

ductivity, capital deepening and cheaper foreign inputs. In this case, automation triggers

reshoring and raises domestic welfare. However, if domestic workers are substituted by

robots, they are harmed both by the displacement effect and by the increase in the cost

of foreign inputs. In this case, automation can lower domestic welfare even if the higher

productivity and capital deepening would compensate the displacement effect in autarky.

The model also illustrates that whether automation replaces domestic or foreign work-

ers may depend not only on exogenous characteristics of the tasks they perform, but also

on economic incentives, which depend on the wage gap between countries. This opens the

possibility that, since offshoring increases foreign wages, the direction of automation may

switch endogenously from domestically-produced to foreign-sourced tasks. Finally, from

a normative perspective, the model implies that, since automation targeted at offshored

tasks redistributes income from the foreign to the domestic country, policy makers may

have an incentive to distort the use of robots strategically.

In the second part of the paper, we move to the empirical analysis. Recent anecdotal

evidence suggests that advanced countries across the world have started to shift away from

foreign inputs. For instance, Walmart (2016), the biggest retailer in the world, launched

the “Jobs in U.S. Manufacturing Portal” website as part of a broader “Investing in Ameri-

can Jobs” initiative which aims to bring manufacturing jobs back to the US. The COVID-19

pandemic has accelerated this trend by fostering automation and inducing governments

to aim at increasing self-sufficiency in strategic sectors. However, systematic evidence

about reshoring, defined as a reduction in the growth of offshoring which can even turn

negative, is scant.

Motivated by our model, we study the effect of industrial automation between 1990

and 2015 on US local labor markets, and how it relates to offshoring. To measure automa-

tion and offshoring, we use high-quality trade data on US imports of industrial robots and

intermediate inputs, respectively, and assign them to industries using detailed Import

Matrices. We then project these measures across 722 US commuting zones based on the

industry composition of employment. We further instrument the change in US imports of

industrial robots with similar changes observed in eleven European countries. With this

data, we find that robot imports lower manufacturing employment. Since manufacturing

is the sector where automation is concentrated, this evidence suggests that, on average,
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robots displace US workers. However, we also find positive effects on wages, though not

always significant, consistent with the hypothesis that robots improve labor productivity.

Next, we ask how these effects depend on offshoring. To this end, we first show that oc-

cupations at risk of automation, denoted for short as “replaceable”, and those classified as

“offshorable” tend to have a relatively similar task content.3 This suggests that automation

and offshoring might indeed be substitutes, in that they may affect similar occupations.

Consistent with this evidence, we find that robot imports tend to lower offshoring, both at

the industry and at the commuting zone level. Building on these results, we further un-

pack the negative employment effect of robot imports across different occupations. This

exercise reveals that the employment losses are especially concentrated in occupations

performing non-offshorable and replaceable tasks. Finally, we look for heterogeneous ef-

fects across commuting zones specialized in industries with a different prevalence of off-

shoring. This exercise reveals that commuting zones that are more exposed to offshoring

experience a relatively smaller negative effect on manufacturing employment as a conse-

quence of automation. Overall, this evidence suggests that robot imports are associated

with a reduction in offshoring, which is however not enough to fully compensate for the

negative displacement effect on manufacturing employment.

This paper makes several contributions to the literature. First, from a theoretical per-

spective, it shows that the welfare effects of automation may be very different in the pres-

ence of offshoring. To do so, it combines models of automation (such as Zeira, 1998, Ace-

moglu and Restrepo, 2019, Hemous and Olsen, 2020) with models of offshoring (such as

Grossman and Rossi-Hansberg, 2008, Rodriguez-Clare, 2010, Acemoglu, Gancia and Zili-

botti, 2015). The literature has shown that both phenomena can have ambiguous welfare

effects due to the tension between a productivity effect, which tends to benefit everybody,

and a displacement effect, which tends to have adverse effects on workers that compete

with robots or imports. However, this paper highlights two important differences between

automation and offshoring: first, they may affect different workers; and, second, unlike

foreign labor, robots can be reproduced. The combination of these two features generates

the terms-of-trade effect that can change the welfare effect of automation. Artuc, Bastos

3To measure replaceability, we use the classification of occupations developed by Graetz and Michaels

(2018). To measure offshorability, we use the index employed by Autor and Dorn (2013). The two indexes

capture different dimensions. For instance, replaceable occupations tend to perform manual and repetitive

works, while offshorable occupations do not require face-to-face interaction and physical presence on the

job.
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and Rijkers (2018), Krenz, Prettner and Strulik (2018) and Furusawa and Sugita (2021)

also develop models of automation and trade in intermediate inputs, but assume that

robots replace domestic labor only.

Second, the paper contributes to the empirical literature on the identification of au-

tomation. Earlier papers use data from the International Federation of Robotics, which

are however available for nineteen aggregate sectors only. Recognizing the high concen-

tration of this very specialized sector, in which Japan and Germany alone account for 50

percent of global revenues, some recent papers have turned to robot imports as a measure

of automation. These include Acemoglu and Restrepo (2020) and Blanas, Gancia and Lee

(2019), which use cross-country data; Acemoglu, Lelarge and Restrepo (2020) and Bon-

figlioli et al. (2020), which use firm-level data for France; and Humlum (2019), which uses

firm-level data for Denmark. In this paper, we show how to combine data on robot im-

ports together with Import Matrices to obtain an indicator of industrial automation that

varies across time and 66 industries. Following the literature on the measurement of off-

shoring started by Feenstra and Hanson (1999), we also construct time-varying offshoring

indicators at the industry level using the information on imported intermediate inputs

contained in the Import Matrices.

Third, in terms of empirical results, this paper confirms the negative effect of indus-

trial robots on manufacturing employment often found in the literature (see, for instance,

Acemoglu and Restrepo, 2020, and Blanas, Gancia and Lee, 2019), but it also shows this

effect to be weaker in occupations and commuting zones that are more exposed to off-

shoring, and hence where reshoring is more likely. We obtain these findings following the

shift-share approach across US local labor markets first applied to study the effect of Chi-

nese import competition by Autor, Dorn and Hanson (2013) and automation by Acemoglu

and Restrepo (2020). To unpack the effects across occupations, we use the classifications

of replaceable tasks in Graetz and Michaels (2018) and of offshorable tasks in Autor and

Dorn (2013).

Our results are also related to two recent papers. Using firm-level data from France,

Aghion et al. (2019) find that machines have a positive effect on employment in sectors

facing international competition. This is consistent with our view that automation may

displace imports. On the other hand, Faia et al. (2021) show that automation can lower

employment by making firms more selective, and argue that offshoring may amplify this

effect. Using data for a panel of 13 European countries, they document a positive corre-

lation between measures of replaceability and offshorability and a fall over time in em-
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ployment for occupations that are both replaceable and offshorable. Despite the use of

different proxies, we confirm these patterns in our data. However, we also find that the

employment losses in US commuting zones more exposed to robotization are concentrated

in non-offshorable jobs. This evidence is consistent with the hypothesis that, while both

automation and offshoring may displace workers, the effect of an increase in the former

can be partially offset by a decline in the latter.

Finally, the paper is related to the nascent literature on reshoring. The empirical evi-

dence on this recent phenomenon is still inconclusive. For instance, Krenz, Prettner and

Strulik (2018) and Carbonero, Ernst and Weber (2018) find evidence of robot-induced

reshoring in a panel of countries and industries. Similarly, Faber (2020), Artuc, Christi-

aensen and Winkler (2019), Stemmler (2019), and Kugler et al. (2020) find evidence of

reshoring in Mexico, Brazil and Colombia. On the other hand, Hallward-Driemeier and

Nayyar (2019) and De Backer et al. (2016) argue that reshoring affects only a tiny minority

of countries and industries, while Stapleton and Webb (2020) show that robots had a pos-

itive impact on imports and multinational activities of Spanish firms. Differently from us,

these papers are mostly concerned with the impact of reshoring on developing countries,

and none of them focuses on the US.

The remainder of the paper is organized as follows. In Section 2, we build a simple

model to illustrate the welfare effects of automation in the presence of offshoring. In

Section 3, we construct the main variables used in the empirical analysis and describe the

main patterns in the data. In Section 4, we present the results of the econometric analysis.

Exploiting variation across occupations, industries and space, we study the relationship

between automation and offshoring, and how the effect of automation on labor market

outcomes depends on offshoring. Section 5 concludes.

2 A SimpleModel of Industrial Robots andOffshoring

In this section, we build a simple two-country general-equilibrium model to illustrate

the welfare effects of automation and offshoring.4 The main lesson is that the effects of

automation on real wages can be very different depending on whether robots displace

tasks that are performed domestically or abroad. The theory will also suggest a simple

4The model builds on earlier formalizations of automation, such as Zeira (1998), Acemoglu and Restrepo

(2019) and Hemous and Olsen (2020); and offshoring, such as Grossman and Rossi-Hansberg (2008),

Rodriguez-Clare (2010) and Acemoglu, Gancia and Zilibotti (2015).
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way to identify this displacement effect in the data. Since the goal is to derive qualitative

results that will guide the empirical analysis, the model is deliberately kept as simple as

possible.

2.1 The Basic Set-Up

The world economy comprises two countries, North and South, populated by Ln and Ls

units of workers, respectively. There is a single final good, which is the numeraire and

is freely traded. Production requires a set of tasks, which can be performed by work-

ers or robots. Robots differ from workers in that they are in perfectly elastic supply and

can only perform a subset of the existing tasks. Specifically, there is a constant unit cost

of producing robots, and we sometimes refer to the endogenous supply of this factor as

”robot capital”. Workers in the two countries differ in their technological capabilities in

that labor in South can only be employed in a subset of the tasks that North can perform.

The production of tasks can be separated geographically at no costs. In this model, au-

tomation is the replacement of any worker with robots and offshoring is the replacement

of a worker in North with one in South. We start with a one-sector model, but later con-

sider a generalization in which workers displaced in one secotor may find employment

in another. In both cases, however, we allow offshoring and automation to have general

equilibrium effects.

Production of the final good Y requires a measure one of tasks, which are aggregated

according to a Cobb-Douglas function:

ln Y =
∫ 1

0
ln xi di, (1)

where xi is the output of task i. We denote with pi the cost of this task. Then, the demand

for each task satisfies:

pixi = Y . (2)

With a symmetric Cobb-Douglas production function, each task gets the same share of

expenditure.

Tasks can be performed by workers in North, with productivity an and wage wn, work-

ers in South, with productivity as and wage ws, or robots, with a unit cost r (in terms of

the numeraire Y ) and productivity ar . We assume r < ar which, as we will see, guarantees

that some robots are always used in equilibrium. Workers in North can potentially per-

form any task i ∈ [0, 1] . Workers in South, instead, can only perform a measure λ < 1 of
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tasks, and we refer to these tasks as “offshorable”. Finally, robots can only perform a mea-

sure κ < 1 of tasks, and we refer to these tasks as “replaceable”. Some tasks can be both

offshorable and replaceable. Accordingly, we define ξ as the probability that a replaceable

task is also offshorable.

We denote withmn, ms andmr the measure of tasks performed in equilibrium by work-

ers in North, South and by robots, respectively, and assume for simplicity that workers in

different locations and robots cannot be combined to produce the same task. This implies

that ms + mn + mr = 1. Then, the cost of task i is:

pi =


pn = wn

an
, if performed in North

ps = ws
as
, if performed in South

pr = r
ar
, if performed by robots.

(3)

Imposing symmetry across tasks and labor-market clearing allows us to compute the

quantity of each task produced by workers:

xi =

 xn = anLn
mn

if performed in North

xs = asLs
ms

if performed in South.
(4)

If task i is instead performed by robots, we can combine pr = r/ar with prxr = Y to solve

for its quantity:

xr =
Y ar
r
. (5)

Using the quantities (4)-(5) into (1), we can solve for aggregate production as:

Y =
(
asLs
ms

) ms
1−mr

(
anLn
mn

) mn
1−mr (ar

r

) mr
1−mr

. (6)

Next, using prices (3) and quantities (4) into the demand function (2), we obtain wages:

wn =
mn

Ln
Y , (7)

with an analogous expression for ws. Intuitively, the wage is increasing in the demand for

labor, which is proportional to the measure of tasks performed and total production, and

decreasing in the supply of labor.

Finally, we need to solve for ms, mn, and mr . To this end, note that if ps < pn, then

offshorable tasks are cheaper in South and hence will never be produced in North. This

will be the case if wages per efficiency unit of labor in South are lower than in North, i.e.,
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wsan < wnas. In turn, this requires the technological capabilities of South, as measured by

λ, to be sufficiently low. A sufficient condition is

λ
1 − λ − κ(1 − ξ)

<
as
an

Ls
Ln

and we assume it to be always satisfied. Next, we focus on equilibria in which robots are

utilized. For this to be the case, automated tasks must be cheaper than those performed

by workers in North, pr < pn, which requires the cost of robots, r, to be sufficiently low. As

we will show later, this is guaranteed by the assumption r < ar . Under these conditions,

workers in North perform the set of tasks that are neither replaceable nor offshorable:

mn = (1 − λ) − κ(1 − ξ).

Robots will also be used in offshorable tasks if pr < ps, which is equivalent to ras < wsar .

In this case, workers in South perform the set of tasks that are offshorable but not replace-

able:

ms = λ − κξ.

If instead pr > ps, then workers in South are cheaper than robots, which implies that they

perform all offshorable tasks, ms = λ. Finally, there is also an intermediate case in which

pr = ps and robots are used in a subset of the task that they can perform in South.

2.2 Robots, Offshoring and Real Wages

We are now in the position to study the effect of robots on real wages which, in this model,

coincide with welfare and also capture the demand for labor. We focus mostly on North,

although it is straightforward to derive the results for South. Using (7) and (6) yields:

wn = an

(
as
an

wn
ws

) ms
1−mr (ar

r

) mr
1−mr

(8)

with
wn
ws

=
Ls
ms

mn

Ln
. (9)

Equation (8) says that workers in North benefit from their own productivity, an, but also

from cheap labor in South, as
an
wn
ws

> 1, and cheap robots, ar
r > 1. It also confirms that,

under the assumptions ps < pn and r < ar , robots are cheaper than workers in North, i.e.,

ran < wnar . Equation (9), instead, shows that the North-South wage gap, which we also

refer to as the terms of trade, depends on the division of tasks between the two countries.
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These equations depend on the endogenous variables mn, ms and mr , but are general in

that they also apply to other models of offshoring and automation.5 To better understand

the effects of robots and offshoring, and how they interact, we start by considering them

in isolation.

2.2.1 Offshoring Only

Suppose first that there is no automation, i.e., κ = 0. Then:

wn = an

(
as
an

wn
ws

)λ
= an

(
1 − λ
λ

asLs
anLn

)λ
.

Offshoring, i.e., an increase in λ, has two effects. First, as long as aswn > anws, production

costs are lower in South and hence relocating tasks there lowers prices, which benefits

all workers. Second, offshoring shifts the demand for labor in favor of workers in South,

thereby lowering wn/ws. This fall in the terms of trade for workers in North tends to hurt

them. Overall, the efficiency effect dominates for low values of λ, when the wage gap is

large, but it vanishes for high values of λ, as the wage gap disappears for sufficiently high

levels of offshoring. As a result, wn is an inverted-U function of λ.

2.2.2 Automation Only

Consider now the case with no offshoring, i.e., λ = 0 and ξ = 0. Then:

wn =
mn

Ln
Y = an

(ar
r

) κ
1−κ
. (10)

Equation (10) shows that the real wage is always increasing in automation, κ. There are

three effects at work here. First, as long as ar > r, robots raise productivity. Second, as the

measure of tasks performed by workers in North falls, there is also a displacement effect.

However, the latter is offset by robot-capital deepening: the supply of robots increases so

as to keep their price, r, constant. As a result, differently from offshoring, workers do not

suffer any deterioration of their terms of trade from robots.6

5For instance, they would still apply in a model where automation and offshoring opportuinities are en-

dogenous as in Acemoglu, Gancia and Zilibotti (2015), Grossman and Rossi-Hansberg (2008) or Acemoglu

and Restrepo (2018). See Appendix A for more details on the relationship between the model in the text

and the task-based approach.
6This result would change if the supply of robots were not perfectly elastic. In this case, r would also

increase with κ.
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2.2.3 Automation and Offshoring

We now study the effect of automation in the presence of offshoring. There are two cases to

consider, depending on the relative wage in South. If the wage in South is sufficiently low,

then offshoring is cheaper than using robots. We call this the “large wage gap” case. But

if the wage in South is high enough, then offshorable tasks become at risk of automation.

We call this the “small wage gap” case.

Large wage gap: pn > pr > ps. In this case, robots replace North workers only. Without

loss of generality, we can then set ξ = 0. Imposing mn = 1 − λ − κ, ms = λ and mr = κ into

(8) and (9) yields:

wn = an

( asan wnws
)λ (ar

r

)κ
1

1−κ

with
wn
ws

=
1 − λ − κ

λ
Ls
Ln
.

Compared to the case without offshoring, there are two differences. First, the productiv-

ity effect of robots is stronger, because they replace workers in North that are now more

expensive: as
an
wn
ws
> 1. As a result of this, robots can raise real wages in North even if they

would not be used in autarky (ar < r). On the other hand, however, automation lowers

the relative demand for North workers and hence increases the relative wage of workers

in South, which are not competing with robots. Hence, workers in North now suffer from

a negative terms-of-trade effect. Because of the latter, robots can now lower the real wage

in North, even if they would have increased it in autarky (ar > r). More precisely, wn falls

with κ if

ln

( asan wnws
)λ
ar
r

 < λ(1 − κ)
1 − λ − κ

.

This condition is more likely to be satisfied when r and ws are high, because in this case

the productivity gains are small and the negative terms-of-trade effect may dominate.

Small wage gap: pn > ps ≥ pr . In this case, robots substitute workers in both countries.

Consider first the case ps > pr , which implies mn = (1 − λ) − κ(1 − ξ), ms = λ − κξ and

mr = κ Imposing these conditions into (8) and (9) yields:

wn = an

(
as
an

wn
ws

) λ−κξ
1−κ (ar

r

) κ
1−κ
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with
wn
ws

=
1 − λ − κ(1 − ξ)

λ − κξ
Ls
Ln
.

The novelty is that the effect of robots on the terms of trade depends on ξ. If ξ > λ,

robots displace workers in South more than proportionally and hence improve the terms

of trade of North. In this case, wn necessarily increases with κ. If ξ < λ, robots lower

the terms of trade of North. In this case, the effects are qualitatively similar to the large

wage gap case discussed above, and they become identical if ξ → 0. Finally, we can also

consider the case of a tie, ps = pr , in which robots and workers in South become perfect

substitutes, and robots are used in an endogenous measure of tasks smaller than κξ. This

intermediate equilirbium prevails when ps > pr for ms = λ, but ps < pr for ms = λ− κξ. In

this range, the endogenous margin of robot utilization in South keeps all wages constant

at ws = asr/ar and wn = anar /r.

We now briefly discuss some of the main implications of these results. The first les-

son is that robots replacing North workers may hurt them by increasing the relative wage

in South. Hence, in a world of global value chains, it is important to understand who is

competing with robots. In turn, this may depend both on the technological characteristics

of the tasks they perform and on the level of offshoring. The reason is that offshoring

increases the relative wage in South, which makes automation of offshored tasks more

profitable. More in general, the model suggests that both a decline in the cost of robots

and technological catch-up in South can trigger a switch in automation from domestically

sourced tasks only to offshored tasks too. These results also have important policy im-

plications. In particular, since automation is likely to have terms-of-trade effects, which

redistribute income between countries, policy makers may have an incentive to distort the

use of robots strategically.

2.3 Extension: Two-Sector Model

Both automation and offshoring are more prevalent in the manufacturing sector. We now

show how the displacement effect can be identified from the allocation of labor between

sectors that are differentially exposed to automation. To this end, assume now that final

output is produced combining manufacturing goods, X, and services, Z, as follows:

Y = XαZ1−α.
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Labor is mobile between X and Z. As before, manufacturing workers in North earn a

share of sector revenue, αY , equal to the fraction of tasks they perform, mx
n:

wnL
x
n = mx

nαY ,

where Lxn is employment in manufacturing in North. The service sector is symmetric,

hence wnLzn = mz
n(1 − α)Y . Combining these expressions yields the allocation of labor

in North:
Lxn
Lzn

=
α

1 − α
mx
n

mz
n
. (11)

Equation (11) shows that this allocation depends exclusively on the tasks performed by

domestic workers in the two sectors. The intuition is that the productivity effect affects

both sectors equally and hence the allocation of labor only depends on the displacement

effect. For our purposes, equation (11) also implies that the effect of automation on the

tasks performed by workers in North can be read from changes in employment across

sectors. In the remainder of the paper, we build on this result to identify the displacement

effect of industrial robots and test how it varies with offshoring. Given that industrial

robots are used almost exclusively in manufacturing, their adoption should have no direct

effect on mz
n. Hence, if we find that an exogenous shock to automation shifts workers

away from manufacturing, in must be that mx
n is falling. Moreover, we will compare how

the displacement effect differs across local labor markets and occupations depending on

their exposure to offshoring. If we find a weaker or no displacement effect in areas or

occupations where offshoring is more prevalent, it will be evidence consistent with the

automation of foreign-sourced tasks.

3 Data and Stylized Facts

This section explains how we construct the main variables used in the empirical analysis

and illustrates the main patterns in the data.

3.1 Data and Variables

Our empirical analysis relates automation, offshoring and labor market outcomes (em-

ployment and wages) across US local labor markets. Following Autor and Dorn (2013),

Autor, Dorn and Hanson (2013) and Acemoglu and Restrepo (2019), among others, we

identify local labor markets using the concept of commuting zone (CZ) introduced by

Tolbert and Sizer (1996). CZs are defined as clusters of counties characterized by strong
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commuting ties within them and weak commuting ties among them. Our sample includes

722 CZs covering the entire mainland United States.

Labor Market Outcomes. For each CZ, we measure employment and wages, both on ag-

gregate and for different sectors (manufacturing and non manufacturing) or skill groups

of workers (college and non-college educated), using micro-level data from two sources:

the decennial Censuses, for the years 1990 and 2000; and the American Community Sur-

vey (ACS), for the years 2005, 2010 and 2015. Both data sources are extracted from IPUMS

(Ruggles et al., 2020).7

Following Autor and Dorn (2013), we restrict the estimation sample to working-age

individuals (aged 16 to 64) who are not unpaid family workers, do not reside in insti-

tutional group quarters, and have reported being employed over the previous year. We

construct CZ-level employment using sample weights. To construct wages, we further

exclude individuals who are self-employed or farm workers, lack information on work-

ing hours, weeks or wages, and report working less than 40 weeks per year and 35 hours

per week. We compute average wages as annual wages and salary income divided by

total hours worked. Wages are expressed at constant 2005 prices using the Personal Con-

sumption Expenditure Index. We also construct CZ-level population figures using data

from the Censuses and the ACS. In the regressions, we use ten-year equivalent changes of

employment-to-population ratios and log average wages, computed as 10 times the annu-

alized change in each variable over a given period (1990-2000, 2000-2005, 2005-2010 and

2010-2015).

Robot Exposure. To construct our proxy for automation at the CZ level, we use high-

quality data on US imports of industrial robots, and project these imports across local

labor markets using information on the industrial structure of employment in each CZ.

We start by extracting the value of robot imports from detailed product-level import data

collected by the US Customs and available for the 1989-2018 period (Schott, 2008); robot

7The Censuses and the ACS are five and one percent samples, respectively, of the US population, and are

representative at the level of micro-regions known as Public Use Microdata Areas (PUMAs). We map

PUMAs to CZs using a crosswalk developed by Autor and Dorn (2013). We have also experimented with

an extended sample including ACS data for the year 2020. In this case, because the automation data

illustrated below are available up to the year 2018, we have used data for 2018 to construct automation

variables referring to the year 2020. Our main results hold also in this extended sample (available upon

request).

13



imports are classified into specific 10-digit product codes of the Harmonized Tariff Sched-

ule (HTS) classification.8 We apportion the overall value of US robot imports to 66 indus-

tries (defined according to the classification of the Bureau of Economic Analysis, hence-

forth BEA industries) using information on the cross-industry distribution of machinery

(including robot) imports in each year extracted from the US Import Matrices.9 Finally,

we apportion the industry-level robot imports to individual CZs based on the industrial

structure of employment in each CZ. In particular, our final measure of CZ-level robot

exposure is constructed as follows:

∆Robotsct =
∑
j

λcjt · ∆ lnRob Mjt, (12)

where c denotes CZs; ∆ lnRob Mjt is the ten-year equivalent log change in US robot im-

ports in industry j over period t; and λcjt is the share of industry j in total employment of

CZ c at the beginning of period t.10

The choice of using imports to measure automation in the US is motivated by the high

concentration of the robot-producing sector. The vast majority of robot production world-

wide takes place in a handful of non-US countries (especially Japan and Germany), while

the US is not yet a major robot producer. Most of the production of robots occurring in

the US is made by local affiliates of foreign multinationals, and is aimed at serving manu-

facturing firms operating in neighboring countries, mostly Canada and Mexico (see, e.g.,

Casanova, 2019). On the contrary, the US is the second largest importer of robots world-

wide, and also the second country in the world in terms of net robot imports (see, e.g.,

Furusawa and Sugita, 2021). Consistent with this, robot imports into the US are highly

correlated with the overall stock of robots installed in the country, as recorded by the

International Federation of Robotics (IFR): a regression of the log change in robot im-

ports, ∆ lnRob Mjt, on the log change in the IFR stock of robots across industries and

8In particular, imports of industrial robots for multiple uses, lifting, handling, loading or unloading and

industrial robot parts are classified in the following HTS codes: 8479899540, 8479500000, 8428900100,

8428908015, 8428900120, 8428900220, 8479909740 and 8479909540.
9Specifically, we compute US robot imports in industry j and year t as Rob Mjt = ωjt · Rob Mt , where

Rob Mt is the total value of US robot imports and ωjt is the share of industry j in total US imports of

machinery in year t, constructed from the US Import Matrices.
10We construct λcjt using data from the County Business Patterns (CBP). In the CBP, industries are defined

according to the 6-digit level of the 2012 NAICS classification. We map BEA industries into 6-digit NAICS

industries using a crosswalk provided with the US Input–Output Tables. In case of missing data on robot

imports for some years, we use data for the closest available year. Robot imports are expressed at constant

2005 prices using the US Consumer Price Index.
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time periods yields a coefficient of 0.998 (s.e. 0.058). While the IFR data have important

limitations—most notably, they only contain counts of robots (not values) and, by encom-

passing domestically-sourced robots, they could reflect technological shocks affecting the

domestic labor market—such a high correlation suggests that robot imports are likely to

capture the bulk of the variation in the use of robots in the US.11 In Section 4.1, we will

further show that, if we use net robot imports (i.e., imports minus exports) to construct

robot exposure, our main evidence is unchanged, in line with the limited size of domestic

production and exports of robots in the US.

As previously mentioned, to apportion nationwide robot imports to individual indus-

tries, we use the cross-industry distribution of machinery imports obtained from the US

Import Matrices. This choice is made for consistency with the use of import data, but

turns out to be inconsequential for the results. First, the distribution of machinery im-

ports across industries is very similar to the distribution of total (domestic plus foreign)

machinery purchases, as obtained from the US Input-Output Tables: a regression of in-

dustry shares in total machinery purchases on the corresponding shares in machinery

imports yields a coefficient of 1.069 (s.e. 0.021). Consistent with this, our results are un-

changed if we reconstruct ∆Robotsct using industry shares in total machinery purchases

to apportion robot imports to individual industries (see Section 4.1). More generally, the

cross-industry distribution of machinery imports is also highly correlated with the over-

all stock of installed robots in the US: a regression of the log IFR robot stock on the log

industry shares in machinery imports across the nineteen aggregate sectors covered by

the IFR data over 1993-2016 yields a coefficient of 0.541 (s.e. 0.123). This suggests that

the cross-industry distribution of machinery imports closely reflects the actual usage of

robots across US industries.

Variation in ∆Robotsct across CZs could be driven by CZ-specific factors that also in-

fluence labor market outcomes. For instance, positive demand shocks may induce firms

to automate and simultaneously raise employment and wages. Similarly, firms may adopt

robots to increase productivity after some negative labor market shock. This implies that

the OLS estimates of the effects of automation on labor market outcomes could be bi-

ased, either upward or downward. To account for the potential endogeneity of ∆Robotsct,

we build on Autor, Dorn and Hanson (2013) and construct an instrument that is meant

to isolate the variation in ∆Robotsct induced by supply shocks in robot exporting coun-

11Consistent with this, our main results would continue to hold if robot exposure was constructed using the

log change in the IFR stock of robots in place of the log change in robot imports in eq. (12).
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tries, rather than by shocks occurring in individual CZs. To construct the instrument,

we source (from UN Comtrade) data on robot exports from non-US countries to eleven

European economies over 1989-2018.12 To apportion the country-level robot imports to

individual industries, we use the share of each industry in total machinery imports into a

given country, as extracted from country-specific Import Matrices available in the World

Input-Output Database (Timmer et al., 2015). Finally, we construct the instrument as

follows:

∆Robots Othct =
∑
j

λcjt · ∆ lnRob M Othjt, (13)

where ∆ lnRob M Othjt is the ten-year equivalent log change in robot exports from non-

US countries to the eleven European countries in industry j over period t.

Identification requires that supply shocks boosting robot exports from non-US coun-

tries are uncorrelated with US-specific technology shocks affecting labor market outcomes

in individual CZs. Similarly, demand shocks in the eleven European importing countries

must be uncorrelated with demand shocks in US local labor markets. To assuage iden-

tification concerns, we will use a highly demanding specification (presented in Section

4.1) that controls for a host of fixed effects, both at the state and at the year level. These

fixed effects absorb any US-specific shock that is common to all CZs, as well as differential

trends across US states. The specification also controls for several proxies for other types

of shocks to trade, technology and demand conditions at the CZ level. Overall, the wealth

of controls and fixed effects included in the specification should largely reassure that the

IV results are not obviously driven by US-specific shocks potentially correlated with the

instrument.

Offshoring Intensity. Following Feenstra and Hanson (1999), we measure offshoring as

the share of imported intermediate inputs in total input purchases. A higher value of

this ratio corresponds to a greater usage of foreign inputs in production, reflecting a more

intensive relocation of production stages to foreign countries. We construct offshoring

intensities for the BEA industries using US Input-Output Tables and Import Matrices over

1997-2018. We use two complementary indicators of offshoring. The first, called broad

offshoring, considers imports of all types of inputs. The second, called narrow offshoring,

12The eleven European countries are Austria, Denmark, Finland, France, Germany, Italy, Netherlands,

Spain, Sweden, Switzerland and the UK. In the UN Comtrade database, trade in industrial robots is

recorded under code 847950 of the Harmonized System classification.
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considers only imports of inputs that are closely related to the production process of an

industry and could thus be performed in house by firms.

The two indicators are constructed as follows:

B Of f shjt =

∑
h I Mjht∑

h

(
I Mjht + I Djht

) and N Of f shjt =
I Mjjt∑

h

(
I Mjht + I Djht

) ,
where I Mjht and I Djht denote imports and domestic purchases, respectively, of inter-

mediates made by industry j from industry h in period t; and I Mjjt indicates imports

of intermediates made by industry j from within itself at time t. Then, we construct

the intensity of offshoring in each CZ similarly to eq. (12), using the industry-specific off-

shoring indicators, B Of f shjt andN Of f shjt, in place of the log change in robot imports.

Namely,

B Of f shct =
∑
j

λcjt · B Of f shjt and N Of f shct =
∑
j

λcjt · N Of f shjt. (14)

Since we are not interested in identifying the effects of offshoring, we do not build an

instrument for it.13

Occupational Characteristics. Finally, we use information on occupational character-

istics to unpack the overall employment effects of automation across different groups of

workers. Following Graetz and Michaels (2018), we classify each occupation according

to whether workers perform tasks that can or cannot be replaced by robots. Graetz and

Michaels (2018) define an occupation as “replaceable” if its title corresponds to at least

one of the robot application categories (e.g., welding, painting and assembling) identified

by the IFR. We source replaceability data by occupation from Graetz and Michaels (2018).

We also classify occupations depending on how easy it is to relocate their tasks to for-

eign countries. Our main index of occupational offshorability is sourced from Autor and

Dorn (2013). The authors use the simple average of two variables constructed by Firpo,

Fortin and Lemieux (2011), who employ data from the O*Net database to measure the

degree to which workers require face-to-face interaction and physical presence on the

job. The index is reversed, so higher levels indicate higher offshorability. We standard-

ize the index to have mean 0 and standard deviation 1 across occupations, and define

as offshorable all occupations whose index is above the median. The two occupational

13Wright (2014) proposes a plausibly exogenous measure of offshoring, derived using variation in U.S. off-

shoring to China.
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Figure 1: Employment-to-Population Ratio by Sector

Source: US Censuses (1990, 2000) and American Community Survey (2005-2015).

characteristics are available for 331 US Census occupations. We match these character-

istics to the US Censuses and the ACS using information on each worker’s occupation of

employment provided in the two data sources.14

3.2 Stylized Facts

We now present a number of facts about labor market outcomes, robot imports and off-

shoring in the US over the period of analysis. Figure 1 shows the evolution of employment

from 1990 to 2015, based on the whole sample of individuals contained in the Censuses

and the ACS. As a percentage of total population, overall employment has gone down from

70% in 1990 to 67% in 2015. This aggregate trend masks heterogeneity between manufac-

turing and non-manufacturing sectors. The employment-to-population ratio has steadily

fallen in manufacturing, moving from 13% in 1990 to 7% in 2015. At the same time,

employment has significantly risen relative to population in non-manufacturing sectors,

passing from 57% in 1990 to 60% in 2015. The existence of a shrinking industrial sector

14In case an index is missing for an occupation, we use information for the corresponding broader occupa-

tional group.
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Figure 2: Employment-to-Population Ratio by Occupation Group

Source: US Censuses (1990, 2000) and American Community Survey (2005-2015). Replaceable
occupations are those whose title corresponds to at least one of the robot application categories
identified by the International Federation of Robotics (Graetz and Michaels, 2018). Offshorability is
measured by an index capturing the degree to which workers require face-to-face interaction and
physical presence on the job (Autor and Dorn, 2013). The index is rescaled so that higher values
indicate higher offshorability. Offshorable occupations are those for which the index is above the
sample median. All figures are arithmetic averages across CZs.

and an expanding service sector are common trends to most industrialized countries, and

reflect the structural change occurred in these economies over recent decades. As we show

later on, automation has contributed to these trends, by inducing a reallocation of labor

outside of manufacturing.

Figure 2 unpacks the overall trend in employment across occupations with different

characteristics. The figure shows average employment-to-population ratios across CZs

in a given year, separately for offshorable and replaceable occupations. The difference

between the overall employment-to-population ratio and the ratio corresponding to either

group is equal to the employment-to-population ratio in the complement group of (non-

offshorable or non-replaceable) occupations. Employment has increased in offshorable

occupations, especially after the year 2000. At the same time, after reaching a plateau in

2000, the employment share of replaceable jobs has significantly declined in subsequent

years, with a rapid acceleration in 2010. These trends reveal a marked change in the

19



Figure 3: Robot Imports and Offshoring over Time

Source: US Customs data (Schott, 2008), Import Matrices and Input-Output Tables. 
Notes . Robots are the overall value of US robot imports in each time period. Broad Offsh. and Narrow 
Offsh.  are averages of the two offshoring indicators across industries and years in each time period.

occupational structure of US employment over recent decades: employment has shifted

from non-offshorable to offshorable jobs and from occupations that can be replaced by

robots to those that cannot.

These adjustments in the US labor market have been concurrent with significant changes

in the importance of automation and offshoring. Figure 3 shows the evolution of US robot

imports over the period of analysis. To highlight the main trends in this variable, the

graph reports overall imports in each five-year interval starting in 1989. The graph also

displays the evolution of the two offshoring indicators, averaged across industries in each

five-year period. Two main facts emerge from Figure 3. First, robot imports have re-

mained at very low levels over the 1990s and the first half of the 2000s, but have rapidly

risen thereafter, with a marked acceleration after 2010. This confirms that automation and

adoption of industrial robots have significantly gained momentum in the US over recent

years.15 Second, the growth in offshoring has decelerated in the second half of the 2000s

15See, among others, Acemoglu and Restrepo (2019) for additional evidence on the growth in the usage of

industrial robots in the US based on data from the IFR.
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Figure 4: Robot Imports and Offshoring by Sector

a) Robot Imports per Worker

b) Offshoring Intensity

Source: US Customs data (Schott, 2008), Import matrices and Input-Output tables. All figures are averages

across year and industries within a sector.
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and become negative after 2010. While the reduced incidence of offshoring could have re-

sulted from various factors, including the shrinkage of the manufacturing sector, it could

also reflect the tendency by firms to bring back foreign activites to the US. From now on,

we will accordingly refer to a reduction in the offshoring indicators as “reshoring”, for

brevity. In this sense, the concomitant increase in robot imports and reduction in off-

shoring is consistent with anecdotal evidence, according to which automation is leading

firms to reshore an increasing number of production stages.

The aggregate trends in robot imports and offshoring hide heterogeneity across sectors,

as shown in Figure 4. The latter reports the average values of robot imports per worker

(panel a) and of the two offshoring indicators (panel b) over the sample period, separately

for manufacturing and non-manufacturing sectors. Robot imports are almost entirely con-

centrated in manufacturing and still almost inexistent in services. In particular, average

robot imports per worker amount to roughly 575,000$ in manufacturing and 63,000$ in

non-manufacturing industries. Similarly, despite the growth of service offshoring in re-

cent years (see, e.g., Crinò, 2010), offshoring is still higher in manufacturing than in other

sectors. According to both indicators, offshoring in manufacturing exceeds offshoring in

non-manufacturing industries by about three times over the period of analysis.

Since different economic activities are not equally distributed in space, the heteroge-

neous incidence of automation and offshoring across industries is likely to give rise to

differences in the extent to which each CZ is exposed to these phenomena. To document

the geographical distribution of automation and offshoring in the US, Figure 5 reports

two maps showing the mean of ∆Robotsct (map a) and the average change in offshoring

(maps b) in each CZ over the sample period.16 Two facts are worth highlighting. First,

both variables vary substantially in space. Interestingly, variation is high not only across

but also within states. This reflects the heterogeneous industrial structure of CZs and

will be crucial for our econometric analysis. Second, the correlation between automa-

tion and offshoring is negative also across CZs. While automation has especially risen in

the Great Lakes region and in costal states, offshoring intensity has especially increased in

South-Central United States. We will systematically document this negative correlation in

Section 4.2. For the time being, the descriptive evidence in Figure 5 further corroborates

the view that automation could have induced a reshoring of activities in the US.

16The change in offshoring in a CZ is constructed as ∆B Of f shct =
∑
j λcjt ·∆B Of f shjt , where ∆B Of f shjt

is the change in offshoring in industry j over period t. For each CZ, Figure 5 shows the mean of ∆Robotsct
(map a) and the mean of ∆B Of f shct (map b) across all available time periods.
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Figure 5: Robot Exposure and Offshoring across Commuting Zones

Notes . The first map shows the mean of D Robots in each CZ over the sample period. The second map
shows the average change in the broad offshoring indicator by CZ over time.

a) Robot Exposure

b) Offshoring Intensity

23



Table 1: Summary Statistics

Mean Std. Dev. Obs.
D Total Emp./Pop. 0.026 0.043 2888
D Mnfg Emp./Pop. -0.020 0.041 2888
D Non Mnfg Emp./Pop. 0.046 0.053 2888
D ln Avg Wages 0.100 0.115 2888
D ln Mnfg Wages 0.105 0.255 2888
D ln Non Mnfg Wages 0.103 0.125 2888
DRobots 0.411 0.699 2888
B_Offsh 0.048 0.033 2888
N_Offsh 0.007 0.017 2888
Notes. Statistics for variables in changes are computed across 722 CZs
and four time periods: 1990-2000, 2000-2005, 2005-2010 and 2010-
2015. Statistics for variables in levels (B_Offsh and N_Offsh ) are
computed across 722 CZs and four years: 2000, 2005, 2010 and 2015.
Changes in employment-to-population ratios and in log average wages
over a given time period are expressed in decadal terms. D Robots is the
weighted average of ten-year equivalent log changes in US robot
imports across industries, with weights given by the industrial structure
of employment in each CZ at the beginning of each time period.
B_Offsh and N_Offsh are weighted averages of the broad and narrow
offshoring indicators across industries, with weights given by the
industrial structure of employment in each CZ and year.

Finally, Table 1 reports summary statistics on the main variables used in the regres-

sions. All statistics are computed across CZs and time periods. The employment-to-

population ratio has increased on average by 2.6 percentage points (p.p.) per decade,

as the combination of a 4.6 p.p. average decadal increase in non-manufacturing indus-

tries and a 2 p.p. average decadal reduction in the manufacturing sector. Average wages

have risen by 0.1 log points per decade in both sectors. Table 1 also confirms the signif-

icant increase in automation documented before, with ∆Robotsct being equal to 0.41 log

points per decade on average. The high standard deviation of ∆Robotsct points to signifi-

cant variation in robot exposure both in space and over time, consistent with the evidence

emerging from Figure 5. Finally, offshoring intensity is equal to 4.8 p.p. on average ac-

cording to the broad indicator, and to 1 p.p. according to the narrow indicator. Also in

this case, there is significant variation across CZs and time periods, as suggested by the

high standard deviations reported in the table.
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4 Empirical Analysis

In this section, we present the results of the econometric analysis. We start by discussing

the average effects of robot exposure on labor market outcomes across CZs. We then pro-

vide novel evidence on the relationship between automation and offshoring, exploiting

variation across occupations, industries and space. Building on this evidence, we finally

revisit the average employment effects of robot exposure and unpack them across occupa-

tions and CZs with different exposure to offshoring.

4.1 Average Effects

To study how robot exposure affects labor market outcomes across CZs, we build on Autor,

Dorn and Hanson (2013) and Acemoglu and Restrepo (2019), and estimate specifications

of the following form:

∆Yct = αs + αt + β · ∆Robotsct + X
′
ct · γ + εct, (15)

where ∆Yct is the change in outcome Y in CZ c over period t; αs and αt are fixed effects for

US states and time periods, respectively; ∆Robotsct is our measure of CZ-level exposure

to imported robots; Xct is a vector of controls for other observable characteristics of the

CZ (details below); and εct is an error term.

We estimate eq. (15) by stacking ten-year equivalent first differences for four time

periods: 1990-2000, 2000-2005, 2005-2010 and 2010-2015. The state fixed effects con-

trol for heterogeneous trends in labor market outcomes across states, while the year fixed

effects absorb shocks hitting outcomes uniformly in all CZs. The control variables Xct in-

clude start-of-period proxies for the following CZ-level characteristics: size (log employ-

ment), demographic composition of the labor force (employment shares of female, foreign

born and college-educated workers), and composition of economic activities (employment

share of workers in routine-intensive occupations and offshoring intensity). These vari-

ables account for heterogeneous trends across CZs characterized by different initial condi-

tions. Xct also includes proxies for other shocks potentially occurring in CZ c over period

t, namely, export shocks and shocks to import competition from China and other coun-

tries. These variables control for changes in trade, technology and demand conditions

concurrent with the import of robots.17 We weight the observations by the initial-period

17The proxies for the demographic composition of employment and the share of routine-intensive occupa-

tions are constructed following Autor, Dorn and Hanson (2013). Unless otherwise indicated, we control
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Table 2: Robot Exposure and Employment

(1) (2) (3) (4) (5) (6)
D Total 
Emp./Pop.

D Mnfg 
Emp./Pop.

D Non Mnfg 
Emp./Pop.

D Total 
Emp./Pop.

D Mnfg 
Emp./Pop.

D Non Mnfg 
Emp./Pop.

DRobots -0.012** -0.016*** 0.004 -0.006 -0.016*** 0.010*
[0.005] [0.004] [0.005] [0.004] [0.004] [0.006]

Obs. 2879 2879 2879 2157 2157 2157
R2 0.43 0.29 0.36 0.53 0.36 0.36

DRobots 0.016 -0.056*** 0.072*** 0.006 -0.049*** 0.055***
[0.016] [0.014] [0.018] [0.010] [0.010] [0.014]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.23 0.20 0.01 0.52 0.30 0.29

DRobots_Oth 2.708*** 2.708*** 2.708*** 4.085*** 4.085*** 4.085***
[0.450] [0.450] [0.450] [0.411] [0.411] [0.411]

Kleibergen-Paap F -stat. 36.2 36.2 36.2 99.0 99.0 99.0
State FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Control variables no no no yes yes yes
Notes. The sample consists of 722 CZs and four time periods: 1990-2000, 2000-2005, 2005-2010 and 2010-2015. The dependent variables, indicated in the
columns' headings except for the first-stage regressions, are ten-year equivalent changes in overall employment-to-population ratio (columns 1 and 4),
manufacturing employment-to-population ratio (columns 2 and 5), and non-manufacturing employment-to-population ratio (columns 3 and 6). D Robots is the
weighted average of ten-year equivalent log changes in US robot imports across industries, with weights given by the industrial structure of employment in each
CZ at the beginning of each time period. The instrument D Robots_Oth is constructed analougously to D Robots using industry-level data on robot exports from
non-US countries to eleven European countries. Control variables are start-of-period log employment, offshoring intensity (broad indicator), the employment shares
of female workers, foreign-born workers, college graduates and routine-intensive occupations, and the ten-year equivalent changes in exports, imports from China
and imports from other countries over total employment. The first period with available data on offshoring is 2000-2005. Regressions are weighted by the initial
share of each CZ in total US population. Standard errors, reported in square brackets, are correted for clustering within states. ***, ** and * denote significance at
the 1, 5 and 10% level, respectively.

2nd Stage

1st Stage (Dep. Var.: DRobots) 

a) OLS

b) 2SLS

share of each CZ in total population, and correct the standard errors for clustering at the

state level to account for residual correlation across CZs within the same state. We first

estimate eq. (15) using OLS. Then, to account for possible endogeneity of ∆Robotsct, we

turn to 2SLS regressions, instrumenting ∆Robotsct with ∆Robots Othct. Because eq. (15)

restricts coefficients to be the same across CZs, the parameter β measures the average

effect of robot exposure on a given outcome across US local labor markets.

Table 2 contains results for employment. OLS estimates are reported in panel a) and

2SLS estimates in panel b). To study how the effect of robot exposure is influenced by the

covariates, we first present results from a parsimonious specification including only state

and year fixed effects (columns 1-3) and then add control variables (columns 4-6). We

for offshoring intensity using the broad offshoring indicator; the first period with available data on off-

shoring is 2000-2005. The proxies for export shocks and for shocks to import competition from China and

other countries are defined as changes in a given variable divided by start-of-period employment in the

CZ, and are constructed as in Autor, Dorn and Hanson (2013) using trade data from Schott (2008).
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estimate eq. (15) for three different outcomes. The first, used in columns (1) and (4), is the

change in total employment over population. The other two outcomes, used in columns

(2) and (5) and in columns (3) and (6), respectively, are the changes in manufacturing and

non-manufacturing employment over population. Because total employment is the sum of

manufacturing and non-manufacturing employment, the properties of linear estimators

like OLS and 2SLS imply that the estimates of β reported in columns (2) and (3) add up

to the estimate reported in column (1); similarly, the estimates of β shown in columns (5)

and (6) add up to the estimate shown in column (4). This provides us with an immediate

way of decomposing the employment effects of robot exposure across manufacturing and

other sectors.

The OLS estimates show a negative and statistically significant correlation between

robot exposure and manufacturing employment. The correlation with non-manufacturing

employment is instead positive, and becomes statistically significant when adding control

variables. The two effects partly offset each other, so the correlation of robot exposure

with overall employment is weak and not always statistically significant. In Appendix

Table B1, we dig deeper into the timing of these relationships. Using the parsimonious

specification, we find that the correlations are stronger when estimated on later periods

(2005-2010 and 2010-2015) than on earlier periods (1990-2000 and 2000-2005). This is

consistent with the acceleration of robot imports occurred in the second part of the sam-

ple, as documented in Figure 3. Moreover, we perform a falsification test by regressing

current employment changes on the first lead of ∆Robotsct. The coefficients are always

close to zero, which further suggests that the relationship between robot exposure and

employment is not driven by secular trends in outcomes that antedate an increase in au-

tomation.

Appendix Table B1 also contains an extensive set of robustness checks on the base-

line specification. We show, in particular, that the main results are not driven by outliers,

as they remain unchanged when excluding CZs in the top percentile of the distribution

by ∆Robotsct in each period. We also control for exposure to other types of capital, and

find that the correlations are not contaminated by other forms of investment.18 Moreover,

we find similar results when considering alternative ways of constructing robot exposure,

namely, by using (i) changes in the stock of robot imports, (ii) changes in net robot im-

18These variables are constructed analogously to ∆Robotsct , by replacing ∆ lnRob Mjt in eq. (12) with ten-

year equivalent log changes in expenditure on software and databases, ICT, machinery and other types of

capital and machinery.
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ports, and (iii) the cross-industry distribution of total machinery purchases to apportion

nationwide robot imports to individual industries.19

Finally, in Appendix Figure B1, we use alternative ways of correcting the standard

errors for clustering. In particular, we account for residual correlation within CZs over

time (clustering by CZ); across CZs in the same state and year (clustering by state-year);

within CZs over time and across CZs in the same state and year (two-way clustering by

CZ and state-year); across CZs in the same geographical neighborhood (spatial clustering);

and across CZs with similar industrial structure (clustering by industry similarity).20 The

confidence intervals around β are similar to, and frequently narrower than, the baseline

confidence intervals, suggesting that correcting the standard errors for clustering within

states provides a conservative inference.

We now turn to the 2SLS estimates. The bottom part of panel b) shows that the first-

stage coefficient on ∆Robots Othct is positive, large and very precisely estimated, which

underscores the strong predictive power of the instrument at explaining differences in

robot exposure across CZs.21 The second-stage coefficients, reported at the top of panel

b), are larger than their OLS counterparts in absolute value, suggesting OLS estimates to

be biased towards zero. Qualitatively, however, the 2SLS estimates confirm the evidence

emerged from the OLS regressions. In particular, robot exposure reduces employment in

manufacturing. This is consistent with robot adoption currently being larger in manufac-

turing than in other sectors. At the same time, robot exposure raises employment outside

of manufacturing. This is consistent with the model in Section 2.3 where displaced work-

ers in manufacturing find employment in the service sector. Overall, the two effects almost

exactly cancel out, so robot exposure has no significant impact on overall employment.

19The proxy for robot exposure based on changes in the stock of robot imports over a given period is con-

structed as ∆Robots Stkct =
∑
j λcjt

∑
τ∈t ln(1 + Rob Mjτ ), where τ denotes individual years within time

period t. The other two proxies are constructed analogously to eq. (12).
20We implement the correction for spatial clustering using the approach presented in Conley (1999). We

define the spatial cluster of a CZ as including all other CZs within a range of 660Km or 768Km. These

distances ensure that the spatial cluster of the most remote CZ consists of at least 5 or 10 CZs, respec-

tively. The resulting clusters can overlap with each other and can span different states. To define industry

similarity, we instead use cluster analysis and group CZs into 25, 50 or 100 groups characterized by a

similar industrial structure, as proxied by the industry shares in total CZ employment, λcjt . The standard

errors are then corrected for clustering within each group of CZs.
21The Kleibergen-Paap F-statistic for excluded instruments easily exceeds the value of 10, which is normally

considered as the rule-of-thumb threshold for instrument relevance.
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Table 3: Robot Exposure and Wages

(1) (2) (3) (4) (5) (6) (7)
D ln Avg 
Wages

D ln Mnfg 
Wages

D ln Mnfg Wages
(College)

D ln Mnfg Wages 
(Non College)

D ln Non Mnfg 
Wages

D ln Non Mnfg Wages 
(College)

D ln Non Mnfg Wages 
(Non College)

DRobots 0.031** 0.003 0.017 0.004 0.039*** 0.044*** 0.032
[0.012] [0.023] [0.030] [0.027] [0.013] [0.014] [0.022]

Obs. 2157 2157 2151 2154 2157 2157 2157
R2 0.52 0.20 0.18 0.08 0.49 0.51 0.24

DRobots 0.064* -0.075 0.013 -0.102 0.097*** 0.114*** 0.055
[0.033] [0.097] [0.099] [0.105] [0.030] [0.032] [0.034]

Obs. 2157 2157 2151 2154 2157 2157 2157
R2 0.51 0.19 0.18 0.06 0.48 0.50 0.23

a) OLS

b) 2SLS, 2nd Stage

Notes. All regressions are estimated on a panel of 722 CZs. The dependent variables, indicated in the columns' headings, are ten-year equivalent log changes in average wages (column
1), manufacturing wages (column 2), manufacturing wages of college graduates (column 3), manufacturing wages of non-college graduates (column 4), non-manufacturing wages
(column 5), non-manufacturing wages of college graduates (column 6) and non-manufacturing wages of non-college graduates (column 7). D Robots is the weighted average of ten-year
equivalent log changes in US robot imports across industries, with weights given by the industrial structure of employment in each CZ at the beginning of each time period. The
instrument is D Robots_Oth, constructed analougously to D Robots using industry-level data on robot exports from non-US countries to eleven European countries. All regressions
include state fixed effects, year fixed effects and the same control variables as in Table 2, and are weighted by the initial share of each CZ in total US population. Standard errors,
reported in square brackets, are correted for clustering within states. ***, ** and * denote significance at the 1, 5 and 10% level, respectively.

To have a sense of the magnitude of these effects, we multiply the average value of

∆Robotsct reported in Table 1 by the 2SLS coefficients shown in columns (5) and (6) of Ta-

ble 2. This yields −0.02 for manufacturing employment and 0.022 for non-manufacturing

employment. Accordingly, in a CZ with average robot exposure, manufacturing employ-

ment would fall by 2 p.p. per decade relative to population, roughly the average change

documented in Table 1. At the same time, non-manufacturing employment relative to

population would increase by 2.2 p.p. per decade, approximately half the size of the av-

erage change reported in Table 1. These figures suggest that automation has significantly

contributed to the reallocation of employment from manufacturing to non-manufacturing

sectors occurred in the US over the sample period.

Finally, in Table 3, we complement the employment results by studying the implica-

tions of robot exposure for wages. The estimates show that automation increases aver-

age wages. The effect is driven by non-manufacturing sectors. Together with our previ-

ous evidence on employment, this further suggests that robot exposure increases labor

demand outside of manufacturing. When separately considering college-educated and

non college-educated workers, we find positive wage effects for both groups, although the

point estimate is larger and precisely estimated for high-skill individuals. In manufactur-

ing, the effect of automation on average wages is negative, albeit imprecisely estimated,

consistent with automation reducing labor demand in this sector. When separately con-

sidering workers with and without a college degree, we find a small positive estimate of

β for the former group and a larger negative estimate for the latter. While none of these
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coefficients is precisely estimated, these results suggest that robots tend to reduce labor

demand in manufacturing especially for low-skill individuals.

Overall, these results are broadly consistent with Acemoglu and Restrepo (2019), who

study the effect of automation across US CZs over the 1990-2007 period using data on the

stock of robots in nineteen industries from the IFR. Similarly to us, they find evidence of

negative employment effects, which are more pronounced in manufacturing. However,

they also find stronger negative effects on wages.

4.2 Robots and Offshoring

Having documented the average effects of robot exposure on labor market outcomes, we

turn to the main part of the analysis. Our interest lies in understanding how automation

interacts with offshoring, and what consequences such an interaction could have for the

US labor market. In this section, we analyze the relationship between robot exposure and

offshoring using different sources of variation in the data. In the next section, we turn to

investigating the implications for US employment.

As a starting point, we study the nature of tasks that can be performed by robots.

Specifically, we ask whether robots are suited for tasks with a high degree of offshorabil-

ity or for relatively hard-to-offshore activities. To this purpose, we take advantage of the

occupation-level measures of offshorability and replaceability introduced in Section 3. We

regress the offshorability index of Autor and Dorn (2013) on the replaceability dummy of

Graetz and Michaels (2018) across 331 US Census occupations. The results are reported

in column (1) of Table 4. The coefficient on the replaceability dummy is positive and

statistically significant, implying that replaceable occupations are more offshorable than

non-replaceable occupations, on average. Given that the offshorability index is standard-

ized with mean 0 and standard deviation 1, the coefficient implies a sizable difference of

28% of a standard deviation between the average offshorability of replaceable and non-

replaceable occupations.

In untabulated regressions, we have assessed the robustness of this result using two

alternative offshorability indices, developed by Blinder (2009) and Blinder and Krueger

(2013), respectively. The Blinder (2009) indicator assigns each occupation an offshora-

bility degree based on the author’s subjective assessment of how amenable tasks are to

electronic delivery. The Blinder and Krueger (2013) indicator quantifies the offshorability

of an occupation based on information from household surveys and professional coders’

30



Table 4: Robots Exposure and Offshoring Across Occupations, Industries and CZs

(1) (2) (3) (4) (5) (6) (7)
Offshorability
(AD, 2013)

D Offshoring
(Broad)

D Offshoring
(Narrow)

D Offshoring
(Broad)

D Offshoring
(Narrow)

D Offshoring
(Broad)

D Offshoring
(Narrow)

Replaceability 0.277**
[0.130]

D ln Rob_M -0.076*** -0.080***
[0.006] [0.005]

DRobots -0.019*** -0.024*** -0.014*** -0.017***
[0.004] [0.003] [0.005] [0.004]

Obs. 331 535 408 2157 2157 2157 2157
R2 0.01 1.00 1.00 0.69 0.71 0.68 0.68
Sample Occupations
Estimator OLS OLS OLS OLS OLS 2SLS 2SLS

Industries Panel CZs Panel

Notes. The regression in column (1) is estimated on a cross-section of occupations. The dependent variable is an indicator of offshorability, which measures
the degree to which workers in a given occupation require face-to-face interaction and physical presence on the job (Autor and Dorn, 2013). Replaceability is
a dummy equal to 1 for occupations whose title corresponds to at least one of the robot application categories identified by the International Federation of
Robotics, and equal to 0 otherwise (Graetz and Michaels, 2018). The regressions in columns (2) and (3) are estimated on a panel of 66 industries. The
dependent variables are changes in the broad and narrow offshoring indicators, respectively, over five-year periods. D ln Rob_M is the log change in US
robot imports in each industry. The regressions include fixed effects for industries and sector-year pairs, and are weigthted by start-of-period industry
employment. The regressions in columns (4)-(7) are estimated on a panel of CZs. The dependent variables are weighted averages of ten-year equivalent
changes in the industry-level offshoring indicators, with weights given by the industrial structure of employment in each CZ at the beginning of each time
period. D Robots is the weighted average of ten-year equivalent log changes in US robot imports across industries, with weights given by the industrial
structure of employment in each CZ at the beginning of each time period. In columns (6) and (7), the instrument is D Robots_Oth , constructed analougously
to D Robots using industry-level data on robot exports from non-US countries to eleven European countries. The regressions include state fixed effects, year
fixed effects and the same control variables as in Table 2, and are weighted by the initial share of each CZ in total US population. Standard errors, reported
in square brackets, are robust to heteroskedasticity in column (1), corrected for clustering within industries in columns (2) and (3), and corrected for
clustering within states in columns (4)-(7). ***, ** and * denote significance at the 1, 5 and 10% level, respectively.

assessment of the ease with which tasks can be relocated abroad. Also in these cases, we

found positive and precisely estimated coefficients on the replaceability dummy, suggest-

ing that the positive correlation between replaceability and offshorability does not depend

on how we measure the latter characteristic.

These results imply that automation and offshoring affect similar occupations. Ac-

cordingly, automation may act as a substitute for offshoring, allowing firms to use robots

in tasks that were previously performed abroad. We now provide more direct evidence of

this substitutability, by studying the relationship between robot imports and the two off-

shoring indicators across industries. To this purpose, we regress changes in the offshoring

indicators on changes in log robot imports over five-year periods across industries. We

control for industry fixed effects to absorb industry-specific trends and for sector×year

fixed effects to soak up common shocks across sectors; the regressions are weighted by in-

dustry employment at the beginning of each period. The results are reported in columns

(2) and (3) of Table 4. Regardless of the offshoring indicator, the coefficient on robot

imports is always negative and very precisely estimated: industries experiencing a more

rapid growth in robot imports also exhibit a relatively larger reduction in offshoring. This
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finding is consistent with robots substituting tasks that used to be performed abroad, and

suggests that the rise of automation over the sample period has been associated with a

reshoring of activities to the US.

In the remaining columns of Table 4, we complement the previous results with evi-

dence across CZs. To this purpose, we estimate eq. (15) using changes in the two off-

shoring indicators as the dependent variables.22 We run these regressions using both OLS

(columns 4 and 5) and 2SLS (columns 6 and 7), to mitigate concerns with reverse causal-

ity and omitted variables; in the latter case, we use ∆Robots Othct as an instrument for

∆Robotsct. The coefficient on ∆Robotsct is always negative and highly statistically signif-

icant. Consistent with the descriptive evidence emerging from Figure 5, firms have more

intensively resorted to reshoring in CZs characterized by stronger robot exposure.

4.3 Robot Exposure, Offshoring and Employment

That robots and offshoring are substitutes for one another has potentially important impli-

cations for the employment effects of automation. If robots induce reshoring, their effects

are likely to be heterogeneous both across occupations and across CZs. First, automa-

tion may induce a relatively larger reduction in domestic employment in occupations that

are harder to offshore. The reason is that, in offshorable occupations, automation should

partly affect foreign employment and foster reshoring to the US. Second, automation may

lead to a relatively smaller reduction in domestic employment in CZs characterized by

a higher offshoring intensity, as the scope for reshoring is relatively larger in these CZs.

We now revisit the average effects of robot exposure on employment in the light of these

considerations. In particular, we allow the effects to vary across jobs and in space, and

study whether this heterogeneity is consistent with the substitutability between robots

and offshoring documented before.

Our first exercise consists of unpacking the effects of robot exposure across occupa-

tions with different characteristics. To this purpose, we decompose the overall change in

the employment-to-population ratio across mutually exclusive groups of occupations, and

then re-estimate eq. (15) using changes in group-specific employment over population as

the dependent variables. The results are reported in Table 5. To begin with, in panel a),

we divide occupations into two groups and use OLS regressions to describe the central

22In particular, the dependent variables are constructed as follows: ∆B Of f shct =
∑
j λcjt · ∆B Of f shjt

and ∆N Of f shct =
∑
j λcjt · ∆N Of f shjt , where ∆B Of f shjt and ∆N Of f shjt are changes in a given

offshoring indicator in industry j over period t.
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Table 5: Robot Exposure and Employment Across Occupation Groups

(1) (2) (3) (4)
Replaceable
(GM, 2018)

Non-Replaceable
(GM, 2018)

Offshorable
(AD, 2013)

Non-Offshorable
(AD, 2013)

DRobots -0.010* 0.003 0.006 -0.013***
[0.005] [0.005] [0.005] [0.005]

Obs. 2157 2157 2157 2157
R2 0.19 0.17 0.30 0.46

Offshorable &
Replaceable

Offshorable &
Non-Replaceable

Non-Offshorable &
Replaceable

Non-Offshorable &
Non-Replaceable

DRobots 0.001 0.005 -0.011** -0.002
[0.003] [0.005] [0.005] [0.004]

Obs. 2157 2157 2157 2157
R2 0.09 0.28 0.23 0.21

DRobots 0.018 -0.001 -0.033** 0.019
[0.012] [0.021] [0.014] [0.015]

Obs. 2157 2157 2157 2157
R2 0.06 0.28 0.21 0.19
Notes. All regressions are estimated on a panel of 722 CZs. The dependent variables are ten-year equivalent changes in
employment (relative to population) in mutually exclusive groups of occupations, as defined in the columns' headings.
Offshorable occupations are those for which the offshorability index developed by Autor and Dorn (2013) is above the
sample median. Replaceable occupations are those whose title corresponds to at least one of the robot application
categories identified by the International Federation of Robotics (Graetz and Michaels, 2018). Non-offshorable and non-
replaceable occupations are defined accordingly. D Robots is the weighted average of ten-year equivalent log changes in
US robot imports across industries, with weights given by the industrial structure of employment in each CZ at the
beginning of each time period. The instrument is D Robots_Oth , constructed analougously to D Robots using industry-level
data on robot exports from non-US countries to eleven European countries. All regressions include state fixed effects,
year fixed effects and the same control variables as in Table 2, and are weighted by the initial share of each CZ in total
US population. Standard errors, reported in square brackets, are correted for clustering within states. ***, ** and * denote
significance at the 1, 5 and 10% level, respectively.

b) OLS

c) 2SLS, 2nd Stage

a) OLS

tendencies in the data. Columns (1) and (2) show, as expected, that robot exposure is as-

sociated with a significant fall in employment in replaceable occupations but no change

in non-replaceable occupations. More interestingly, columns (3) and (4) show that robot

exposure is uncorrelated with employment in offshorable jobs, but strongly negatively

correlated with employment in non-offshorable tasks.

In panel b), we examine this heterogeneity in greater detail by dividing occupations

into four mutually exclusive groups, which are obtained by combining replaceability and

offshorability. For instance, offshorable-replaceable occupations are those for which the

replaceability dummy is equal to 1 and the offshorability indicator is above the sample
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Table 6: Robot Exposure, Offshoring and Employment, Broad Offshoring Indicator

(1) (2) (3) (4) (5) (6)
D Total 
Emp./Pop.

D Mnfg 
Emp./Pop.

D Non Mnfg 
Emp./Pop.

D Total 
Emp./Pop.

D Mnfg 
Emp./Pop.

D Non Mnfg 
Emp./Pop.

DRobots -0.002 -0.037*** 0.035*** -0.003 -0.041*** 0.037***
[0.011] [0.012] [0.012] [0.012] [0.012] [0.012]

DRobots x B_Offsh -0.057 0.330** -0.387** -0.032 0.377** -0.409**
[0.133] [0.157] [0.168] [0.141] [0.145] [0.158]

B_Offsh 0.067 -0.279*** 0.346*** 0.062 -0.245*** 0.307***
[0.067] [0.057] [0.072] [0.064] [0.049] [0.068]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.53 0.36 0.36 0.53 0.37 0.36

DRobots -0.259 -0.035 -0.224 0.000 -0.047*** 0.047***
[0.160] [0.130] [0.150] [0.009] [0.012] [0.015]

DRobots x B_Offsh -0.061 0.427*** -0.488*** -0.176 0.553*** -0.730***
[0.125] [0.114] [0.173] [0.145] [0.179] [0.227]

B_Offsh 0.019 -0.321*** 0.339*** -0.143 -0.400* 0.257
[0.061] [0.062] [0.081] [0.222] [0.218] [0.262]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.53 0.38 0.36 0.54 0.37 0.38
Notes. All regressions are estimated on a panel of 722 CZs. The dependent variables, indicated in the columns' headings, are ten-year equivalent changes in
overall employment-to-population ratio (columns 1 and 4), manufacturing employment-to-population ratio (columns 2 and 5), and non-manufacturing
employment-to-population ratio (columns 3 and 6). D Robots is the weighted average of ten-year equivalent log changes in US robot imports across industries,
with weights given by the industrial structure of employment in each CZ at the beginning of each time period. B_Offsh is the weighted average of the start-of-
period broad offshoring indicator across industries, with weights given by the initial industrial structure of employment in each CZ. In panel b), the offshoring
indicator excludes imports of machinery made by each industry. All regressions are estimated with OLS; include state fixed effects, year fixed effects and the
same control variables as in Table 2; and are weighted by the initial share of each CZ in total US population. The regressions in panel c) also include interactions
of D Robots with log employment and the employment shares of female workers, foreign-born workers, college graduates and routine-intensive occupations at
the beginning of each period. The regressions in panel d) also include four variables measuring the exposure of each CZ to software, ICT, machinery and other
types of capital. These variables, which enter both linearly and interacted with B_Offsh , are constructed analogoulsy to D Robots using ten-year equivalent log
changes in expenditure on each type of capital across industries in place of log changes in US robot imports. Standard errors, reported in square brackets, are
correted for clustering within states. ***, ** and * denote significance at the 1, 5 and 10% level, respectively.

a) Baseline b) No Machinery in Offshoring Indicator

c) Additional Interactions of Robot Exposure d) Exposure to Other Types of Capital

median; the other groups are defined accordingly. The results show that the employment

changes in non-replaceable occupations are uncorrelated with robot exposure regardless

of offshorability. On the contrary, for replaceable occupations, employment changes are

uncorrelated with robot exposure if these occupations are also offshorable, but strongly

negatively correlated if they are non offshorable. The 2SLS regressions reported at the

bottom of the table confirm the qualitative pattern of results. Hence, automation has

heterogeneous effects across occupations depending on offshorability: while offshorable

occupations are largely sheltered from automation, non-offshorable occupations whose

tasks can be replaced by robots bear the burden of the negative effects of automation.

Next, we turn to the second exercise, and study whether the employment effects of

robot exposure vary across CZs depending on offshoring intensity. To do so, we aug-

ment eq. (15) with an interaction between ∆Robotsct and the start-of-period level of ei-
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Table 7: Robot Exposure, Offshoring and Employment, Narrow Offshoring Indicator

(1) (2) (3) (4) (5) (6)
D Total 
Emp./Pop.

D Mnfg 
Emp./Pop.

D Non Mnfg 
Emp./Pop.

D Total 
Emp./Pop.

D Mnfg 
Emp./Pop.

D Non Mnfg 
Emp./Pop.

DRobots -0.002 -0.023*** 0.021*** -0.002 -0.024*** 0.022***
[0.006] [0.007] [0.008] [0.007] [0.006] [0.008]

DRobots x N_Offsh -0.162 0.322* -0.484** -0.139 0.349** -0.488**
[0.129] [0.167] [0.203] [0.134] [0.153] [0.192]

N_Offsh 0.099 -0.319*** 0.418*** 0.088 -0.335*** 0.423***
[0.079] [0.070] [0.090] [0.081] [0.064] [0.087]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.53 0.36 0.36 0.53 0.36 0.36

DRobots -0.266* -0.038 -0.228 -0.007 -0.022*** 0.015*
[0.158] [0.122] [0.150] [0.005] [0.007] [0.008]

DRobots x N_Offsh -0.169 0.389** -0.558** -0.303** 0.802*** -1.106***
[0.143] [0.146] [0.210] [0.134] [0.154] [0.192]

N_Offsh 0.040 -0.387*** 0.428*** -0.267 -0.535* 0.268
[0.081] [0.085] [0.106] [0.404] [0.272] [0.343]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.54 0.38 0.36 0.55 0.37 0.39
Notes. All regressions are estimated on a panel of 722 CZs. The dependent variables, indicated in the columns' headings, are ten-year equivalent changes in
overall employment-to-population ratio (columns 1 and 4), manufacturing employment-to-population ratio (columns 2 and 5), and non-manufacturing
employment-to-population ratio (columns 3 and 6). D Robots is the weighted average of ten-year equivalent log changes in US robot imports across industries,
with weights given by the industrial structure of employment in each CZ at the beginning of each time period. N_Offsh is the weighted average of the start-of-
period narrow offshoring indicator across industries, with weights given by the initial industrial structure of employment in each CZ. In panel b), the offshoring
indicator excludes imports of machinery made by each industry. All regressions are estimated with OLS; include state fixed effects, year fixed effects and the
same control variables as in Table 2; and are weighted by the initial share of each CZ in total US population. The regressions in panel c) also include interactions
of D Robots with log employment and the employment shares of female workers, foreign-born workers, college graduates and routine-intensive occupations at
the beginning of each period. The regressions in panel d) also include four variables measuring the exposure of each CZ to software, ICT, machinery and other
types of capital. These variables, which enter both linearly and interacted with N_Offsh , are constructed analogoulsy to D Robots using ten-year equivalent log
changes in expenditure on each type of capital across industries in place of log changes in US robot imports. Standard errors, reported in square brackets, are
correted for clustering within states. ***, ** and * denote significance at the 1, 5 and 10% level, respectively.

a) Baseline b) No Machinery in Offshoring Indicator

c) Additional Interactions of Robot Exposure d) Exposure to Other Types of Capital

ther offshoring indicator, B Of f shct or N Of f shct.23 We report results for the overall

employment-to-population ratio and for its manufacturing and non-manufacturing com-

ponents. Given the well-known difficulty in instrumenting interaction terms, we focus on

OLS regressions.

The results are reported in Table 6 for the broad offshoring indicator and in Table 7

for the narrow measure. Strikingly, in the regression for manufacturing employment, the

coefficient on the interaction between robot exposure and offshoring is always positive

and very precisely estimated. This confirms that automation reduces manufacturing em-

ployment relatively less in CZs that are initially more reliant on offshoring. To quantify

the extent of heterogeneity, we use the estimated (linear and interaction) coefficients on

∆Robotsct along with the observed distribution of offshoring across CZs in our data. This

23The control variables Xct already include the linear term of B Of f shct . When interacting ∆Robotsct with

N Of f shct , we use a linear term in N Of f shct in place of the linear term in B Of f shct .
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exercise reveals that the employment effect of robot exposure is negative in the majority of

CZs; yet, for a small fraction of high offshoring-intensive CZs (the top 5% by B Of f shct
and the top 1% by N Of f shct), automation actually leads to an increase in manufactur-

ing employment. In the regression for non-manufacturing employment, the coefficient on

the interaction between robot exposure and offshoring is always negative and precisely

estimated, consistent with the view that displaced workers reallocate, at least partially,

outside of the manufacturing sector.

In the remaining panels, we submit the baseline results to various robustness checks.

In panel b), we re-compute the offshoring indicators by excluding imports of machinery

made by each industry. This avoids the offshoring measures to be contaminated by robot

imports. In panel c), we augment the specification by adding interactions of ∆Robotsct

with all other start-of-period controls included in Xct. This prevents our coefficients of

interest from being influenced by differences in other CZ-level characteristics that could

interact with automation. Finally, in panel d), we extend the specification by including the

four variables measuring exposure to other types of capital, both linearly and interacted

with offshoring. This allays the concern that the baseline results could be driven by the

correlation between robot adoption and other forms of investment. In all cases, the results

confirm that offshoring plays an important role at mediating the employment effects of

automation across US local labor markets.

5 Conclusions

In this paper, we have studied the effects of automation, measured by the adoption of in-

dustrial robots, in the presence of offshoring. The literature has mostly studied these phe-

nomena in isolation. This is unfortunate, because what we have shown is that offshoring

can change the impact of automation in important ways. In particular, when robots affect

differentially domestically-produced and foreign-sourced tasks, automation has terms-of-

trade effects that redistribute income across countries. This has important implications.

While automation replacing foreign workers is necessarily welfare improving for the do-

mestic economy, automation replacing domestically-produced tasks can lower the real

wage of domestic workers through a deterioration of the terms of trade.

These results underscore the importance of identifying which workers are in more di-

rect competition with robots and motivate the empirical analysis conducted in the paper.

Using US data across industries, occupations and local labor markets, we have studied
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the interaction between automation and offshoring over the 1990-2015 period. Our re-

sults suggest that industrial robots displace US workers from manufacturing industries,

but that the effect is weaker in CZs that are more exposed to offshoring. We also found

that industrial robots lower the incidence of offshoring, and that their negative employ-

ment effects are concentrated in occupations performing tasks that are classified as non

offshorable. These results are consistent with the view that automation contributes to the

reshoring of economic activity, which in turn tends to mitigate any adverse labor market

effects for US workers.

We conclude by discussing some limitations and possible extensions of our analysis.

The empirical findings in this paper are based entirely on US data. However, we consider

equally important to study the effect of US automation on low-wage countries. Consistent

with our results, some papers tend to find negative effects on labor market outcomes in

the developing world (see, for instance, Faber, 2020, Artuc, Christiaensen and Winkler,

2019, Stemmler, 2019, Kugler et al. 2020). Yet, it would be desirable to combine data

across countries to directly identify the terms-of-trade effect of automation. We view this

as an interesting direction for future research.

From a normative perspective, the result that automation is likely to redistribute in-

come across countries implies that policy makers may have an incentive to promote the

adoption of technologies that lower the dependence on foreign inputs. Such an effort can,

however, lead to an inefficient equilibrium with excessive automation and too little trade.

In fact, we speculate that foreign competition may even be the trigger for the adoption

of policies aiming at self-sufficiency. Exploring this scenario and possible remedies goes

beyond the scope of this paper, but seems another important and interesting avenue for

future research.
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Appendix A

AMore GeneralModel of Automation andOffshoring

We consider now a more general case in which productivity varies across tasks and factors,

as in the models of offshoring and automation in Grossman and Rossi-Hansberg (2008)

and Acemoglu and Restrepo (2018). Tasks are allocated to factors so as to minimizes costs:

pi = min
{
ws
as,i

,
wn
an,i

,
r
ar,i

}
.

Using pi , we can then solve for output of each task:

xs,i =
as,iLs
ms

xn,i =
an,iLn
mn

xr,i =
ar,iY

r
.

Using these quantities into (1), we obtain (6) where

ax ≡ exp
(∫

i∈Nx

ln ax,i
mx

di
)

is now endogenous and is equal to the average productivity over the tasks Nx performed

by factor x ∈ {s, n, r}. Equations (7) (8) and (9) are still valid.

In this model, a shock to automation is an increase in some ar,i . This can raise mr

(the extensive margin of automation), ar (the intensive margin of automation), or both.

In turn, the change in mr and/or ar can affect the allocation of tasks to the other factors

too. Holding constant mr , an increase in ar benefits all factors. This is the most benign

form of automation, corresponding to factor-augmenting technical change without any

displacement. Holding constant ar , the effects of an increase in mr are those discussed

Section (2.2). This is the case in which automation displaces workers. The general model

shows that mr and ar may change simultaneously. The result that automation can lower

both the relative and the real wage of displaced workers still holds. This is because the

effect of displacement on wages is unchanged. However, the productivity effect may be

weaker or stronger in the more general model.
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Appendix B Additional Results

Table B1: Robot Exposure and Employment, Additional Results and Robustness

(1) (2) (3) (4) (5) (6)
D Total 
Emp./Pop.

D Mnfg 
Emp./Pop.

D Non Mnfg 
Emp./Pop.

D Total 
Emp./Pop.

D Mnfg 
Emp./Pop.

D Non Mnfg 
Emp./Pop.

DRobots -0.010 -0.012** 0.003 -0.013*** -0.019*** 0.006
[0.009] [0.005] [0.007] [0.005] [0.005] [0.006]

Obs. 1441 1441 1441 1438 1438 1438
R2 0.50 0.28 0.59 0.30 0.32 0.08

DRobots 0.001 -0.001 0.001 -0.004 -0.018*** 0.014**
[0.001] [0.001] [0.002] [0.005] [0.004] [0.006]

Obs. 3600 3600 3600 1937 1937 1937
R2 0.41 0.30 0.33 0.54 0.37 0.37

DRobots -0.004 -0.016*** 0.012** -0.0002*** -0.0003*** 0.0001
[0.005] [0.005] [0.006] [0.0001] [0.0001] [0.0001]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.54 0.37 0.37 0.53 0.36 0.35

DRobots -0.005* -0.013*** 0.008** -0.005* -0.013*** 0.008**
[0.003] [0.003] [0.004] [0.003] [0.003] [0.004]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.53 0.37 0.36 0.53 0.37 0.36
Notes. The table contains additional results and robustness checks on the OLS regressions reported in Table 2. All regressions are estimated on a
panel of 722 CZs. The samples used in panels a) and b) cover two time periods: 1990-2000 and 2000-2005 in panel a); 2005-2010 and 2010-2015 in
panel b). In panel c), D Robots enters with a one-year lead. Panel d) excludes CZs in the top percentile of the distribution of D Robots in each year.
Panel e) includes four variables measuring the exposure of each CZ to software, ICT, machinery and other types of capital. In panel f), D Robots is
constructed as the weighted average of cumulative sums of log US robot imports across industries, with weights given by the industrial structure of
employment in each CZ at the beginning of each period. In panel g), D Robots is constructed using US net robot imports (imports minus export)
rather than US robot imports. In panel h), D Robots is constructed by apportioning US robot imports to individual industries using industry shares in
total (domestic plus foreign) machinery purchases from the US Input-Output Tables, rather than industry shares in machinery imports from the US
Import Matrices. The specifications in panels a)-c) include state and year fixed effects; the specifications in panels d)-h) also include the same control
variables as in Table 2. All regressions are weighted by the initial share of each CZ in total US population. Standard errors, reported in square
brackets, are correted for clustering within states. ***, ** and * denote significance at the 1, 5 and 10% level, respectively.

a) Sample: 1990-2005

d) Excl. CZs in Top 1% of Rob_Exp

b) Sample: 2005-2015

c) Placebo, Future Rob_Exp

e) Exposure to Other Types of Capital f) Cumulative Stock of Robot Imports

g) Net Robot Imports h) Industry Shares of Machinery Purchases
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Figure B1: Robot Exposure and Employment: Alternative Corrections

of Standard Errors

Notes . The figure plots the OLS coefficients on D robots obtained with the baseline specifications reported in columns (5)
and (6) of Table 2 (top and bottom graph, respectively), together with 90% confidence intervals corresponding to
alternative ways of correcting the standard errors, as indicated on the horizontal axis. The baseline confidence intervals
refer to standard errors corrected for clustering within states. The Conley (1999) confidence intervals refer to standard
errors corrected for residual correlation among CZs belonging to the same spatial cluster, as defined by the reported cut-
off distance. The last three confidence intervals are obtained by first using cluster analysis to create 25, 50 or 100 groups of 
CZs with a similar industrial structure of employment, and then correcting the standard errors for clustering within each
group. 

a) D Mnfg Emp./Pop.

b) D Non Mnfg Emp./Pop.
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