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Technological Diversification to Green Domains: Technological Relatedness, 

Invention Impact and Knowledge Integration Capabilities 

 

Abstract: Climate changes and ecological challenges often motivate firms to diversify into 

environmental domains. However, this does not guarantee impactful inventions. Therefore, this 

study investigates how firms can create impactful environmental inventions based on their 

technological relatedness and prior knowledge integration capabilities. Using a unique dataset of 

1,990 high-tech Chinese firms between 2006 and 2016, our results reveal that diversifying firms’ 

green technological relatedness has an inverted U-shaped relationship with invention impact. 

While the depth of firms’ knowledge integration capabilities steepens this relationship, the breadth 

flattens it. Higher levels of depth capability result in a greater impact, while greater breadth leads 

to an early attainment of peak invention impact at a lower degree of green technological 

relatedness. Theoretical and policy implications are discussed.  

 

Keywords: green innovation, environmental impact, technological value, technological 

relatedness, diversification, China  
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1. Introduction 

With the increasing evidence of human environmental disruption outpacing the planet’s adaptive 

capacity, environmental degradation and climate change are currently recognised as the greatest 

global challenges of our time (Wiedmann et al., 2020). One possible response through which 

organisations can accelerate and scale up their environmental actions is to engage in green 

technological innovation, which refers to the development of technologies with the potential to 

reduce, prevent, and even revert the negative environmental impacts of industries, while enabling 

a more efficient and responsible use of natural resources (Barbieri et al., 2020; Rennings, 2000). 

However, compared with the ‘end-of-pipe’ solutions geared towards complying with regulatory 

standards, environmental innovation (hereafter ‘eco-innovation’) is often associated with 

additional costs and uncertain financial returns (Berrone et al., 2013). Eco-innovation is 

conventionally believed to erode firms’ revenues by diverting resources and managerial attention 

from its core business activities (Porter and Van der Linde, 1995; Adams et al., 2016). However, 

several scholars have challenged this perspective and consider eco-innovation as a novel source 

of firms’ competitive advantage. By opening up business opportunities for new sustainable 

materials, product design, and efficient manufacturing methods, eco-innovation can enable direct 

cost savings in production with an increase in firms’ value alignment with today’s customers and 

stakeholders (Berrone et al., 2013; Hart and Dowell, 2011).  

Despite the growing consensus on the socio-economic value of eco-innovation, the conditions 

and mechanisms through which established firms can transform themselves to develop impactful 

green innovation while utilising their competence are still unclear. Unlike de novo firms that are 

founded with an environmental mission, established firms need to rely on redeploying their pre-

existing resources and capabilities to explore green opportunities (Driessen et al., 2013). The 

process of matching internal competence with green opportunities can be complex and 

challenging. Thus, diversifying firms would need to embark on radical structural changes, 
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departing from existing businesses and technological portfolios (Adams et al., 2016; Barbieri et 

al., 2020; Driessen et al., 2013). The previous literature examining firms’ diversification patterns 

is rooted in the ‘relatedness’ or the so-called synergy hypothesis. It suggests that firms’ entry 

decisions are not random, but involve pursuing a technologically related pattern to leverage their 

current knowledge bases sharing potential with multiple businesses (Breschi et al., 2003; Miller, 

2006; Kim et al., 2016). Firms can capture value that is unrealised by their counterparts 

diversifying for less strategic reasons or into unrelated technological domains (Miller, 2006; 

Teece, 1980; Ceipek et al., 2019). However, this line of inquiry does not explicitly consider the 

attributes of de alio firms’ existing technological repositories and the heterogeneity of their 

knowledge integration capabilities in shaping their technological expansion and ex-post impact 

(Yayavaram et al., 2018; Kotha et al., 2011). Thus, business leaders and policymakers aiming to 

facilitate a smoother transition into green domains require greater understanding of the firms’ pre-

entry resource endowment and technological capabilities. 

Drawing insights from the technological diversification literature, this study investigates how 

diversifying firms’ ability to develop an impactful green invention depends on the degree of their 

technological relatedness to the green domains they seek to enter. Such green technological 

relatedness is measured by the frequency of patent citations between the technological domains of 

the focal firms’ existing technological portfolios and that of their first green patents (see Section 

3.3). Forward citations are used as a proxy for the impact of the focal firms’ existing technological 

patents. We predict a concave relationship between green technological relatedness and the ex-

post invention impact and suggest that the green invention impact is contingent upon the depth 

and breadth of diversifying firms’ knowledge integration capabilities. The depth captures a firm’s 

pre-entry knowledge combination expertise in a technological domain (George et al., 2008), 

whereas the breadth reflects a firm’s cross-domain knowledge recombination experience (Helfat 

and Raubitschek, 2018, Helfat and Campo-Rembado, 2016). We hypothesise that firms with a high 

depth of capability can accelerate the benefit of technological relatedness on the impact of 
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inventions, leading to an overall higher impact, whereas the breadth flattens the concave 

relationship and generates an impact peak at a lower level of technological relatedness. We test 

our hypotheses using a sample of 1,990 firms from the Zhongguancun Science Park (ZSP), China’s 

Silicon Valley, which have developed green patents for the first time between 2006 and 2016.  

Our study makes two main contributions to the literature. First, we elucidate the extent to 

which diversifying firms’ pre-entry green technological relatedness contributes to their ex-post 

invention impact. We emphasise the resource-based view in understanding the firms’ technological 

diversification into green domains to illustrate its underlying mechanisms. Thus, we depart from 

previous studies that primarily focus on identifying the entry propensity or determinants of eco-

innovation, including regulatory compliance, stakeholder pressures, proactive firm strategies, and 

adoption of environmental standards (De Marchi, 2012; Adams et al., 2016; Barbieri et al., 2020; 

Berrone et al., 2013). Second, we draw attention to the diversifying firms’ endogenous capabilities 

in integrating and enhancing their transformation into green domains. We enrich the concept of 

firms’ pre-diversification integration capabilities by distinguishing between their depth and 

breadth, which have different contingent effects on the impact of their inventions (Lieberman et 

al., 2017; Maritan and Lee, 2017). Overall, by responding to George et al. (2016) call for research 

on global ‘Grant Challenges’, we extend the diversification literature by explaining why some 

firms develop more impactful green inventions than others while entering green domains for the 

first time. 

2. Theory and hypotheses development  

2.1 Technological relatedness in firm diversification to green domains  

Prior research has heavily drawn upon the resource-based view in studying the outcomes of firms’ 

technological diversification. Following the notion of relatedness, it argues that de alio firms can 

create value by leveraging their unique knowledge resources and capabilities to enter additional 
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business and technological segments (Kim et al., 2016; Miller, 2006; Ceipek et al., 2019; 

Schommer et al., 2019). Technological relatedness refers to the degree to which a focal technology 

shares a common knowledge base with firms’ existing technology and derives from mutual 

scientific principles or ‘heuristics’ of search (Leten et al., 2007; Breschi et al., 2003). This concept 

suggests that industries are endogenously linked by underlying technologies and reflect the extent 

to which technological knowledge overlaps across domains (Leten et al., 2016; Miller, 2006; 

Tanriverdi and Venkatraman, 2005)1. 

Firms are expected to obtain value when diversifying into technologically related industries 

(Sliverman, 1999; Miller, 2006; Sakhartov, 2017). By sharing technological resources such as 

expertise and human capital, firms can achieve inter-temporal economies of scope while avoiding 

the cost of duplicating or transferring knowledge across organisational boundaries (Breschi et al., 

2003; Tanriverdi and Venkatraman, 2005). Synergies in firms’ knowledge bases are critical in 

reducing costs and risks through the frugal use of firms’ resources (Granstrand, 1998). Subsequent 

empirical research confirming the relatedness hypothesis have analysed the outcomes of 

technological diversification from the perspective of innovation quality, quantity, and finance, and 

the firms’ propensity to enter new domains in the context of mergers and acquisitions or the firms’ 

own technological portfolios (See recent reviews e.g. Ceipek et al. (2019) and Schommer et al. 

(2019)).  

These prior studies have delineated an overall pattern for technological diversification; 

however, not every firm conforms to such a pattern to generate an invention impact. We contend 

that firms need to address two main concerns to diversify into new domains. The first concern is 

the characteristics of the target domain they intend to enter. For example, considering the green 

innovation setting, previous literature argues that eco-innovation is vastly different from 

innovation in other domains. First, eco-innovation is complex and multi-purpose, requiring diverse 

competences and knowledge inputs to satisfy regulatory requirements, stakeholder expectations, 

and customer demands (Ardito et al., 2019; Porter and Van der Linde, 1995; Berrone et al., 2013). 
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Second, it requires considerable systematic change towards an environmentally compatible design 

to disposal production process while simultaneously preserving the firms’ core product offerings 

(De Marchi, 2012; Barbieri et al., 2020; Marzucchi and Montresor, 2017). Third, eco-innovation 

exhibits ‘double externalities’ by creating technological externalities that benefit non-green 

competitors at the innovation stage, and environmental externalities enjoyed by the wider society 

during the diffusion phases (Rennings, 2000; Ning and Wang, 2018). These characteristics suggest 

that firms may not be able to fully appropriate the value from additional efforts or costs incurred 

in developing these eco-characteristics (Marzucchi and Montresor, 2017; Barbieri et al., 2020). 

They may also experience slower returns, bear higher R&D costs and market failure risks, and 

have fewer incentives and higher opportunity costs than in other technological areas. Therefore, 

further elucidation is required to determine the extent to which firms’ recombination of related 

knowledge resources to diversify into specific settings (such as the green domain) can improve 

their technological impact. 

The second concern is the characteristics of firms’ technological resources and capabilities 

before diversifying into new domains. Previous studies suggest that high-impact inventions stem 

from a unique combination of knowledge components (Fleming, 2001; Yayavaram et al., 2018). 

This calls for a greater understanding of firms’ resources and capabilities. Following the work of 

Helfat and Campo-Rembado (2016), we define resources as stocks of production factors owned 

and controlled by firms, whereas capabilities refer to the firms’ ability to productively utilise 

resources in a routine fashion. Resource attributes are generally associated with the efficiency and 

flexibility of firms’ internal markets in redeploying resources when entering new industries 

(Lieberman et al., 2017; Speckbacher et al., 2015; Maritan and Lee, 2017; Lee, 2008). Although 

closely related businesses have a high potential for resource redeployment, the underlying 

mechanisms of value creation are still not well understood (Moeen, 2017; Lieberman et al., 2017). 

Moreover, firms require more than resources with related attributes to achieve superior 

performance, as they also need to process heterogeneous capabilities while managing 
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diversification (Mackey et al., 2017). Prior research typically distinguishes between pre-entry 

capabilities of de alio (diversifying) and de novo (new venture) firms and argues that the latter are 

more flexible in facilitating resource redeployment (Chen et al., 2012; Ceipek et al., 2019). Given 

the adjustment cost of diversification, firms are more likely to rely on pre-existing capabilities 

from other industries that do not require much reconfiguration or tailoring to suit the development 

of their new target domains (Moeen and Agarwal, 2017; Speckbacher et al., 2015). However, the 

specific role of technological capability in utilising related resources to create valuable inventions 

in new industries remains unclear (Cefis et al., 2020; Helfat and Raubitschek, 2018).  

In the following sections, we examine the two aforementioned concerns by exploring the 

extent to which firms’ green inventions can create the requisite technological impact through 

redeploying related knowledge resources and previously accumulated knowledge integration 

capabilities. We focus on home-grown technologies rather than acquisitions, as firms continue to 

invest in knowledge to maintain their technological capabilities even after outsourcing some parts 

of their business (Leten et al., 2007).  

2.2 Technological impact of green inventions and relatedness of technological repositories 

The technological impact of inventions is determined by their technological value or usefulness, 

which is reflected in the number of times an invention is recombined to create subsequent 

inventions (Schillebeeckx et al., 2020; Keijl et al., 2016). As discussed in Section 2.1,  considering 

the cost perspective, previous literature argues that firms diversifying into more related segments 

can create financial value through synergies raised from sharing existing knowledge resources and 

avoiding costly knowledge development (Sakhartov, 2017; Breschi et al., 2003; Tanriverdi and 

Venkatraman, 2005). Therefore, redeploying resources to related technological domains should 

engender technological value creation opportunities when firms exploit similar knowledge 

resources across multiple business segments. To elucidate how firms’ green technological 

relatedness affects the ex-post impact of their first green inventions, we hypothesise a concave 
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relationship between them. Following Haans et al. (2016) theoretical study, we discuss the two 

underlying latent mechanisms of positive invention applicability and negative novelty functions 

(See Figure 1 for the theoretical framework).  

 

 

 

Regarding the first latent mechanism of applicability, with increasing invention applicability, 

firms redeploying their existing related technological repositories would improve their invention 

impact (see Figure 1a). Applicability refers to the extent of knowledge being perceived as useful 

or relevant to its recipients (Papazoglou and Spanos, 2018; Rosenkopf and Nerkar, 2001). 

Inventions with more widespread potential applicability can increase invention impact. Such 

inventions provide a general solution to firms with heterogeneous technical problems and can thus 

influence how other inventors adopt and build upon new knowledge to continue evolving 

technologically beyond the focal invention’s domain (Rosenkopf and Nerkar, 2001; Valentini and 

Di Guardo, 2012; Papazoglou and Spanos, 2018). Moreover, the recipients’ perception of 

invention applicability is often based on similarity with past usage in the current context (Hicks 

and Hegde, 2005). Firms’ technological relatedness to a domain implies that they predominantly 

use the same basic science which has a wider application beyond a single science domain 

(Klevorick et al., 1995; George et al., 2016). Consequently, these firms tend to develop a similar 

understanding of comparable technological challenges and rely on similar sets of scientific 

theories to resolve technological bottlenecks (Makri et al., 2010; Leten et al., 2016). Diversifying 

into related domains enables firms to recombine existing but related knowledge components. This 

makes the focal inventions more relevant and appealing to broader range of firms, thus 

engendering high inventions applicability and impact.  

--------------------------------------------- 

INSERT FIGURE 1 ABOUT HERE 

--------------------------------------------- 
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As green domains are still nascent, the best environmental practices and technological 

paradigms are yet to be established (Markman et al., 2004; De Marchi, 2012). The superiority of 

green technologies may not be apparent to existing customers and other users. Therefore, firms 

without adequate technological relatedness need to divert significant resources to establish a 

common ground and bridge their existing knowledge with new domains (George et al., 2008). 

Conversely, firms redeploying existing related knowledge to enter new domains are more likely 

to temporarily generate a consistent pattern of inventions that can be understood by users (Capaldo 

et al., 2017). Thus, green technological relatedness is likely to enhance invention applicability and 

impact. Moreover, redeploying existing and familiar knowledge can create linkages between 

existing and new domains and reduce uncertainty in new technologies by rejuvenating previously 

used components (Fleming, 2001; Yayavaram and Chen, 2015). Even if potential users are 

unfamiliar with the inventions, the product information and complementary components available 

in the original industries can assist user adoption (Turner et al., 2013; De Marchi, 2012). An 

example of eco-innovation illustrating this diversification pattern is the Norwegian energy 

company Equinor. It redeployed its familiar technologies in deep-water oil and gas drilling 

infrastructure to develop an offshore floating wind farm system. This extended the scope of the 

wind power industry, which had hitherto relied on conventional fixed-bottom platforms (Equinor, 

2020). 

Regarding novelty, the second latent mechanism, an increase green technological relatedness 

would be detrimental to the impact of green invention if the novelty of the invention is under a 

decline (see Figure 1b). Novelty is often depicted as an eventual output of innovation arising out 

of the unique recombination of pre-existing knowledge (Arts and Veugelers, 2015; Wang et al., 

2014). Firms recombining their knowledge based on exploratory and distant searches are more 

likely to create novel inventions that denounce current technological and scientific models. 

Eventually, such inventions have the scope to become highly cited and impactful (Phene et al., 

2006; Rosenkopf and Nerkar, 2001; Kaplan and Vakili, 2015). Conversely, firms relying on local 



11 
 

search through an exploitation of technologically related or similar components would experience 

incremental inventions with low novelty and thus low impact (Fleming, 2001; Rosenkopf and 

Nerkar, 2001).  

Accordingly, firms with high technological relatedness entering green domains through the 

recombination of components from existing repositories could suffer from potential novelty 

deterioration. First, the persistent use of technologically related or similar mature knowledge 

components can lead to an overly local search in the ‘neighbourhood’ of older solutions (Katila 

and Ahuja, 2002). Knowledge overlap and technology redundancy increase with technological 

relatedness, diminishing opportunities to develop radically new knowledge or to create novelty 

(Makri et al., 2010; Fleming, 2001). Second, the persistent use of related or similar mature 

knowledge components can dwindle invention novelty, since technological paradigms tend to shift 

over time (Capaldo et al., 2017). This exacerbates the risk of invention obsolescence and the risk 

of exhausting the possible combinations of creative components (Yayavaram and Chen, 2015). 

Third, with technological relatedness, firms are more likely to adopt an exploitation trajectory 

based on existing knowledge, which increases their likelihood of being locked in the dominant 

logic, encountering difficulties in altering established knowledge bases, and in exploring emerging 

technologies (Leten et al., 2007). Similarity within the underlying science domains further 

precludes the need for substantial knowledge exploration (Makri et al., 2010). Inventions could 

take the form of simple and low-impact substitutes for existing solutions with mature components 

from firms’ original domains (Dibiaggio et al., 2014).  

Moreover, such a status quo is self-reinforced. Firms that have already accumulated skills and 

deployed multiple resources for exploitative activities tend to have significantly high sunk and 

switching costs for radical changes, eventually resulting in a ‘familiarity trap’ and low novelty 

(Katila and Ahuja, 2002; Kok et al., 2019). Consequently, it hampers the feasibility of redeploying 

existing knowledge resources that are highly related to a targeted domain to create novel and high 

technological impact. We expect this mechanism to be applied to firms’ green invention processes.  
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When the above positive and negative latent mechanisms are combined multiplicatively 

following the theoretical framework of Haans et al. (2016), an inverted-U relationship can be 

expected between firms’ green technological relatedness and invention impact (see Figure 1c). 

Firms with moderate levels of relatedness are likely to have the best chance of creating more novel 

and applicable green inventions with the greatest overall impact than in other cases. Firms can 

redeploy and exploit existing green-related knowledge resources to increase applicability and 

explore various relatively distant knowledge areas to improve their novelty potential. This echoes 

the ambidexterity paradox, in which firms achieve the best performance when they simultaneously 

pursue both incremental and discontinuous innovation (Raisch et al., 2009; Wang et al., 2014; 

O'Reilly III and Tushman, 2013).On both sides of the concave curve, the overall impact of the 

inventions is low. As discussed above, firms with low levels of green technological relatedness 

can demonstrate a lesser extent of technological deployment from existing knowledge repositories 

to warrant high applicability of their invention, while a high novelty potential is possibly achieved 

via this unrelated knowledge recombination. Similarly, in the opposite spectrum, firms with high 

green technological relatedness have a higher tendency to reuse technologically similar 

components, resulting in high invention applicability. However, these firms have low invention-

novelty potential due to technology overlap and substitution. Figure 1(c) depicts all parts of the 

concave curve, leading to the following hypothesis. 

 

Hypothesis 1 (H1): Firms’ technological relatedness to green domains and the technological 

impact of their green inventions have an inverted U-shaped relationship. 
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2.3 Moderating effect of pre-entry knowledge integration capability on the technological impact 

of green invention  

As discussed in Section 2.1, owning related technological repositories provides vital and 

immediate knowledge input for firms to diversify into a new domain. However, this does not 

necessarily guarantee high-impact inventions (Lee, 2008; Keijl et al., 2016; Mackey et al., 2017). 

The concept of capabilities is particularly relevant here as it refers to organisations’ abilities to 

reliably perform repetitive tasks (Helfat and Campo-Rembado, 2016). Some prior studies suggest 

that organisational capabilities affect firms’ resource-utilisation routines and processes to achieve 

competitive advantages (Wuyts and Dutta, 2014; Helfat and Raubitschek, 2018; Helfat and 

Campo-Rembado, 2016; Moeen, 2017). Firms are also viewed as knowledge-integrating 

institutions that generate value after acquiring the requisite resources (Kotha et al., 2011; 

Speckbacher et al., 2015).  

Therefore, we contend that firms’ realisation of inventions may hinge on their heterogeneous 

technological capabilities for recombining and utilising knowledge components within or across 

technological domains. This process is path-dependent. It reflects firms’ deliberate organisational 

learning efforts and demonstrates their accumulated expertise, experiences, and adaptation of 

relevant organisational processes and routines in vertical and horizontal combinations to achieve 

innovation (Helfat and Raubitschek, 2018; Lee, 2008; Boh et al., 2014; Leten et al., 2016). 

Following the work of Haans et al. (2016), we hypothesise that technological capabilities influence 

the two latent mechanisms of invention discussed earlier and reshape the curvilinear relationship 

between green technological relatedness and the impact of inventions (see Figure 2). 

 

 

 

 

--------------------------------------------- 

INSERT FIGURE 2 ABOUT HERE 

--------------------------------------------- 
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2.3.1 Depth of knowledge integration capability  

Depth of knowledge integration capabilities (thereafter ‘depth’) refers to the level of a firm’s pre-

entry knowledge combination expertise in a single or small number of technological domains 

(George et al., 2008). We expect firms to intuitively and strategically rely on their idiosyncratic 

core competencies or search their domains to exploit existing knowledge resources. Depth would 

moderate the two latent mechanisms by raising the positive slope of invention applicability upward 

while pushing the negative slope of novelty downward. Multiplicatively combining these two 

latent mechanisms would steepen the inverted U-shaped curve, as shown in Figure 2(a).  

Greater depth of pre-entry capability has three experience-based advantages that would enable 

firms to further improve their innovation applicability. First, depth improves firms’ understanding 

of component specificities and complex combinatory linkages based on past usage. This amplifies 

their internal absorptive capabilities and lowers their discovery hurdles in accurately identifying 

promising components and in extending application areas of technological inventions (George et 

al., 2008). Second, depth developed through repeated use of the same knowledge elements can 

foster firms’ competence in recombining existing domain components, learning from past 

limitations, and sharing it across firms based on deep collective knowledge creation experience 

(Moeen, 2017). It can greatly reduce the likelihood of errors when applying knowledge to different 

contexts (Kok et al., 2019; Katila and Ahuja, 2002; Cohen and Levinthal, 1990; Helfat and 

Raubitschek, 2018). Third, combining and applying existing knowledge components to a new 

domain is consistent with firms’ current organisational routines. It can lead to more predictable 

and efficient technological search and production process, while strengthening and extending the 

usefulness of inventions to different contexts (Arts and Veugelers, 2015). 

Contrastingly, depth can hinder firms’ novelty potential. First, it limits firms to improve along 

their current technological trajectories, restraining their exploration of distant knowledge. This 

lowers their scope for potential knowledge integration or redeployment of novel combinations, 
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making them likely to overlook trajectories in other domains that can complement and facilitate 

their own domain development (Miller, 2006; Papazoglou and Spanos, 2018). Second, depth 

encourages within-domain linkages. This can lead to further organisational inertia, limiting firms’ 

capability to modify existing knowledge structures and create novel combinations (George et al., 

2008). Because of cognitive information filters and normative beliefs, departures from firms’ 

current knowledge repertoires are more likely to be considered unnecessary and risky (Yayavaram 

and Chen, 2015; Nerkar, 2003). As argued in Section 2.1, the cost of incorporating distant 

knowledge is also higher for non-green firms (Diestre and Rajagopalan, 2011). The augmented 

deepening of firms’ capabilities can thus hamper their incentive to search for and combine new 

components. These behaviours reinforce local search and increase firms’ challenges in altering 

existing organisational, cognitive, and normative routines in learning and problem solving (Kaplan 

and Vakili, 2015; Henderson and Clark, 1990). Hence, we argue that depth is likely to boost the 

applicability potential of firms’ eco-innovation while dampening its novelty. When these two 

latent effects are combined, the above arguments lead to the following hypothesis:  

 

Hypothesis 2 (H2): The depth of firms’ technological capability steepens the curvilinear 

relationship (an inverted U-shaped) between firms’ green technological relatedness and green 

invention impact. 

 

2.3.2 Breadth of knowledge integration capability  

We make a related argument for the moderating effect of the breadth of firm’s knowledge 

integration capabilities (hereafter ‘breadth’), which represent firms’ diversity of cross-domain 

integration capability (Helfat and Raubitschek, 2018; Helfat and Campo-Rembado, 2016). When 

firms’ technological capabilities spread across several technological domains by adding new 

domain areas, the breadth of knowledge integration capability would moderate the two latent 
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mechanisms. It pushes the positive slope of applicability downward while raising the negative 

slope novelty upward. Combining the two latent effects would result in a flattened inverted U-

shaped curve, as shown in Figure 2(b). 

We expect green invention applicability to suffer further for firms with high breadth 

capabilities. First, technological capability development is often a time-consuming and resource-

intensive process (George et al., 2008). Firms with multiple domains are less likely to invest in 

and establish expertise in all domains simultaneously. They often face challenges in leveraging 

cross-domain knowledge to build cohesive ties and transfer tacit knowledge between their 

business units (Wuyts and Dutta, 2014). Thus, few firms are likely to develop sufficient knowledge 

depth to absorb knowledge across all their domains. This can hinder accurate identification and 

evaluation of internal and external knowledge sources to bridge different domains, further 

rendering invention-applicability uncertain (Capaldo et al., 2017). Second, the complexity of 

technological search and integration exponentially increases with additional dimensions (Fleming, 

2001; Yayavaram and Chen, 2015). The lack of a common knowledge interface makes it costly 

for firms with high breadth capabilities to increase their scope of integration. These firms can 

experience information overload and diseconomies of scales in knowledge dissemination and 

production (Katila and Ahuja, 2002). They also face ‘time-to-build’ costs due to the necessity of 

conducting extensive experiments to combine diverse knowledge components (Kaplan and Vakili, 

2015; Sakhartov, 2017). This decreases the possibility of finding valuable new components, 

resulting in excessive cognitive load and applicability impairment. 

Conversely, breadth can enhance invention novelty in two ways. First, prior experience in 

boundary spanning across different domains reveals new perspectives to assess problems. This 

increases the likelihood of novel linkages between domains, reinvigorating existing knowledge 

(Nerkar, 2003; Capaldo et al., 2017). Breadth can also increase the scope of knowledge search for 

distinctive variations in problem solving (Leten et al., 2016). Second, superior innovations rely on 

accurate matching of components within and across domains (Carnabuci and Operti, 2013). 
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Broader capabilities help firms better evaluate unfeasible paths and loosen internal structures with 

greater flexibility to adjust their knowledge combination trajectories (Moeen, 2017). The ability 

to combine technologically distant knowledge also provides firms with opportunities to create 

novel links. This increases the uniqueness of combinations through creative thinking across 

diverse technological fields (Wuyts and Dutta, 2014). Hence, we hypothesise that breadth 

capabilities decrease firms’ green invention applicability while enhancing its novelty. When 

combining these two latent effects, we expect  

 

Hypothesis 3 (H3): The breadth of firms’ technological capability flattens the curvilinear 

relationship (inverted U-shaped) between their green technological relatedness and green 

invention impact. 

 

3. Data and Method  

3.1 Empirical context  

To test our hypotheses, we obtained data on technological diversification and eco-innovation from 

firms located in China’s Silicon Valley, Zhongguancun Science Park (ZSP). This was an ideal 

setting for several reasons. First, although China has experienced unprecedented economic and 

technological growth within a short period, its success comes at a colossal environmental cost 

(Ning and Wang, 2018). This context provides us with an opportunity to understand firms’ 

intensified responses to rapid environmental degradation. The selection of regional samples also 

helps to reduce the possible impact of the heterogeneous local environmental regulations on firms’ 

innovation performance across different authorities. Second, our sample not only provides us with 

a rich pattern of firms’ green diversification, but also allows for a long observation period for our 

analysis. This is largely due to the uneven distribution of technological growth in China (Tong et 



18 
 

al., 2018; Ning et al., 2016). The ZSP was China’s first science and technology cluster directly 

established by the State Council in 1988. Most of China’s renowned high-tech giants, such as 

Lenovo, Baidu, Xiaomi, and Sohu, were founded in the ZSP. Third, the ZSP is China’s foremost 

high-technology community with top research institutions such as Tsinghua, Peking University, 

and the Chinese Academy of Sciences, apart from 251 research institutions and 62 key national 

laboratories, all of which contribute to the firms’ active investment in R&D activities to pursue 

patenting and the region’s rapid technological development. As we rely on patent data to trace the 

firms’ technological diversification and eco-invention activities, the ZSP provides us with a 

suitable sample to easily track patents from the State Intellectual Property Office (SIPO) of China.  

3.2 Data source and sample  

Our sample firms’ registration and annual financial information were collected from the annual 

census of the ZSP Administrative Committee between 2005 and 2015. To calculate our patent-

based indices, we tracked 36,376 firms in the ZSP census between 2000 and 2020, including a 

five-year window before and after the sample period. From the SIPO, we retrieved information on 

a total of 565,201 patents granted to 12,511 firms (see Section 3.3 for more detail). While patent-

based indicators have well-known limitations in capturing their full economic and technical value 

(Griliches, 1998), they provide us with extensive and standardised information on international 

patent classifications (IPCs) and citations for tracing firms’ inventions. 

To test our hypotheses, we examined de alio firms’ diversification to green domains for the 

first time and the consequential impact of their first green inventions. Because we needed to lag 

our dependent variable by one year to mitigate potential endogeneity, we identified 1,990 firms 

from the above sample that received their first green patents from 2006–2016. Data on firms’ 

financial information and main measurements included are from 2005–2015, which are used as 

independent variables. All firms with missing values and those with less than three-year financial 

information was excluded. We identified firms’ green patents using the IPC classifications by the 
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World Intellectual Property Organization (WIPO), which lists six categories of eco-innovations: 

alternative energy production; efficient transportation; energy conservation; waste management; 

agriculture-forestry; and administrative regulatory aspects (see Table 1).  

3.3 Variables  

3.3.1 Dependent variable 

Invention impact: To measure the technological impact of firms’ first eco-innovation, we relied on 

the count data on the number of forward citations received within five years. Forward citations are 

widely used in the literature to capture the technological impact of patented inventions and have 

been used synonymously with technological value, usefulness, and quality (Katila and Ahuja, 

2002; Capaldo et al., 2017; Keijl et al., 2016; Fleming, 2001). They also reflect the economic and 

technological information of the patents. High citation count indicates that a patented invention is 

regularly used by subsequent inventions as knowledge input, signifying its importance and impact 

(Capaldo et al., 2017). In line with the prior literature (Miller et al., 2007; Nerkar, 2003), we 

excluded self-citations and applied a fixed five-year window to filter forward citations and to 

account for the potential time effects of the impact of invention.  

3.3.2 Explanatory variable 

Technological relatedness: To measure the firms’ level of technological relatedness to a green 

domain during their first-time entry, we first measured the relatedness between each pair of 

technology domains. Following Leten et al. (2007), we considered two domains as related if 

patents in these domains frequently cite each other. The higher the technological relatedness, the 

more common the underlying knowledge base shared among the technological development in 

each domain (Leten et al., 2016). To construct a systematic pair-wise technological relatedness 

measure, we retrieved 640,960 forward and backward citations from 1990–2020 for 565,201 

patents granted to 12,511 ZSP firms identified in Section 3.2. We compared 𝑂𝑖𝑗 , the number of 
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observed patents in domain j cited by patents in domain i with the expected number 𝐸𝑖𝑗. The total 

number of observed citated patents in domain j with citations from domain i is calculated as: 

𝑂𝑖 = ∑ 𝑂𝑖𝑗
𝑗

(1) 

The total number of expected citations in domain j with citations from domain i is expressed 

as 

𝐸𝑖𝑗 = 𝑂𝑖 ∗ (𝑁𝑗 𝑇⁄ ) (2) 

𝑁𝑗 represents the number of patents in domain 𝑗. The total number of patents that can be cited 

by all other domains is calculated as 𝑇 = ∑ 𝑁𝑗𝑗 . The systematic relatedness of two domains i and 

j (𝑅𝑖𝑗) is subsequently computed as the ratio between the observed (𝑂𝑖𝑗 + 𝑂𝑗𝑖) and the expected 

number of citations (𝐸𝑖𝑗 + 𝐸𝑗𝑖), as shown below.  

𝑅𝑖𝑗 = (𝑂𝑖𝑗 + 𝑂𝑗𝑖) (𝐸𝑖𝑗 + 𝐸𝑗𝑖) ⁄ (3) 

We interpret that a high value of 𝑅𝑖𝑗  (if 𝑅𝑖𝑗 > 1 ) indicates a high relatedness between 

technologies i and j and implies more than expected citations based on random citation patterns.  

Finally, to calculate a firm’s green technological relatedness, we consolidated individual 

patents at the firm level. A firm’s total number of patents (P) in the past five years represents the 

firm’s technology portfolio in year t. If 𝑃𝑗 represents the total number of patents in the portfolio 

classified in domain 𝑗 , we expressed the level of technology relatedness of a firm’s existing 

technological repositories to a new green domain g as 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠 = ∑ (
𝑃𝑗

𝑃
)

𝑗
∗ 𝑅𝑔𝑗 (4) 

3.3.3 Moderating variables  

Knowledge integration capabilities: Knowledge integration capabilities are proxied by the total 

number of IPC co-occurrence at the four-digit level (subclass) in a focal firm’s patent portfolio. 

This approach was adopted from Carnabuci and Operti (2013). We focused on firms’ inter- and 
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intra-knowledge domain integration capabilities for various technological combinations. The 

SIPO assigns all patents with IPCs, which provides us with a standard method of identifying the 

knowledge components firms have successfully combined for their prior innovation from different 

domains. Drawing on the work of George et al. (2008) and Kotha et al. (2011), we further classified 

the firms’ integration capabilities into depth and breadth capabilities. The depth capability captures 

a firm’s depth of knowledge integration expertise within a domain. It is calculated as the maximum 

number of pairwise within-subclass combinations in a firm’s technological portfolio 𝑃 (a pool of 

patents during the last five years) prior to its technological diversification to the green domains2. 

                               𝐷𝑒𝑝𝑡ℎ = max
𝑗∈𝑃

(𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑛 𝐼𝑃𝐶 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 𝑗)                             (5)   

Likewise, the breadth capability captures the firms’ broad and cross-domain knowledge 

integration expertise. It is measured as the total number of pairwise cross-subclass combinations 

in a firm’s technological portfolio.  

                      𝐵𝑟𝑒𝑎𝑑𝑡ℎ = ∑ ∑ 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑟𝑜𝑠𝑠 𝐼𝑃𝐶 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑗 𝑎𝑛𝑑 𝑘

𝑘∈𝑃𝑗∈𝑃

                    (6)   

These two variables are in their natural logarithm form to reduce the initial skewness.  

3.3.4 Control variables  

First, we controlled for firm characteristics that might affect the impact of green inventions. These 

included firm size, measured by its total assets in million Chinese Yuan; firm age included the 

number of years from a firm’s establishment to the current year. A firm’s R&D intensity is 

measured by its R&D expenditure over its total number of employees. Firms with large 

technological portfolios are more experienced and are likely to have a greater innovation impact. 

We proxied this accumulated knowledge stock effect using the total number patents produced by 

a firm during the last five years (Schillebeeckx et al., 2020). Second, to control for the effects of 

the external business environment, we included domain competition following Leten et al. (2016). 

It captures the degree of competition in green domains and is measured using the Herfindahl index: 
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1 ∑ (𝑁𝑖/𝑁)2
𝑖⁄ . 𝑁𝑖 represents the number of patents that an incumbent firm 𝑖 owns in its technology 

domain, and 𝑁 represents the total number of patents in the focal domain. We also controlled for 

collaboration, measured by the percentage of co-patenting against a firm’s total patents to capture 

the firms’ knowledge exchange with their external partners (Carnabuci and Operti, 2013). The 

regulatory pressure for firms’ engagement in green technology investment is captured by the 

regional environmental stringency, measured by the total number of local environmental staff 

enforcing environmental regulations (Ning and Wang, 2018). Following Filatotchev et al. (2011), 

we controlled for the potential local knowledge spillovers using the ratio of the total R&D 

expenditure to the total number of employees in an industry (excluding the focal firm’s R&D 

expenditure and employees) to proxy this effect. Finally, we included industry, green IPC, and 

year dummy variables to respectively control for the effects of sectoral differences, heterogeneity 

of green IPC classes (Perruchas et al., 2020), and the temporal trends in patent citations. All the 

control variables were in the natural logarithm, except for the dummy variables. 

 3.4 Estimation methods 

Firms’ diversification into new green domains is unlikely to be completely random. These firms 

may be systematically different from firms that do not enter green domains and may self-select 

into eco-innovation activities. We followed the Heckman two-stage procedure to account for the 

potential selection bias (Heckman, 1979). In the first stage, we estimated a probit model of a firm’s 

entry into the green domain using the entire sample of 36,376 firms (see Section 3.2). After 

excluding firms with less than three-year financial information or those with missing registration 

details, we obtained 23,677 firms with 162,360 firm-year observations for the probit estimation. 

We considered several potential factors affecting a firm’s propensity to enter green domains. These 

included firm size, age, R&D intensity, state-ownership, profitability, knowledge stock, 

collaborative intensity, local knowledge spillovers, and regional environmental stringency. We 
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then calculated the inverse Mill’s ratio (IMR), which is included as a control variable in the second 

stage of the Heckman correction model.  

To test our hypotheses, we employed a zero-inflated negative binomial (ZINB) model with 

robust standard errors. This approach is appropriate for estimating models with a non-negative, 

count-dependent integer variable containing excess zeroes. As 64.32 % of patents in our 

observations did not have citations, they potentially violated the normality assumption (Cameron 

and Trivedi, 2013). We further performed Vuong tests across our models (P < 0.01), which 

indicates a preference for zero-inflated estimations (Vuong, 1989). Furthermore, the main 

assumption of a zero-inflated Poisson model is that the mean equals the variance. In our sample, 

the coefficient of the variance shows that the standard deviation is 1.896 times greater than the 

mean. However, the ZINB model allows the sample variance to be different from the mean to 

correct the sample’s over-dispersion from excess zeros (Cameron and Trivedi, 2013). Therefore, 

we adopted the ZINB model for our estimations and presented the zero-inflated Poisson (ZIP) 

estimations for comparison. Our model is expressed as follows: 

𝐼𝑚𝑝𝑎𝑐𝑡𝑡 = exp(𝛼0 + 𝛾𝑋𝑡−1 + 𝛽1𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑡−1 + 𝛽2𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑡−1
2 + 𝛽3𝐷𝑒𝑝𝑡ℎ𝑡−1

+ 𝛽4𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑡−1 × 𝐷𝑒𝑝𝑡ℎ𝑡−1 + 𝛽5𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑡−1
2 × 𝐷𝑒𝑝𝑡ℎ𝑡−1

+ 𝛽6𝐵𝑟𝑒𝑎𝑑𝑡ℎ𝑡−1 + 𝛽7𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑡−1 × 𝐵𝑟𝑒𝑎𝑑𝑡ℎ𝑡−1

+ 𝛽8𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑡−1
2 × 𝐵𝑟𝑒𝑎𝑑𝑡ℎ𝑡−1 + 𝐼𝑀𝑅𝑡−1 + 𝜎𝑖)                                   (7) 

where 𝑋 denotes all the control variables previously defined. IMR (Inverse Mill’s Ratio) is 

obtained from the probit estimation. All explanatory variables are lagged by one year.  
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4. Empirical results 

4.1 Descriptive statistics and regression results 

Table 1 presents the distribution of our sample firms as per the WIPO green IPC classifications. 

Table 2 presents four selected company cases with the most citations for their first green patent to 

illustrate how our sample firms diversify into the green domains. Firm A applied its prior 

communication technologies to create a traffic signal transmission system, which resulted in an 

improved transportation efficiency and a reduction in traffic emission. Firm B is an Internet-based 

firm that entered the telecommunications industry based on prior data management technologies. 

Firm C applied oil lubricant production technologies to invent new energy reservation techniques. 

Firm D developed a newly shaped building element by recycling solid waste using its cement 

production technology. These cases provide some examples for firms’ entry into a new green 

domain based on their previous knowledge. 

 

 

 

 

 

Table 3 reports the descriptive statistics and the pairwise correlations of our variables. On an 

average, our sample firms were 9.968 years old and had 6 patents. To examine the potential 

multicollinearity issues, we calculated the variance inflation factors, which was below the 

threshold value of 10 and had a mean value of 2.58. The results confirmed a lack of 

multicollinearity in our estimation. Table 4 presents the coefficients and the corresponding 

significance of the first-stage Heckman selection probit model. The IMR was calculated to correct 

the possible selection bias in our second-stage model. Table 5 presents the results of our baseline 

NB estimations in Models 1, 3, 5, 7, and 9. The alternative Poisson estimates are shown in Models 

--------------------------------------------- 

INSERT TABLE 1 &2 ABOUT HERE 

--------------------------------------------- 
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------------------------------------------------- 
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2, 4, 6, 8, and 10 as robustness checks. We first included our control variables and then added in 

our main explanatory variables. The IMR was significant across all models, indicating that the 

potential selection bias had been controlled for. The significant LnAlpha statistics further indicated 

our dependent variable’s over-dispersion issue. The ZINB model was more suitable for our 

estimations and showed more robust results than the ZIP models. Concerning the control variables, 

our results suggest that regional stringency is significantly and positively associated with green 

invention impact, whereas firm size is significantly and negatively associated it.  

 

 

 

H1 proposed an inverse U-shaped relationship between green technological relatedness and 

green inventions. In Model 3, we find a negative and significant quadratic effect, indicating the 

existence of a concave relationship between the firms’ green relatedness and the impact of 

inventions (𝛽 =  −0.067, 𝑝 <  0.01). These results were consistent across all the models. Figure 

3 provides a graphical analysis of the predicted values of patent impact based on Model 3, showing 

the range of relatedness values. Following Lind and Mehlum (2010), we further verified the 

marginal effect of the relatedness by checking the steepness of the slope at both ends of the 

relatedness data range. When relatedness equals 0, the slope is positive and statistically significant 

(0.145, 𝑝 <  0.05). This implies that a 1% increase in technological relatedness translates into a 

0.145-unit marginal increase in firms’ green invention impact. When the relatedness equals 4.032 

(the maximum value), the slope becomes negative and statistically significant (−0.207, 𝑝 <

 0.01). A 1% increase in relatedness leads to a 0.207-unit marginal decrease in the impact of green 

inventions. Next, we examined the location of the inverted U-shaped inflexion point. Our results 

show that the curvilinear relationship turns when technological relatedness equals 1.453 with a 

95% confidence interval (interval = [0.929, 1.978]). All the above results are within the relatedness 

data range, thus supporting H1. 

--------------------------------------------- 
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H2 contends that firms’ depth of technological capability steepens the curvilinear relationship 

proposed in H1. In Model 9, the interaction term 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 ∗ 𝐷𝑒𝑝𝑡ℎ is statistically 

significant (𝛽 =  −0.014, 𝑝 <  0.05 ). We plotted the positive moderating effects of depth in 

Table 4(a). However, this result only partially supported H2 because the nonlinearity of the ZINB 

model required further testing. Therefore, following Haans et al. (2016), we examined the slopes 

of ZINB regression at a different distance ‘a’ from the inflexion point. For simplicity, we compared 

these slopes at distance ‘a’ (between 0 and 1) at a depth of 0.5 standard deviations below and above 

the mean level. Figure 5(a) confirms the depth’s steepening effect as the line is significantly steeper 

at a high depth level than at a lower one. This supports H2. We repeated this process to analyse 

H3. In Model 9, the interaction term 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 ∗ 𝐵𝑟𝑒𝑎𝑑𝑡ℎ is statistically significant 

(𝛽 =  0.004, 𝑝 <  0.01). Figure 4(b) depicts the flattening effect of the breadth capability. This 

effect is further confirmed in Figure 5(b), as the line is significantly flatter at high than at low 

levels of breadth. The larger the breadth, the flatter the concave relationship between technological 

relatedness and green invention impact, thus supporting H3. 

. 

 

 

4.2 Post-hoc analysis 

To draw policy and managerial implications, we inspected the movements of the inflection points 

resulting from the moderating effects of depth and breadth capabilities. Regarding depth, we first 

visually inspected whether the inflection point in Figure 4(a) shifted to a higher level of invention 

impact with an increase in depth. Following Haans et al. (2016), we inspected this variation by 
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calculating the vertex coordinates when the depth was at a 0.5 standard deviation below and above 

its mean, and the statistical significance of the shift. We found that the coordinates respectively 

moved from (𝑥 =  1.699;  𝑦 =  0.832) to (𝑥 =  1.703;  𝑦 =  0.947) towards higher values of 

invention impacts, but the shift of the level of technological relatedness was statistically 

insignificant (𝑧 = 0.42, 𝑝 > 0.1 for depth at mean-0.5 standard deviation; 𝑧 = 0.28, 𝑝 > 0.1 for 

depth at mean +0.5 standard deviation). These results complement H2 on the steepening 

moderation effect of depth, suggesting that firms’ depth capability increases the optimal level of 

green invention impact, but without a corresponding shift in the level of technological relatedness. 

Concerning breadth capability, Figure 4(b) shows that as the breadth increases from a lower 

to a higher value, the inflection point moves from ( 𝑥 =  2.092;  𝑦 =  1.056 ) to ( 𝑥 =

 1.712;  𝑦 =  0.831 ), respectively. The coordinates shift towards the left of the lower level of 

technological relatedness and are statistically significant (𝑧 = −3.10, 𝑝 < 0.01  for breadth at 

mean -0.5 standard deviation; 𝑧 = −2.02, 𝑝 < 0.05 for breadth at mean +0.5 standard deviation). 

The breadth capability also exhibits a lower level of the optimal green invention impact. It 

moderates the inverted U-shaped relationship between green technological relatedness and 

invention impact by shifting the point of balance towards a lower level of technological relatedness 

and invention impact. Regarding the flattening moderation effect proposed in H3, these additional 

results imply that a firm can achieve its peak green invention impact earlier at a lower level of 

technological relatedness than at a high level. However, the level of the overall invention impact 

is also lower for firms with a greater breadth of technological capability. 

4.3 Robustness tests 

We conducted several robustness checks for our results. First, we explored whether our results 

were sensitive to firms with different levels of knowledge stock. We ran additional analyses on 

firms where patents in the last five years ranged from at least one to at least six  (see Table 6). 

Consistent with our hypotheses, these subsamples did not show a deviation from our main results. 
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Second, we adopted the linear spline model suggested by Greene (2003), as an alternative method 

to test the non-linear effect of technological relatedness. Third, we considered alternative patent 

accumulation windows using three, four, and six years to calculate our patent-based measurements 

in Section 3.3. Fourth, we lagged the explanatory variables by two and three years to further 

control for potential dynamic endogeneity. Finally, we included alternative measurements of our 

explanatory variables, including R&D intensity, measured by the ratio of R&D expenditure scaled 

by total sales; firms’ size, proxied by the total number of employees; and local knowledge 

spillovers, proxied by industrial R&D per employee at a two-digit level. Our estimates remained 

materially unchanged. We present the results of the linear spline model, alternative 3-year 

accumulation windows of dependent variable and alternative measurements of control variables 

in Appendix Table A1. For brevity, the remaining robustness test results are available upon request.  

 

 

 

5. Conclusion and discussion  

This study aimed at exploring how diversifying firms can develop impactful green inventions by 

redeploying their pre-existing related technological resources, and how this process is shaped by 

their integration capabilities. To shed light on these issues, we drew upon the resource-based view 

of technological diversification to suggest that de alio firms’ technological relatedness to green 

domains would have a curvilinear relationship with the impact of eco-invention. We further 

explored two conflated but different knowledge integration capabilities on firms’ green invention 

impact. Using patent data of 1,990 Chinese firms that diversified into green domains for the first 

time between 2006 and 2016, our empirical results provide compelling evidence that the green-

related attributes of firms’ pre-existing technological resources contribute to their invention 

impact, up to a point where these resources are moderately related to the target green domains. 
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Beyond that point, the impact declines. Thus, the ‘related’ technological diversification presents a 

paradox that can facilitate and hinder the exploitation of existing resources in creating impactful 

green inventions, depending on the degree of technological relatedness of firms’ knowledge 

resources to the targeted green domains. Moreover, we found that having a depth of knowledge 

integration capability hastens the utilisation of related technological resources to create more 

impact of green inventions. The breadth of the capability decreases this relationship and reduces 

the overall impact. However, it enables firms to reach their potential peak impact at an earlier time 

with lower degrees of green technological relatedness.  

5.1 Contributions to the literature 

The contributions of our study are twofold. First, we theorised a concave-shaped relationship 

between firms’ green technological relatedness and the impact of inventions due to a multiplicative 

combination of two underlying latent mechanisms, invention applicability and novelty. This 

allowed us to provide a fine-grained explanation of firms’ diversification in specific eco-

innovation settings and followed the best theoretical practices in depicting the observed quadratic 

effects, based on the work of Haans et al. (2016). We highlight the importance of considering the 

related attributes of firms’ existing technological resources. Technological relatedness is often 

positively associated with invention applicability derived from the firms’ prior familiarity with 

related knowledge domains (Zhou and Wu, 2010; Capaldo et al., 2017). It can also enhance the 

usefulness and relevance of inventions by bridging existing knowledge with green domains 

(Capaldo et al., 2017). However, firms relying overly on green technological relatedness can 

impair novelty creation due to their tendency to favour familiarity over distant knowledge while 

engaging in radical improvements (March 1991). Together with organizational learning rigidity, 

firms can exhibit limited scope of invention novelty to create impact. Green technological 

relatedness determines firms’ synergetic knowledge potential between the existing domains and 

the newly targeted green domains. Thus, our study enriches the understanding of the extent to 
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which firms’ prior technological relatedness to green domains contributes to the ex-post invention 

impact.  

Second, we contribute to the technological diversification literature by elucidating why some 

established firms are better at creating impactful eco-innovation based on their knowledge 

integration capabilities. We contend that firms’ green technological relatedness provides 

opportunities to exploit existing resources to create an invention impact. While it is a necessary 

condition, the extent to which firms can redeploy existing related knowledge is contingent on their 

prior knowledge integration capabilities. Our study substantively complements prior research 

exploring the antecedents of firms’ recombining capabilities in innovation (Carnabuci and Operti, 

2013). In contrast with most previous studies that regard technological capabilities as a 

determinant for diversification into new domain (Ceipek et al., 2019; Moeen, 2017), our study 

sheds light on the role of firms’ differing technological capabilities. Since innovation comes from 

technological recombination (Fleming, 2001; Sliverman, 1999), we argue that the cumulated 

breadth and depth of firms’ prior knowledge integration capabilities can provide them with various 

experience-based advantages to achieve invention impact. This distinction clarifies the ambiguous 

role of firms’ pre-diversification resources and capabilities in contributing towards the creation of 

impactful inventions.  

5.2 Policy and managerial implications  

In terms of policy, the acceleration of eco-innovation and its effective diffusion are relevant to 

both public and private sectors to address the growing concerns of human-induced climate change 

and environmental degradation. Our study provides policymakers with a better understanding of 

how firms pursue environmental innovation and its consequential technological usefulness. Eco-

innovation is not firms’ simple response to regulatory pressures, but a result of firms’ past efforts 

in accumulating technological resources and developing their capabilities (Breschi et al., 2003). 

Thus, an effective policy intervention design should not only target the reconfiguration of firms’ 
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existing technological resources but also foster their knowledge integration capabilities. Our study 

recommends placing policy focus on facilitating diversification into those green domains to which 

firms’ technological profile is moderately related. Moreover, firms’ pre-entry breadth capabilities 

in integrating cross-domain knowledge enable them to achieve optimal impact at lower levels of 

green relatedness, while depth capabilities in niche areas raise the overall levels of invention 

impact when firms exploit their existing knowledge base. Thus, by attentively evaluating firms’ 

technological attributes and integration capabilities, policymakers can provide more tailored 

support to enable firms to maximise their eco-invention impact and bring greater benefits to the 

wider society.  

Regarding managerial implications, our study helps firms to refocus their eco-innovation 

efforts based on the degree of their technological resource relatedness to their target green domains 

and their knowledge integration capabilities. For established firms that previously only made 

conventional offerings, diversifying into green domains for the first time is not straightforward. 

This requires additional effort and investment to overcome organisational inertia (Barbieri et al., 

2020). Our study shows that the dependence on resources excessively related to the target green 

domains reduce the impact of consequential innovation efforts, making their green transition 

trajectories ineffective. We show that there is an optimal level of green technological relatedness, 

beyond which the consequential invention impact starts depreciating. Investing in depth 

capabilities can provide firms with a more comprehensive understanding of causal relationships 

in a domain. Firms can further raise the overall impact of their inventions when exploiting the 

existing, green-related technological resources. Conversely, fostering breadth capabilities allows 

firms to develop broad cross-domain integration capabilities and lowers required extent of green 

relatedness to reach optimal impact, even though the overall impact becomes smaller than before. 

Thus, managers are advised to systematically evaluate their firms’ green technological relatedness 

and integration capabilities before choosing to target green domains to maximise both financial 

and technological value.  
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5.3 Research limitations and direction for future research 

In closing, we acknowledge our research limitations and identify some areas for further research. 

First, we chose China’s leading science park as our empirical setting. Firms based in this unique 

emerging market context have demonstrated unprecedented technological advancements over a 

short period. While we assure a rich pattern of diversification into green domains, our results might 

be more pronounced in other countries or in less prominent clusters. Consequently, the 

generalisation of our results can be restricted to the Chinese context or to clusters with rapid 

expansion. We invite future studies to explore the proposed mechanisms in other contexts or in a 

cross-country setting. Second, due to data limitations, we could not control for the effects of 

internal R&D teams, external collaboration networks, paradigm shifts in industrial technology, or 

the specificities of stakeholder pressures or government subsidy programs (Schillebeeckx et al., 

2020; Ceipek et al., 2019). Third, our study was exclusively based on firms’ patents and citations 

data for assessing their resources and capabilities. This may underestimate firms’ full eco-

invention impact (Ning et al., 2016). Fourth, prior research has undertaken a dynamic analysis of 

firms’ resources and capability for value creation (Helfat and Raubitschek, 2018). Future research 

can consider disentangling the effects of depth and breadth capabilities on inventions and explore 

their diminishing returns. Fifth, future research can explore other contingencies that might 

moderate the relationship between firms’ technological relatedness and green invention impact. 

These include non-market factors such as reputation, the complexity of industrial competition, 

internal organisational and managerial strategic changes (Ceipek et al., 2019) and the impact of 

regional capabilities (Neffke et al., 2011; Santoalha, 2019; Boschma, 2017)1. In doing so, future 

research can provide a more holistic understanding of how different resource attributes influence 

the impact of firms’ green inventions. Nevertheless, our study opens avenues for research into the 

technological diversification of established firms in developing impactful green inventions.  
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Figure 1 The multiplicative combinations of latent mechanisms resulting in an inverted U-shaped 

relationship 
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Figure 2 The hypothesized moderating effects of depth and breadth capabilities on the concave 

relationship between technological relatedness and green invention impact 

 

 

 

 

 

 

 

 

 

Figure 3 Technological relatedness and invention impact 
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Figure 4 The moderating effect of capability depth and breadth on the relationship between 

technological relatedness and invention impact 
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Figure 5 Analyses of the slopes from the inflection point at distance ‘a’. 
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Table 1 WIPO Green IPC Classifications and Patent Sample Distribution 

Innovation types Sub-innovation types IPC classifications Share. of Patents 

Alternative energy 

production 

Integrated gasification 
C10L 3/00 1.73% 

F02C 3/28 0.25% 

Fuel cells 
H01M [4/86-4/98, 8/00-

8/24, 12/00-12/08] 
1.09% 

Pyrolysis  
C10B 53/00 0.69% 

C10J 0.59% 

Ocean energy F03G 7/05 0.10% 

Wind  F03D 1.43% 

Solar  
F24S 0.05% 

H02S 0.74% 

Nuclear 
G21 1.14% 

F02C 1/05 0.20% 

Other use of heat 

F24T [10/00-50/00] 0.00% 

F24V [30/00-50/00] 0.00% 

F03G [5/00-5/08] 0.05%     

Transportation 
Rail vehicles B61 3.46% 

Cosmonautic vehicles B64G 1/44 0.15%     

Energy 

conservation 

Storage of electrical 

energy 

B60K 6/28 0.94% 

B60W 10/26 0.25% 

H01M [10/44-10/46] 1.48% 

H01G 11/00 0.39% 

H02J [3/28, 7/00, 15/00] 1.38% 

Power supply circuitry 

H02J  8.98% 

B60L 3/00 0.54% 

G01R 16.19% 

Storage of thermal 

energy 

C09K 5/00 1.48% 

F24H 7/00 2.37% 

F28D [20/00, 20/02] 3.41% 

E04B [1/62, 1/74-

1/80, 1/88, 1/90] 
3.21% 

Recovering 

mechanical energy 
F03G 7/08 0.05% 

        

Waste management 

Waste disposal 
B09B 1.92% 

B65F 0.30% 

Consuming waste by 

combustion 
F23G 1.58% 

    

Agriculture/forestry 

Forestry techniques 
A01G 23/00 1.53% 

A01G 25/00 1.09% 

Pesticide alternatives A01N [25/00-65/00] 2.27% 

Soil improvement 
C09K 17/00 2.07% 

E02D 3/00 3.46%     
Administrative 

regulatory or 

design aspects 

HOV, teleworking 
G06Q 25.27% 

G08G 4.84% 

Static structure design E04H 1/00 3.36% 
Notes: (1) total number of sample patents: 1,990. (2) Sources: World Intellectual Property Organization (WIPO), 

Green IPC inventory, November 2020, accessed at www.wipo.int/classifications/ipc/en/green_inventory/ 

https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=C10J
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=F03G0007050000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=F03D
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=F24S
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=H02S
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=G21
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=B61
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=B64G0001440000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=B60K0006280000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=B60W0010260000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=H01G0011000000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=H02J
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=B60L0003000000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=G01R
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=C09K0005000000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=F24H0007000000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=F03G0007080000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=B09B
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=B65F
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=F23G
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=A01G0023000000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=A01G0025000000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=C09K0017000000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=E02D0003000000
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=G06Q
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=G08G
https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=E04H0001000000
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Table 2 Four Selected Cases of Technological Diversification into the Green Domains 

Firms A B C D 

Industries Software Application Services Computer, software and 

auxiliary equipment 

Crude oil processing and 

petroleum products 

manufacturing 

Cement product 

manufacturing 

Year of 

Establishment 

2006 2005 2002 2002 

First green patents Traffic instruction system Teleworking Heat-transfer, exchange and 

storage materials 

Disposal of solid waste 

Green IPC G08G 1/01 G06Q 10/06 C09K 5/00 B09B 3/00 

IPC subclasses of 

knowledge stock 

H04Q, H04M, G10L G06F, G11B, H04L, H05K C10M, C10N, C23C, C23G B28B, E03F, E04C, C04B 

Entry year 2008 2011 2011 2009 

Previous 

technologies. 

 

 

 

 

 

Green innovation 

 

 

 

 

Software systems in 

telephonic communication. 

 

 

 

 

 

Applied the core 

technology to develop an 

intelligent transportation 

solution & service system 

with applications for 

improving travel efficiency 

and reducing traffic 

emissions. 

Digital data processing and 

information storage, 

including transmission of 

digital information and cloud 

storage systems. 

 

 

Used data management 

technologies to develop a 

teleworking system that reduces 

commuting costs and energy 

consumption. 

 

Core technologies in 

chemical lubricating 

compositions; cleaning or 

pickling metallic material 

with solutions or molten 

salts. 

 

Developed new materials 

that improves the energy 

reservation application of 

their lubrication products 

that reduce the heat-loss in 

manufacturing equipment.  

Core technologies in 

cement manufacturing and 

other building materials. 

 

 

 

 

Developed a technology 

that breaks down solid 

waste and transforms it 

into recycled building 

materials. 

 

Note: firms’ names are anonymized for data protection purposes.  

https://www.wipo.int/classifications/ipc/ipcpub/?lang=en&symbol=C09K0005000000
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 Table 3 Descriptive statistics and correlation matrix 

Variables Mean Std.Dev. Min  Max 1 2 3 4 5 6 7 8 9 10 11 12 

Impact 0.807 1.530 0  8 1.000            

Relatedness 1.116 1.566 0  4.032 -0.016 1.000           
Depth 1.047 1.148 0  4.220 0.005 0.111 1.000          
Breadth 1.256 1.476 0  5.193 0.051 0.233 0.319 1.000         
Firm size 587.9 3850 0.025  130000 -0.018 -0.002 0.056 0.073 1.000        
Firm age 9.968 9.719 1  116 -0.082 0.027 0.063 0.078 0.054 1.000       
Firm R&D intensity 0.059 0.090 0  0.620 0.023 0.001 0.050 0.052 0.011 -0.009 1.000      
Knowledge stock 6.135 18.560 0  443 -0.056 0.281 0.322 0.378 0.071 0.107 0.064 1.000     
Domain competition 10.150 3.205 1.751  16.50 -0.093 -0.044 0.055 0.036 0.024 0.076 0.021 0.073 1.000    
Collaborative patent 0.037 0.164 0  1 0.002 0.018 0.084 0.071 0.059 0.055 0.002 0.131 0.007 1.000   
Knowledge spillovers 0.057 0.044 0  0.920 0.023 -0.028 0.020 0.016 0.075 0.007 0.054 0.006 0.094 0.061 1.000  

Environmental stringency 87185 8391 70400  99200 0.205 0.045 0.085 0.158 0.055 0.212 0.035 0.225 0.377 0.059 0.094 1.000 

Notes: (1) N=1,990; (2) All absolute correlation coefficients greater than 0.008 are significant at the 5 percent level. 
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Table 4 Green Domain Entry Propensity: The First-Stage Heckman Probit Model 

 Green domain Entry (0=No, 1=Yes) 

VARIABLES Estimate SE 

      

Firm size 0.124*** (0.006) 

Firm age -0.007*** (0.002) 

R&D intensity 0.043*** (0.006) 

State-ownership 0.047 (0.047) 

ROA 0.494*** (0.097) 

Knowledge stock 0.369*** (0.009) 

Collaboration 0.456*** (0.060) 

Environmental stringency 0.164** (0.081) 

Knowledge spillovers 0.062 (0.076) 

Relatedness 0.028*** (0.000) 

Constant -3.623*** (1.283) 

   
Year dummies Included  

Industry dummies Included  

LR Chi2 26957.40  

Pseudo R2 0.575  

Log likelihood -9960.87  
Notes: (1) Estimations are based on a panel of 23,677 sample firms; (2) state-ownership is a dummy variable; ROA 

is the average ratio of firms’ total profit over total assets at the two-digit industry level; all other variables are defined 

in section 3.1; (3) Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table 5 Zero Inflated Negative Binomial and Poisson Analyses with Heckman corrections for Green Technological Impact 

  (1) (2) 
 

(3) (4) 
 

(5) (6) 
 

(7) (8) 
 

(9) (10) 

VARIABLES Impact Impact 
 

Impact Impact 
 

Impact Impact 
 

Impact Impact 
 

Impact Impact 

 ZINB ZIP  ZINB ZIP  ZINB ZIP  ZINB ZIP  ZINB ZIP 

                              

Firm size -0.027 -0.029*  -0.045** -0.045**  -0.055*** -0.059***  -0.041** -0.041**  -0.058*** -0.055*** 

 (0.017) (0.016)  (0.018) (0.018)  (0.016) (0.020)  (0.018) (0.018)  (0.022) (0.021) 

Firm age -0.005* -0.005  -0.004 -0.004  -0.004 -0.004  -0.004 -0.004  -0.004 -0.004 

 (0.003) (0.004)  (0.003) (0.003)  (0.004) (0.004)  (0.003) (0.003)  (0.003) (0.003) 

R&D intensity 0.004 0.007  0.004 0.003  0.003 0.000  0.001 0.002  0.003 0.008 

 (0.017) (0.015)  (0.017) (0.017)  (0.015) (0.018)  (0.017) (0.017)  (0.020) (0.020) 

Knowledge stock -0.047 -0.063*  -0.095* -0.090*  -0.135*** -0.150***  -0.130** -0.127**  -0.183*** -0.168*** 

 (0.039) (0.032)  (0.050) (0.050)  (0.043) (0.054)  (0.057) (0.058)  (0.058) (0.058) 

Domain competition 0.034*** 0.033***  0.024** 0.024**  0.018* 0.019  0.025** 0.024**  0.020* 0.021* 

 (0.010) (0.010)  (0.010) (0.010)  (0.010) (0.012)  (0.010) (0.010)  (0.011) (0.011) 

Collaboration 0.221 0.218  0.153 0.167  0.132 0.105  0.189 0.204  0.126 0.168 

 (0.199) (0.145)  (0.205) (0.210)  (0.147) (0.178)  (0.203) (0.207)  (0.209) (0.209) 

Environmental stringency 0.039*** 0.022***  0.038*** 0.037***  0.018*** 0.019***  0.039*** 0.039***  0.019*** 0.019*** 

 (0.007) (0.004)  (0.007) (0.007)  (0.004) (0.004)  (0.007) (0.007)  (0.004) (0.004) 

Knowledge spillovers 0.935 0.915  0.894 0.911  0.745 0.674  0.884 0.902  0.683 0.798 

 (0.790) (0.775)  (0.803) (0.802)  (0.768) (0.932)  (0.795) (0.792)  (0.883) (0.887) 

Relatedness    0.197** 0.195**  0.186** 0.199**  0.262*** 0.262***  0.301*** 0.294*** 

    (0.094) (0.095)  (0.086) (0.96)  (0.100) (0.101)  (0.112) (0.103) 

Relatedness square    -0.067*** -0.071***  -0.051** -0.058*  -0.080*** -0.079***  -0.075** -0.084*** 

    (0.025) (0.026)  (0.025) (0.031)  (0.028) (0.028)  (0.034) (0.029) 

Depth       0.023*** 0.022***     0.016** 0.015** 

       (0.006) (0.007)     (0.008) (0.007) 

Relatedness*Depth       0.026** 0.028*     0.032*** 0.028*** 

       (0.012) (0.015)     (0.011) (0.008) 

Relatedness squared*Depth       -0.011** -0.013**     -0.014** -0.013** 

       (0.006) (0.007)     (0.007) (0.006) 

Breadth          0.036*** 0.037***  0.059*** 0.044** 

          (0.010) (0.010)  (0.022) (0.021) 

Relatedness*Breadth          -0.025*** -0.026***  -0.023*** -0.021** 

          (0.009) (0.009)  (0.005) (0.009) 
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Relatedness squared*Breadth          0.004** 0.006***  0.004*** 0.007** 

          (0.002) (0.002)  (0.001) (0.003) 

IMR -0.240*** -0.259***  -0.238*** -0.225***  -0.223*** -0.268***  -0.243*** -0.230***  -0.279*** -0.238*** 

 (0.053) (0.051)  (0.090) (0.083)  (0.064) (0.094)  (0.089) (0.082)  (0.102) (0.083) 

Constant 1.407*** 1.410***  1.132** 1.174**  1.857*** 1.993***  1.224*** 1.226***  1.831*** 1.987*** 

 (0.509) (0.475)  (0.549) (0.531)  (0.470) (0.518)  (0.435) (0.429)  (0.451) (0.466) 

               

Year dummies Included Included  Included Included  Included Included  Included Included  Included Included 

Industry dummies Included Included  Included Included  Included Included  Included Included  Included Included 

Green IPC dummies Included Included  Included Included  Included Included  Included Included  Included Included 

LnAlpha -2.384*** N/A  -2.450*** N/A  -1.695*** N/A  -2.546*** N/A  -1.724*** N/A 

Vuong test 56.17*** 29.73***  55.48*** 29.81***  62.98*** 30.09***  55.45*** 30.18***  62.52*** 30.98*** 

LR Chi2 276.18 82.59  309.20 321.77  118.01 180.83  359.17 401.88  172.53 219.81 

Log likelihood -1306.904 -1367.399  -1301.723 -1346.176  -1349.688 -1304.086  -1332.92 -1294.490  -1301.002 -1344.969 

Observations 1,990 1,990  1,990 1,990  1,990 1,990  1,990 1,990  1,990 1,990 

Notes: (1) Vuong test is to test the standard negative binomial (Poisson) model v.s. Zero inflated negative binomial (Poisson) model. (2) Robust standard errors 

in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table 6 Zero Inflated Negative Binomial Analyses with Heckman Corrections for Green Technological Impact – Subsample Analysis by 

Knowledge Stock 

 Patent ≥ 1  Patent ≥ 2  Patent ≥ 3  Patent ≥ 4  Patent ≥ 5  Patent ≥ 6 

 VARIABLES (1)  (2)  (3)   (4)  (5)  (6) 

                

Firm size -0.054**  -0.052**  -0.058*  -0.055**  -0.053**  -0.043** 

 (0.025)  (0.026)  (0.030)  (0.023)  (0.025)  (0.021) 

Firm age -0.007  -0.011*  -0.011  -0.007  -0.006  -0.005 

 (0.006)  (0.007)  (0.007)  (0.007)  (0.008)  (0.008) 

R&D intensity 0.015  0.001  0.004  0.023  0.037  0.059 

 (0.024)  (0.028)  (0.031)  (0.034)  (0.036)  (0.039) 

Domain competition 0.024  0.021  0.022  0.041**  0.033*  0.055** 

 (0.016)  (0.018)  (0.020)  (0.021)  (0.019)  (0.025) 

Collaboration 0.572***  0.548**  0.575**  0.605**  0.662**  0.671** 

 (0.187)  (0.237)  (0.293)  (0.296)  (0.300)  (0.307) 

Environmental stringency 0.021***  0.020***  0.022***  0.023***  0.023***  0.023*** 

 (0.005)  (0.006)  (0.006)  (0.007)  (0.007)  (0.007) 

Knowledge spillovers 0.995  0.949  0.961  0.887  0.762  0.791 

 (1.131)  (1.252)  (1.395)  (1.465)  (1.565)  (1.655) 

Relatedness 0.273**  0.397***  0.260**  0.206**  0.280***  0.496** 

 (0.113)  (0.134)  (0.125)  (0.099)  (0.091)  (0.217) 

Relatedness square -0.092***  -0.128***  -0.060**  -0.079**  -0.118**  -0.173*** 

 (0.036)  (0.041)  (0.026)  (0.033)  (0.058)  (0.063) 

Depth 0.015***  0.022**  0.020**  0.021**  0.019**  0.032* 

 (0.003)  (0.010)  (0.010)  (0.010)  (0.010)  (0.017) 

Relatedness*Depth 0.028**  0.025***  0.040**  0.040**  0.038**  0.041** 

 (0.013)  (0.008)  (0.018)  (0.018)  (0.018)  (0.019) 

Relatedness squared*Depth -0.007**  -0.006**  -0.011**  -0.010**  -0.010**  -0.013** 

 (0.003)  (0.003)  (0.005)  (0.005)  (0.005)  (0.006) 

Breadth 0.053**  0.052**  0.050**  0.050**  0.049**  0.036* 

 (0.022)  (0.022)  (0.022)  (0.022)  (0.022)  (0.020) 

Relatedness*Breadth -0.038**  -0.039**  -0.032*  -0.034**  -0.038**  -0.038** 

 (0.017)  (0.017)  (0.017)  (0.017)  (0.017)  (0.018) 

Relatedness squared*Breadth 0.006**  0.006**  0.006**  0.006**  0.007**  0.009** 
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 (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.004) 

IMR -0.396***  -0.530***  -0.459***  -0.457**  -0.631***  -0.671*** 

 (0.142)  (0.162)  (0.178)  (0.205)  (0.223)  (0.241) 

Constant 1.408***  1.365***  1.327***  1.301***  1.413***  1.374*** 

 (0.513)  (0.474)  (0.429)  (0.491)  (0.422)  (0.507) 

            

Year dummies Included  Included  Included  Included  Included  Included 

Industry dummies Included  Included  Included 
 

Included  Included  Included 

Green IPC dummies Included  Included  Included  Included  Included  Included 

lnalpha -3.143***  -4.122***  -4.821***  -2.829***  -2.877***  -2.739*** 

Vuong test 43.13***  36.72***  33.35***  37.10***  33.37***  32.83*** 

LR Chi2 51.26  46.54  53.48  49.16  53.36  48.24 

Log likelihood -573.218  -498.186  -414.445  -349.716  -242.227  -165.371 

Observations 1,118  921  762   659  579  512 

Notes: (1) Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Appendix  

Table A1 Robustness checks 

 

Alternative 3-year window of  

dependent variable 

 Alternative  

control variables 

 

Linear spline 

VARIABLES (1) (2) (3)  (4) (5) (6)  (7) 

          
Firm size -0.028 -0.023 -0.023  -0.046* -0.040* -0.039*  -0.047*** 

 (0.020) (0.020) (0.020)  (0.024) (0.024) (0.024)  (0.018) 

Firm age -0.002 -0.002 -0.002  -0.004 -0.004 -0.004  -0.003 

 (0.004) (0.004) (0.004)  (0.004) (0.004) (0.004)  (0.003) 

R&D intensity 0.006 0.005 0.002  0.004 0.006 0.005  0.005 

 (0.018) (0.018) (0.018)  (0.011) (0.011) (0.011)  (0.017) 

Knowledge stock -0.149*** -0.181*** -0.211***  -0.110*** -0.150*** -0.155***  -0.104** 
 

(0.045) (0.059) (0.057)  (0.042) (0.055) (0.052)  (0.048) 

Domain competition 0.024** 0.024** 0.024**  0.028*** 0.027*** 0.028***  0.023** 

 (0.012) (0.012) (0.012)  (0.010) (0.010) (0.010)  (0.011) 

Collaboration 0.182 0.159 0.166  0.122 0.139 0.151  0.151 

 (0.199) (0.200) (0.201)  (0.165) (0.164) (0.164)  (0.201) 

Environmental stringency 0.009** 0.009** 0.009**  0.022*** 0.022*** 0.022***  0.036*** 

 (0.004) (0.004) (0.004)  (0.004) (0.004) (0.004)  (0.007) 

Knowledge spillovers 0.675 0.684 0.621  1.088 1.087 0.928  0.783 

 (0.426) (0.425) (0.414)  (1.191) (1.188) (1.184)  (0.794) 

Relatedness 0.175** 0.172** 0.214**  0.215** 0.224** 0.277***   

 (0.086) (0.088) (0.107)  (0.088) (0.101) (0.098)   
Relatedness square -0.068** -0.052* -0.064**  -0.076*** -0.065** -0.082***   

 (0.029) (0.032) (0.030)  (0.025) (0.029) (0.027)   
Depth  0.040**    0.042**    

  (0.018)    (0.018)    
Relatedness*Depth  0.014    0.017    

  (0.023)    (0.021)    
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Relatedness squared*Depth  -0.015**    -0.014**    

  (0.007)    (0.006)    
Breadth   0.045***    0.039***   
 

  (0.013)    (0.012)   
Relatedness*Breadth   -0.019**    -0.025**   
 

  (0.009)    (0.012)   
Relatedness squared*Breadth   0.003***    0.004***   
 

  (0.001)    (0.001)   
Low Relatedness         0.429*** 
 

        (0.138) 

High Relatedness         -0.295*** 
 

        (0.075) 

IMR -0.310*** -0.299*** -0.306***  -0.230*** -0.223*** -0.233***  -0.239*** 

 (0.085) (0.087) (0.087)  (0.078) (0.078) (0.078)  (0.082) 

Constant 1.171** 1.191** 1.138**  2.293*** 2.369*** 2.381***  1.900** 

 (0.522) (0.521) (0.521)  (0.499) (0.472) (0.477)  (0.867) 

          
Year dummies Included Included Included  Included Included Included  Included 

Industry dummies Included Included Included  Included Included Included  Included 

Green IPC dummies Included Included Included  Included Included Included  Included 

lnalpha -3.112*** -4.013*** -4.316***  -2.798*** -2.936*** -2.765***  -3.659*** 

Observations 1,990 1,990 1,990  1,990 1,990 1,990  1,990 

Notes: (1) The dependent variables for Models 1-3 are measured by the accumulation windows three years; (2) Models 4-6 use alternative measurements of our control 

variables, including R&D intensity, measured by the ratio of R&D expenditure scaled by total sales; firms’ size, proxied by the total number of employees; and local 

knowledge spillovers, proxied by industrial R&D per employee at a two-digit level; (3) Model 7 is estimated using the linear spline model. As shown, at low level, the 

technological relatedness has a significantly positive impact of patent citation; while at high level, the technological relatedness has a significantly negative impact. The 

results further confirm the non-linear relationship between a firm’s technological relatedness and green technological impact. (4) Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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1  This paper focuses exclusively on firms’ innovation management literature in understanding how technological relatedness affects the 

diversification of firms’ technological portfolios. It is rooted in the work of (Breschi, Lissoni, & Malerba, 2003; Leten, Belderbos, & Van Looy, 

2007). At the aggregated industry or regional level, a strand of economic geography literature on relatedness deliberates how the heterogeneity of 

local capabilities such as infrastructure, natural resources, institutional conditions, and pre-existing local knowledge or skills can lead regions to 

diversify into new industrial activities (Boschma, 2017; Neffke, Henning, & Boschma, 2011; Santoalha, 2019). Although our contribution is limited 

to the firm-level literature, it provides a micro perspective on possible reconfigurations for firms’ resources and capabilities to pursue impactful 

green innovation in new technological domains. Future research can build on our work and bridge the relatedness research to enrich our 

understanding on how the regional capabilities can influence firms’ green technological diversification. 
 
2 We adopt the absolute IPC combination numbers rather than a concentrated or scaled index, following the previous research by George, Kotha, 

and Zheng (2008), Kotha, Zheng, and George (2011), and Xu (2015) Compared with the index based on the absolute IPC numbers, the latter two 

types of indices may underestimate firms’ depth or breadth capabilities. Regarding depth, for example, consider two firms A and B. Firm A has 10 

patents in 2 IPC subclasses with 6 within-subclass combinations each. Firm A’s score scaled by its patent portfolio size is 0.6, calculated as [6/10]. 

Firm B has 15 patents in 7 IPC subclasses, including 9 within-subclass combinations in one single subclass and 1 within-subclass combination each 

in the rest of the 6 subclasses. Firm B’s score scaled by portfolio size is 0.6, calculated as [9/15]. When calculated by the concentration index, firm 

A’s score is 0.72, calculated as [0.62+0.62], whereas Firm B’s score is 0.387, calculated as [0.62+6*(1/15)2]. In both cases, firm B has greater depth, 

but smaller scores. This causes underestimation of Firm B’s depth capabilities. The breadth scores also suffer from similar distortion. Therefore, we 

have decided to follow the previous literature and use the absolute count of combination numbers. This also allows for comparison and consistency 

with the previous literature. 
 
 


