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Abstract 

The red wolf (Canis rufus) of the eastern US was driven to near-extinction by colonial-era persecution 
and habitat conversion, which facilitated coyote (C. latrans) range expansion and widespread 
hybridization with red wolves. The observation of some gray wolf (C. lupus) ancestry within red wolves 
sparked controversy over whether it was historically a subspecies of gray wolf with its predominant 
“coyote-like” ancestry obtained from post-colonial coyote hybridization (2-species hypothesis) versus a 
distinct species closely related to the coyote that hybridized with gray wolf (3-species hypothesis). We 
analyzed red wolf and other mitogenomes sourced from before the 20th century bottleneck and coyote 



invasion, along with hundreds of modern amplicons, which led us to reject the 2-species model and to 
investigate a broader phylogeographic 3-species model suggested by the fossil record.  Our findings 
broadly support this model, in which red wolves ranged the width of the American continent prior to 
arrival of the gray wolf to the mid-continent ~60 ka; red wolves subsequently disappeared from the mid-
continent, relegated to California and the eastern forests, which ushered in emergence of the coyote in 
their place (~30 ka); by the early Holocene (12–10 ka), coyotes had expanded into California, where they 
admixed with and phenotypically replaced western red wolves in a process analogous to the 20th 
century coyote invasion of the eastern forests. Although nuclear data from historical and ancient 
specimens are needed to further investigate and refine this hypothesis, including the role of gray wolf 
admixture in the recent evolution of red wolves, findings indicate that the red wolf predated not only 
European colonization but humans in North America and suggest they predated coyotes as well. These 
findings highlight the urgency of expanding conservation efforts for the red wolf. 

Keywords 

Canis, evolution, hybridization, mitogenome, phylogeography, red wolf 

1 | Introduction 

European settlement of North America was characterized by a dramatic increase in invasive species, 
novel diseases, accelerated extractive and agricultural land-use, and persecution of top carnivores. 
These practices transformed natural communities before they could be adequately understood and 
documented (Cronon, 1983; Nowak, 1979). One emblematic example is that of the wolf-like canids of 
the eastern forests: the red wolf (Canis rufus) of the USA and the eastern wolf (C. lycaon) of 
southeastern Canada (Nowak, 2002). Combined with destruction of their forested habitats, persecution 
of these indigenous canids reduced their numbers in the 1930s to the point where the coyote (Canis 
latrans), a smaller, opportunistic competitor, was able to expand its range into the eastern forests 
(McCarley, 1962; Hody and Kays, 2018). By 1975, coyotes had hybridized extensively with red and 
eastern wolves, helping to drive them to the point of near-extinction. This, in turn, prompted capture of 
the last known wild red wolves in an effort to preserve them through captive breeding and 
reintroduction programs (Kolenosky, 1971; Nowak, 1979; Phillips, Smith, Henry, & Lucash, 1995). 

The genetic bottleneck caused by the collapse of the red wolf population, along with potentially 
extensive coyote introgression, severely compromised the reliability of modern red wolf genomes for 
understanding the evolutionary origins of the species (Heppenheimer, Brzeski, et al., 2018; McCarley, 
1962; Murphy, Adams, Cox, & Waits, 2019; Phillips et al., 1995; vonHoldt et al., 2016). Modern red 
wolves, which descend from 12 of 14 captive founders, exhibit admixed genomes, composed primarily 
of coyote-like ancestry, but with significant gray wolf-like ancestry as well (Sinding et al., 2018; vonHoldt 
et al., 2016; vonHoldt et al., 2011), and only a single, private mitochondrial D-loop haplotype (Wilson et 
al., 2000). Given uncertainties surrounding the genetic heritage of red wolves prior to their extirpation 
from the wild, it is unclear whether their composite ancestry is the result of recent or ancient admixture, 
or both. This timeframe is important to conservation policy because the presumption that the red wolf 
originated in the 20th century as a hybrid facilitated by anthropogenic actions has fueled opposition to 
red wolf conservation (Gittleman and Pimm 1991; National Academies of Sciences and Medicine 2020).  

Although a small population of eastern wolves persists in the wild, similar uncertainties surround their 
ancestry, which are exacerbated by extensive contemporary hybridization with the larger gray wolf 
(Canis lupus) (Heppenheimer, Harrigan, et al., 2018; Kolenosky, 1971; Rutledge, Devillard, Boone, 
Hohenlohe, & White, 2015; Wheeldon & White, 2009; Wilson, Grewal, Mallory, & White, 2009; Wilson, 
Rutledge, Wheeldon, Patterson, & White, 2012). The eastern wolf range was historically continuous with 
the red wolf range and is currently restricted to a region that was under glaciers before the early 



Holocene. Thus, red and eastern wolves reflect geographically distant remnants of a once continuously 
distributed entity (e.g., Wilson et al., 2000). We hereafter use the term “red wolf” to refer collectively to 
both of these mid-sized Canis populations, using the separate terms when necessary for clarity; we use 
size-based terms, “mid-sized” and “small”, to refer to phenotypic red wolves and coyotes, respectively, 
without phylogenetic implications.  

As a result of the dramatic anthropogenic impacts to the genetic composition of red wolves, two 
diametrically opposed hypotheses regarding their ancestry persist, fueling vigorous debate over 
conservation policy and management (Chambers, Fain, Fazio, & Amaral, 2012; National Academies of 
Sciences & Medicine, 2019, 2020; Waples, Kays, Fredrickson, Pacifici, & Mills, 2018). Most contentious 
has been whether the red wolf reflects a subspecies of gray wolf inhabiting the eastern forests that 
hybridized with coyotes during the late colonial era (Lawrence & Bossert, 1967; Lehman et al., 1991; 
vonHoldt et al., 2016; Wayne & Jenks, 1991) versus a single, ancient indigenous American wolf, distinct 
from the gray wolf and more closely related to the coyote (Kyle et al., 2006; Rutledge et al., 2015; 
Wilson et al., 2000).  While hybridization must have occurred at least once at some point in the history 
of red wolves (Heppenheimer et al. 2018; Sinding et al. 2018; vonHoldt et al. 2016), the most immediate 
question relates to the timing of red wolf differentiation from coyotes and gray wolves (anthropocene 
versus ancient), rather than the role of hybridization per se.  Appropriately valuing the taxonomic 
significance of these entities also requires a general understanding of how their phenotypes correspond 
to their phylogeographic history.    

Fossil evidence has been subject to differing interpretations that essentially reflect those about 
distinctiveness of historical (and modern) red wolves (i.e., 2-species vs. 3-species models).  As far back as 
the 1800s, the dominant view was that red wolves were distinct from both coyotes and gray wolves (3 
species hypothesis). Correspondingly, Young & Goldman (1944) considered mid-sized Canis remains 
from the last Pleistocene glacial cycle (Wisconsinan), spanning the continent from eastern forests to 
California, to be red wolves, except for the small Canis (i.e., coyotes) that showed up in western 
locations at the terminal Pleistocene and early Holocene.  In California, small Canis remains did not 
appear in the fossil record until 12–10 ka, although they occurred in potentially earlier Wisconsinan 
assemblages of the mid-continent (e.g., Arizona; Nowak, 1979; Meachen & Samuels, 2012).  Young & 
Goldman’s interpretation that Pleistocene mid-sized Canis from California to Florida were red wolves 
remains the most parsimonious of the 3-species hypotheses.  

Independently of the late 20th century controversy over distinctiveness of the red wolf, the 2-species 
view has dominated interpretation of western Pleistocene mid-sized Canis remains as those of a large 
coyote (e.g., Kurtén 1974).  This view has fueled interpretation of its disappearance from California at 
the start of the Holocene as an evolutionary transition to the modern coyote brought on by rapid in-situ 
adaptation to faunal and climatic changes of the time (Meachen & Samuels, 2012).  However, it is 
alternatively possible and more consistent with the 3-species model that the mid-sized Canis of the 
West was a red wolf (Young & Goldman, 1944) that was replaced through competition and admixture 
from an expanding population of coyotes analogous to the 20th century near-replacement of eastern red 
wolves by coyotes.     

Ultimately, the fossil record alone is insufficient to assess whether the mid-sized Canis that 
predominated much of Wisconsinan mid-latitude America was a distinct entity (i.e., red wolf) versus a 
large version of the modern coyote or a small version of the modern gray wolf.  What is clear, however, 
is that during historical times eastern red wolves and coyotes reflected two phenotypically distinct 
entities that were never considered conspecific. Thus, if red wolves were not a small or recently 
hybridized gray wolf (2-species hypothesis), they must have diverged from coyotes prior to European 
colonization, although not necessarily hundreds of thousands of years ago as is sometimes suggested 



(Wilson et al., 2000; Waples et al., 2018).  Further, if the coyote and red wolf represent a more recent, 
e.g., Wisconsinan-age, divergence, the question arises whether red wolf or coyote phenotypes represent 
the newer phenotype and, correspondingly, which entity more faithfully represents the original pre-gray 
wolf mid-latitude North American Canis.    

In this study, we used complete mitochondrial genomes from historical red and eastern wolf specimens 
that predate the 20th century bottleneck and eastward expansion of coyotes, along with mitogenomes 
and amplicons from other historical and modern Canis specimens (Fig. 1; Tables S1–S4), to address these 
questions. To date, no phylogeny based on complete mitogenomes has been constructed for North 
American Canis, including coyotes. Short mitochondrial amplicons (200–500 bp) from historical red wolf 
specimens indicate a predominance of “coyote-like” matrilineal ancestry (Brzeski, DeBiasse, Rabon Jr, 
Chamberlain, & Taylor, 2016; Leonard & Wayne, 2008; Roy, Geffen, Smith, & Wayne, 1996; Rutledge, 
Bos, Pearce, & White, 2010; Wayne & Jenks, 1991; Wheeldon & White, 2009; Wilson, Grewal, 
McFadden, Chambers, & White, 2003) and incomplete lineage sorting between red wolves and coyotes, 
suggesting that divergence between red wolves and coyotes was unlikely to pre-date the last 
Pleistocene glaciation (i.e., Wisconsinan). However, existing mitochondrial amplicon data comprise 
mainly short fragments of the D loop, which exhibits considerable homoplasy confounding evolutionary 
inferences (Goddard, Statham, & Sacks, 2015; Ingman & Gyllensten, 2001). These amplicons are 
therefore inadequate on their own to reconstruct robust topologies or to calibrate nodes and estimate 
divergence times.   

Thus, while nuclear DNA from historical samples is ultimately necessary to resolve certain questions 
involving hybridization, our objective here was to narrow the possibilities.  In particular, we sought to 
assess whether red wolves of the eastern forests could have originated specifically as a colonial-era 
hybrid and, if not, to investigate whether modern California coyotes could reflect admixture from an 
extinct western red wolf and an expanding mid-continent coyote population that functionally replaced it 
12–10 ka.  Including gray wolf mitogenomes in our analysis, we further investigate concordance of 
phylogeographic patterns relative to the timing of gray wolf arrival to the mid-continent.  

2 | Materials and Methods 

2.1 | Samples 

For complete mitogenomes, we used samples from 15 museum specimens, 1 archeological specimen 
from a pre-Columbian site, and 27 modern tissue samples from the archive of the Mammalian Ecology 
and Conservation Unit at UC Davis (Fig. 1A; Table S1, S2).  Most historical samples dated between 1854 
and 1930. Mitogenome analyses also utilized 6 published coyote mitogenomes as well as 8 more 
coyotes, along with 3 eastern wolves from Algonquin Provincial Park, and 3 modern red wolves, 
assembled from 14 short-read datasets on GenBank.  To enable calibration of North American gray wolf 
clades, we also included 92 additional gray wolf and dog mitogenomes, African wild dog (Lycaon pictus), 
dhole (Cuon alpinus), and other Canis species (SI Appendix, Table S2).  Lastly, we sequenced 425 coyotes 
at portions of the cytochrome b gene (369 bp) and D-loop region (278 bp), which we analyzed alongside 
previously published amplicons from historical red and eastern wolves (Fig. 1B; Tables S3).   

2.2 | Laboratory procedures 

Extraction of DNA from ancient and museum samples followed strict ancient and historical DNA 
protocols (Ameen et al., 2019; Aubry, Statham, Sacks, Perrine, & Wisely, 2009; Brown, Darwent, & Sacks, 
2013; Reponen, Brown, Barnett, & Sacks, 2014), and was performed at an ancient DNA (aDNA) facility at 
UC Davis.  Extracted DNA was shipped to myReads NGS services at Arbor Biosciences (Ann Arbor, MI, 
USA) for library preparation using ancient DNA protocols, pooling, and Illumina PE150 sequencing on a 
NovaSeq S4 lane at Novogene (Sacramento, CA).  



We extracted DNA from modern samples manually using manufacturer’s protocols (DNeasy Blood & 
Tissue Kit, Qiagen, Luxembourg).  We used a capture enrichment protocol for library construction and 
sequenced mitogenome-enriched libraries on an Illumina PE250 MiSeq lane at the UC Davis Genome 
Center.   

§We assembled mitogenomes de-Novo using NovoPlasty (version 2.7.2, Dierckxsens, Mardulyn, & Smits, 
2017) after adapter-trimming, quality filtering (discarding reads with >50% of bases with quality scores 
<2), and duplicate removal.  For mitogenomes that did not result in circularized assemblies, we manually 
aligned reads aided by a coyote reference mitogenome in Sequencher (v 5.4.6; Gene Codes, Ann Arbor 
MI), calling positions with ≥3x coverage, substituting with Ns otherwise. We PCR-amplified and then 
Sanger-sequenced cytb and D loop fragments, resulting in trimmed sequences of 369 bp and 278 bp, 
respectively (Supplemental Methods).   

2.3 | Phylogenetic and network analyses 

Phylogenetic trees were constructed from the first 15,457 bases of the mitogenome (i.e., all but the D 
loop region) in Beast v 1.8.3 (Drummond & Rambaut, 2007) on the Cipres Science Gateway v 3.3 (Miller, 
Pfeiffer, & Schwartz, 2010).  We constructed one tree based solely on 3rd codon positions to calibrate 
nodes (Subramanian & Lambert, 2011) and a second using 4 partitions corresponding to codon positions 
and noncoding bases to obtain the most highly resolved topology.  Both trees were rooted to the African 
wild dog with a normal root height prior of 3.9 Ma (SD = 0.3 Ma) based on fossil calibrated nuclear DNA 
dating (Chavez et al., 2019).  We used a birth-death model and relaxed lognormal clock, selected over a 
strict clock on the basis of its coefficient of variation (0.337, 95% HPD: 0.194‒0.490, in the 3rd-codon 
position tree).  Although we only specified a prior on the root height, we verified the consistency of 
internal nodes based on comparison to nuclear and mitochondrial calibrations (Chavez et al. 2019; 
Koepfli et al. 2015; Perini et al. 2010) and the closure of the Bering Strait ~12 ka.  We used 50 million 
MCMC cycles sampled every 5,000 cycles, which was sufficient for all parameters to achieve ESS > 200. 
Additional details can be found in the Supplemental Methods. 

To calibrate the mutation rates of amplicons to those estimated for mitogenomes, we built a tree based 
solely on 647 bp of the cytochrome b (369 bp) and D-loop (278 bp) regions.  This resulted in estimates of 
1.85 x 10-8 substitutions per site per year (95% HPD: 0.71‒3.62 x 10-8) for cytb, 13.22 x 10-8 substitutions 
per site per year (5.74‒24.65 x 10-8) for D loop, and 6.74 x 10-8 substitutions per site per year (2.87‒
12.66 x 10-8) for the 647 bp combined sequence. Additional technical details are provided in 
Supplemental Methods.  We built median-joining networks using Networks v 5.0 (Bandelt, Forster, 
Sykes, & Richards, 1995).  The ages of network clades were determined from rho estimates, which are 
equivalent to the average number of derived mutations since divergence from the most recent common 
ancestor (Macaulay, Soares, & Richards, 2019).   

2.4 | IMa analyses 

We fitted Isolation-only and Isolation-with-Migration models using IMa2 to estimate splitting times (Hey 
& Nielsen, 2007). This approach was designed specifically for use with recently diverged populations, 
such as incipient species, for cases characterized by incomplete lineage sorting and potentially 
continued gene flow.  We used likelihood ratio tests to assess whether models incorporating gene flow 
were warranted over those that did not. All results were replicated with a distinct random number seed, 
yielding consistent posteriors for splitting time. Posteriors for splitting time and migration achieved 
unimodal distributions approaching zero at both ends for all temporal estimates. Scaled parameters 
were converted to absolute values based on mutation rates described above. Additional technical 
details are provided in Supplemental Methods.   

2.5 | Historical demography  



To assess the historical demography reflected in mitogenomes, Bayesian skyline plots (Drummond, 
Rambaut, Shapiro, & Pybus, 2005) were constructed in BEAST (v1.8.3) using parameters and priors 
described above.  Plots were constructed separately for subsets of the data to allow contrasting 
demographic histories.  We generated 10 to 50 million MCMC cycles, as necessary to achieve 
stationarity and all parameters at ESS > 200.  We also computed coalescent summary statistics indicative 
of population expansion using DNAsp 6.12.03 (Rozas et al., 2017). 

3 | Results  

3.1 | Mitogenome phylogeny 

We successfully sequenced full (n = 10) or partial (n = 1) mitogenomes from 11 of 16 historical Canis 
samples, comprising six red wolves (1904, 1905, 1916, 1917, 1924, 1941), three mid-continent coyotes 
(<1400, 1894, 1895), and two putative gray wolves (1893, <1913) (Fig. 1A; Table S1). The depth of 
coverage ranged from 20x to 2,054x after removal of duplicates (Tables S1, S2). We also produced 
mitogenomes from 145 modern canids (Table S2).  

We constructed a phylogenetic tree from the 155 mitogenomes in BEAST (Fig. 2A–C, Fig. S1). All red 
wolf, eastern wolf, and coyote mitogenomes, as well as one mitogenome from a historical putative gray 
wolf from Nebraska, which is hereafter considered a red (or eastern) wolf matriline, formed a well-
supported (BPP = 1.0) monophyletic clade that is endemic to North America (“American Canis clade”; 
Fig. 2C). This American Canis clade was reciprocally monophyletic with respect to gray wolves (Fig. 2A).  

As noted in previous studies (Koblmüller et al., 2016; Loog et al., 2020; Weckworth, Talbot, & Cook, 
2010), North American gray wolves comprised three monophyletic subclades nested within an 
otherwise Eurasian gray wolf clade (Fig. 2B). These three North American subclades shared MRCAs with 
Eurasian gray wolves dating to 66 ka (95% HPD: 40–99 ka), 30 ka (17–46 ka), and 8 ka (4–15 ka). The two 
older lineages included Mexican gray wolves and an 1893 gray wolf specimen from Colorado, 
respectively. These TMRCAs reflect the earliest times that ancestors of extant North American gray 
wolves could have arrived in North America and are consistent with the lack of fossil evidence for the 
presence of gray wolves in mid-latitude North America (i.e., south of the ice sheets) until the mid-
Wisconsinan glaciation (Meachen, Brannick, & Fry, 2016; Nowak, 2002).   

As expected, coyote and red wolf matrilines were not reciprocally monophyletic within the American 
Canis clade (Fig. 2C). The American Canis clade was divided into two deeply divergent (TMRCA = 209 ka, 
123–330 ka) reciprocally monophyletic clades, hereafter referred to as clades A and B (Fig. 2C). Clade A 
contained only California coyotes. Clade B was further divided into reciprocally monophyletic clades b1 
and b2.  Except for a coyote from the Texas hybrid zone, mid-continent coyote haplotypes fell into the 
youngest clade, b2, with most (75%) of them falling within two subclades (b2i, b2ii) that also contained 
the two pre-1900 mid-continent coyotes. These coyote subclades post-dated the earliest divergence of a 
North American gray wolf lineage from its Eurasian counterpart (node f, in Figs. 2B, D), consistent with a 
possible link between coyote expansion and gray wolf arrival to the mid-continent.  

3.2 | Could the red wolf be a gray wolf admixed with coyotes during the colonial era?  

Our results revealed no evidence for gray wolf mitochondrial haplotypes within red wolves. Therefore, 
these red wolf matrilines either reflect ancient red wolf ancestry or they descend recently from female 
coyotes that hybridized with male gray wolves during the post-colonial era.  In the latter case (gray wolf 
co-option of coyote matrilines), however, the mitochondrial diversity observed in red wolves would be 
expected to represent a small subset of modern mid-continent coyote diversity (Waples et al., 2018). 
Contrary to this prediction, the red and eastern wolf mitogenomes exhibited significantly greater 
nucleotide diversity (0.0041, SD = 0.00039, n = 12) than that of coyotes of the mid-continent (0.0025, SD 



= 0.0004, n = 16) (Fig. 2E; Table S5A). This pattern was recapitulated by analyses of over 400 shorter 
mitochondrial sequences (Fig. 1B), which additionally included seven published historical red wolf cytb 
sequences (Roy et al., 1996) (Tables S3, S4; Fig. S2). For example, cytb nucleotide and haplotype 
diversity (±SD) were higher in the 15 red wolves (0.0057±0.0010; 0.81±0.078, respectively) than in the 
189 mid-continent coyotes (0.0026±0.0003; 0.49±0.039). We found only seven cytb haplotypes in mid-
continent coyotes versus five haplotypes in the much smaller red wolf sample (n = 15; Fig. S2); three of 
the five (60%) red wolf haplotypes were not found in mid-continent coyotes despite the coyotes’ much 
larger sample size. The only two haplotypes shared between red wolves and coyotes were also the most 
basal, consistent with derived haplotypes reflecting post-divergence mutations (Fig. S2A).  

Next, we used the mitochondrial genomes to estimate the time of divergence between red wolf and 
coyote matrilines. Because the phenotypically distinct red wolves and coyotes did not correspond to 
reciprocally monophyletic clades, we used IMa2, which was designed specifically to take advantage of 
non-random coalescence to estimate divergence time between recently diverged groups with 
incomplete lineage sorting and that potentially exchange genes after divergence as well (Hey and 
Nielsen 2007).  Using all coyotes, this analysis yielded an estimate of divergence between red wolves 
and coyotes dating prior to the last glacial maximum (LGM) at 32 ka (22‒44 ka), with a small (m = 0.04, 
95% HPD: 0.002‒0.12) but significant (P < 0.05) signal of post-divergence gene flow (Fig. 3A,B). The IMa2 
result was consistent when California coyotes were excluded from the analysis (as mid-continent 
coyotes were the adjacent ones that could have hybridized with eastern red wolves) and was only 
incrementally affected by conservatively assuming absence of gene flow (Fig. 3B). To ensure that mid-
continent coyotes were comprehensively represented, we conducted another IMa2 analysis using the 
189 mid-continent coyote amplicons vs. red wolves.  We calibrated the concatenated cytb and D loop 
haplotypes to our mitogenome tree using the same individuals for which we had complete 
mitogenomes; this analysis provided a splitting time estimate of 25 ka (95% HPD: 8‒43 ka), which, 
although imprecise, was qualitatively consistent with that from the mitogenomes, and also revealed a 
significant signal of post-divergence gene flow (m = 0.76; 95% HPD: 0.13‒1.91, P < 0.0001). We note that 
underestimates of gene flow correspond to underestimates of divergence in isolation-with-migration 
models (Hey and Nielsen 2007).  Our near-zero estimates of gene flow in the mitogenome analysis were 
likely  an underestimate given that gene flow is known to have occurred historically between coyotes 
and red wolves in Texas; e.g., Heppenheimer et al., 2020; Nowak, 2002; Fig. 1). Thus, our splitting time 
estimates also could be underestimated.  For example, a Bayesian skyline plot  constructed from 
mitogenomes suggested that trajectories of red wolves and mid-continent coyotes could have diverged 
as early as 50 ka or more, but still squarely within the Wisconsinan glaciation (Fig. 3C). 

3.3 | Amplicon analysis of ghost lineages and recent admixture in California coyotes  

The larger amplicon dataset contextualized with the mitogenome tree suggests that California coyotes 
maintain significant maternal ancestry from the mid-sized Pleistocene canids that disappeared from 
California 12–10 ka, but also share more recent ancestry with mid-continent coyotes (Fig. 4).  In 
particular, clade A was nearly endemic to California coyotes, and clade b1, common to both California 
coyotes and red wolves, also was absent from mid-continent coyotes outside the Texas hybrid zone; 
only clade b2 was found frequently in all three groups and it composed 99% of all matrilines in mid-
continent coyotes. A haplotype network further revealed differences in the timing of shared ancestry 
among these three clades (A, b1, b2; Figs. 5A, S2).  Only within clade b2 was haplotype sharing common 
and therefore consistent with relatively recent gene flow.  In contrast, the few A-clade haplotypes 
observed in mid-continent coyotes were deeply divergent from all those in California, as were b1-clade 
haplotypes carried by California coyotes versus red (and eastern) wolves.   Thus, the A and b1 ancestry 
in California coyotes, collectively 58% of their maternal ancestry, predates the phenotypic shift observed 



in the California fossil record of 12–10 ka and therefore reflect ghost lineages from the larger 
Pleistocene predecessor.  The sharing of clade b1 by California coyotes (i.e., presumed ghost lineages) 
and historical eastern red wolves further suggests that the mid-sized Pleistocene canids of both ends of 
the continent shared ancestry during the early to mid-Wisconsinan glaciation (rho estimate = 57 ka, SD = 
26 ka; Figs. 5A, S2). Conversely, the many shared clade-b2 haplotypes between mid-continent coyotes 
and California coyotes indicate recent to contemporary gene flow.   

To further investigate this admixture hypothesis, we quantified divergence time and directional gene 
flow in IMa2 using the 416 California and mid-continent coyote amplicons.  This analysis indicated a 
Wisconsinan-age divergence (61 ka, 95% HPD: 12‒99 ka) followed by asymmetrical gene flow 
predominantly from east to west as predicted if mid-continent coyotes contributed to the late 
Pleistocene transformation of the California mid-sized Canis through admixture (Fig. 5C).  Consistent 
with asymmetrical gene flow from the mid-continent into California, coalescent statistics exhibited 
signatures of population expansion for mid-continent coyotes, including significantly negative values for 
Tajima’s D (-1.75, P < 0.05, n = 16), D* (-1.85, P < 0.05), and F* (-2.05, P < 0.05) in the mitogenome 
dataset (Table S5A). Results were similar for amplicon datasets (Table S5B–D).  By comparison, none of 
these statistics differed significantly from zero for the California coyote population (Tables S5A–D).  
Lastly, Bayesian skyline plots constructed from the high-resolution mitogenomes indicated a sudden rise 
in clade B matrilines beginning at the end of the Pleistocene and start of the Holocene (Fig. 5B), 
approximately coincident with the phenotypic transformation of California Canis.   Given that this early-
Holocene pulse was only evident in Bayesian skyline plots with California coyotes included (i.e., not iFig. 
3C) and regardless of whether A-clade haplotypes were included (Fig. 5B), it must partly reflect an 
increase in B-clade haplotypes in California.  

4 | Discussion 

4.1 | Could the red wolf be a colonial-era hybrid? 

If the red wolf were a colonial-era hybrid, we should have observed in our sample of pre-bottlenecked 
red wolves either gray wolf matrilines or coyote-like matrilines reflecting a small subset of those found 
in coyotes (e.g., Waples et al., 2018).  To the contrary, not only did we find no gray wolf matrilines but 
the diversity of coyote-like matrilines was actually higher in red (and eastern) wolves than in coyotes 
themselves, particularly from the mid-continent, both for our limited set of complete mitogenomes and 
in the much larger coyote amplicon data set. This diversity in pre-bottlenecked red wolves contrasts 
with the four modern post-bottlenecked red wolves, all of which shared essentially identical 
mitogenomes.   

The only way to reconcile these findings with the hypothesis that red wolves represent colonial-era 
crossing of gray wolves with coyotes would be if a distinct group of coyotes from those sampled in this 
study existed and its matrilines were completely absorbed into the red wolf. However, no phenotypic 
coyotes occurred in the eastern forests before mid-continent coyotes expanded into them, primarily in 
the early 20th century (Nowak 2002).  Nor did coyotes in the mid-continent suffer a population decline 
that could explain such a massive loss of mitochondrial diversity over the past century.  On the contrary, 
their populations expanded substantially since colonial times (Hody and Kays, 2018; McCarley, 1962).  
Our presumption that modern coyote diversity differs little from pre-colonial times was also supported 
by our two ancient mid-continent coyote mitogenomes, which clustered in the same two coyote clades 
(b2i, b2ii) that predominated in the modern mid-continent coyotes in this study (mitogenomes and 
amplicons).  Finally, the IMa2 analyses, which indicated divergence between coyote and red wolf 
matrilines prior to the LGM, provide quantitative evidence not only of a pre-colonial origin of the red 
wolf, but  origin of the red wolf prior to any human presence in the Americas.  Thus, our study provides 



strong evidence that the red wolf represents an indigenous North American canid that evolved 
independently of anthropogenic influence.   

4.2 | Was the Pleistocene California mid-sized Canis a red wolf?  

Our results also lend support to Goldman’s interpretation that mid-sized Pleistocene canid fossils from 
California were red wolves rather than coyotes (Young and Goldman, 1944).  First was our finding that 
over half the matrilines carried by California coyotes (i.e., in clades A and b1) diverged from mid-
continent coyote matrilines many thousands of years before small Canis existed in California; this 
observation (based on the mitogenome tree, amplicon networks, and IMa2 analyses) suggests that the A 
and b1 haplotypes in California coyotes descended from the Pleistocene mid-sized Canis of California 
independently of the ancestry of mid-continent coyotes, which primarily reflects the more recently 
derived b2 clade.  Second, our finding that red and eastern wolves, but not mid-continent coyotes, also 
carried haplotypes from one of the California clades (b1) implies past connectivity between the 
Pleistocene California Canis and red wolves.  This connectivity could have occurred no earlier than the 
TMRCA of the b1 clade, which the mitogenome tree and amplicon data (rho estimates) place squarely 
within the Wisconsinan glaciation, ~50–60 ka.  We found no A-clade haplotypes (the most common in 
California coyotes) in red wolves, however, possibly due to our small historical red wolf sample size.  
Given the phenotypic similarity between Pleistocene California Canis and red wolves, however, such 
recent (~50–60 ka) connectivity as demonstrated from the b1 clade is most parsimoniously interpreted 
as conspecificity.  Thus, in agreement with Young and Goldman (1944), we suggest that Pleistocene 
California Canis was most likely a red wolf population. 

Regardless of one’s taxonomic classification of the mid-sized Pleistocene Canis of the West, our findings 
provide strong evidence of recent admixture from mid-continent coyotes coinciding with its phenotypic 
transformation.  Indeed, in stark contrast with A and b1 haplotypes, many of the b2 haplotypes in 
California were shared with mid-continent coyotes, indicating recent gene flow.  The IMa2 analysis 
supported a model of Winsconsinan-age divergence between ghost matrilines of Pleistocene California 
Canis versus mid-continent coyotes followed by more recent asymmetrical gene flow dominated by that 
from the mid-continent into California.  Along with coalescent statistics, which indicated a population 
expansion by mid-continent coyotes in particular, a Bayesian skyline plot revealed a pulse driven by an 
increase in b2 haplotypes in California at approximately the same time as the fossil record revealed the 
rapid reduction in body size of Canis in California (~12–10 ka).  Thus, although we cannot rule out that 
admixture from mid-continent coyotes and the phenotypic transformation of California Canis was 
coincidental, the pattern bears an uncanny resemblance to the 20th century expansion of coyotes into 
the eastern forests, followed by hybridization and near-extirpation of red wolves (McCarley, 1962).  
Modern southeastern coyotes occupying the former range of the red wolf similarly carry ghost alleles 
from extirpated red wolves (Heppenheimer et al., 2018, 2020; Murphy et al., 2019; Sinding et al. 2018). 

4.3 | Could the coyote be a recently evolved offshoot of the red wolf? 

In accordance with the fossil record, we also found no evidence to support that the red wolf was a late-
Pleistocene offshoot of a more ancient coyote ancestor, or even a symmetrical sister taxon to the 
coyote.  In contrast, our data - interpreted alongside existing palaeontological data - seem more in line 
with a model whereby the coyote phenotype, rather than the red wolf phenotype, was the more recent 
evolutionary product, and the modern red wolf therefore more likely represents phenotypic continuity 
with their common ancestor.  Although the mitochondrial haplotypes of mid-continent coyotes (99% 
belonging to the b2 clade) reflect high diversification associated with recent population expansion, the 
entire b2 clade (i.e., MRCA) traces back relatively recently to the mid-Wisconsinan glaciation (~50–60 ka, 
based on the mitogenome tree), corresponding approximately to its estimated divergence with red 
wolves based on Bayesian skyline plots.  The TMRCA of the two primary coyote subclades (b2i, b2ii) are 



even more recent, as were the IMa2 point estimates for the divergence between mid-continent coyotes 
and red wolves (~30 ka).  The most persuasive evidence, however, comes from the fossil record, which 
indicates that mid-sized Canis dominated western and eastern ends of the continent and, although 
based on fragmentary evidence, the mid-continent as well, prior to the latter half of the Wisconsinan 
glaciation, when small Canis began to appear (Meachen & Samuels, 2012; Kurtén, 1974; Nowak, 1979). 
Thus, notwithstanding uncertainties surrounding the origins of the coyote, the red wolf could represent 
a much more ancient entity than suggested by its matrilineal divergence from the modern coyote. 

Owing to the sparsity of the fossil record of the mid-continent, even sparser in Mexico and Central 
America, the circumstances and exact timing of the emergence of the coyote phenotype in mid-latitude 
North America remains unclear. Did the coyote evolve only 60–30 ka in-situ as an offshoot of mid-sized 
wolf-like canids?  Alternatively, might the smaller Canis have existed further south (i.e., southern Mexico 
or central America) before its phenotype emerged in the fossil record of mid-latitude North America 
(e.g., Canis hondurensis, Goldman, 1936)?  If so, did this putative small southern canid reflect one end of 
a continuous cline in body size, the mid-sized Canis of the mid-continent representing the other end? Or 
was it a phylogenomically distinct taxon that expanded north and hybridized with mid-sized Canis, co-
opting a small subset of its matrilineal diversity?  All three of these scenarios could be consistent with 
our mitochondrial data.  Despite the historical occurrence of coyotes as far south as Costa Rica (and 
currently, Panama), we are aware of no DNA data from the southern portion of its range (Hidalgo-
Mihart, Cantú-Salazar, González-Romero, & López-González, 2004; Hody & Kays, 2018; Lucas, Alvarado, 
& Vega, 1997).  In the future, both mtDNA and nuclear genetic analyses of Canis from their southern 
range would help resolve these questions.   

Based on the totality of our findings and the fossil evidence, we hypothesize that the arrival of the gray 
wolf to North America in the early to mid-Wisconsinan caused extirpation of red wolves from the mid-
continent, which ushered in the expansion of coyotes (e.g., from the south or via in-situ evolution).  In 
contrast to red wolves, coyotes and gray wolves were historically and are today sympatric throughout 
most of their North American ranges, where they occupy distinct ecological niches, and do not 
interbreed (REFs).  Whatever the environmental factors that favored the coyote over red wolf 
phenotype in California at the end of the Pleistocene (Meachen and Samuels, 2012), the genetic 
underpinnings of this coyote phenotype likely originated from these newer  expanding coyotes of the 
mid-continent.  In the future, analyses of nuclear data from California and mid-continent coyotes, along 
with historical red and eastern wolves, could clarify the genomic landscape of this evolutionary 
transformation, as well as the potential role of gray wolf admixture in more recent red wolf evolution. 

4.4 | Conclusions and conservation implications 

Our study, made possible by the diligent preservation and curation of historical museum specimens, 
clarified several important aspects of the maternal phylogeography of North American Canis. Most 
significant were our findings indicating that the red wolf was not only a pre-colonial and, indeed, pre-
human entity, but that its legacy likely predated that of the smaller-bodied coyote across mid-latitude 
North America.  Our findings also leave open several questions in need of exploration with an expanded 
sample of historical and ancient specimens and with nuclear DNA.  Chief among these questions are the 
role (e.g., adaptive vs incidental) and timing of hybridization with gray wolves and the evolutionary 
origins of the coyote. 

As a consequence of persecution and hybridization, red wolves from the southeastern forests were 
driven to near-extinction before the last deemed “pure” red wolves were brought into captivity for 
rearing and eventual reintroduction to coastal North Carolina (Phillips et al., 1995). By the early 21st 
century, coyotes colonizing from the north and the south had met in the middle and occupied the 
entirety of the east coast (Hinton et al., 2019). Today, the descendants of red wolves, in their “purest” 



form, are confined in the north to Algonquin Provincial Park in Ontario (eastern wolves, C. lycaon), 
where they are surrounded by admixed gray wolves (“Great Lakes wolves”) and coyotes, and in the 
south by the precarious reintroduced population of red wolves in coastal North Carolina and associated 
captive propagation facilities. Conservation policy and management of red and eastern wolves has been 
hampered by confusion and disagreement among scientists over their systematics and origins, owing in 
large part to the massive anthropogenic hybridization event of the 20th century, which has up to now 
obscured their evolutionary heritage. Our findings here highlight the invaluable diversity retained 
through existing recovery programs and underscore the urgency of policy changes and actions to 
safeguard these last remaining individuals and ensure persistence of the species. 
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Figure 1. Sampling locations relative to estimated historical ranges (at the time of European settlement) 
of North American red wolves (C. rufus), eastern wolves (C. lycaon), coyotes (C. latrans), and gray wolves 
(Canis lupus): (A) 55 complete and one partial (*) mitogenomes, including 11 historical specimens and 25 
modern canids sequenced in this study, as well as 20 mitogenomes assembled from publicly available 
read datasets (n = 14) or as direct downloads from GenBank (n = 6 coyotes). Four modern red wolves 
descend from 12 ancestors captured in the 1970s in southeastern Texas or western Louisiana. Not 
shown is one Alaskan coyote used in this study; (B) 412 modern coyotes sequenced at mitochondrial 
cytochrome b (cytb) and D loop fragments (see Table S2); not shown are 4 cytb and D loop sequences 
from GenBank (Alaska, Mexico, Illinois, Missouri) and 9 samples sequenced only at the D loop region 
(Wyoming, n = 3; Montana, n = 2; Nebraska, n = 2; Texas, n = 1; Saskatchewan, n = 1). Range maps were 
based on (Hody & Kays, 2018) for the coyote and (Chambers et al., 2012) and (Nowak, 2002) for the wolf 
taxa. Sample information is detailed in Tables S1, S2, and Figure S1. 
  



 
Figure 2. Analyses of 15,457 bp mitogenomes (control region excluded), including (A) phylogenetic tree 
constructed from third-codon positions of 155 Canis spp in Beast v 1.8.3 using a birth-death model with 
a relaxed lognormal clock and rooting to the African wild dog (Lycaon pictus), (B) expanded view of gray 
wolf clade, excluding basal Indian and Tibetan lineages, with Hokkaido specimens in pink, indicating the 
most recently divergent Eurasian (from North American) gray wolves (node a), (C) expanded view of 
American Canis clade, (D) chronology of selected node ages (95% HPD) as indicated on panels B and C 
and relative to the last glacial maximum (LGM) of the Wisconsinan glaciation and the Holocene, and (E) 
comparison of the nucleotide diversity of 13 red and eastern wolves (RW/EW) versus 16 mid-continent 
coyotes; (A-D) topology and node support were based on 15,457 bp of the mitogenome, but nodes were 
calibrated using only 3rd codon positions and a normal root height prior of 3.9 Ma (SD = 0.3 Ma) based 
on fossil calibrated nuclear DNA dating (Chavez et al., 2019); samples used in tree are mapped in Fig, 1A 
and described in the Supplemental Methods, Tables S1, S2, and Figure S1. See Supplemental Methods 
for partitions and mutation models. 



 
Figure 3. Estimates of divergence time and historical demography of all coyotes (gold) and red (and 
eastern) wolves (red) based on mitogenomes (15,457 bp, excluding control region) of 36 coyotes and 12 
red wolves (only 1 of 4 modern red wolf sequence was used in this analysis): (A) parameter estimates 
from an isolation-with-migration model including all 36 coyotes and 12 red wolves (full model) 
conducted in IMa2, (B) comparison of posterior distributions for splitting time among the full model, one 
restricted to the 18 mid-continent coyotes (i.e., excluding the 15 California and 3 eastern coyotes), and a 
third also excluding California and eastern coyotes and assuming no post-divergence gene flow, and (C) 
trajectories of effective population size (Ne) over time indicated by Bayesian skyline plots (BSP) of red 
wolves and mid-continent coyotes.  BSPs were estimated in Beast v 1.8.2 and Tracer v 1.6.  (A) 
Parameters include Ne, splitting time, and migration (m), equal in both directions; (C) Thick lines indicate 
median estimates of Ne in main plot and insets; thin lines in insets indicate 95% highest posterior 
density (HPD) traces and are shown on a log-scale; (B, C) Holocene epoch and last glacial maximum 
(LGM) are indicated for reference.  Sequences used in analyses are presented in Table S2. 



 
Figure 4. Proportional distribution of 415 amplicons across the three major American Canis clades as 
inferred from mitogenomes for California coyotes (left), mid-continent coyotes (center), and red and 
eastern wolves (right), illustrating shared ancestry of California coyotes and red and eastern wolves 
dating to the early Wisconsinan glaciation (clade b1) and more recent shared ancestry both between 
mid-continent coyotes and California coyotes and between mid-continent coyotes and red wolves 
dating to the mid-Wisconsin glaciation (clade b2).  Because they are essentially absent from mid-
continent coyotes, clades A and b1 in California are presumed to reflect ghost lineages from the 
Pleistocene mid-sized Canis occurring in California prior to 12–10 ka, after which small Canis replaced 
them in the fossil assemblages. Below is a schematic of phenotype timelines evident in the fossil records 
of the three geographic partitions as described in the main text.  Sample information and amplicon 
haplotypes are in Tables S3 and S4.  
  



 
Figure 5. Analyses of combined sequences of the cytochrome b gene (369 bp) and D loop region (278 
bp) of 227 California (brown) and 189 mid-continent (gold) coyotes: (A) median joining network 
illustrating phylogenetic relationships among coyotes relative to 7 historical and 8 modern red and 
eastern wolves, and insets showing D loop-only versions of two clades to accommodate published D 
loop samples; (B) trajectory of effective population sizes (Ne) over time indicated by Bayesian skyline 
plots of all 416 coyote haplotypes and the 314 B clade coyote haplotypes (i.e., excluding 98 A-clade 
haplotypes) conducted in BEAST v 1.8.2 and Tracer v 1.5, and (C) parameter estimates from an isolation-
with-migration model between California and mid-continent coyotes conducted in IMa2. (A) Time 
estimates (red font) inferred from rho statistics (black font) (Macaulay et al., 2019) were based on 
calibration of the mutation rate to the mitogenomes, resulting in an estimate for the combined 647 bp 
sequence of 6.74%/Ma (1.9%/Ma and 13.2%/Ma for cytb and D loop, respectively, calibration described 
in methods). Insets show published D-loop sequences from (Fain et al., 2010) (Clade A, 1 modern mid-
continent coyote) and (Leonard & Wayne, 2008) (subclade b1, 17 historical eastern wolves), illustrating 
shared ancestry between California coyotes and eastern wolf-like canids. The one mid-continent coyote 
haplotype in clade b1 is from the Texas hybrid zone.  Entire D loop network is in Fig. S2. (B) Thick solid 
lines indicate median estimates of Ne in main plot and insets; thin lines in insets indicate 95% highest 
posterior density (HPD) traces and are shown on a log-scale; Holocene epoch and last glacial maximum 
(LGM) are indicated for reference; (C) IMa2 parameters include Ne, splitting time, and migration (m), 
with arrows indicating direction of gene flow forward in time.   

 


