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Summary

Throughout postnatal life, haematopoiesis in the bone marrow (BM) maintains blood and

immune cell production. Haematopoiesis first emerges in human BM at 11-12 post

conception weeks while fetal liver (FL) haematopoiesis is still expanding. Yet, almost

nothing is known about how fetal BM evolves to meet the highly specialised needs of the

fetus and newborn infant. Here, we detail the development of fetal BM, including stroma,

using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find

that the full blood and immune cell repertoire is established in fetal BM in a short time

window of 6-7 weeks early in the second trimester. Fetal BM promotes rapid and extensive

diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets

emerging for the first time. B-lymphocyte expansion occurs, in contrast with erythroid

predominance in FL at the same gestational age. We identify transcriptional and functional

differences that underlie tissue-specific identity and cellular diversification in fetal BM and

FL. Finally, we reveal selective disruption of B-lymphocyte, erythroid and myeloid

development due to cell intrinsic differentiation bias as well as extrinsic regulation through

an altered microenvironment in the fetal BM from constitutional chromosome anomaly Down

syndrome during this crucial developmental time window.
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Introduction

Following waves of haematopoiesis in the yolk sac (YS) and fetal liver (FL), the bone

marrow (BM) is established as the site of lifelong blood and immune cell production. In

humans, haematopoietic cells appear in the fetal BM from 11-12 post conception weeks

(PCW)1,2. By this time, development of the immune repertoire has been initiated in the liver,

with contributions from spleen and thymus3,4. The contribution of the BM, both in terms of

fetal haematopoiesis and in laying foundations for BM haematopoiesis in the longer term

remains to be established.

Haematopoiesis must supply the fetus with erythrocytes for oxygen transport, platelets for

haemostasis, macrophages for tissue remodelling and an immune system that is poised to

respond to insult without risking tissue damage. In fetal life, the priorities are to establish an

innate immune system primed to respond to any pathogen encountered in perinatal life, and

to provide the pool of B- and T- lymphocyte progenitors needed to prescribe the adaptive

immune response to pathogens after birth, particularly in the first few weeks of life when the

newborn infant is first exposed to the extra-uterine environment.

Perturbations in haematopoiesis in utero can have far reaching implications. Oncogenic

events acquired in haematopoietic cells during fetal life, such as ETV6-RUNX1 or KMT2A

fusion genes, often progress to childhood leukaemia5–8. Somatic, fetally-acquired GATA1

mutations leading to neonatal pre-leukaemia and increased risk of myeloid leukaemia in early

childhood are specific to Down syndrome (DS)9,10. Extensive abnormalities in haematopoiesis

have been documented in DS FL preceding GATA1 mutations11 as well as in DS newborns

without GATA1 mutations12. The prevalence of immune deficiency, autoimmune disease and

childhood leukaemias are increased in children with DS13–15. This makes understanding the
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development of the immune system of clinical importance in DS and yet almost nothing is

known of how this occurs in fetal life.

Longer term haematopoiesis depends on a finite pool of haematopoietic stem cells (HSCs),

supported by their niche. In mice, BM development begins once vascularization allows HSCs

to enter collagenous bone16. Stromal cells that support HSC development in humans have

been identified but no systematic examination of BM development has been achieved to date.

The niche is accepted to be critical to HSC function and niche abnormalities are implicated in

both malignant and nonmalignant disorders17.

In this study, we use single-cell multi-omics to dissect the composition of disomic and

trisomy 21 human fetal BM, as haematopoiesis emerges and develops during the early second

trimester. For disomic fetal BM, FL and cord blood (CB) CD34+ progenitors, we generate

combined surface epitope and transcriptome profiles (including a panel of 198 antibodies), to

allow reliable comparison of tissue-specific differentiation landscapes. We predict

receptor-ligand interactions to comprehend the non-haematopoietic support required for

differentiation. We validate: i) newly emerging cell states in fetal BM by FACS-based

prospective isolation for single cell RNA sequencing (scRNA-seq) and morphology

assessment; ii) BM niche by multiplex immunofluorescence imaging, and; iii) HSC

differentiation potential using single cell clonogenic differentiation assays. Drawing upon

existing scRNA-seq data from YS, FL, CB and adult BM, we show for the first time in

humans how life-long definitive haematopoiesis is established in the BM early in fetal life

and the unique characteristics that contribute towards the assembly of a complex multilineage

blood and immune system within a matter of weeks.
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Results

A single cell atlas of human fetal bone marrow

To characterize both fetal BM haematopoiesis and the environment that supports it, we

obtained single cell suspensions from mechanical disruption of fetal femur. Suspensions

were; i) labeled with CD45-fluorochrome antibody, FACS-enriched for CD45+/- cells and

processed with either 3-prime or 5-prime reagents to yield mRNA and TCR/BCR data, or; ii)

labelled with CD34-fluorochrome antibody plus ADT cocktail and FACS-enriched for live

cells or CD34+ to generate CITE-seq (total) or CITE-seq (CD34+) data (10x Genomics) (Fig.

1A; Supplementary Table 1). FL and CB CD34+ CITE-seq data were generated in parallel.

Reference scRNA-seq data sets on YS and FL4, CB and adult BM

(https://data.humancellatlas.org/) were assembled to allow comparisons across

haematopoietic development (Extended Data Figs. 1A-D).

Following removal of low quality cells and doublets, we used Harmony to integrate data

across batches (see Methods). Data were iteratively partitioned by graph-based leiden

clustering. Differentially expressed genes (DEGs) were calculated between clusters, and

those with unique transcriptional signatures assigned as cell states by reference to expression

profiles reported in the literature Supplementary Table 2). To ensure recognition of unique

cell states in different tissues, datasets were annotated independently, facilitated by

label-transfer, and logistic regression was used to confirm consistency of annotations. An

exception was the CD34+ CITE-seq data in FL, fetal BM and CB, in which cross-tissue data

were integrated for clustering and annotation.

Our fetal BM scRNA-seq dataset sampled 9 karyotypically normal fetuses from the time of

macroscopically detectable haematopoiesis (12 PCW) until established second trimester
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haematopoiesis (18-19 PCW). From 122,584 cells, of which 103,228 passed quality control

(QC), 64 transcriptionally distinct cell states were identified and manually grouped into 10

broad cellular compartments (Figs. 1B-D, Extended Data Fig. 1E; Supplementary Tables

3-6). During this time window, the ratio of haematopoietic to stromal cells expanded rapidly,

from 3.4:1 to 12.8:1 (Figs. 1B, D). All 10 broad cellular compartments were present by 12

PCW, which could be accounted for by influx of committed FL progenitors, alongside FL

HSCs, and rapid differentiation in their new environment. B-lymphopoiesis progressively

expanded over gestation while proportion of myeloid cells remained similar (Fig. 1D,

Supplementary Table 7). Fewer broad cellular compartments were observed in CB and

adult BM, with eosinophils, basophils and mast cells absent in both, and stromal cells absent

in CB (Extended Data Figs. 1B, C; Supplementary Tables 8-11). Our fetal BM CITE-seq

(total) data were drawn from 3 further BM suspensions (16-17 PCW, k=8,978)

(Supplementary Table 12, Extended Data Fig. 2A). In CITE-seq data, we observed a

strong correlation between gene expression and equivalent surface protein expression across

the broad cell categories. Our fetal BM 10x dataset can be explored using an interactive web

portal: (https://developmentcellatlas.ncl.ac.uk/fbm_index; username: fbm_portal_access;

password: JxsaCj3zHZu38oqh), which integrates a database for genes implicated in inherited

disorders of blood and immune cells.

A panel of population-defining DEGs expressed as surface antigens in fetal BM 10x were

selected to prospectively isolate cell states for validation (Extended Data Figs. 2B-D).

Emphasis was placed on validating the myeloid innate immune cells not detected in

age-matched FL (neutrophils and their precursors, eosinophils, basophils)4. Cells were

FACS-isolated into plates for Smart-seq2 (SS2) scRNA-seq and cytospins were prepared for

morphological assessment. There was good correlation between 10x and SS2 transcriptional
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states (Fig. 1E, Extended Data Fig. 2D; Supplementary Tables 5, 13) and

morphology-based identity assignment (Fig. 1F, Supplementary Table 2). As the sorting

strategy did not effectively discriminate promonocytes from monocytes, we calculated

differentially expressed proteins between mRNA-defined clusters in our CITE-seq (total) data

to generate candidate proteins markers for developing monocyte populations

(Supplementary Table 14). In addition to expected candidates (HLA-DR, CD14, CD11b),

differences in expression of some novel monocyte antigens (CD35, CD123, CD49d) were

seen (Fig. 1G). For developing neutrophils, CD112, CD99 and CD1d emerged as new

discriminatory markers.

Diversification of innate myeloid and lymphoid cells

Clustering and DEG analysis of fetal BM 10x myeloid cells identified 18 monocyte, dendritic

cell (DC), neutrophil and macrophage cell states spanning from committed precursors to

terminally-differentiated cells (Fig. 2A, Extended Data Figs. 3A, B, Supplementary Table

5). Compared with YS and FL, these lineages were significantly expanded in BM (Fig. 2B).

Neutrophils and their precursors, and additional DC cell states (pDC, tDC and DC3) were

detected in BM, but not in earlier sites of haematopoiesis (Figs. 1F, 2A, B, Supplementary

Table 15). Fetal BM and adult BM were comparable in terms of monocyte, DC and

neutrophil diversity, however CD16+ monocytes (expressing FCGR3A, HES4, CSF1R) and

monocyte-DC populations were only observed after birth.

To understand how myeloid development is differentially programmed in FL and fetal BM,

we sought to explore the origins of neutrophil commitment. By force-directed graph (FDG),

a granulocyte monocyte progenitor (GMP)-like population bridged uncommitted BM

progenitor states and the earliest neutrophilic cells (promyelocytes) (Extended Data Fig.
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3C). Between GMPs and the earliest monocytes (promonocytes), we identified cells fitting

the transcriptional profile of committed monocyte progenitors reported in CB and adult BM18

(MOP). This prompted us to re-analyse our previously published FL scRNA-seq data, upon

which we identified the GMPs in the HSC/MPP group and MOPs and a small number of

promyelocytes within the ‘neutrophil-myeloid progenitor’ group (Supplementary Table 16).

Profiling single cells along the continuum of BM myeloid progenitors, divergence of

monocyte and neutrophil signatures was observed at the GMP stage, consistent with

understanding derived from mouse BM studies19,20 (Extended Data Fig. 3D, Supplementary

Table 17). As the balance of transcription factors CEPBɑ (CEBPA) and PU.1 (SPI1) is

critical for neutrophil versus monocyte specification21, we examined the relative expression

of CEBPA and SPI1 in FL versus fetal BM GMPs (Fig. 2C). This revealed that GMPs often

expressed either CEBPA or SPI1, which is (i) consistent with the notion that fate choices are

often made upstream of the classically defined GMP compartment 19,20, and (ii) that high,

unopposed expression of CEBPA in fetal BM may account for its propensity to make

neutrophils.

To leverage temporal information captured by fetal BM samples in the 12-19 PCW window,

we used the Waddington-OT22 algorithm to visualise the probability of

neutrophil-monocyte-lineage cells transitioning into: CD14 monocyte, neutrophil, or other

(upstream neutrophil-monocyte-lineage) fate at each week of development. The fate matrix

revealed a high probability of terminal differentiation into CD14 monocyte fate at 12 PCW

and an increasing proportion of cells approximating neutrophil fate later in the developmental

window (Extended Data Fig. 3E). We then inferred the neutrophil lineage trajectory using

Monocle323 and identified genes dynamically regulated over pseudotime (Supplementary

Tables 18, 19). We used this to explore the temporal expression of genes proven critical to
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neutrophil development by their implication in congenital neutropenias- inherited disorders of

low neutrophil number leading to infection susceptibility, recombinant

growth-factor-dependence and, variably, BM failure, myelodysplastic syndrome (MDS) and

acute myeloid leukaemia (AML). Genes implicated in congenital neutropenia showed

expression peaks spanning pseudotime (Fig. 2D, Supplementary Table 20). Genes

associated with MDS/AML-risk neutropenias (SBDS, HAX1, G6PC3) tended to be expressed

in HSC/MPPs, whereas genes causing congenital neutropenias without recognized

MDS/AML-risk (AP3B1, CXCR4) were expressed in the terminal stages of differentiation

(Fig. 2D), underscoring the importance of progenitor dysregulation in leukaemia risk.

We compared the transcriptome profile of DCs in fetal BM, YS, FL and adult BM with the

well-characterised DC subsets in adult blood24 (Extended Data Fig. 3F). The transcriptional

signatures of DC1 and pDCs (DC6) were highly conserved across haematopoietic

development and tissue, whereas DC2 and DC3 signatures were less conserved. To explore

the origins of fetal BM DC diversity, we visualized terminal DC states and their putative

precursors by FDG (Fig. 2E, Supplementary Table 5). This revealed tDC (DC5) as a

transcriptional state intermediate between DC2 and pDC. FDG suggested a dual origin of

pDCs, from myeloid and lymphoid precursors, as previously reported in FL4. Using iRegulon

we found similar TFs were predicted to drive terminal differentiation of fetal BM pDC and

tDC (Extended Data Fig. 3G).

We also identified innate lymphocytes, NK cells, NKT cells and ILC precursors in fetal BM.

NK progenitors expressed lymphoid lineage progenitor genes (SOX4 and TOX) (Extended

Data Fig. 3H) and emerged from HSC via the lymphoid primed multipotent progenitor

(LMPP), as inferred by FDG analysis (Fig. 2F, Supplementary Table 5). NK cells and ILCs
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have been identified by scRNA-seq in FL and fetal skin prior to 12 PCW, suggesting that

peripheral tissues are seeded prior to BM NK and ILC precursor production4. Fetal BM NK

cells were enriched for NK cytotoxicity genes, relative to YS and FL. This may indicate that

fetal BM permits more extensive maturation of NK cells, or that early fetal development is

less dependent on effectors of cytotoxicity (Fig. 2G).

Establishment of the adaptive immune repertoire

The post-natal and adult mammalian BM is recognized as a critical site for B cell

differentiation, positive and negative selection25. However, the extent to which fetal BM

contributes to the prenatal B cell repertoire is not fully understood26. We delineated 5 distinct

cell states in the fetal BM B cell lineage and observed two bursts of proliferative activity, at

the Pre pro-B progenitor and the Pre-B precursor stages (Figs. 3A, B, Extended Data Fig.

4A, Supplementary Table 5). Leveraging corresponding BCR-enriched VDJ data from 2

fetal BM samples at 15 PCW, we detected productive heavy chain rearrangement from the

Pre-B precursor stage and productive heavy+light chain from the Immature B cell stage (Fig.

3B). The emerging B cell repertoire was diverse, with the small number of shared clonotypes

detected predominantly between Pre B progenitors (25 clonotypes shared) and Pro B

progenitors (10 clonotypes shared) (Extended Data Fig. 4B). The proportion of B-lineage

cells per mononuclear cell in fetal BM was 10-fold higher than in adult BM, and fetal BM B

lineage composition was markedly skewed towards the earlier cell states (Fig. 3C,

Supplementary Table 21).

Differentiation trajectories reconstructed using Monocle3 revealed linear differentiation from

HSC to Pro B progenitors with a subsequent branch-point at the Pre-B progenitor stage

(Extended Data Fig. 4C). One path of Pre-B progenitor (‘Cell cycling’) significantly
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upregulated proliferative genes including MKI67, TOP2A and CDK1. The other path of

Pre-B progenitors (‘B cell differentiation’) differentiated into immature and naive B cells,

significantly expressing TFs and proteins characteristic of B cell maturation e.g. IGHM,

CXCR4 and SOX4 (Fig. 3D, Supplementary Table 22). Apoptosis gene expression was

relatively minimal in the ‘Cell cycling’ path, suggesting that cells in this state were capable of

returning to the path of progressive differentiation (Extended Data Fig. 4D). Apoptosis

genes were most enriched in the non-cycling Pro-B and Pre-B cell stages (Extended Data

Fig. 4D), in keeping with programmed death of cells failing successful heavy chain

recombination and heavy chain integration into the Pre-B receptor, respectively.

Genes differentially regulated during B lineage pseudotemporal development were calculated

with Monocle3 and used as a foundation for exploring the normal expression patterns of

genes implicated in childhood B-ALL (Fig. 3E, Extended Data Fig. 4C, Supplementary

Tables 18, 23, 24). B-ALL most commonly presents in the first five years of life and it is

known that leukaemia-initiating events can occur in utero8,27,28. Small deletions and

translocations in a limited set of genes are well-characterized in B-ALL29. These genes were

highly expressed in fetal BM B cell states, especially in the Pre-B progenitor and earlier

stages (Fig. 3E), while more limited expression was seen in adult BM B cell states

(Extended Data Fig. 4E, Supplementary Table 25). As proliferation status and chromatin

accessibility contribute to mutagenesis risk30, it is plausible that the dependence of

proliferating B progenitors on these genes exposes a substrate for mutagenesis that is unique

to haematopoiesis during early life.

While the adult BM is a considerable reservoir of both naive and memory T lymphocytes

(Extended Data Fig. 1C), the fetal BM contains few T lymphocytes (Fig. 1B). Thymic
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lymphopoiesis is established several weeks before the fetal BM is colonized3, and in keeping

with this, we found CD4, CD8 and T regulatory cells expressing genes characteristic of the

post thymic state (Fig. 3F). TCR-enriched VDJ data of 2 fetal BM samples at 15 PCW

confirmed that these single positive T cell subsets contained productive TRA and TRB

transcripts (Extended Data Fig. 4F). In FL, early lymphocytes were transcriptionally similar

to the early thymocyte precursor (ETP) in the thymus, supporting the hypothesis that FL

lymphoid precursors seed the thymus4. We combined early lymphoid precursor states from

the FL, thymus and fetal BM and identified a proportion of fetal BM early lymphocyte

precursors (ELP) with a similar role (Fig. 3G, Supplementary Table 5) suggesting that, in

keeping with previous reports, fetal BM contributes to thymopoiesis31.

Intrinsic features of haematopoietic progenitors

Having dissected the committed immune populations of fetal BM, we sought to characterise

the progenitors driving haematopoiesis using our fetal BM 10x data (Extended Data Fig.

5A, B). A spectrum of haematopoietic progenitors was observed in these 3,741 cells, ranging

from uncommitted HSCs expressing MLLT3, HLF and HOPX, to lineage-committed

precursors of lymphoid, myeloid, and erythroid/MK cells. Our CD34+-selected CITE-seq

data provided better resolution of the rarer cell states at both mRNA and protein level and,

through integration with fetal BM and CB CITE-seq data, allowed us to explore the unique

features of fetal BM haematopoiesis (Fig. 4A, B; Extended Data Fig. 5C, D,

Supplementary Table 5, 26).

All progenitor states were represented in FL, although erythroid precursors dominated (Fig.

4C, Extended Data Fig. 5E; Supplementary Table 27). Lymphoid precursors were most

prevalent in fetal BM, particularly the later B lineage subsets (LyP II, III, IV). In contrast,
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CB was enriched in HSC/MPPs, CLPs, and the earliest erythroid precursors (EryP I). As

expected, CB HSPCs were less proliferative than fetal tissues (Fig. 4D). Fetal BM HSCs

were at least as proliferative as FL HSCs and cycling progenitors were seen across the BM

landscape, rendering it unlikely that the BM repertoire reflects passive colonisation by FL

cells.

To assess whether the contrasting profiles of FL, fetal BM and CB were forged by

differentiation bias of the earliest CD34+ progenitors, we performed Direction of Transition

(DoT) analysis32 with adult BM 10x data as a reference landscape. We calculated ‘cell state

change vectors’ using DEGs between HSCs (HSC/MPP I cluster) in FBM, FL and CB (Fig.

4E, Supplementary Table 28) and fetal BM and FL (Extended Data Fig. 6A,

Supplementary Table 29). FL DEGs were consistent with a bias towards erythroid fate (red

region on dotscore UMAP) and away from myeloid and lymphoid fate (blue regions). Fetal

BM progenitors appeared to be significantly biased towards neutrophil and B lineages

(Extended Data Fig. 6A). This further supports the notion that fetal BM haematopoiesis is

not simply a mirror of FL haematopoiesis, as differential programming is observed from the

earliest progenitors. CB progenitors appeared to favour myeloid and lymphoid cell

production over erythroid, in keeping with erythroid specification as particularly important in

early fetal development (Fig. 4E).

To establish whether transcriptional differences and predicted biases in FL and fetal BM

HSC/MPPs corresponded to functionally relevant differentiation potential, we FACS-isolated

single HSCs from paired FL and fetal BM suspensions and performed single cell clonal

cultures over MS5 mouse stroma with cytokines and growth factors supporting erythroid,

megakaryocyte, NK lymphoid, monocyte and neutrophil output (Fig. 4F-H, Extended Data
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Figs. 6B-C). Notably, the ability to produce B cells was not tested in this assay. More

committed populations (CD34+CD38-/mid and MLP) were also FACS-isolated and cultured for

comparison. Relative to FL HSC/MPPss, fewer fetal BM HSC/MPPs produced colonies (Fig.

4F). Fetal BM colonies showed greater lineage restriction (Fig. 4G, H). Myeloid colonies

arose frequently from both FL and fetal BM HSC/MPPs but myeloid-restricted colonies (i.e.

no other potential) were typical of fetal BM (Fig. 4H), supporting the greater bias of fetal BM

HSC/MPPs to the myeloid fate, as predicted by DoT analysis, and the more established

myeloid cell repertoire observed in BM (Fig. 2B, Extended Data Figs. 6A).

Intrinsic and extrinsic perturbation of haematopoiesis in Down syndrome

Children with trisomy 21 (Down syndrome; DS) have an approximately 50-fold increased

risk of developing acute leukaemia in the first four years of life15. Leukaemias of both

myeloid and lymphoid lineages occur, although myeloid leukaemia risk is more substantially

elevated compared with the disomic population (150-fold for AML and 600-fold for

AMKL)15. Myeloid leukaemia of DS is known to arise in utero, when fetal cells acquire

somatic mutations in the GATA1 TF gene and drive a highly proliferative neonatal

pre-leukaemic syndrome33. Lymphoid leukaemias in DS are exclusively B-lineage, typically

present after 12 months of age, and are less clearly attributable to in utero haematopoiesis.

Children with DS frequently experience immune pathology, including increased susceptibility

to infection34, higher infection-related mortality14, B-lymphopenia35,36 and a markedly

increased prevalence of autoimmunity13,37. While haematopoietic perturbations have been

reported in DS FL, little is known about how haematopoiesis and immune cell development

may be affected in fetal BM.
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We generated scRNA-seq data from 4 DS fetal BM samples (12-13 PCW), in which GATA1

mutations had been excluded, with 16,743 of 17,956 cells passing QC (Fig. 5A;

Supplementary Table 30, 31). The average gene count per single cell in DS fetal BM 10x

was comparable with disomic fetal BM 10x, and good consensus was observed between

annotations (Extended Data Fig. 7A, B). The relative abundance of broad cell states in DS

fetal BM was compared with age-matched disomic (non-DS) fetal BM using Milo38 (Fig.

5B). The erythroid lineage was significantly more abundant, and the MK and B lineages

significantly reduced in DS. Relative suppression of the MK lineage in DS BM was not

expected as DS FL HSCs show intrinsic erythroid/MK bias and increased megakaryocytes11.

There was greater representation of mid and late erythroid cells in the DS data, accompanied

by increased enrichment in cell cycle gene expression in early and mid erythroid cells

(Extended Data Fig. 7C, D).

Erythroid differentiation was reconstructed using Monocle3 in both DS and non-DS fetal BM

(Extended Data Fig. 7E, Supplementary Tables 18, 32, 33). Distinct patterns of gene

expression across DS pseudotime included increased expression of cell cycle genes (CCND3,

MKI67), early recruitment of haem synthesis genes (ALAS2, FECH) and elevated, sustained

expression of glycolysis gene PKLR. These data suggest that more rapid proliferation of

emerging erythroid cells in DS, supported by metabolic and biosynthetic adaptations,

underpin the DS BM erythroid dominance. Reconstruction of MK and B lineage trajectories

were not performed due to limited cell numbers in DS.

We performed in vitro differentiation assays to test our hypothesis that the cellular

topography of DS fetal BM reflects differentiation bias of DS BM stem/progenitors. Single

HSC/MPPs from DS and age-matched non-DS BM were sorted onto methylcellulose and
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MS-5- supported systems (sorting as per Extended Data Fig. 6B). On methylcellulose, DS

HSC/MPPs produced significantly more erythroid colonies and fewer myeloid colonies

(GEMM/GM) (Fig. 5C). In keeping with our observation that early- and mid-erythroid cells

are more actively cycling in DS, erythroid colonies were consistently larger and produced a

greater number of sub-colonies (Extended Data Fig. 7F). Colonies could not be generated

from DS HSC/MPPs on MS5 with either 1 or 20 HSC/MPPs per well, perhaps reflecting the

need of DS fetal BM HSC/MPP for specific additional cytokines, given that matched FL

samples from the same fetus efficiently generated colonies with more erythroid and fewer

myeloid cells than non-DS FL.

We sought to explore the lineage biases imposed by trisomy 21 on fetal BM HSC/MPPs.

DEGs were calculated between paired cell states in DS and non-DS 10x fetal BM datasets,

and all showed increased expression of chromosome 21 genes in DS (Supplementary Table

34), in addition to genome-wide transcriptional differences (Fig. 5D). Marked expression

differences were noted for populations affected in DS, including MEMP, MK and B-lineage

cells, suggesting these genes are likely to be important in driving lineage biases. DEG

analysis further revealed overexpression of chromosome 21 TFs with documented roles in

haematopoiesis in DS, including U2AF1 (MEMP), U2AF1 and ETS2 (MK) and ETS2 (B

lineage) (Extended Data Fig. 7G).

To elucidate the molecular regulation of gene expression differences, we used PySCENIC to

infer TF activity for DS and non-DS cell states (Fig. 5E). Inferences proposed that non-DS

HSCs were regulated by TFs with well-defined roles in early haematopoietic programming

(TAL1, SPI1, FLI139,40), but DS HSCs lacked the expected regulatory programmes. Instead,

DS regulons included 3 ETS-domain containing TFs- ELK1, SRF and GABPA. These TFs
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activate basal splicing, transcription and translation, but exhibit overlap in their promoter

binding regions41. GABPA, encoded on chromosome 21 is implicated in differentiation and

maintenance of HSC/MPPs42. Analysis for non-DS MKs and their progenitors (MEMP)

implicated TFs critical to erythroid versus MK fate specification (FLI1, KLF1, GATA1)43, but

analysis for DS-MKs suggested disruption of these programmes, and are in keeping with

recent data showing marked silencing of the FLI1 promoter in DS44. While attempts have

been made to distill the dysregulated TFs underpinning DS haematopoiesis in model

systems45,46, our data suggest that a complex blend of overlapping TFs and regulatory

mechanisms underpin the lineage biases we observe in the human fetal BM.

Prompted by the frequency of TNF family proteins in DEGs between DS and non-DS fetal

BM cell states (Supplementary Table 34), and the prediction that NFkB subunit RELA

regulates multiple DS cells states, we sought to investigate whether inflammatory signaling

may contribute to haematopoietic dysregulation in DS. TNF was overexpressed in most

myeloid lineages in DS fetal BM relative to non-DS, in keeping with reports of raised

circulating TNF𝛂 in DS47 (Fig. 5F). TNF𝛂 signalling pathway genes were over-represented

in DS myeloid, erythroid, NK and stromal cells (Fig. 5F). CellPhone DB analysis predicted

that DS BM HSCs integrate TNF-family signals, primarily from BM myeloid cells,

indicating that HSC-extrinsic factors as well as intrinsic lineage bias shape haematopoiesis in

DS fetal BM (Fig. 5G; Supplementary Table 35).

Haematopoietic niche in fetal bone marrow

The non-haematopoietic fraction of the fetal BM 10x data comprised 6,287 cells.

Fine-resolution clustering revealed 19 unique cell states (Fig. 6A, Extended Data Fig. 8A-D,

Supplementary Table 36). Annotation was harmonised with stromal cell states recently
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described in mouse BM48 (Extended Data Fig. 8E). While osteoclasts were not captured in

the mouse data due to experimental factors, there was otherwise strong correlation between

fetal BM and mouse counterparts (Extended Data Fig. 8E). The initial stage of BM had a

unique balance of cell states, with reduced proportions of endothelial cells (EC), osteoblasts

and adipo-CAR cells and a greater proportion of osteoclasts compared to later stages,

probably reflecting the requirement for bone remodelling cells early in BM niche

establishment (Extended Data Fig. 8A).

We focused our investigation on osteochondral and EC, which are reported to form the

endosteal and endothelial HSC niches49. We annotated one cluster of 191 cells as

osteochondral precursors based on their expression of genes characteristic of osteoblasts

(CPE, IBSP), Adipo-CARs (VCAN, GGT5), chondrocytes (CSPG4, EDIL3), genes involved

in musculoskeletal development (AEBP1) and position within FDG visualisation (Extended

Data Fig. 8D). Sinusoidal ECs expressing STAB1, STAB2 and TSPAN7 were the most

abundant EC type in fetal BM (Fig. 6A, Extended Data Figs. 8A, B). The sinusoids form a

portal of entry and exit for migratory progenitors and differentiated cell types in BM as well

as other organs capable of haematopoiesis (liver and spleen). Refined clustering and

re-annotation of ECs from FL allowed us to identify an analogous EC population

(Supplementary Table 16). Fetal BM sinusoidal ECs had significantly higher expression of

SELE, VCAM1 and ICAM2 than FL sinusoidal ECs, permitting SELPLG/PSGL1 and

ITGA4/ITGB1 interactions but blocking LFA-1-dependent cell adhesion (Fig. 6B,

Supplementary Table 16). Fetal BM sinusoidal ECs expressed more extracellular matrix

genes, including THBS1, which contributes to HSC/MPP retention50 and matrix

metalloproteinases which facilitate mature cell egress51 (Fig. 6B). Fetal BM sinusoidal ECs

expressed more CCL14, promoting proliferation of myeloid progenitors, while FL expressed
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more CCL23 which has the opposite effect52, supporting a role for ECs in shaping

tissue-specific myelopoiesis.

We used CellphoneDB to predict significant receptor-ligand interactions between fetal BM

HSCs and non-haematopoietic stromal cells (Fig. 6C, Extended Data Fig. 8G,

Supplementary Table 37). HSC-stromal interactions with significant association and

receptor-ligand expression were grouped by (1) directionality of signalling and (2) niche

environment, whether arteriolar, endosteal or stromal; see Methods for niche groupings. EC

and adipo-CAR cells were predicted to provide critical signals to support haematopoiesis via

CD44, KIT, FLT3, NOTCH1/2, NRP2, MERTK, FZD6 and FGFR1 and to support HSC

homing and retention via SELL, JAM3 and ESAM (Fig. 6C; Extended Data Fig. 8G, left).

Osteochondral cells and stromal cells appeared capable of providing similar support, though

NOTCH signalling interactions were fewer (Fig. 6C; Extended Data Fig. 8G, left).

Protein-level expression of HSC receptors was confirmed in the CD34+ fetal BM CITE-seq

data (where corresponding antibodies were present in the panel) (Extended Data Fig. 8G,

right). In the other direction, HSCs were predicted to signal to, and support development of

their niches, in particular to the tip and proliferating ECs and the osteochondral precursor via

ANGPT2, DLK1, EFNA1 and FGF7 (Extended Data Fig. 9A, B).

To identify predicted interacting cell types in situ, we used standard histochemistry and

multiplex immunofluorescence microscopy on sections of fetal bone (Fig. 6D).

CD34+VEGFR2+ sinusoids permeated the entire haematopoietic cavity (Extended Data Figs.

9C, E, F) and megakaryocytes, erythroblasts and mature myeloid cells were easily seen

(Extended Data Fig. 9D). CXCL12+ CAR cells were numerous and abutted the sinusoidal

endothelium (Extended Data Figs. 9E, F). CD163+ macrophages were not in direct contact
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with ECs but followed the sinusoidal architecture (Extended Data Figs. 9E, F).

CD34+VEGFR2-CD117lo/+ HSCs were rare, but were frequently located adjacent to sinusoids

(Fig. 6E). Quantitative analysis demonstrated significant association of HSCs and ECs

relative to background (Fig. 6E, F; Supplementary Table 38), validating our predictions that

the arteriolar niche provides important support for BM HSCs.

Non-haematopoietic cells isolated from DS fetal BM were few in number, precluding the

detailed annotation of cell states we performed for non-DS fetal BM. However, three broad

categories could be ascertained (ECs, macrophages/osteoclasts and osteochondral cells). The

key interactions predicted between EC and HSC in non-DS fetal BM were examined in DS

fetal BM (Fig. 6G, Supplementary Table 39). NOTCH ligands NOV, DLL4 and DLK1 were

more abundant in DS endothelium. NOTCH signalling has a critical role in HSC emergence,

maintenance and response to proinflammatory signals53,54. Having identified activation of

TNF𝛂 signaling pathways in DS haematopoietic cells, we probed for inflammatory

programmes in DS stromal cell groups, relative to non-DS counterparts. Expression of genes

implicated in TNF𝛂 pathways were increased in macrophages/osteoclasts, in line with

myeloid cells shown in Fig. 5F, but genes implicated in type I interferon, IFNɣ and other

inflammatory cytokine (IL1, 6, 7, 12) response pathways were overexpressed in DS ECs and

osteochondral cells, indicating that broad dysregulation of immune homeostasis alters the BM

niche in DS (Fig. 6H, Supplementary Table 40).
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Discussion

It is well-established that survival of the fetus depends on successful initiation of

haematopoiesis in waves across early developmental time and space. Understanding how the

BM contributes to fetal blood and immune cell production has been limited to date. Through

multi-omic dissection of the fetal BM and its stroma, we identify the BM as a key site of

neutrophil emergence, myeloid diversification and B lymphoid selection.

Using these data, we explore vulnerabilities of early life haematopoiesis, including

susceptibility to B-ALL and leukaemia associated with congenital neutropenia. In DS, we

discover haematopoietic abnormalities that are associated with intrinsic bias of

stem/progenitors, underpinned by genome-wide transcriptional changes that reflect the

combinational effects of gene regulatory network disturbance and the influence of immune

dysregulation. By comparison with scRNA-seq datasets across haematopoietic time and

location, we reveal unique intrinsic properties of fetal BM HSCs, and we describe how BM

stromal populations exert extrinsic influence on HSC development. Our data constitute a

novel resource spanning human developmental haematopoiesis that has potential to inform

regenerative and transplantation therapies, for example, through co-opting developmental

programmes to accelerate reconstitution of haematopoietic stem cells transplants, and

manipulating the lineage bias of differentiating progenitors to address specific deficiencies or

for cellular therapy.
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Figure Legends

Figure 1: A single cell transcriptome map of human fetal BM

1A) Experimental overview depicting i) generation of scRNA-seq and CITE-seq data from

dissociated fetal BM cells, ii) validating findings with FACS-isolated cells for scRNA-seq

(SS2) and assessment of morphology, and iii) use of comparison data sets.

1B) UMAP visualisation of the discovery (10x) fetal BM dataset with broad annotation of

cell states (n=9, k = 103,228). Cell type is represented by colour, as shown in panel D legend.

1C) Dot plot showing gene expression of cell state-defining genes. Log-transformed,

normalised and scaled gene expression value is represented by the colour of the dot.

Percentage of cells in each cell type expressing the marker is shown by the size of the dot.

1D) Scatter plot showing age-distribution of fetal BM samples and grouping into 4 stages.

Bar plot showing frequency of cell states across gestational age, with colour of bar

representing each cell type (colour key in legend). Statistical significance of cell frequency

change by stage shown in parentheses (Quasibinomial regression with bootstrap correction

for sort gates; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, details in

Supplementary Table 7).

1E) UMAP visualisation of SS2 data (n=2, k=486) with a 50-cell per subset sample of

predicted 10x counterparts (n=9, k=600). Cell states in 10x data are represented by coloured
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areas and cell states in SS2 data are represented by dots of the equivalent colour. 10x and

SS2 plots can be viewed without overlay in Extended Data Fig. 2D.

1F) Cytospin images of selected populations sorted according to gating strategy shown in

Extended Data Fig. 2B and stained with Giemsa. 100x images were concatenated as shown

by dotted lines.

1G) Dot plot showing differentially expressed proteins in developing monocyte and

neutrophil subsets, as defined by mRNA-annotation, in fetal BM total CITE-seq data.

DSB-normalised protein expression value is represented by the colour of the dot. Percentage

of cells in each subset expressing the marker is shown by the size of the dot.
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Extended Data Figure 1: A single cell transcriptome map of human fetal BM

1A) Summary of scRNA-seq datasets used for comparison: published YS and FL data4 and

publicly available CB and adult BM data from the Human Cell Atlas Data Coordination

Portal.

1B) UMAP visualisation of CB scRNA-seq dataset with our broad annotations of cell state

applied (n=4, k=148,442). Cell type is represented by colour, as shown in legend.

1C) UMAP visualisation of adult BM scRNA-seq dataset with our broad annotations of cell

state applied (n = 4, k = 142,026). Cell type is represented by colour, as shown in legend.

1D) Logistic regression of probability of consensus plotted for intersecting cell states

annotated between fetal BM 10x dataset and the equivalent compartment in adult BM and CB

10x datasets.

1E) UMAP visualisation of fetal BM 10x gene expression (GEX) data (n=9, k=103,228), pre

and post batch correction. Sequencing type and sample is represented by colour, as shown in

legend.

31



Extended Data Figure 2: A single cell transcriptome map of human fetal BM

2A) Dot plots showing gene and corresponding surface protein expression of cell-state

defining markers in fetal BM CITE-seq dataset. Log-transformed, normalised and scaled

GEX values and DSB-normalised protein expression values are represented by the colour of

the dots. Percentage of cells in each cell type expressing the marker is shown by the size of

the dot.

2B) Sorting strategy used to isolate cell types for validation based on subset defining markers

from scRNA-seq (10x) data. From live, CD45+ single cells, CD123+HLA-DR- basophils and

CD123+HLA-DR+ pDCs were gated. From the remaining cells, CD34+CD117mid-hi

progenitors and CD117hi mast cells were gated. Next, CD125+FSChi eosinophils were gated.

Subsequently, HLA-DR+CD79a+ B cells were separated. As CD79 is weakly expressed on

the cell surface, a significant number of B cells fall in the HLA-DR+CD79- gate, forming the

CD14-CD204-CLEC9A-CD1c- population. From HLA-DR+ cells, CD14+CD204- monocytes

were gated. Within the CD14-CD204- population, CLEC9A+ DC1 and CD1c+ DC2 were

identified. From HLA-DR- cells, CD11b-CD52+ T and NK cells were excluded. From the

remaining cells CD11b-CD66b- promyelocytes, CD11b-CD66b+ metamyelocytes/myelocytes

and CD11b+CD66b+ neutrophils were selected. Note, the CD11b gating was as per published

reports mature neutrophils being CD11b+ and immature neutrophils being CD11b-55.

2C) Dot plot showing expression of cell-state defining genes in 10x data used to design

sorting strategy. Equivalent surface antigen names are shown in parentheses.

Log-transformed, normalised and scaled GEX value is represented by the colour of the dot.

Percentage of cells in each cell type expressing the marker is shown by the size of the dot.
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Dashed boxes indicate the gating strategy for cell-sorting, for example pDCs were isolated as

CD45+HLA-DR+CD123+ cells.

2D) UMAP visualisation of validation SS2 data (n=2, n=486) with a 50-cell per subset

sample of predicted 10x counterparts (n=9, k=600). Top plot- coloured dots show SS2 data

and grey dots 10x data. Bottom plot- coloured dots show 10x data and grey dots SS2 data.

Overlay can be viewed in Fig. 1E.
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Figure 2: Diversification of innate myeloid and lymphoid cells

2A) UMAP visualisation of fetal BM myeloid cells (n = 34,318). Cell type is represented by

colour, as shown in legend.

2B) Scatterplot detailing the frequency of monocyte, neutrophil and DC lineage cells as a

proportion of total haematopoietic cells for YS (n=3), FL (n=14), fetal BM (FBM; n=9) and

adult BM (ABM; n=4) within the 10x GEX datasets (statistical significance tested by

one-way ANOVA with Tukey’s multiple comparison tests). Bar plot showing the relative

proportions of cell states within monocyte, neutrophil and DC lineages for YS, FL, fetal BM

and adult BM 10x GEX datasets, with colour of bar representing each cell type (colour key in

legend). Macrophages were not compared across tissue as they were not captured in adult

BM samples. Statistical significance of myeloid cell frequency change by tissue shown in

parentheses (Quasi binomial regression with bootstrap correction for sort gates; *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001, NT = not tested; details in Supplementary Table

15).

2C) Left: Illustration displaying interaction of SPI1 and CEBPA in monocyte and neutrophil

differentiation from GMPs. Right: log, normalised and scaled expression of CEBPA and SPI1

in GMP cells from FL and fetal BM shown as a scatter plot.

2D) Heat map showing expression of genes implicated in severe congenital neutropenia

(Supplementary Table 20) across fetal BM Monocle3-inferred neutrophil pseudotime.

Expression values are log-transformed, normalized and scaled. Genes differentially expressed
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across fetal BM neutrophil pseudotime are marked with an asterisk (and full list provided in

Supplementary Table 19).

2E) FDG visualisation of fetal BM DC cell states (n=5,702). Cell state is represented by

colour, as shown in legend.

2F) FDG visualisation of fetal BM NK and ILC cell states (n=915). Cell state is represented

by colour, as shown in legend. Grey ellipse highlights proliferating cells.

2G) Heat map showing cytotoxicity of NK cell states in YS, FL and fetal BM, as defined by

enrichment of genes in the KEGG NK cytotoxicity pathway (See Methods). Relative

enrichment is indicated by colour scale.
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Extended Data Figure 3: Diversification of innate myeloid and lymphoid cells

3A) Dot plot showing expression of cell state-defining marker genes in fetal BM DC and

monocyte lineage cells. Log-transformed, normalised and scaled GEX value is represented

by the colour of dot. Percentage of cells in each cell type expressing the marker is shown by

the size of the dot.

3B) Dot plot showing expression of cell state-defining marker genes in fetal BM myeloid

precursors and neutrophil lineage cells. Log-transformed, normalised and scaled GEX value

is represented by the colour of dot. Percentage of cells in each cell type expressing the marker

is shown by the size of the dot.

3C) FDG visualisation of fetal BM progenitor, neutrophil and monocyte cell states

(n=32,448). Cell state is represented by colour, as shown in legend.

3D) Heatmap showing gene expression of markers for early monocyte and neutrophil

commitment (derived from promonocyte vs. promyelocyte DEGs) in fetal BM progenitor cell

states (full DEG list shown in Supplementary Table 17). GEX shown is log-transformed,

normalised and scaled.

3E) Waddington-OT fate map for monocyte and neutrophil lineage fetal BM cells at each

week of gestation (19PCW is not shown as the algorithm does not generate a map for the

terminal time point). Vertices represent maximum probability for pure fates of: CD14

monocyte, neutrophil, or other (upstream monocyte/neutrophil-lineage cell types as depicted

in Extended Data Fig 3C).
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3F) Heat map showing transcriptional similarity between DC/monocyte cell states reported in

blood24 with those identified in developing and mature haematopoietic tissues (YS, FL4 fetal

BM, adult BM). Gene enrichment scores are based on gene signatures pooled from top 100

statistically significant monocyte/DC DEGs in typical blood24.

3G) Heatmap of predicted activity of TFs across pseudotime. TF activity was inferred using

PySCENIC and pseudotime was calculated in Scanpy (sc.tl.dpt). For each TF the expression

data was normalised to between 0-1 prior to plotting.

3H) Dot plot showing expression of genes in fetal BM NK and ILC cells. Log-transformed,

normalised and scaled gene expression value is represented by the colour of dot. Percentage

of cells in each cell type expressing the marker is shown by the size of the dot.
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Figure 3: Establishment of the adaptive immune repertoire

3A) FDG visualisation of fetal BM B lineage cell states (n=28,583). Cell state is represented

by colour, as shown in legend. Grey ellipses highlight cycling cells. Pre pro B = Pre Pro B

progenitor, Pro B = Pro B progenitor, Pre B = Pre B precursor, Imm. B = Immature B cell.

Differentiation paths are noted with dashed arrows for i) Cycling Pre B cells and ii) B cell

differentiation.

3B) Bar plot showing frequency of productive chains and proportion of heavy and light

chains in fetal BM B lineage cells (n=8,298), as defined by BCR-enriched VDJ data.

Accompanying pie charts show percentage of cycling cells (defined as > mean cell cycle

score) displayed per B-lineage cell-type.

3C) Scatter plot detailing the frequency of B lineage cells as a proportion of haematopoietic

mononuclear cells present in YS (n=3), FL (n=14), FBM (n=9) and ABM (n=4) 10x GEX

datasets (statistical significance tested by one-way ANOVA with Tukey’s multiple

comparison tests). The denominator is haematopoietic mononuclear cells to minimize the

effect of variable granulocyte depletion in sample preparation. Bar plot showing relative

proportions of cell states within the B lineage in YS, FL, FBM and ABM 10x GEX datasets,

with colour of bar representing each cell type (colour key in legend; the YS bar is shown in

white to illustrate that no B lineage cells are present). Statistical significance of cell state

frequency change by tissue is shown in parentheses (Quasibinomial regression with bootstrap

correction for sort gates; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, details in

Supplementary Table 21).
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3D) Violin-plot of DEGs between Pre-B progenitors in paths (i - Cycling) and (ii - B cell

differentiation) as per Fig. 3A. Pre-B progenitor cells were assigned to a path based on cell

cycle enrichment score, as described in Methods. Expression values shown on y axis are

log-transformed, normalised and scaled. All genes are differentially expressed between both

conditions; **** p<0.0001  (Supplementary Table 22).

3E) Heat map showing expression of genes implicated in B-ALL across fetal BM B lineage

pseudotime inferred by Monocle3 (details in Extended Data Fig. 4C, and Supplementary

Tables 23, 24). Expression values are log-transformed, normalized and scaled. Genes

differentially expressed across pseudotime are marked with an asterisk.

3F) Dot plot comparing expression of cell state- defining markers genes in thymus and fetal

BM (FBM). Log-transformed, normalised and scaled GEX value is represented by the colour

of dot. Percentage of cells in each cell type expressing the marker is shown by the size of the

dot.

3G) UMAP visualisation of fetal BM, FL, thymus progenitors and T precursors (n=4,766).

Cell type is represented by colour, as shown in legend. ELP = early lymphocyte precursor,

DN T cell = double negative T cell, ETP = early thymocyte precursor.
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Extended Data Figure 4: Establishment of the adaptive immune repertoire

4A) Dot plot showing expression of cell state-defining marker genes in fetal BM B lineage

cells. Log-transformed, normalised and scaled GEX value is represented by the colour of the

dot. Percentage of cells in each cell type expressing the marker is shown by the size of the

dot.

4B) Heatmap showing number of shared clonotypes between B lineage cell types, as defined

by CellRanger. Number of shared clonotypes is shown by colour of square, with colour scale

in legend.

4C) FDG visualisation of fetal BM B lineage cell states (n=30,066) and their upstream

progenitors used in Monocle3 pseudotime analysis. Left: cell states are coloured, as shown in

legend. Right: cells are coloured by pseudotime value. Two paths inferred from Monocle3

pseudotime trajectory are depicted by dashed arrows (i - Cycling Pre B cells and ii - B cell

differentiation, as shown in Fig. 3D).

4D) FDG visualisation of fetal BM B lineage cell states (n=28,583). Cells are coloured by

apoptotic gene enrichment score, as defined by their expression of genes in the KEGG

apoptotic pathway (details in Methods).

4E) Heat map showing expression of genes implicated in B-ALL across adult BM B lineage

pseudotime inferred by Monocle3 (Supplementary Table 24, 25). Expression values are

log-transformed, normalized and scaled. Genes differentially expressed across pseudotime

are marked with an asterisk.
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4F) Barplot showing proportion of TRA/B/G/D chains per productively rearranged TCRs by

fetal BM T lineage cell state, according to CellRanger VDJ output. Bars (mean) and error

bars (SD) of n=2 15 PCW fetal BM samples are shown. Mean±SD percent productivity of

TCRs was 93±9%, 81±16% and 92±11% for CD4 T cells, CD8 T cells and Treg, respectively.
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Figure 4:  Intrinsic features of haematopoietic progenitors

4A) FDG visualisation of CD34+ fetal BM/FL/CB CITE-seq cells on GEX landscape

(n=35,273). Cell type is represented by colour, as shown in legend. The HSC/MPP cluster

labels refer to unsupervised sub-clustering of the most immature compartment rather than

previously described functional MPP subpopulations.

4B) Dot plot showing expression of proteins used for progenitor characterization in CD34+

CITE-seq data. DSB-normalised protein expression value is represented by the colour of the

dot. Percentage of cells in each cell type expressing the marker is shown by the size of the

dot.

4C) FDG visualisation of CD34+ fetal BM (FBM)/FL/CB CITE-seq cells on GEX landscape

(n=35,273). Smoothed cell abundance in each tissue is approximated by kernel density

estimation (KDE) in the FDG space.

4D) Heat map showing cell cycle gene enrichment score for progenitor cell types in CD34+

fetal BM (FBM)/FL/CB CITE-seq.  Relative enrichment is indicated by colour scale.

4E) DoT-scores computed for genes differentially expressed between indicated comparisons

among HSC/MPP1 cluster cells using adult bone marrow scRNA-Seq landscape as the

reference. DoT score takes the origin point (here a matching subset of the HSC/MPP

population matching the respective fetal tissue) and visually represents the direction of cell

state changes introduced by the differential expression. Red-coloured cells indicate a shift
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towards their state and blue-coloured cells a shift away from their state. DoT-score values

correspond to z-scores estimated against simulated data.

4F) Outputs from single cell culture on MS5 stromal layer for paired FL and fetal BM

HSC/MPPs (conducted as per Extended Data Figs. 6B, C). Proportion of sorted wells

producing colonies, separated by progenitor type and tissue of origin (n=3 paired fetal BM

and FL, n=4 fetal BM only). ***p=0.006 by Mann Whitney test of HSC/MPP vs HSC/MPP

and ***p=0.006 committed progenitor vs committed progenitor.

4G) Well contents analysed by flow cytometry and number of lineage outputs per well

compared between HSC and committed progenitors from FL vs. fetal BM. U=colony present

but lineage undefinable by this assay. Statistical comparison is of unipotential vs.

multipotential colonies: HSC/MPP FL vs fetal BM ** p=0.0012; committed progenitor FL

vs BM ‘ns’ p=0.36 by binomial test.

4H) Proportion of FL vs fetal BM HSC/MPPs producing myeloid-containing colonies.

Statistical comparison is of ‘myeloid-only’ vs. ‘myeloid plus other’ *** p=0.0002 by

binomial test.
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Extended Data Figure 5: Intrinsic features of haematopoietic progenitors

5A) FDG visualisation of fetal BM progenitor cells (n=3,741) from 10x data. Cell type is

represented by colour, as shown in legend.

5B) Violin plots showing expression of MEM-, myeloid- and lymphoid- lineage genes in fetal

BM progenitor cells from 10x data. Log-transformed, normalised and scaled GEX values are

displayed on the y-axis.

5C) Dot plot showing expression of genes used for progenitor characterization in CD34+

CITE-seq data. Log-transformed, normalised and scaled GEX value is represented by the

colour of the dot. Percentage of cells in each cell type expressing the marker is shown by the

size of the dot.

5D) Logistic Regression of probability of consensus plotted for intersecting cell states

annotated between CD34+ CITE-seq data and the equivalent compartment in fetal BM 10x

data. Using the logistic regression technique outlined in Methods, we found good consensus

between annotations.

5E) Bar graph showing proportion of each progenitor subset within progenitor cells captured

in FL (n=4), FBM (n=3) and CB (n=4). Proportions are normalised across donors. Coloured

bars represent mean and error bars SD. Quasibinomial regression with bootstrap correction

for sort gates; *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001 (Supplementary Table 27).
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Extended Data Figure 6: Intrinsic features of haematopoietic progenitors

6A) DoT-scores computed for genes differentially expressed between HSC/MPP1 cluster

cells from FL and fetal BM using the adult BM scRNA-seq landscape as the reference. DoT

score takes the origin point (here a matching subset of the HSC/MPP population matching the

respective fetal tissue) and visually represents the directions of cell state changes introduced

by the differential expression. Red-coloured cells indicate a shift towards their state and

blue-coloured cells a shift away from their state. DoT-score values correspond to z-scores

estimated against simulated data.

6B) Sort gates for HSC culture experiments. Single, live, lineage negative CD34+ cells were

divided into CD34+CD38hi (top 20%), CD34+CD38mid (middle 60%) and CD34+CD38-

(bottom 20%) fractions. CD34+CD38- cells were gated further into CD45RA- HSC/MPPs

and CD45RA+ MLP. HSC/MPP, MLP and CD34+CD38mid cells were index sorted for single

cell culture on an MS5 stromal layer. MLP and CD34+CD38mid cells were analysed as

“committed progenitor”.

6C) Examples of single cell HSC culture outputs. Example 1 showing MK (CD41+),

erythroid (CD235a+) and myeloid (CD14+ monocyte and CD15+ neutrophil) outputs.

Example 2 showing NK (CD56+) and myeloid (CD14+ monocyte and CD15+ neutrophil)

outputs.
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Figure 5: Intrinsic and extrinsic perturbation of haematopoiesis in Down syndrome

5A) UMAP visualisation of fetal BM scRNA-seq data (10x) generated from 12-13 PCW

samples with confirmed trisomy 21 and no GATA1 mutation (n=4, k=6,743). Cell type is

represented by colour, as shown in legend.

5B) Beeswarm plot showing log-fold change in abundance between DS and aged-matched

non-DS fetal BM cells in neighbourhoods from different broad cell state clusters (DS

n=16,743, non-DS n=9,717). Coloured dots indicate significant difference in abundance

(p-value adjusted for multiple testing over 0.1 i.e. FDR at 10%).

5C) Colony outputs from DS and aged-matched non-DS HSC/MPPs. Left: single fetal BM

HSC/MPPs sorted onto methylcellulose (DS, n=2, k=365 and non-DS, n=2, k=246). Stacked

bar graph show the proportion of colonies designated MK (megakaryocyte), E (erythroid),

GEMM (granulocyte, erythroid, macrophage, megakaryocyte) and GM (granulocyte,

macrophage). Statistical difference between DS and expected distribution based on non-DS

tested by Chi square with **** p<0.0001. Right: 20 FL HSC/MPPs per well sorted onto

MS5 stromal layer. Scatterplots show the proportion of differentiated cells identified as

erythroid and myeloid (CD11b+CD14+and/or CD15+) by flow cytometry (as in Extended

Data Fig. 6C-D). Coloured bars show mean and error bars SEM. Statistical difference

between DS and non-DS tested by Mann-Whitney with **** p<0.0001 and *** p<0.001.

5D) Heatmap showing number of DEGs between paired cell states in DS vs. non-DS fetal

BM for each chromosome, including correction for number of genes per chromosome (full

DEG list provided in Supplementary Table 34).
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5E) Predicted most highly active TFs in DS vs non-DS HSCs, MEMPs and MK cells (for cell

groupings see Supplementary Tables 3, 31). PySCENIC was used to predict TF activity in

each cell state. This was used to produce median TF activity in each cluster and DS vs

non-DS were compared by t-test for each TF to calculate p-values. Top 30 most significantly

differentially active TFs by p-value shown.

5F) Top panel: matrix plot of TNF GEX across non-DS and DS fetal BM cell states. Bottom

panel: TNFα signalling pathway enrichment was calculated for each cell fraction based on

DEGs between non-DS and DS fetal BM (full list shown in Supplementary Table 34). Gene

set enrichment analysis performed for MSigDB hallmark pathways using the fgsea package

in R. Size of dot represents normalised enrichment score (NES) for TNFα signalling pathway

genes.

5G) Sankey plot of putative TNF superfamily interactions in DS fetal BM. For each cell

category, DEGs between DS and non-DS fetal BM (full list shown in Supplementary Table

34) were filtered for ligands and their receptors were identified using CellPhoneDB. Fold

change in expression in DS over non-DS is shown in the boxes above (red scale). Below is

the predicted receptor coloured by its gene expression level in combined DS and non-DS

HSCs (blue scale).
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Extended Data Figure 7: Intrinsic and extrinsic perturbation of haematopoiesis in

Down syndrome

7A) Violin plot showing consistency of gene capture between DS and non-DS fetal BM 10x

scRNA-seq lanes.

7B) Logistic Regression of probability of consensus plotted for intersecting cell states

annotated between fetal BM (DS and non-DS) scRNA-seq datasets, using the logistic

regression technique outlined in Methods.

7C) Pie charts showing proportions of detailed erythroid cell states in DS vs. non-DS fetal

BM.  ****p < 0.0001 by Chi-square test.

7D) Heat map showing cell cycle gene enrichment score in DS and non-DS fetal BM

erythroid cell states.  Relative enrichment is indicated by colour scale.

7E) Heat maps showing expression of genes implicated in erythropoiesis across non-DS and

DS fetal BM Monocle3-inferred erythroid pseudotime. All genes selected are differentially

expressed across both the DS and non-DS erythroid pseudotime (full gene lists shown in

Supplementary Tables 32, 33). Expression values are log-transformed, normalized and

scaled.

7F) Representative images of erythrocyte colony size and structure from DS (top) and

non-DS (bottom) fetal BM HSC/MPP methylcellulose cultures.
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7G) Dot plot of chromosome 21 transcription factors significantly differentially expressed

(adjusted p value <0.05) in DS vs. non-DS in the different subsets. Size of dot represents

average log2 fold change expression in DS vs. non-DS fetal BM, and colour of dot represents

log(log(adjusted p value)) for differential expression.
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Figure 6: Haematopoietic niche in fetal bone marrow

6A) UMAP visualisation of the non-haematopoietic fetal BM cells (n=6,287). Cell type is

represented by colour, as shown in legend. Broad groupings of macrophage/osteoclast,

endothelial and osteochondral cell types are shown using dotted lines.

6B) Violin plot of GEX in FL and fetal BM sinusoidal ECs. Genes with documented role in

adhesion, extracellular matrix formation and angiopoiesis are shown. Genes that are

differentially expressed between tissues are highlighted with an asterisk (subject to Wilcoxon

rank-sum test with Benjamini-Hochberg correction for multiple testing; *p < 0.05, **p <

0.01, ***p < 0.001, ****p < 0.0001).

6C) Summary of receptor-ligand interactions predicted between fetal BM HSC and

non-haematopoietic cells by CellPhoneDB (Supplementary Table 37). Cells are grouped

into arteriolar niche (EC-sinusoidal, EC-proliferating, EC-tip, EC-arteriolar, Fb-arteriolar,

adipo-CAR), endosteal niche (Fb-endosteal, Osteochondral precursor, Early osteoblast) and

stromal niche (Mac-stromal, Fb-fibroblast). Significant putative receptor-ligands across fetal

BM niches are indicated in Venn diagram overlapping regions.

6D) Cross section of fetal bone stained with hematoxylin and eosin, demonstrating

development of haematopoietic tissue at both poles.

6E) Multiplex immunofluorescence showing two CD34+CD117lo/+ HSC/progenitor cells (red

arrow) in proximity to VEGFR2+ endothelium, considered sinusoidal as it is a linear structure

one EC thick (green arrow).
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6F) Quantitation of mean distance per region of interest (ROI) between CD34+CD117lo/+

HSC/progenitor cells and VEGFR2+ sinusoidal ECs (green circle) or CD163+ macrophages

(blue square). CD34-CD117++ mast cells were discerned by the panel of markers and are

included for comparison. Bars show mean ∓ SEM euclidean distance between cells in 20x

tiled images in k=177 ROIs. (Supplementary Table 38). Statistically significant (Wilcoxon

signed rank test) distribution of HSC proximity to each cell state compared to background is

denoted by a *. See Immunofluorescence microscopy section in Methods.

6G) Violin plot of GEX in DS and non-DS fetal BM HSC and ECs. Genes shown have a

significant receptor-ligand interaction in non-DS fetal BM, as predicted by CellPhoneDB

analysis and detailed in Fig. 6C. Genes that are differentially expressed between DS and

non-DS fetal BM are highlighted with an asterisk (subject to Wilcoxon rank-sum test with

Benjamini-hochberg correction for multiple testing; *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001). Full DEG lists provided in Supplementary Table 39.

6H) Heatmap of differentially enriched inflammatory and cytokine production pathways in

DS vs non-DS non-haematopoietic cell groupings. Computed from DEGs between DS and

non-DS non-haematopoietic cell groupings weighted by fold change. See Methods for further

details and Supplementary Table 40 for the full list of genes and pathways.
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Extended Data Figure 8: Haematopoietic niche in fetal bone marrow

8A) Left panel: Dot plot showing age-distribution of fetal BM samples and grouping into 4

stages (n=9). Right panel: Stacked bar plot showing frequency of non-haematopoietic cell

states across stages. Statistical significance of cell frequency change shown in parentheses

(Quasi binomial regression with bootstrap correction for sort gates; *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001, details in Supplementary Table 36).

8B) Identification of 4 distinct EC states in fetal BM shown by dot plot of defining marker

genes. Log-transformed, normalised and scaled GEX value is represented by the colour of the

dot. Percentage of cells in each cell type expressing the marker is shown by the size of the

dot.

8C) Identification of distinct osteoclast and macrophage cell states in fetal BM shown by dot

plot of defining marker genes. Log-transformed, normalised and scaled GEX value is

represented by the colour of the dot. Percentage of cells in each cell type expressing the

marker is shown by the size of the dot.

8D) Identification of osteochondral lineage states in fetal BM shown by dot plot of defining

marker genes. Log-transformed, normalised and scaled GEX value is represented by the

colour of the dot. Percentage of cells in each cell type expressing the marker is shown by the

size of the dot.

8E) Heat map showing transcriptional similarity between post-natal mouse BM stromal

cells48 and non-haematopoietic cells in fetal BM. Gene enrichment scores are based on gene

52

https://paperpile.com/c/Hdlb3w/GJKvM


signatures pooled from top 100 statistically significant DEGs for stromal cell populations in

mouse BM48.

8F) FDG visualisation of osteochondral lineage fetal BM cells (n=1,723). Cell type is

represented by colour, as shown in legend.

8G) Left panel: stromal ligands signalling to HSC receptors in fetal BM 10x data (as per

Venn diagram in Fig. 6C, Supplementary Table 37). Violin plots showing expression of

receptor-ligand pairs predicted by CellPhoneDB to have significant interactions in fetal BM

10x data. Log-transformed, normalised and scaled GEX value is represented on the y-axis.

Colours represent grouping of stromal cell types, as shown in Fig. 6C. Right panel: Protein

level expression of HSC receptors in CD34+ CITE-seq fetal BM HSCs shown by dot plot.

Log-transformed, normalised and scaled GEX value is represented by the colour of the dot.

Percentage of cells in each cell type expressing the marker is shown by the size of the dot.
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Extended Data Figure 9: Haematopoietic niche in fetal bone marrow

9A) Summary of receptor-ligand interactions predicted by CellPhoneDB where HSC ligands

signal to stromal receptors (Supplementary Table 37). Cells are grouped into arteriolar niche

(EC-sinusoidal, EC-proliferating, EC-tip, EC-arteriolar, Fb-arteriolar, adipo-CAR) and

endosteal niche (Fb-endosteal, Osteochondral precursor, Early osteoblast). Significant

putative receptor-ligands across fetal BM niches are indicated in Venn diagram overlapping

regions.

9B) Dot plots showing expression of receptor-ligand pair genes predicted by CellPhoneDB,

as listed in Extended Data Fig. 9A (Supplementary Table 37). Log-transformed,

normalised and scaled GEX value is represented by the colour of the dot. Percentage of cells

in each cell type expressing the marker is shown by the size of the dot.

9C) Cross section of fetal bone stained with hematoxylin and eosin and imaged at 10x

magnification to demonstrate haematopoietic architecture.

9D) Cross section of fetal bone stained with hematoxylin and eosin and imaged at 50x

magnification to demonstrate the more abundant, morphologically distinct cell types

predicted by 10x scRNA-seq annotations.

9E) Representative single stains from multiplex IF showing CD163+ macrophages; CD117hi

mast cells and CD117dim HSCs; VEGFR2+ sinusoidal ECs; CD34+ ECs and HSCs; and

CXCL12+ CAR cells.
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9F) Representative images from two multiplex IF panels imaged at 10x magnification, with

cells coloured according to the legend.
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Methods

Sample preparation

Fetal bone marrow tissue acquisition

Human developmental tissues were obtained from the MRC–Wellcome Trust-funded Human

Developmental Biology Resource (HDBR; http://www.hdbr.org) with written consent and

approval from the Newcastle and North Tyneside NHS Health Authority Joint Ethics

Committee (08/H0906/21+5). HDBR is regulated by the UK Human Tissue Authority (HTA;

www.hta.gov.uk) and operates in accordance with the relevant HTA Codes of Practice.

Fetal developmental stage assignment and chromosomal assessment

Developmental age was estimated from standardized measurements of foot length and

heel-to-knee length56. Quantitative Fluorescence PCR of chromosomes X, Y, 13, 15, 16, 18,

21 and 22 was performed on fetal skin or chorionic villi to assign gender and exclude

common chromosomal abnormalities. In DS samples, GATA1 mutation was excluded as

previously described57.

Dissociation of fetal bone marrow tissue

Adherent material was removed from fetal femur and bone was cut into small pieces before

grinding with a pestle and mortar. Flow buffer (PBS containing 5% (v/v) FBS and 2 mM

EDTA) was added to reduce clumping. The suspension was filtered with a 70μm filter then

centrifuged for 5 min at 500g. The supernatant was removed before cells were treated with 1x

RBC lysis buffer (eBioscience) for 5 min at room temperature and washed once with Flow

Buffer before counting.
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Flow cytometry and FACS for scRNA-seq

Up to 1 million cells were stained with antibody cocktail, incubated for 30 minutes on ice,

washed with flow buffer and resuspended at 10 million cells per ml, with DAPI

(Sigma-Aldrich) added to a final concentration of 3μM immediately before FACS

(Supplementary Table 41). FACS was performed on a BD FACSAria Fusion instrument

running DIVA v.8 to formulate and execute sort decisions, and data were analysed

post-sorting using FlowJo (v.10.6.2, BD Biosciences). For 10x sequencing, cells were sorted

into 500μl PBS in pre-chilled FACS tubes coated with FBS (Thermo Scientific). For

Smart-seq2, index sorting was used to isolate single cells into 96-well LoBind plates

(Eppendorf) containing 10μl lysis buffer (TCL (Qiagen) + 1% (v/v) β-mercaptoethanol) per

well. Plates were centrifuged at 300g for 10 seconds and snap-frozen on dry ice for storage at

-80° until further processing.

10x scRNA-seq

Single cell suspensions of fetal BM (n=9; 12, 13+6, 14+3, 15, 15, 16+2, 16, 17 and 19 PCW)

were prepared for FACS-isolation, as above (Supplementary Table 41). Live, single,

CD45+ and CD45- fractions from each sample were sorted and manually counted, then 7,000

cells were added to each channel of a Single Cell Chip before loading onto the 10x

Chromium Controller (10x Genomics). Reverse transcription, cDNA amplification and

sequencing libraries were generated using either the Single Cell 3’ v2 or Single Cell 5’ with

V(D)J Reagent kits (10x Genomics) as per the manufacturer’s protocol. Libraries were

sequenced using an Illumina HiSeq 4000 with v.4 SBS chemistry. For the gene expression

libraries the following parameters were used: Read 1: 26 cycles, i7 index: 8 cycles, i5 index:

0 cycles, Read 2: 98 cycles. For the V(D)J libraries the following parameters were used: Read
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1: 150 cycles, Read 2: 150 cycles. All libraries were sequenced to achieve a minimum of

50,000 reads per cell.

Plate-based scRNA-seq

Two fetal BM suspensions (both 17 PCW) were prepared for FACS sorting as described

above (antibody details in Supplementary Table 41). Target populations were gated as

shown in Extended Data Fig. 2B. As CD79 is weakly expressed on the cell surface, a

significant number of B cells fall in the HLA-DR+CD79- gate, forming the

CD14-CD204-CLEC9A-CD1c- population, thus do not enter subsequent sort gates. The

number of sorted cells per subset were: 68 neutrophils, 68 myelocytes/metamyelocytes, 56

promyelocytes, 60 pDCs, 72 HSC/MPPs, 60 pDCs, 72 B cells, 70 eosinophils, 70 mast cells,

72 monocytes, 70 DC1 and 70 DC2. Plates containing lysed single cells were processed

using a modified Smart-seq2 protocol24. Libraries were generated using the Nextera XT kit

(Illumina) with 384 cells per library. Cells were barcoded using Index v.2 sets A, B, C and D

(Illumina). Libraries were sequenced using an Illumina NextSeq 550 on High-output mode to

achieve a minimum of 1 million reads per cell.

Cytospins

From the 2 fetal BM suspensions prepared for plate-based RNA-seq, target populations were

sorted into FACS tubes containing chilled PBS. Slides were prepared using a Thermo

Cytospin 4 cytocentrifuge and ShandonTM coated slides (Thermo, 5991059), dried at room

temperature, then fixed with ice-cold methanol and stained using Giemsa (Sigma-Aldrich),

according to manufacturer’s instructions. Slides were viewed using a Zeiss AxioImager

microscope, images taken of 4 fields from n=3 samples using the 100X objective, and viewed

using Zen (v.2.3) as previously described4.
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CITE-seq

Cryopreserved fetal BM (n=3, 14-17 PCW), FL (n=4, 14-17 PCW) and CB cells (n=4, 40-42

PCW) were thawed on the day of experiment and added to pre-warmed RF-10 (RPMI

(Sigma-Aldrich) supplemented with 10% (v/v) heat-inactivated fetal bovine serum, FBS

(Gibco), 100 U ml−1 penicillin (Sigma-Aldrich), 0.1 mg ml−1 streptomycin (Sigma-Aldrich),

and 2 mM L-glutamine (Sigma-Aldrich)) dropwise whilst swirling. Cells were centrifuged at

500 g for 5 mins before counting. Pools of cells were made if cell numbers were low. Cells

were then stained with Fc receptor blocking reagent (Biolegend) and CD34 APC/Cy-7

(Biolegend) for 10 mins in the dark and on ice. During the incubation, the CITE-seq antibody

vial was centrifuged at 14,000 g for 1 min then reconstituted with Flow buffer. The vial was

incubated for 5 mins at room temperature then centrifuged at 14,000 g for 10 mins at 4 °C.

The CITE-seq antibody cocktail (Supplementary Table 42) was then added to the cells

along with a competition antibody mix (Supplementary Table 41) and incubated for 30 mins

in the dark and on ice. The stained cells were then washed with Flow buffer, before

resuspension in Flow buffer supplemented with 3 mM DAPI (Sigma Aldrich).

As many as possible live, single, CD34+ and CD34- cells were sorted by FACS into 500μl

PBS in pre-chilled FACS tubes coated with FBS. Sorted cells were then centrifuged at 500g

for 5 mins before manually counting. Cells were then submitted to the CRUK CI Genomics

Core Facility for 10x Chromium loading, library preparation and sequencing. Single cell 3’

version 3 (10x Genomics) kits were used and gene expression and cell surface protein

libraries were generated as per manufacturer’s protocols. Libraries were sequenced using a

NovaSeq (Illumina) to achieve a minimum of 20,000 reads per cell for gene expression and

5,000 reads per cell for cell surface protein.
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Culture experiments

Single cell culture experiments on MS5 were performed on paired fetal BM and FL samples

(n = 3; 15, 17, 17 PCW), and four additional fetal BM samples (n = 4; 14, 15, 16, 17 PCW).

Cryopreserved single cell suspensions were thawed and sorted into HSC/MPP, MLP and

CD34+CD38mid fractions as previously described4 (Supplementary Table 41, Extended Data

Figs. 6B, C). Single cells were index-sorted into 96 well plates containing MS5 in log phase

growth (DSMZ, passage 6–10), using culture conditions as previously described. The

proportion of wells producing colonies was not correlated with gestational age. Single cell

colonies were isolated after 14 days, and prepared for flow cytometry as above. Erythroid

colonies were identified as CD45−GYPA+ ≥ 30 cells, megakaryocyte colonies

as CD41+ ≥ 30 cells, myeloid colonies as [(CD45+CD14+) + (CD45+CD15+)]

≥ 30 cells, NK colonies as CD45+CD56+ ≥ 30 cells. Two-tailed Fisher’s exact

tests, performed in Prism (v.8.1.2, GraphPad Software), were applied to the numbers of

colonies of each type by stage to determine statistical significance in lineage differentiation

potential with development.

Comparisons of DS and non-DS HSC/MPP cultured on an MS5 stromal layer, from paired

fetal BM and FL samples all at 12-13 PCW (DS n=2 each; k=740, FL, k=280 BM; non-DS

n=2 each; k=840 FL, k=500, BM), were performed with 20 cells per well, and analysed after

21 days. This number of cells per well was scaled to 20 and the duration of culture increased

to 21 days to allow maximum opportunity for colonies to arise from DS fetal BM. To avoid

nutrient and growth factor depletion, 50% of the initial culture media volume was added to

wells each week.
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Single cell methylcellulose cultures were performed on HSC/MPP from DS (n=2; PCW=17,

19; k=246) and non-DS fetal BM (n=3; PCW=17, 19, 21; k=365) . Methocult (Stem Cell

Technologies, H4230) was supplemented with 20% IMDM (Gibco) including 1ng/ml

Pen/Strep (Gibco), and human cytokines: 10ng/mL IL-6, IL-11, SCF, Flt3L, 50ng/mL

GM-CSF and TPO, 20ng/mL IL-3 (all PeproTech), and 4 U/ml EPO (EPREX/Janssen) as

described in Roy et al, PNAS 201211. Human fetal BM HSPC subpopulations were index-

sorted as viable single cells via FACS directly into 96 well TC plates (Sigma) containing

supplemented methocult (50ul/well). Sorting was performed on a BD FACSAria Fusion Cell

Sorter (BD Biosciences). Plates were then incubated at 37oC and 5% CO2 for 14 days, colony

readout was performed at D14 and imaged for morphological characterisation using an EVOS

XL Core Imaging System microscope.

Immunofluorescence microscopy

Specimens of FFPE tissue were decalcified in EDTA. 4μm sections were applied to adhesive

slides (Trajan-3). Automated staining was performed on a Vectra Automated Multispectral

Imaging System (Antibodies listed in Supplementary Table 41). Images at 20X

magnification were spectrally unmixed and analysed using supervised machine learning

algorithms within Inform v.2.4.8 (Akoya). HSCs were inadequately segmented by this

process, so were manually annotated in QuPath v.0.2.3. Using cartesian coordinates for each

phenotyped cell, mean Euclidean distances of HSCs to CD163+ macrophages and

VEGFR2+CD34+ CAR were calculated. Mean euclidean distances were calculated between

centroid coordinates using the scipy (v1.6) cdist function from within 158 sampled regions

(ROI) acquired from two separate experiments (88 and 85 ROI respectively). Mean

euclidean distances between HSCs and cell states of interest per ROI were compared to

distances between the same HSCs and all other cells in the ROI. The scipy implementation of
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the Wilcoxon signed rank test was applied in this comparison to determine if the proximity

distribution of HSCs to cells of interest varied significantly above random.

Data analysis

Alignment, quantification and quality control of scRNA-seq

The fetal BM scRNA-seq datasets described in this study (non-DS and DS) underwent

pre-processing as detailed below. 10x droplet-based sequencing data was quantified with the

CellRanger Single Cell Software Suite (10x Genomics, Inc) and aligned to a GRCh38 human

reference genome (see details in Supplementary Table 43). Smart-seq2 sequencing data was

aligned with STAR (v2.7.3a) using the STAR index and aligned to the GRCh38 human

reference genome. Gene-specific read counts for Smart-seq2 data were calculated using

HTSeq-count (v0.10.0). Cells with fewer than 200 detected genes, genes expressed in fewer

than 3 cells, and total mitochondrial gene expression exceeding 20% were removed from

downstream analysis. The methodology for incorporation of external datasets (including: YS,

FL, adult BM, CB, blood, thymus, mouse BM) can be found in Statistics and Reproducibility,

with methods used for any re-annotation described in Dimensional reduction, visualisation

and clustering.

Alignment, quantification and quality control of CITE-seq datasets

The fetal BM CITE-seq (including: CD34+, total) and FL/CB CD34+ CITE-seq datasets

described in this study underwent pre-processing as detailed below. CITE-seq transcriptomic

data was quantified with the CellRanger Single Cell Software Suite (10x Genomics, Inc) and

aligned to a GRCh38 human reference genome, with cell surface protein data quantified

using CITE-seq-Count (see details in Supplementary Table 43). CITE-seq cells from pooled
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lanes were demultiplexed using Souporcell, using the singularity container provided by the

authors of Souporcell on GitHub for reproducibility and with CellRanger human reference

genome GRCh38 v3.0.0 for alignment. For the fetal BM CD34+ samples, the common

variant option was also called (using the ‘common_variants_grch38.vcf’ file provided by

Souporcell) in order to solve complex demultiplexing for these samples.

Cells in CITE-seq transcriptome data with fewer than 200 detected genes, genes expressed in

fewer than 3 cells, and total mitochondrial gene expression exceeding 20% were removed

from downstream analysis. Cells in CITE-seq cell surface protein data with total counts

higher than 5,000, or fewer than 30 antibodies, or antibodies expressed in fewer than 3 cells

were removed from downstream analysis.

Doublet exclusion and transformation of GEX and antibody matrices

We ran Scrublet (v0.2.1) on each 10x and CITE-seq RNA lane independently, obtaining

per-cell scrublet scores. A doublet exclusion threshold of the median plus three times the

median absolute deviation scrublet score was applied, as described previously4.

Raw gene expression matrices from RNA lanes (including those from both 10x and CITE-seq

experiments) underwent correction for cell-to-cell variation via normalisation, using the

normalize_per_cell function in Scanpy (v1.4.4). Data were then transformed using the log1p

function in Scanpy to alleviate skewness of data and mean-variance relationship. Expression

values of each gene were then scaled and centred using the scale function in Scanpy. Highly

variable genes (HVGs) were detected using the highly_variable_genes function in Scanpy,

with minimum mean variance, maximum mean variance and minimum dispersion set as

0.0125, 3 and 0.5, respectively.
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Raw protein count matrices (from CITE-seq experiments) underwent correction for

cell-to-cell variation via normalisation using the DSB (Denonised and Scaled by

Background) algorithm58. DSB normalisation quantified protein counts above background

levels in individual cells, and allowed for improved interpretability of protein expression.

Dimensional reduction, visualisation, batch correction and clustering

Principal components were calculated using the pca function in Scanpy. Dependent upon the

plateau observed in the elbow curve from the pca_variance_ratio function in Scanpy, an

informative number of PCs were selected for downstream analysis.

Principal components were adjusted for sequencing type variation (i.e., 3’ and 5’ sequencing

platforms), biological replicate, or tissue type using the Harmony package for batch

correction (v1.0). Harmony parameter optimisation was performed using our novel fetal BM

scRNA-seq as validation dataset and iterating through theta values 1-10. For each value of

theta, we took the data substructure and technical variations (such as those introduced by

FACs sorting) into consideration by calculating the mean kBET rejection rate and silhouette

scores for all cell types post-Harmony correction (kBET package, v0.99.6, sklearn package

v0.22). Optimum theta selection was then determined by the observation of lowest kBET

rejection score vs lowest silhouette score; theta was then set to 3 for Harmony batch

correction.

The neighbours function in Scanpy was used to calculate the neighbourhood graph. Uniform

manifold approximation and projection (UMAP) embedding was calculated using the umap

function in Scanpy. The neighbourhood graph was then clustered using the leiden function in
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Scanpy. Gene expression dot plots were visualised using the Scanpy package in Python with

dot colour indicating the mean normalised, logged and scaled expression values and dot size

representing the proportion of cells annotated to each category that express the given gene.

When upper limits were placed on either expression or population in gene expression dot

plots, this is indicated by a ‘≥’ in the given figure legend.

Annotation of clusters

Cluster cell identity was assigned through analysis of DEGs and their alignment with marker

genes identified through literature search (Supplementary Table 2). DEGs were calculated

in Scanpy using the rank_genes_groups function, which performed a Wilcoxon rank sum test

restricted to genes expressed in at least 25% of cells in either of the two populations

compared, and with a natural log fold change cut-off of 0.25. All p-values were adjusted for

multiple testing using the Benjamini-Hochberg method. Following initial broad rounds of

annotations, clusters of broad similarity (e.g., lymphoid cells) were subset for further rounds

of feature selection, visualisation, clustering and annotation as described above. Clusters

whose gene signatures indicated additional diversity were further investigated in an iterative

manner, and those with unique signatures were selected for downstream analysis.

Logistic regression for label transfer of annotations

Label transfers and probability of label correspondence between datasets were carried out

using a Logistic Regression (LR) model trained against the fetal BM data. The LR model was

built utilising the ‘sklearn.linear_model.LogisticRegression’ module in the sklearn package

(v0.22). The LR model was trained on normalized gene expression data (x_var =33,712) and

annotations (x_sample=64) of the whole fetal BM dataset (103,228 cells), and used to predict

the probability of correspondence between labels in the target dataset. The model used was
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L2 Ridge Regression regularised with penalty strength of 0.2 using the ’lbfgs’ solver.

Predicted label probability distribution within pre-computed clusters in the target data were

used to assign cluster identity by majority vote. We further assessed the predicted labels by

computing Adjusted Rand index and Mutual information scores from the modules

‘sklearn.metrics.adjusted_rand_score’ and ‘sklearn.metrics.mutual_info_score’ between

original cell labels and predicted comparative cluster labels in overlapping cell states in each

dataset.

Comparisons between scRNA-seq datasets

To compare gene expression programs across tissue compartments (and scRNA-seq datasets),

we combined raw GEX matrices and performed joint matrix transformation and dimension

reduction as previously described in Methods. Datasets were integrated using Harmony with

tissue source as a covariate. DEG analysis was performed as described in ‘Annotation of

clusters’, unless otherwise stated in tool-specific description in Methods (using Wilcoxon

rank sum testing and Benjamini-Hochberg for multiple testing adjustment).

Kernel density estimation of cellular abundance

Gaussian kernel density functions (scipy v1.4.1) were estimated in the FDG space (bandwidth

of 0.1) separately using 7,500 sampled cells from each tissue-specific dataset. To visualise

cell densities on the common landscape, values were computed for all cells with respective

kernel density functions.

Calculating differences in cell type proportions across gestational stages and organ

GraphPad Prism (v8.1.0) was used for plotting and statistical comparison. Statistically

significant differences in cell type proportions across tissue were conducted using a one-way
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ANOVA with Tukey’s multiple comparison tests. Significance was noted on corresponding

scatter plots using asterisks, where scatterplots display proportion per biological replicate.

Cell-type proportions per sample were obtained by adjusting observed proportions by

CD45+/CD45- sort gate. For cell type proportion statistical analysis across gestational stage

and tissue, proportions were modelled as a quasibinomial distribution. For both analyses the

condition (gestational stage or tissue) was provided as a covariate for the proportion of the

cell type being assessed. The quasibinomial model was fit using glm from the MASS R

package. The p-value for the significance of the change in proportion between conditions was

assessed using a likelihood-ratio test, computed using the anova function. Significant changes

in cell type proportion were highlighted on bar plots using asterisks. The Spearman’s rho test

was used to assess monotonic trends of flux between analogous cell states of different

developmental stages. Increasing or decreasing trends were denoted with ‘up’ and ‘down’

arrows respectively.

Differential abundance testing using Milo

To identify cell subpopulations enriched or depleted in DS vs disomic fetal BM samples, we

used Milo (development version) for differential abundance testing on KNN graph

neighbourhoods. This was implemented in the R package miloR

(https://github.com/MarioniLab/miloR). Briefly, we performed KNN graph embedding on DS

and disomic fetal BM samples at matched age (12-13 PCW) using the reduced dimension

space derived from Harmony integration (using the same number of dimensions and value of

K used for UMAP embedding). We use a refined sampling algorithm to select a subset of

cells spanning the KNN graph (defined as index cells) and we count the number of cells from

each sample in the neighbourhoods of index cells, where a neighbourhood is defined as the

group of cells connected by an edge to an index cell. We test for differences in abundance
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between the cells from DS and non-DS samples in each neighbourhood using the

Quasi-likelihood test implemented by edgeR, controlling the FDR across the graph

neighbourhoods. To assign cell type annotations to neighbourhoods, we take the most

frequent annotation between cells in each neighbourhood. Neighbourhoods are generally

homogeneous, retaining neighbourhoods with at least 60% of cells belonging to the most

abundant cell type label.

Gene enrichment scores

To conduct gene enrichment scores against a reference published blood dataset24, the top 100

DEGs (log2 fold change) of blood DC and monocyte cell types were input into

sc.tl.score_genes function in Scanpy. Gene enrichment value for the blood reference cell type

was then calculated as the average expression of the top DEG from the reference dataset,

minus the average expression of another reference set of genes (randomly sampled from each

binned expression value). Gene enrichment scores were visualised using a heatmap in the

seaborn (v.0.9.0) package.

Cell cycle gene enrichment scores were calculated through use of a publicly available curated

list of genes implicated in the human cell cycle59 as the input for sc.tl.score_genes_cell

function in Scanpy. The G2/M and S phase score for each cell thus represented low to high

enrichment for a particular phase’s genes. In order to serve as a proxy for a ‘proliferative

phase’ score, the mean of the G2/M and S phase scores were calculated and plotted in UMAP

space. Cells with G2/M/S cell cycle score greater than the mean were assigned as ‘cycling’

cells, else assigned as ‘not cycling’.
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Gene enrichment scores calculated using sc.tl.score_genes function in Scanpy were used to

ascertain (1) apoptotic gene enrichment through use of genes implicated in the KEGG

apoptotic pathway (GSEA: M8492), (2) NK cytotoxic gene enrichment through use of genes

implicated in the KEGG NK cytotoxicity pathway (GSEA: M5669), and (3) TNF response

gene enrichments using genes from the GO biological process database (GO:0034612).

Direction of transmission (DoT)-score analysis

To define the suitable origin for the DoT-score method, we projected HSC/MPP I cells from

each tissue (fetal BM, fetal liver or cord blood) onto the adult BM (ABM) scRNA-seq

landscape. Both fetal and adult data were scaled together and fetal cells from each tissue were

projected onto 50 PC vectors computed using the ABM data. For each fetal cell, 15 nearest

neighbours in the ABM data were identified. The normalised sum of neighbours identified

per cell in the ABM served as a similarity score. We used all cells with similarity scores

>0.05 (around 60 cells for each tissue) to compute the average gene expression, subsequently

used as the origin points for the DoT-score analysis.

DoT-score was computed as previously described32, using the dotscore package publicly

available at https://github.com/Iwo-K/dotscore. Weights were derived from genes with

significant differential expression between: HSC/MPP I cells from FL compared to fetal BM

(FDR < 0.05, abs(log2(Fold Change) > 0.5); fetal BM compared to combined CB and FL cells

(FDR < 0.05, abs(log2(Fold Change) > 1); CB compared to combined fetal BM and FL cells

(FDR < 0.05, abs(log2(Fold Change) > 1. For clarity, colour-scales in DoT-score plots are

clipped at 0.1% and 99.9% percentiles to avoid plotting extreme outliers.

VDJ analysis
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Using the pyVDJ Python package (v0.1.2), lanes of BCR-enriched and TCR-enriched 10x

data were integrated with their corresponding 10x GEX lane data in Scanpy. Filtered

CellRanger output files were then imported into the Scanpy workflow to investigate

productivity of chains, presence of heavy and light chains and clonal assignment. VDJ

metadata by cell type was then exported from Scanpy and plotted in GraphPad Prism.

Trajectory inference using Monocle3

GEX matrices for cell-types of interest (filtered by highly variable genes, as defined in

Scanpy) were loaded into the Monocle workflow as CellDataSet objects using Monocle3

(v0.2.1). GEX values were then normalised by log and size factor to address depth

differences using preprocess_cds function. For known lineages, cells were clustered with a

resolution parameter of 1e-07 in order that one partition was returned (to ensure pseudotime

with incorporated all cells). Cells were then ordered along pseudotime and with root state

provided using the order_cells function. DEGs across pseudotime were calculated using a

Moran’s I statistical test (graph_test function) and DEGs grouped into ‘modules’ by their

Moran’s-derived correlation across pseudotime using the find_gene_modules function.

Dynamically expressed genes across a given pseudotime were then plotted as heatmaps, with

normalised logged and scaled gene expression values. Paired heat maps across conditions

were the product of combined processing (log, normalising, scaling) of GEX counts and

plotting gene expression over independently derived pseudotime trajectories.

Trajectory inference using Waddington-OT

The Waddington-OT ‘wot’ package (v.1.0.8) was used to calculate differentiation trajectories,

or, transitions between cell states in the fetal BM scRNA-seq data (code closely following the

author’s GitHub documentation). Transport matrices were calculated for the selected
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monocyte-neutrophil lineage cells between 12-19 PCW. Using transport matrices as input, the

probability that a cell at each PCW interval would transition into either a monocyte or

neutrophil fate was then saved as fate matrices. Fate matrices were visualised in triangles,

with two vertices representing the pure cell fates of a bifurcating differentiation trajectory,

and the third fate/vertex representing ‘other’.

Prediction of cell-cell communication using CellPhoneDB

To assign putative cell-cell interactions within our fetal BM 10x GEX scRNA-seq dataset, we

used CellPhoneDB (v2.1.2). Log, normalised and scaled expression values for cell types of

interest were exported from Scanpy along with their respective cell type metadata. Using the

receptor-ligand database (v2.0.0), CellPhoneDB was run using the statistical method, with

p-value cut-off of 0.05 for significant receptor ligand pairs and a result precision of 3dp. To

visualise spatiality of non-DS fetal BM niche interactions via Venn diagram,

non-haematopoietic stromal cells were grouped into: arteriolar niche (EC-sinusoidal,

EC-proliferating, EC-tip, EC-arteriolar), endosteal niche (Fb-endosteal, Osteochondral

precursor, Early osteoblast) and stromal niche (Mac-stromal, Fb-fibroblast). Total cell

numbers of interest were included in analysis unless down-sampling stated in Statistics and

reproducibility.

Inference of transcription factors and their gene regulatory networks using PySCENIC

The PySCENIC package (v0.9.19) and pipeline was used to identify transcription factors and

their target genes in the combined non-DS and DS fetal BM datasets. The ranking database

(hg38__refseq-r80__500bp_up_and_100bp_down_tss.mc9nr.feather), motif annotation

database (motifs-v9-nr.hgnc-m0.001-o0.0.tbl) and list of transcription factors

(lambert2018.txt) were downloaded from the Aert’s laboratory github page. An adjacency
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matrix of transcription factors and their targets was generated and pruned using the Aert’s

group suggested parameters. Comparisons of TF activity between non-DS and DS fetal BM

were made using t-tests of the AUCell output of predicted transcription factor activity in each

cell for each cluster. The regulons generated were used to predict which genes controlled by

each transcription factor in downstream analysis.

Network analysis and clustered pathway annotation

The FindConservedMarkers function in Seurat (v3.1) (Bonferroni-corrected FDR adjusted

p-values < 0.05) and a Benjamini-Hochberg-corrected Wilcoxon rank-sum test (log fold

change > 0.25 and p-values < 0.05) were used to identify conserved and differentially

expressed genes between analogous cellstates in each dataset. Genes were submitted for

over-representation analysis (ORA) using the G-profiler2 package in R to query two

databases simultaneously (Reactome, Gene Ontology (GO) Biological Process). We derived

statistical significance (q < 0.05) for each gene set enrichment and performed Markov

clustering (MCL) using the MCL package in R to derive network neighbourhoods based on

shared genes between the gene sets. The gene set clusters were annotated using the

AutoAnnotate Cytoscape package. Clusters were ranked by the mean enrichment score of all

gene sets within each cluster and manually curated based on biological significance. We used

Cytoscape to visualise clusters of enriched gene sets. Transcription factor regulation of each

markov cluster was identified by hypergeometric modelling of genes in the clustered genesets

to a pre-compiled TF association matrix acquired from the Enrichr database of ENCODE and

ChEA consensus TF associations using the Hypergeometric package in R, over-represented

TFs were then ranked and filtered by p-value (<0.05). To characterise inflammatory response

pathways associated with the stroma in DS fetal BM, we derived DEGs between analogous

stromal compartments in DS and non-DS and submitted the genes for network analysis as
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outlined prior. Fold changes for genes associated with the top five Markov clusters ranked by

cluster size were visualised with the ggplot2 (v3.3.2) package in R.

TNF response gene annotation

We derived DEGs between analogous cellstate compartments in disomic and trisomy 21 fetal

BM, statistically significant DEGs (p-value < 0.05) were compared for intersect against TNF

response associated genes acquired from the GO biological process database (GO:0034612).

Intersecting TNF response genes in DEGs were ranked by log fold change between cellstates

of DS and non-DS. The full list of intersecting TNF response genes are shown in

(Supplementary Table 40).

Statistics and reproducibility

Fetal liver, fetal yolk sac and thymus 10x data

For all re-analysis of FL and YS 10x data (n=113,063 and 10,071), n=14 and 3 biologically

independent samples were used and total population of annotated cell types were shown in

figures unless otherwise stated. Original cell numbers can be found in the original

publication4.

For Fig. 2B, proportions of myeloid cell states arising from BM haematopoiesis and their

counterparts in other tissues were compared. The YS cell state originally assigned as DC

progenitor in Popescu et al4 was renamed as macrophage in line with further GEX

exploration and re-annotation, and therefore included in Fig. 2B but not in Extended Data

Fig. 3F. Further YS progenitor (HSC, ELP, CMP, MEMP, MEP) and myeloid (GMP,

promonocyte, MOP, macrophage) cell states were identified upon re-clustering and
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re-annotating the YS Lymphoid progenitor, MEMP, Myeloid progenitor and YS

progenitor/MPP (metadata for reannotation available in Supplementary Table 44).

For Fig. 2B, the original FL Monocyte precursor and Neutrophil-myeloid progenitor were

subclustered to resolve heterogeneity and revealed further myeloid states including MOP,

monocyte, promonocyte and promyelocyte cells (metadata for reannotation available in

Supplementary Table 16). For Fig. 2B and Extended Data Fig. 3F, FL myeloid

nomenclature was updated such that monocyte precursor became promonocyte, and

monocyte became CD14+ monocyte. Due to the presence of a distinctive pDC precursor in

FL, pDC and pDC precursor were merged into one ‘pDC’ grouping for purposes of the

cross-tissue bar plot.

In Fig. 6B, FL endothelial populations were re-clustered to annotate sinusoidal endothelium,

with metadata for reannotation available in Supplementary Table 16. For all analysis of

thymus 10x data (n=259,265), n=24 biologically independent samples were used and total

population of annotated cell types were shown in figures, with exception of down-sampling

in Fig. 3G, where 1,000 thymus DN cells were used for analysis. Cell numbers can be found

in the original publication3,4.

Fetal bone marrow 10x data

For analysis of combined fetal BM 10x 5GEX and 3GEX data (n=103,228), n=9 biologically

independent samples were used. Total population of annotated cell types were shown in

figures unless otherwise noted.
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The following refined cell number annotations were displayed in each of the figures

(annotations available in Supplementary Table 4): CD4 T cell - 327, CD8 T cell - 171,

CD14 monocyte - 8763, CD56 bright NK - 449, CMP- 425, DC1 - 50, DC2 - 598, DC3 -

705, DC precursor - 201, erythroid macrophage - 92, ELP - 1357, GMP - 1281, HSC - 92,

ILC precursor - 67, LMPP - 34, MEMP - 16, MEP - 269, MK - 1000, MOP - 3838, MPP

myeloid - 92, NK T cell - 111, NK progenitor - 26, Treg - 62, adipo-CAR - 353, arteriolar

fibroblast - 83, basophil - 139, chondrocyte - 80, early MK - 1624, early erythroid - 7474,

early osteoblast - 280, endosteal fibroblast - 54, eo/baso/mast precursor - 175, eosinophil -

321, erythroid macrophage - 92, immature B cell - 1998, immature EC - 42, late erythroid -

4636, mast cell - 648, mature NK - 136, mid erythroid - 14297, monocytoid macrophage -

290, muscle - 131, muscle stem cell - 254, myelocyte - 3794, myeloid DC progenitor - 31,

myofibroblast - 78, naive B cell - 1411, neutrophil - 4501, osteoblast - 363, osteoblast

precursor - 456, osteochondral precursor - 191, osteoclast - 1221, pDC - 712, pDC

progenitor - 23, pre B progenitor - 14229, pre pro B progenitor - 5427, proliferating EC - 26,

promonocyte - 7437, promyelocyte - 2191, schwann cells - 9, sinusoidal EC - 550, stromal

macrophage -1464, tDC - 193, tip EC -  362, pro B progenitor - 5528.

When cell types were grouped into broad lineages (e.g., Figs. 1B, C), cell numbers were as

follows: HSC_MPP - 3795, erythroid - 26407, MK - 2624, B_lineage - 28583, DC - 2459,

eo/baso/mast - 1108, neutrophil - 10486, monocyte - 20038, T_NK - 1349, stroma - 6379.

Other broad groupings used are detailed in Supplementary Table 3.

In Fig. 3B, only B cells with corresponding VDJ data (5,052/28,583) were shown in bar plot.

In Extended Data Fig. 4F, only single positive T cells with corresponding VDJ data

(138/560) were shown in barplots. Refined annotations were merged in the case of Extended
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Data Fig. 7F, where non-DS fetal BM MEP and MEMP were merged and non-DS fetal BM

cells were downsampled to only 12-13 PCW (at matched age with DS fetal BM). For

inference of cellular interactions in Fig. 5G, significant DEGs between DS and non-DS BM

cells (as shown in Supplementary Table 34) were filtered for TNF superfamily genes which

were overrepresented, then CellphoneDB was used to predict interactions. In Fig. 6A, muscle

stem cell and muscle were merged into muscle lineage. In Fig. 6G, fetal BM tip, sinusoidal

and proliferating EC were merged into ‘endothelial’ cells.

Fetal bone marrow Smart-seq2 data

For analysis of fetal BM Smart-seq2 validation data (n=486), n=2 biologically independent

samples were used and the following cell numbers were shown: CD34+ = 32, B cell = 52,

DC1 = 34, DC2 = 15, monocyte = 32, PMN = 65, basophil = 20, eosinophil = 54, mast cell =

47, myelocyte = 61, pDC = 30, promyelocyte = 44. Annotations are available in

Supplementary Table 13.

Fetal bone marrow Down syndrome 10x data

For all analysis of fetal DS BM 10x 5GEX data (n=16,743), n=4 biologically independent

samples and total cell populations were used, unless stated otherwise.

The following refined cell number annotations were displayed in each of the figures

(annotations are available in Supplementary Table 30): CAR - 4, CD14 monocyte - 320,

CD56 bright NK - 79, CD8 T cell - 181, CMP - 50, DC1 - 45, DC2 - 228, DC3 - 108, HSC -

105, ILC precursor -13, MEMP - 130, MK - 83, MOP - 422, MSC -53, Treg - 8, chondrocyte

- 4, early B cell - 42, early MK - 34, early erythroid - 1,348, endothelium - 111, eo/baso/mast

precursor - 53, eosinophil - 63, late erythroid - 6,336, macrophage - 113, mast cell - 66,
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mature B cell - 31, mature NK - 147, mid erythroid - 5,230, myelocyte - 243, neutrophil -

273, osteoblast -11, osteoclast - 57, pDC - 14, pre B cell - 115, promonocyte - 395, pre pDC -

110, promyelocyte - 107, transitional NK cell -11.

When cell types were grouped into broad lineages (e.g., Fig. 5A, B), cell numbers were as

follows: HSC/MPP = 338, Erythroid = 12,914, MK = 117, B lineage = 188, DC = 505,

Neutrophil = 623, Eo/baso/mast = 129, Monocyte = 1,137, TNK = 439, Stroma = 353. Other

broad groupings are detailed in Supplementary Table 31.

Adult bone marrow 10x data

For all analysis of adult BM 10x (n=142,026) data, n=4 biologically independent samples

were used, unless stated otherwise. Lanes from four donors (BM1, BM2, BM5, BM6) were

downloaded from the Immune Cell Atlas public repository (https://data.humancellatlas.org/).

The following refined cell number annotations were displayed in each of the figures

(annotations are available in Supplementary Table 11): CD14 monocyte - 3670, CD16

monocyte - 1938, CD56 bright NK - 1228, CLP - 882, CMP - 288, DC1 - 135, DC2 - 481,

DC3 - 550, DC precursor - 462, HSC - 497, LMPP - 80, MEMP - 785, MK - 577, MOP -

1440, MPP - 365, Treg - 6327, early MK - 136, early erythroid - 5441, erythroid macrophage

- 77, immature B cell - 2728, late erythroid -1150, mature CD8 T cell - 15725, mature NK -

6074, memory B cell - 4106, memory CD4 T cell - 22197, mid erythroid - 2192,

monocyte-DC - 515, myelocyte - 6675, myeloid DC progenitor - 110, naive B cell - 19265,

naive CD4 T cell - 5873, naive CD8 T cell - 8965, neutrophil - 2482, pDC - 1134, pDC

progenitor - 63, plasma cell - 2074, pre B cell - 971, pro B progenitor - 1390, promonocyte -
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7448, promyelocyte - 2197, stroma - 161, tDC - 75, transitional B cell - 2151, transitional

NK - 946.

When cell types were grouped into broad lineages (e.g., Extended Data Fig. 1C), cell

numbers were as follows: HSC/MPP = 3,007, Erythroid = 8,783, MK = 713, B lineage =

32,685, DC = 3,415, Neutrophil = 11,354, Monocyte = 14,496, TNK = 67,335, Stroma = 238.

Other broad annotations are available in Supplementary Table 8.

Cord blood 10x data

For all analysis of CB 10x (n=148,442) data, n=4 biologically independent samples were

used, unless stated otherwise. Lanes from four donors (CB1, CB2, CB5, CB6 respectively)

were downloaded from the Immune Cell Atlas public repository

(https://data.humancellatlas.org/).

The following refined cell number annotations were displayed in each of the figures

(annotations are available in Supplementary Table 10): CD8 T cell - 16345, CD14

monocyte - 13324, CD16 monocyte - 888, CD56 bright NK - 4066, CMP - 272, DC1 - 67,

DC2 -155, DC precursor - 169, GMP - 203, HSC - 194, ILC precursor -1519, MEMP - 338,

MK - 1262, early MK - 496, early erythroid - 532, late erythroid - 878, mature NK - 7860,

mid erythroid - 2627, myelocyte - 3726, naive B cell - 19516, naive CD4 T cell - 69338,

neutrophil - 3458, pDC - 242, preDC - 269, promonocyte - 607, tDC - 91.

When cell types were grouped into broad lineages (e.g., Extended Data Fig. 1B), cell

numbers were as follows: HSC/MPP - 1007, erythroid - 4037, MK - 1758, B cells - 19516,
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DC - 993, neutrophil - 7184, monocyte - 14819, T/NK - 99128. Broad annotations are

available in Supplementary Table 9.

CD34+ CITE-seq data

For analysis of CD34+ CITE-seq data, 10x lanes from fetal BM (n=3, k=8,829), fetal liver

(n=4, k=18,904) and cord blood (n=4, k=7,540) were run using both 3GEX and ADT

technology. The total population of annotated cell types were shown in figures unless

otherwise noted. The following refined cell number annotations were displayed in each of the

figures (annotations available in Supplementary Table 26): DC progenitor I_CB - 54, DC

progenitor I_FBM - 247, DC progenitor I_FL - 50, DC progenitor II_CB - 76, DC progenitor

II_FBM - 298, DC progenitor II_FL - 344, Early LyP_CB - 183, Early LyP_FBM - 301,

Early LyP_FL - 440, EoBasoMC_CB - 153, EoBasoMC_FBM - 153, EoBasoMC_FL - 568,

EryP I_CB - 224, EryP I_FBM - 172, EryP I_FL - 1,927, EryP II_CB - 10, EryP II_FBM -

70, EryP II_FL - 849, EryP III_CB - 86, EryP III_FBM - 133, EryP III_FL - 1,020, EryP

IV_CB - 223, EryP IV_FBM - 319, EryP IV_FL - 1,864, HSC/MPP I_CB - 1,455, HSC/MPP

I_FBM - 284, HSC/MPP I_FL - 1,699, HSC/MPP II_CB - 1,086, HSC/MPP II_FBM - 378,

HSC/MPP II_FL - 1,298, HSC/MPP III_CB - 83, HSC/MPP III_FBM - 159, HSC/MPP

III_FL - 544, HSC/MPP IV_CB - 1,020, HSC/MPP IV_FBM - 307, HSC/MPP IV_FL - 269,

Late EryP I (Pro-erythroblast)_CB - 174, Late EryP I (Pro-erythroblast)_FBM - 229, Late

EryP I (Pro-erythroblast)_FL - 1,598, Late EryP II (Erythroblast)_CB - 26, Late EryP II

(Erythroblast)_FBM - 31, Late EryP II (Erythroblast)_FL - 868, LyP I (CLP)_CB - 787, LyP

I (CLP)_FBM - 520, LyP I (CLP)_FL - 891, LyP II (pre pro-B)_CB - 460, LyP II (pre

pro-B)_FBM - 1,499, LyP II (pre pro-B)_FL - 554, LyP III (pro-B)_CB - 3, LyP III

(pro-B)_FBM - 450, LyP III (pro-B)_FL - 36, LyP IV (pre-B)_CB - 479, LyP IV

(pre-B)_FBM - 777, LyP IV (pre-B)_FL - 619, MEP/MkP_CB - 348, MEP/MkP_FBM - 207,
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MEP/MkP_FL - 1,184, MEP_CB - 39, MEP_FBM - 324, MEP_FL - 384, MyP_CB - 427,

MyP_FBM - 951, MyP_FL - 845, Cycling LyP_CB - 144, Cycling LyP_FBM - 1,020,

Cycling LyP_FL  - 1,053.

Fetal bone marrow CITE-seq data

For analysis of fetal BM CITE-seq data (n=3, k=8,978), the total population of annotated cell

types were shown in figures unless otherwise noted. The following refined cell number

annotations were displayed in each of the figures (annotations available in Supplementary

Table 12): basophil - 15, CD14 monocyte - 1,384, CD4 T cell - 39, CD56 bright NK - 66,

CMP - 78, DC1 - 13, DC2 - 87, DC3 - 20, early erythroid - 517, early MK - 91, ELP - 177,

eosinophil - 22, GMP - 108, HSC - 36, immature B cell - 403, late erythroid - 670, mast cell -

57, mid erythroid - 466, MK - 31, MOP - 280, naive B cell - 249, neutrophil - 294, osteoclast

- 58, pDC - 139, pre B progenitor - 2,241, pre pro B progenitor - 248, pro B progenitor - 366,

promonocyte - 620, promyelocyte - 103, sinusoidal EC - 42, stromal macrophage - 47, tip EC

- 11.

Blood monocyte and DC 10x data

Monocyte-DC blood SS2 data were downloaded from a published study24. The available

RPKM counts for 1140 monocytes (n=768) and DCs (n=372) were logged and scaled (in line

with 10x analysis), in preparation for DEG analysis conducted as described below. Refined

celltype population frequency can be found in original study.

Differentially expressed gene statistics
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Differential gene expression analysis referenced in text and shown in violin plots were run

using the Wilcoxon rank-sum statistical test with Benjamini-Hochberg procedure for multiple

testing correction. p-values are shown in the relevant supplementary tables.

Statistics from barplots

For cell type proportion analysis across gestational stages and different tissues, proportions

were modelled as a quasibinomial distribution. p-values for the significance of change in

proportion between conditions were assessed and values subsequently detailed in

Supplementary Tables 7, 15, 21, 27, 36. For all barplot statistics, asterisks were used to

indicate significant changes in proportion, with *, **, *** and **** representing p-values of

<0.05, <0.01, <0.001 and 0.0001 respectively.

Statistics from colony experiments

Statistical analysis of culture wells producing colonies between fetal BM and FL HSCs by

Mann Whitney test yielded p=0.006 (***, n=7 experiments). Comparison between fetal BM

and FL HSC committed progenitors by the same method yielded p=0.006 (***, n=1536

wells). Comparison of number of colony types per well for paired progenitor types was

performed by binomial test, comparing 1 colony type with >1 colony type. p-values were

0.0012 for fetal BM and FL HSCs (**, n=164) and 0.3566 for fetal BM and FL HSC

committed progenitors (ns, n=152). Comparison of number of myeloid-only colonies for

paired fetal BM and FL HSCs was performed by binomial test, comparing ‘myeloid only’

with ‘myeloid+other’. p-values were 0.0002 (***, n=79).
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Disease lists for interactive web portal

The interactive web portal offers the capability to search expression profiles by genes

associated with haematological disease. These gene lists were intended to compass inherited

disorders with haematological phenotype and are derived from Genomics England clinical

testing panels (https://panelapp.genomicsengland.co.uk/) (Supplementary Table 45).

Data and materials availability

The raw and processed DS/non-DS fetal bone marrow 10x GEX/BCR-/TCR-enriched

scRNA-seq data for this study are deposited at EMBL-EBI ArrayExpress, EMBL-EBI ENA,

and NCBI GEO, with accession codes as follows: E-MTAB-9389, E-MTAB-10042 and

ERP125305. Related accession codes for this study (including Smart-seq2 and CITE-seq

data) are linked to the main accession at E-MTAB-9389 and include: E-MTAB-9801 for fetal

BM Smart-seq2; GSE166895 for CD34+ fetal BM, fetal liver and cord blood CITE-seq;

GSE166895 for fetal BM CITE-seq.

Code availability

Single-cell sequencing data were processed and analysed using publicly available software

packages. Python/R code and notebooks for reproducing single-cell analyses are available at

https://github.com/haniffalab/FCA_bone_marrow
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