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Abstract 

This paper presents the boundary integral equation method (BIEM) for the stress intensity 

factors and elasticity T-stresses evaluation in 3D problems. Flat rectangular, elliptic, penny-shaped 

cracks and rectangular crack on a cylindrical surface have been investigated. The hyper-singular 

integrals are treated with the Taylor’s series expansion of the kernel, and the Chebyshev 

polynomials of the second kind are used to solve the integral equations numerically. The stress 

intensity factors (SIFs) on the crack front are obtained by the coefficients of the Chebyshev 

polynomials. In order to verify the solutions by BIEM, the finite element method (FEM) with 

ABAQUS is conducted. The efficiency and convergence of the BIEM are observed in three 

examples. Comparisons are made with the analytical solutions in the stress intensity factor 

handbook and numerical solutions using the displacement discontinuity method (DDM).    
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1. Introduction 

 The second term in the Williams (1957) series expansion for linear elastic crack-tip fields, 

called T-stress, has found many applications in linear and elastoplastic fracture mechanics. This 

is because the T-stress has certain effects on the crack growth direction, the shape and size of the 

plastic zone, the crack-tip constraint and the fracture toughness by Du and Hancock [1], Larsson 

and Carlson [2], and O’Dowd et al. [3] in the early stage. It was showed that the sign of the T-

stress determines the stability of a straight model path by Cotterell and Rice [4]. A 

comprehensive overview of past research on the T-stress was presented by Gupta et al [5] and 

Fett [6]. These recent studies indicate that the value of the elastic T-stress, along with the J-

integral or other measure of the scale of crack-tip deformation, can provide exceptional 

improvement in the ability to describe local crack-tip stress triaxiality on the scale of fracture 

process zone concluded by Nakamura and Parks in [7]. The T-stress arises in the discussions of 

crack stability of extension for linear elastic materials. A straight crack path has been shown to 

be stable when 0T   for small amounts of crack growth under opening mode, whereas the path 

will be unstable and, therefore, will deviate from being straight when 0T  . Furthermore, the T-

stress plays an important role in elastic-plastic fracture analysis. The early study observed that 

the T-stress can have a significant effect on the plastic zone size and shape, and that the small 

plastic zones in actual specimens can be predicted adequately by including the T-stress as a 

second crack-tip parameter.  

The FEM is a mature, well-developed and most widely used in engineering in both linear and 

non-linear problems including the evaluation of the stress intensity factors and T-stress, see 

Nakamura and Parks in [7,8]. However, the fine element mesh should be used to obtain accurate  

T-stresses at crack tip front and special treatment of stress singularity should be introduced for 

both two and three dimensional problems. Apart from the FEM, the boundary element method 

(BEM) based on the integral equation fundamentals in elastostatics is one of the most efficient 

tools to deal with the same problems which can be traced back to classical mathematical 

formulations by Betti [9], Somigliana [10], Muskhelishvili [11] and Kupradze [12]. In 1960s, the 

development of these formulations in the context of numerical methods was subsequently 

developed by Massonnet [13]. Rizzo [14] and Cruse [15] introduced the first formulation for 

three-dimensional elasticity. A single region technique for the crack growth analysis, call the dual 

boundary element method (DBEM), was formulated by Hong and Chen [16,17] in 1988 and 
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implemented by Portela et al [18] in 1990s for two-dimensional and by Mi and Aliabadi [19] for 

three-dimensional problems. If the displacement equation is applied on one of the crack surfaces 

and the traction equation on the other, a general mixed‐mode fracture problems can be solved with 

a single‐region formulation. One of the advantages of DBEM is that the crack extension procedure 

can be modelled easily by adding extra elements. General review of the DBEM can be found in 

[20] by Aliabadi and [21] by Chen respectively. 

The displacement discontinuity method (DDM) is a type of boundary integral method wherein 

the fundamental solution used is the displacement due to a constant displacement discontinuity on 

a finite segment in an infinite or semi-infinite elastic medium. Boundary value problems in 

mechanics are solved by distributing a series of such displacement discontinuity segments over a 

boundary on which the  displacement or stress is known. The solution is found by adjusting the 

magnitude of each displacement discontinuity to match the boundary conditions. Hyper singular 

boundary integral equation to 2D/3D elastodynamics, anisotropic medium and Reissner’s plate 

bending problems with cracks has been widely used in the solid engineering. A general review of 

DDM can be found in Ref. [22] by Wen et al. It was firstly reported by Crouch [23] in the 

geomechanics and solid mechanics. The DDM was extended to static/dynamic 2D/3D fracture 

mechanics by Wen et al in [24-26] with great success in 1990’s. The M-integral technique along 

with BEM and an auxiliary solution, Sladek et al. [27-29] shown that it was effective for 2D 

thermoelastic stress, elastodynamic stress and the interfaces between dissimilar materials. For 2D 

elastostatics and elastodynamics, the finite block method by Wen [30], Li et al [31] Huang et al 

[32] combined with the stress and displacement fields of the Williams’ series [33] (static) and the 

Deng's series [34] (dynamic) was developed to evaluate the SIFs, T-stress and other coefficients 

for the rest of the regular terms in the stress fields precisely. Similar to SIFs, the values of T-stress 

strongly depend on the relative crack length, geometry and Poisson’s ratio. It is interesting that the 

T-stress for 2D problem is independent of material property and on the contrary they are 

influenced by the Poisson’s ratio of the material in the three-dimensional cases. Although several 

numerical/analytical methods have been developed to calculate T-stresses, the solutions for 3D 

cracked specimens are very limited [35,36,37]. Penny-shaped crack embedded in an infinite body 

subjected to a remote tension and bending loading conditions represents bench mark for the 

cracked components in engineering by Wang [38].  
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Although the hyper singular integral equation method such a DDM is mature and well 

developed in fracture mechanics, high accurate solutions of stress intensity factors and T-stress are 

required as benchmarks in numerical engineering. The T-stresses in front of 2D curved surface 

cracks tips are observed firstly in this present paper with both analytical and numerical solutions. 

The numerical approach based on the boundary integral equations for three dimensional problems 

are presented to evaluate the SIFs and T-stresses for a curved surface crack in an infinite body. 

The Chebyshev polynomials of the second kind are employed in the numerical procedure, and the 

hyper-singular integrals are treated using the Taylor’s series expansion. The convergence is 

observed with increasing numbers of the collocation point and comparison is made with either 

analytical solutions from the stress intensity factor handbook or numerical solutions by 3D FEM 

and DDM.   

 

2. T-stresses in three-dimensions   

2.1. Mode-I crack front solutions  

In mixed mode fracture isotropic elasticity, the leading terms in a series expansion of the stress 

field near the crack front are described [1] as 
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and the displacement fields give 
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where the subscripts 1, 2 and 3 indicate a local Cartesian coordinate system ( 1x  direction is 

formed by the intersection of the plane normal to the  crack front and the plane tangential to the 

crack surface; 2x  direction is tangential to the crack front, and 3x  direction is orthogonal to the 

crack surface), r and   are the polar coordinates coordinates of the plane normal to the crack front, 

IK , IIK  and IIIK  represent the modes I, II and III stress intensity factors, E and  are the Young’s 

modulus and the Poisson’s ratio respectively. 11T , 22T  and 12T  in Eq. (1) are T-stresses parallel to 

the crack surface. In case of a flat crack, it is lying in plane 1 2x x of the global Cartesian 

coordinate system. 

2.2. Boundary integral equation for 2D crack in an infinite body  

The mathematical difficulties associated with the application of the displacement boundary 

integral equation to modelling crack problems (degeneracy of two crack faces into one surface in 

un-deformed state) have been described by Cruse [15]. Recall that Somigliana’s identity [10] for 

displacements at an interior point ξ  is given, in the absence of a body force, by 
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S
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S
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where ),(* xξijU and ),(* xξijT  are fundamental solutions of displacement and traction, SV  xξ , , 

V denotes the domain with boundary S of the problem, for three dimensional body. Considering a 

curved surface crack embedded in an infinite body, as ),(),( **   xξxξ ijij UU ,  ),(* xξijT  

),(*  xξijT , Eq. (3) becomes 
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where S  denotes the crack lower surface,   jjj ttt )(ξ ,   jjj uuu )(ξ . For traction free 

crack, or when the crack is subjected to opposite tractions ( 0)(  ξjt ), we have 
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in which xξ  r , ir,  denotes differentiation with respect to ix , ij is the Kronecker delta, in

indicates the outward unit normal and ,/ i ir n r n   . Multiplying the above equation by the 

outward unit normal )( ξjn  and noting that )()(   ξξ jj nn  results following traction boundary 
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Hence, with using 0)(  ξjt , the traction equation can be written as 
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If the traction boundary conditions are given on the crack surface, we have 
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where )(0 ξit  is the specified traction on crack surface and displacement discontinuity 

)()(   xx ii u . By solving the above integral equation, the displacement discontinuities )( xi

can be obtained. In the following analysis, we replace ξ and x with ξ  and x  for the sake of 

convenience of analysis. 

2.3. Relationship between 11T  and 22T  for mode I of plane crack 

Suppose a crack S is located on the plane 03 x  . Since 3i in  , ,3/ 0r n r     on S , the 
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with   ξxxξ ,r .For mode I fracture problem, we have 3 3( ) ( )k k  x x . Then, from (13), 
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where 0 0
3 3( ) ( )i it  ξ ξ  is pressure load on the crack surface. In view of Eq. (11), the stresses on the 

crack surface under mode I are given as 
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Hence, and from Eq. (14) 
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According to the spatial distribution of stresses (1), one can find the following relationship for 

T-stresses   

0
11 22 3(1 2 ) ,T T                        (17) 

where 0
3 is the applied constant pressure load on the crack surface. 

It means that if one of the T-stresses is obtained, the other one can be determined consequently. 

Particularly, if the crack problems exhibit the symmetry with respect to the lines as shown in 

Figure 1, we know T-stresses immediately  
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on the dash line. 

 

                              Figure 1. 2D crack area with symmetric axes. 

3. Integral formulation for a rectangular crack in infinite domain  

Consider a rectangular crack shown in Figure 2. In order to exclude more complicated singular 

behaviour at crack corners than that given by Eq. (1) and valid near a smooth crack front, a 

= 

= 

= 

= 
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rectangular crack with blunt corners  is considered (a very small radius at corners of a rectangular 

is assumed). Because of the singularity of the stress near the crack front bxax  31   and  , the 

displacement discontinuity on the crack surface can be approximated as 
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kc  represents the coefficient for different fracture modes, )/( 1 axU m  and 2( / )nU x b  are 

Chebyshev polynomials of the second kind which are defined as 
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                        (a)                                                                        

(b) 

       Figure 2. In plane crack in an infinite domain: (a) local integral coordinate; (b) rectangular 

crack under a shear distributed load. 

 

Therefore, Eq. (14), for the mode I, becomes 
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where ),( 21 ξ  indicates the collocation point on the crack surface. Introducing a polar 

coordinate system centered at location point ),( 21   shown in Figure 2(a), the integral function 

2 2
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n nG b U b
a a

  


  


ξ  ,                (23c) 

22
0,2 1 1

2
2

( ) 1 ( / ) ( / ).
1 ( / )

m mG a U a
b b

  


  


ξ              (23d) 

Therefore, using the local polar coordinate, the finite part integral in Eq. (21) becomes 

2 2
1 1 2 2

2 2 3
1 1 2 2

( )2

,1 ,2
0 0

1 ( / ) ( / ) 1 ( / ) ( / )
( )

[( ) ( ) ]

1
( , , ) ( ) [ ( )cos ( )sin ]ln ( ) ,

( )

m n
mn

S

mn mn mn mn

x a U x a x b U x b
A d d

x x

F d G G G d
 

  
 

       
 



 
 

  

       
  

ξ

ξ ξ ξ ξ

   (24) 

where )(  is the distance between collocation point and the crack front as shown in Figure 2(a), 

and  

  0
,1 ,22

1
( , , ) ( ) ( ) cos ( ) sin ( ) ( ).mn mn mn mn mnF G G G G O      


     ξ x ξ ξ ξ              (25) 

= 
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Now, the integral mnA can be calculated by any numerical integral scheme. There are two options 

for collocation point distribution )( pqξ  ),( )(
2

)(
1

pqpq  , i.e.   

(1) Chebyshev roots 

NqMp
N

q
b

M

p
a pqpq ,...,2,1,0,,...,2,1,0   

)1(2

)12(
cos/   ,

)1(2

)12(
cos/ )(

2
)(

1 





















 ， , (26) 

(2) Uniform distribution 

( ) ( )
1 2

(2 1) (2 1)
/ 1 ,    / 1 ,   0,1, 2,..., , 0,1, 2,..., .

( 1) ( 1)
pq pqp q

a b p M q N
M N

  
     

 
   (27) 

Then Eq. (21) at collocation point )( pqξ  becomes 

( ) 0 ( )
3 32

0 0

( ) ( )      0,1, 2,..., , 0,1, 2,..., .
8 (1 )

M N
pq mn pq

mn
m n

E
A c p M q N

   

   
  ξ ξ     (28) 

Eq. (28) above provides a set of linear system of equation with )1)(1(  NM  unknowns mnc3 . 

Having known these coefficients, in view of Eq. (19), we can find the asymptotic behavior of 

displacement discontinuities near the crack front as 

 
1

2 2
3 1 2 3 2 2( )

0 0 0 0

2
3 2 2

0 0 0

( , ) 1 ( ) / ( ( ) / ) 1 ( / ) ( / )lim lim

2 / ( 1) 1 ( / ) ( / ),lim

M N mn
m nx a r

r r m n

M N mn
m n

r m n

x x c a r a U a r a x b U x b

r a c U x b U x b

     

  

       

   
 (29a)

 

 
2

22
3 1 2 3 1 1( )

0 0 0 0

2
3 1 1

0 0 0

( , ) 1 ( / ) ( / ) 1 ( ) / ( ( ) / )lim lim

2 / 1 ( / ) ( / ) ( 1).lim

M N mn
m nx b r

r r m n

M N mn
m n

r m n

x x c x a U x a b r b U b r b

r b c x a U x a U

     

  

       

   

 

On the other hand, from Eq. (2), we have  

 

2

3 3 3 I
0 0 0

1 2
( ) ( , ) ( , ) 4 .lim lim lim

r r r

r
u r u r u r K

E   
 

   

     
       (29b)

 

Hence, we calculate the stress intensity factors along the crack front  by 

abxUbxUc
a

E
xaK

M

m
nm

N

n

mn 
 

 





0

2
2

2
0

322I )/()/(1)1(
)1(4

),( ,      (30a) 

baxUaxUc
b

E
bxK

M

m
mn

N

n

mn 
 

 





0

1
2

1
0

321I )/()/(1)1(
)1(4

),( ,       (30b) 

with 1)1(  lUl  and )1()1()1(  lU l
l being known from the properties of the Chebyshev 
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polynomials. It is worth to mention that the Chebyshev polynomials of the first kind can be used 

in the boundary integral equation computation and the computational effort should be the same. 

 To evaluate the stresses at the collocation point ( )pqξ on the crack surface, Eq. (15) gives the 

following expression  

( ) ( )
32

0 0
( ) ( ) ,

8 (1 )

M Npq pq mn
ij mnij

m n

E
B c

   
  


ξ ξ              (31) 

where the coefficient is defined as 



( )2
( ) ( ) ( ) ( )

,1
0 0

( )
,2

1
( ) ( , , ) ( ) ( )cos

( )sin ln ( ) ( ) ,

pq pq pq pq
mnij mn mn mn

pq
mn ij

B F d G G

G g d

 
   



    

     

 

ξ ξ ξ ξ

ξ

     (32) 

in which 

      3 3( ) (1 2 )(3 2 ) (1 4 )ij i j j i ijg             ,  1 2cos sini i i             (33) 

and 
2

,1 ,2
0

[ ( ) cos ( )sin ] 0mn mnG G d


    ξ ξ is observed. Same procedure above can be applied to 

calculate the stress intensity factors and T-stresses for mixed mode fracture problems.  

It is worth to notice that in general mixed mode fracture problems, the boundary integral 

equations (12) can be written, at collocation point )( pqξ , as 

( ) 0 ( )
2

0 0
( ) ( )      0,1,2,..., , 0,1,2,..., , 1,2,3,

8 (1 )

M N pq mn pq
mn k k

m n

E
A c t p M q N k

   
     


ξ ξ   (34) 

where )(0 ξkt  presents the traction specified on the crack surface. For the mixed mode stress 

intensity factors along the crack front, we have 

abxUbxUc
a

E
xaK

M

m
nm

N

n

mn 
 

 





0

2
2

2
0

122II )/()/(1)1(
)1(4

),(  ，      (35a) 

2
II 1 1 1 12

0 0
( , ) ( 1) 1 ( / ) ( / ) ,

4(1 )

M N mn
n m

m n

E
K x b c U x a U x a b

b


  
    

        (35b)
 

abxUbxUc
a

E
xaK

M

m
nm

N

n

mn 
 

 





0

2
2

2
0

22III )/()/(1)1(
)1(4

),(  ，      (35c) 

2
III 1 2 1 1

0 0
( , ) ( 1) 1 ( / ) ( / )

4(1 )

M N mn
n m

m n

E
K x b c U x a U x a b

b


  
    


,       (35d) 

because the displacement discontinuities in the II and III mode are given, respectively, according 
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to Eq. (2) by 

2

1 1 1 II
0 0 0

1 2
( ) ( , ) ( , ) 4lim lim lim

r r r

r
u r u r u r K

E   
 

 
  

       ,       (35e) 

2 2 2 III
0 0 0

1 2
( ) ( , ) ( , ) 4lim lim lim

r r r

r
u r u r u r K

E   
 

 
  

      .       (35f) 

  Let us consider a rectangular crack in infinite domain is subjected to a uniformly distributed 

pressure load 0  on the surface which is equivalent to that under a remote tensile load. The 

maximum numbers of the Chebyshev polynomials M  and N are selected as 10. Poisson’s ratio 

3.0 and Young’s modulus is one unit. The numerical solution of the normalized stress 

intensity factors, ),( 2I xaK a 0/  and abxK  01I /),( , along the crack fronts AC and BC, are 

given in Figures 3 and 4 respectively. The normalised normal T-stress 0211 /),( xaT  and shear T-

stress 0212 /),( xaT  are presented in Figures 5 and 6. It can be seen from Figures 5 and 6, the 

maximum T-stress ),( 211 xaT  is at the center of the edge and ),( 212 xaT  is monotone function from 

the center (zero) to the corner of the crack. For large ratio of ab / , 0211 /),( xaT  at the center tends 

to 1  as we expected. In order to observe the convergence of the computational method, the 

normalized stress intensity factors aK I  0/  at point A versus the numbers M and N for 

different node distributions are shown in Table 1, while 1/ ab . Comparison of the maximum 

stress intensity factor at pint A  between the numerical solution and analytical results from the 

handbook [40] are shown in Figure 7. We observe excellent agreement between those solutions for 

both two node distributions even with a few nodes such as 9 nodes in total ( 33 ). Secondly, we 

consider a rectangular crack in infinite body subjected to uniform distributed shear load 0  on the 

surface shown in Figure 2(b). The normalized stress intensity factors aabK  0II /)/(  at crack 

tip )0,(aA  and aabK  0III /)/( at tip ),0( bB  are plotted in Figure 8 with different Poisson’s 

ratios. In this case, all T-stresses are zeros along the crack front.  The influence of Poisson’s ratio  

on the shearing and tearing stress intensity factors is observable. 
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Table 1. Normalized SIF with node numbers  

NM   Chebyshev Uniform 
2 0.7604 0.7567 
4 0.7529 0.7539 
6 0.7551 0.7535 
8 0.7574 0.7535 
10 0.7556 0.7535 

 

 

 

                   

          Figure 3. Normalized stress intensity factor along the crack front AC under uniform 

pressure load. 
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Figure 4. Normalized stress intensity factor along the crack front BC under uniform pressure load. 

 

                   

Figure 5. Normalized T-stress 011 /T  along the crack front AC.  
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Figure 6. Normalized T-stress 012 /T  along the crack front AC.  

 

Figure 7. Normalized stress intensity factor aK  0I /  at point A under pressure load.  
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Figure 8. Normalized stress intensity factors aK  0II /  at point A and bK  0III / at point B 

under uniform distributed shear load.  

4. Integral formulation for an elliptical crack  

Consider an elliptical crack shown in Figure 9. The Cartesian coordinates of the point x  on the 

crack surface can be expressed in terms of two parametric coordinates ),( t as  

1 cosx at  , 2 sinx bt   with  0, 1t ,   0, 2   ，                (36a) 

where a  and b  indicate the lengths of the semi-major and semi-minor axes. Then, the t-coordinate 

of the crack front points ),1( C is fixed 1t  . The Cartesian coordinates of the collocation point

( )pqξ on the crack surface can be expressed as 

)()()(
1 cos qppq at   , )()()(

2 sin qppq bt   ,  20  ,1 )()(  qpt .       (36b) 

Besides the coordinates ),( t , it is appropriate to introduce also the polar coordinates  ),( 

centered at ),( 21  . Then,  

 coscos11 atx  ,   sinsin22 btx  , 2
22

2
11 )()(   xx .   (37a) 

Hence, 
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   
1/22 22 2

1 2cos / sin /t a b           
, 2

1

sin
arctan

cos

a

b

  
  

 
   

 and 1 2dx dx d d   . (37b)  

Similar to a rectangular crack, the displacement discontinuity of the crack can be approximated as 


 


M

m

N

n
nm

mn
kk UtUtcxx

0 0

2
21 )()(1),(  ,  10  ,1  t ,         (38) 

where  2/  and mn
kc  represents the coefficient for different fracture modes. Therefore, the 

boundary integral equation in Eq. (14) for mode I problem becomes 

2
0

3 1 2 32 2 2 3
0 0 1 1 2 2

1 ( ) ( )
( ).

8 (1 ) [( ) ( ) ]

M N
mn m n

m n S

t U t UE
c dx dx

x x

 
    


 

   
  ξ        (39) 

In order to perform the integration in finite part sense, we need to extract specific singular terms in 

the integrand with singularity 3 . This can be done by expanding the function 

2( , ) 1 ( ) ( )mn m nG t t U t U    into Taylor series with respect to   around 0  as 

               

                                               (a )                            (b) 

Figure 9. Elliptical crack: (a) coordinate of collocation point; (b) collocation point near the 

boundary with small gap   along normal direction.   

 
 (0) (1) (2) 2

0 0

( , ) ( ) ( ) ( )mn mn mn mn
t

G t G G G O
 

  
  

      
   

ξ ξ ξ                                             (40) 

with 

 (0)
0

( ) ( , )mn mnG G t  ξ ,                                                                                                            (41a) 

= 
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 (1)
1 1

20 0

( , ) ( 1)
( ) ( ) ( ) ( )

2 1

mn
mn m m n

G t m
G U t U t U

t t 


 

 

 
   

 
ξ ,   1m        (41b) 

 

(1) 0
0 20 0

( , )
( ) ( ) ,

1

n
nn

G t t
G U

t t 




 


  

 
ξ

            

 

(41c) 

 

(2) 2
12

0 0

( , ) 1
( ) ( 1) ( ) ( ) 1 ( )

1
mn

mn n n m
G t

G n U n U t U t
 


  

 


 


       

ξ ,   1n     (41d) 

 

(2) 20
0

0 0

( , )
( ) 1 ( ) 0,m

mm
G t

G t U t
 


  

 
   

 
ξ

           

(41e) 

 
    1/22 2

1 20 / /t a b     ,      2
0

1

1
arctan ,

2

a

b


 
 

  
           

(41f) 

 

1 2cos sin1 cos sint

t a a b b

      


       
 ,        1 2

2

sin cos1

ab t

   






 ,    (41g) 

 

1/22 2
1 2 1 2

2 2
0

cos sint

a ba b

     






                      
,      1 2

2 2
0 1 2

sin cos1

2 ( / ) ( / )ab a b

   
   




 
. (41h) 

Then, 

 

2
(0) (1) (2)

3 22 2 3
0 01 1 2 2

1 ( ) ( ) 1 1
( , , ) ( ) ( ) ( )

[( ) ( ) ]

m n
mn mn mn mn
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F G G G

x x  

  
     

       
      

ξ ξ ξ ξ ,    (42) 

where 

 
 (0) (1) (2) 1

3
0 0

1
( , , ) ( , ) ( ) ( ) ( )mn mn mn mn mn

t
F G t G G G O

 

    
 



 
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ξ ξ ξ ξ   .            (43) 

Hence, the integral in Eq. (39) becomes 
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 

  

               

ξ

ξ ξ ξ ξ

        (44) 

where ( )   is the maximal distance between the collocation point and integration points 

( , ) S  x  ; it is shown in Fig. (9) and expressed in Appendix A. As the integral function above 

= 
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is regular, the integral can be evaluated using Gaussian integration. Eq. (39) provides a set of 

linear system of equations with )1)(1(  NM  unknowns mnc3 . Two normalized parameter in Eq. (36) 

are uniformly distributed, as 

NqMp
N

q

M

p
t qp ,...,2,1,0,,...,2,1,0   ,

)1(

)12(
12/   ,

)1(

)12(
1 )()( 








  ,       (45) 

and then we have 

)()()(
1 cos qppq at   , )()()(

2 sin qppq bt   .             (46) 

In order to determine the stress intensity factors, we need to know  

 0 0

( ) ( )
lim limk ku  

 


  




x x
 ,                                                                                                    (47) 

where ( )f f  x x n x , with    1 2, cos , sinx x at bt    , 1t   and    1 2, cos , sinf fx x a b  being 

the interior point on the crack surface and the point the crack front, respectively, and the unit 

outward normal vector ( )fn x to the crack front at fx is given by (A7) in Appendix. 

Since  2

1

( ) ( )k
k

t

O 
  




  


x

n
, we may write 
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

x
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 ,
)t

                   (48a) 

where we have utilized (38), (A7) and  

 
1 2

cos sin
i i f

i i

t t

a bx x
   

  
 

, because 2 2
1 2( / ) ( / )t x a x b   .        (48b) 

Furthermore, 

2 2 2 2 2 2
1 2 1 21 2 1 2 1 2 1 2

2 2

1 2 2 2 2 21 2
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                                                        

 
        
 
 

 (49a) 
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hence,  

 
1/42 20

/ 2
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2(1 ) ( sin ) ( cos )

ab

t a b



 


   

.                                                                           (49b) 

In view of (48) and (49), we have 
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Since 
2

3

0

( ) 2 4(1 )
lim I

u
K

E








 


x
 according to Eq. (2), and bearing in mind (47), (50), the mode 

I stress intensity factor is  
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        (51) 

The analytical solution of the stress intensity factor for an elliptical crack in infinite body 

subjected to a uniform pressure load is [41] 


)(

),1( 0
I 


E

a
K  ,                  (52) 

where )(E  denotes a complete elliptical integral of second kind,   



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22 sin1)( , 
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a
, 

2

2

1
a

b
 .     (53) 

5. Integral formulation for a rectangular crack on a cylinder surface  

Consider a rectangular crack )( hw  on a cylinder surface of radius R subjected to a remote 

tensile load shown in Figure 10(a). The displacement discontinuity of the crack is approximated as 


 


M

m

N

n
nm

mn
kk hsUhswsUwscss

0 0
2

2
21

2
121 )/()/(1)/()/(1),( ,       (54) 

where 1s and 2s  are natural coordinates on the crack surface, with  2 0,s h ,  1 0,s w , 

arcsin( / )w R a R . The integral equation in Eq. (11) becomes 

2 2 * 0
1 1 2 2 1 2

0 0
( ) 1 ( / ) ( / ) 1 ( / ) ( / ) ( , , ) ( )

M N mn
k j m n ijk i

m n S

c n s w U s w s h U s h S ds ds t 
 

     ξ ξ ξ , (55) = 
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where )'(sξ  indicates the collocation point on crack surface   

1 1
1 2 2 3sin , ,  cos

s s
R s R

R R
  

 
   ,               (56) 

and ),( 21 sss  indicates the natural coordinates of the domain integral field point on the curved 

crack surface 

1 1
1 2 2 3sin ,  ,  cos

s s
x R x s x R

R R

   
        

   
.                   (57) 

The cylindrical crack surface is mapped into rectangular domain as shown in Figure 10(b) or into 

the non-dimensional rectangle as shown in Figure B1 in Appendix B. It is appropriate to introduce 

the local polar coordinate system centered at the collocation point 's . Then, 

1 2 1 2ds ds d d whd d wh d d           and the  integrand in Eq. (57) can be rearranged by using 

the Taylor series expansion for extraction of relevant singular terms as given in Appendix B. 

                      

     

  (a)              (b) 

Figure 10. A rectangular crack on a cylinder surface in an infinite domain subjected to a remote 

tensile force 0 .(a) 3D global coordinate 1 2 3( , , )x x x and nature coordinate for cylindrical surface 

crack; (b) local 2D coordinate of nature coordinate system 1 2( )s os .   
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 In view of (B10) and (B15), the integral equation (57) considered at the collocation points 

 ( ) ( ) ( ) ( ) ( )
1 2 1 2 1( , ) sin( / ), , cos( / )p q p q ppq R s R s R s R     ξ  becomes  

        ( ) ( ) 0 ( )
1 2

0 0
( , ) ( )

M N p qmn pq
k mnik i

m n
c A s s t

 
     ξ ,  ( 0,1,...,p M ),( 0,1,...,q N ), ( , 1,2,3i k  )       (58) 

where 1 2( , )mnikA s s   is given by Eq. (B15) in which all integrations can be performed by standard 

integration schemes because the integrands are nonsingular functions of the integration variables 

 ,  . Equation (60) provides a linear system of equation with )1)(1(3  NM  unknowns mn
kc . 

With solving this linear algebraic equations, we find the stress intensity factors along the crack 

front. Recall that the asymptotic relationships (2) are related to the specific local coordinate 

system with the third axis along the normal vector n , the first axis along  τ  and the second axis 

along ρ , where 2 1 3( , ) sin( / ) cos( / )i i in w s w R w R      , 2 3 1 1 3( , )i i iw s n n     , 2( , )i w s   

2i  on the crack front AC , while 1 1 1 3 1( , ) sin( / ) cos( / )i i in s h s R s R    , 2 2( , )i is h    , 

1 3 1 1 3( , )i i is h n n      on the crack front BC. Thus, we have on the crack front AC: 
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hence, 
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while on the crack front BC: 
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hence, 
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Now, we give the expression for the stress tensor components in the local coordinate system at the 

point x  on the crack surface. The directions of axes of the local coordinate system are given by 

vectors  , ,τ ρ n  with 1 1
1 3( ) sin cosi i i

s s
n

R R
  x  , 1 1

1 3( ) cos sini i i
s s

R R
   x  , 2( )i i x . Then, 

one can find easily 
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2 21 1 1
11 13 33
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        . 

 

6. Numerical examples  

6.1. A flat elliptical crack 

We consider an elliptic crack subjected to uniform distributed pressure load 0  on the surface. 

Poisson’s ratio 3.0 and Young’s modulus is one unit. Maximum numbers of Chebyshev 

polynomials M  and N are selected as 6 and 9 respectively. The numerical solutions of the stress 

intensity factor normalized to a


 2
0  are given in Figure 11 versus the ratio ab /  and angle   

in elliptic coordinates. We find that two normal stresses 011 /  and 022 / are constants 

everywhere on the crack surface as shown in Table 2 and Table 3. In order to validate the accuracy 

of the numerical results, a cube with a centered embedded elliptic crack is considered with FEM 

simulation (ABAQUS) complemented with 690,319 C3D10 second-order tetrahedral elements. 

The length of the edge is five times of the semi-major axis a. The effect of the side on stress is 

then entirely neglected. The T-stresses by FEM and BIEM are plotted in Figure 12, while 

5.0/ ab , varying with Poison’s ratio with excellent agreement. We find *
22

*
11  

0)21(   and the relationship between normal stresses and Poisson’s ratio is linear. The 

normal stresses are approximated, by curve fitting, as   
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Figure 11. Normalized stress intensity factor )/2/()( 0I  aK versus the ratio of ab / . 

 

where ab/ . For a penny-shaped crack, 1 , 02211 2

21 
 TT , which is the same as 

analytical solution obtained by Wang [37]. As two normal stress 11  and 22 are constants, T-

stress 11T  at the points A and B are *
11  and *

22  respectively. In addition, we determine T-stress, 

along the crack front, by  

* 2 * 2
11 11 1 22 2  ,T n n                      (67) 

where 1n  and 2n  denote the outward normal shown in Figure 10(b). Consider the computational 

accuracy and efficiency, high convergent and accurate solutions of DDM for rectangular flat crack 

are illustrated both in Table 1 and Figure 7. Although the numerical results by the FEM  are 

compared in Figure 12 with excellent agreement, the efficiency of the DDM with the Chebyshev 

polynomial interpolation is not easy to be concluded as the ABAQUS (FEM) is a commercial 

package running on the PC and DDM of 3D is implemented and coded in FORTRAN.  
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Table 2. Normalized T-Stress 0
*
11 / in the domain. 

 
b/a=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 -0.0253  -0.0786  -0.1400  -0.2024  -0.2614  -0.3180  -0.3699  -0.4175  -0.4607  -0.4999  
0.1 -0.2202  -0.2629  -0.3120  -0.3619  -0.4091  -0.4544  -0.4960  -0.5340  -0.5686  -0.6000  
0.2 -0.4152  -0.4472  -0.4840  -0.5214  -0.5569  -0.5908  -0.6220  -0.6505  -0.6764  -0.7000  
0.3 -0.6101  -0.6315  -0.6560  -0.6810  -0.7046  -0.7272  -0.7480  -0.7670  -0.7843  -0.8000  
0.4 -0.8051  -0.8157  -0.8280  -0.8405  -0.8523  -0.8636  -0.8740  -0.8835  -0.8921  -0.9000  
0.5 -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  

 

Table 3. Normalized T-Stress 0
*
22 / in the domain. 

 
b/a=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 -0.9747 -0.9214 -0.8600 -0.7976 -0.7386 -0.6820 -0.6301 -0.5825 -0.5393 -0.5001 
0.1 -0.9798 -0.9371 -0.8880 -0.8381 -0.7909 -0.7456 -0.7040 -0.6660 -0.6314 -0.6000 
0.2 -0.9848 -0.9528 -0.9160 -0.8786 -0.8431 -0.8092 -0.7780 -0.7495 -0.7236 -0.7000 
0.3 -0.9899 -0.9685 -0.9440 -0.9190 -0.8954 -0.8728 -0.8520 -0.8330 -0.8157 -0.8000 
0.4 -0.9949 -0.9843 -0.9720 -0.9595 -0.9477 -0.9364 -0.9260 -0.9165 -0.9079 -0.9000 
0.5 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 

 

 

Figure 12. Normal stresses 011 / and 022 / versus the Poisson ratio and ab / .   
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6.2. Rectangular crack on a cylinder 

Consider a rectangular crack )( hw  on a cylinder surface of radius R subjected to a remote 

tensile load shown in Figure 10(a). A remote tensile load 0  along axis 3x  is shown in Figure 

10(a) and Poisson’s ratio 3.0 . Maximum numbers of the Chebyshev polynomials M  and N

are 6 and 9 respectively with angle 4/0   , then aRRw 2,4/   . The results of normalized 

stress intensity factor asK  02I /)(  along the crack front AC and hsK  01I /)(  along BC vs 

the ratio of wh / are shown in Figures 13 and 14. We observe that maximum mode I and mode II 

stress intensity factors are at the center points A and B. Furthermore, the normalized shearing 

mode stress intensity factor asK  02II /)( along the crack front AC and tearing mode stress 

intensity factor hsK  01III /)(  along BC are presented in Figures 15 and 16 respectively. When

5/ ah , we noticed that the numerical normalized mode I and mode II intensity factors are 

0.5476 and 0.6131, which agree very well with that for a 2D circular arc crack under same tensile 

load, i.e. the analytical solutions 0.55 and 0.61 respectively from stress intensity factors handbook 

[40]. However, mode III maximum stress intensity factor hsK  01III /)(  is observed in the 

region of ( 8.0/7.0 2  hs ).  

 

Figure 13. Normalized stress intensity factor asK  02I /)( along the crack front AC. 
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Figure 14. Normalized stress intensity factor hsK  01I /)( along the crack front BC. 

 

          

Figure 15. Normalized stress intensity factor asK /)( 2II along the crack front AC. 
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Figure 16. Normalized stress intensity factor hsK  01III /)( along the crack front BC. 

                                                              

            Figure 17. Maximum stress intensity factor at the crack tip A.    
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  Figure 18. Stress intensity factor hBK /)(I at crack tip B and maximum hK /III  along BC. 

   

Figure 19. Normal stress distributions 02 /)(  ss  and 0222 /)(  s along OB. 
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Figure 20. Normal stress distributions 01 /)(  ss  and 0122 /)(  s along OA. 

 

In addition, we present maximum stress intensity factors versus the angle of  and the ratio of 

wh / in Figures 17 and 18. Finally, two normal stress distributions along OA and OB on the crack 

surface are presented in Figures 19 and 20 to show the T-stresses at crack front points A and B. 

The numerical results given by the discontinuity displacement method [42] are also shown in the 

same figure for comparison. For general shape of crack surface, mapping technique can be applied. 

In the mapped domain, the shape of the crack surface becomes a square or a circular configuration. 

The displacement discontinuities are interpolated using two sets of the Chebyshev polynomials.  

7. Conclusions 

In this paper, we have presented the boundary integral equations method (BIEM) to analyse 

3D fracture problems. Computational procedure for a flat rectangular, elliptic cracks and a curved 

rectangular crack on a cylindrical surface in an infinite domain are implemented to demonstrate 

the degrees of convergence and accuracy with BIEM. The spatial approximation of displacement 

discontinuities by using Chebyshev polynomials of the second kind enables us to solve the 

considered boundary value problems numerically with reliable modelling of singularities near the 
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crack front as well as evaluation of the stress intensity factors and T-stresses. Three-dimensional 

finite element analysis and the displacement discontinuity method are fulfilled to verify the 

numerical solutions by BIEM. It is found that T-stress strongly depends on the Poisson ratio of 

material and configuration of the crack surface. It has been observed that the normal stresses are 

constants on the elliptical crack surface in the principal axis coordinate and linearly dependent on 

the Poisson ratio. The approximation formulas for two normal stresses along principal axis are 

proposed for fast calculation for T-stresses. Numerical examples demonstrate the accuracy and 

efficiency of the BIEM for 3D fracture problems. These elastic T-stresses are suitable for the 

analysis of constraint effects for engineering components with embedded cracks. We believe that 

BIEM can be extended to 3D continuously nonhomogeneous solids with cracks under static and 

dynamic loadings. For hexagon shape crack, SIF and T-stresses can be obtained by superposition 

principle with sub-region and mapping methods used in FEM/BEM. 
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Appendix A 

From Figure 9(a), we have collocation point ξ  and integral field point P , with polar 

coordinates ( , )   in local coordinate system centered at ξ  

 sin)(  ,cos)( 21 btxatx  ξξ , 1,  0 2t                 (A1) 

 sin)()(  ,cos)()( 2211  ξξ xPxxPx ,  0, ( )   ,  0,2  .      (A2) 

If P lies on the crack front, ( )   . As the coordinates along the crack front satisfy following 

equation  

1
)()(

2

2

2

1 









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b

Px

a

Px
,                 (A3) 

then, we have 

0)1()(
sin

)(
cos

2
sincos 2

2212
2

2

2

2

2







 








 tx

b
x

aba


,  20  .  (A4) 

Thus, the distance of )( can be obtained by 


 


2

)( ,                   (A5) 

in which 

  222
2

2
1

22222 )1(  ,sin)(cos)(  ,sincos batxaxbab   .    (A6) 
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In order to derive the unit outward vector ( )fn x  normal to the crack front at point fx  with 

coordinates 1 cosfx a  , 2 sinfx b  , we derive firstly the tangent vector ( )fτ x at this point. 

Apparently, 2
2 11 ( / )f fx b x a  ,  

2
2 2 1 1

21 1 21

1 cos
:

sin1 ( / )

f f f

f ff

dx x xb b b

a a a adx xx a

  
 

        
 

 . 

Hence, 2 1   and from the requirement 2 2
1 2( ) ( ) 1   , we obtain  2

1 1/ 1   , 

2
2 / 1     and finally,  

1 2
2 2

cos

( sin ) ( cos )

b
n

a b


 

 


,   2 1
2 2

sin

( sin ) ( cos )

a
n

a b


 

  


 .                                  (A7) 

 

Appendix B 

It is convenient to map the curved surface of crack into a flat rectangle as shown in Figure B1, 

when the natural coordinates 1 2( , )s s  are expressed in terms of straight coordinates  1 2,  as 

1 1s w  and 2 2s h . Then, the parametric coordinates of the collocation point ξ  with natural 

coordinates  1 2,s s  are given by 1 1 /s w  , 2 2 /s h  . The real physical Cartesian coordinates of 

the collocation point 1 2 3( , , )  ξ are given as  

1 1
1 2 2 3sin , , cos

w w
R h R

R R

 
   

 
                             

  (B1) 

and those for the integral field point  1 2 3, ,x x xx  are given as 

1 1
1

2 2 2

1 1
3
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( , , ) sin sin ,
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 
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   

ξ

ξ

ξ

            (B2) 

where  ,   are polar coordinates in the parametric space with the origin of the polar coordinates 

being at the collocation point  1 2,   .  
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Now, 1 2 1 2ds ds wh d d wh d d       and the distance between the collocation point and the 

field point  is given as 

       
1/22 2

22 21 1 1 1sin sin cos cos sin ,i i i i
s s s s

r x x R R h D
R R R R

      
                 

     
 

                         (B3) 

 

                                    

Figure B1. Mapped domain of the crack on cylindrical surface and parametric coordinate 

system.   

with    
1/22

2cos
, : 2 1 cos sin

R w
D h

R

   


              
. It can be seen that 
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1/2 1/22 22 2 2 2, cos ( ) sin ( ) 1 ( ) / ( ) ( )D w O h d O d d O                             (B4) 

where    
1/22 2( ) : cos sind w h      

. The outward unit normal vector on the crack surface at 

the field and collocation points are given as 
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1 1 3( ) sin cosi i i
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R R
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hence,  

 (0) (1)
1 1( ) ( , , )i ii in s n n s       ,                                                                                         (B6) 
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and   
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we have 
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 2(1) (0)
1 3

cos

2

w
r n

Rd


  ,   (0) (0) 2

3 1 3
cos sin sin

1 cos sin
w d d

n n O
d D D

      
 

    
       

    
 . 

The singular behavior of the kernel ( , )ijkS ξ x  can be extracted as 3  , since    

 
3

1 2( , ) ( , , , )ijk ijkS s s      ξ x ,  0
1 2 1 22 3
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D
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
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 
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Furthermore,  

  
2 2
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  as 0  .  

In order to evaluate the finite part integral in the integral equation (57) 
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ξ x

                                       (B10) 

it is appropriate to specify the asymptotic behavior of the integrand near the singular point 1 2( , )s s  . 

Thus, 

(0) (1)
1 2 1 2 1 2 1 2( , ) ( , , , ) ( , ) ( , , )mn mn mn mnH s s F s s H s s H s s                                                                   (B11) 
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= 
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with  
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  

(0) (0)
1 2 1 22 3

( , , ) ( , , )
8 (1 ) ( )

ijk ijk
E

s s R s s
d

 
  

    


,   (1) (1)
1 2 1 22 3

( , , ) ( , , )
8 (1 ) ( )

ijk ijk
E

s s R s s
d

 
  

    

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Thus, the integrand in (B10) can be arranged as 
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            (B14) 

and the finite part integral in (B10) is given by 
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