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Abstract:

In this paper a systematic method to suppress transonic buzz with 
feedback is presented. A trailing edge control surface in the form of part-
span flap was used only to modify and control the unsteady aerodynamic 
loading on the wing. The flap rotation was used to provide feedback, 
which consisted of a weighted linear combination of the amplitudes of 
the principal modes of the structure, referred to as the control law. A 
linear, optimal feedback control law, that is synthesised systematically 
based on pseudo-spectral time domain analysis, may be used in 
principle, to assess its capacity to actively suppress the buzz in the 
transonic flow domain by using a servo-controlled control surface to 
modify the unsteady, nonlinear aerodynamic loads on the wing. Thus it is 
essential that a set of feasible control laws are first constructed. In this 
paper, this is done by applying the doublet-lattice method (DLM). 
Restrictions, such as near-zero structural damping in the flap mode, 
were imposed on the aeroelastic model to facilitate the occurrence of 
transonic buzz. The feasible set of control laws were then assessed using 
the nonlinear transonic small disturbance (TSD) theory and an optimum 
control is selected to suppress the buzz. The essential difference of the 
behaviour of the closed loop system in non-linear transonic flow, when 
compared to the applications of linear optimal control in linear potential 
flow, are presented and discussed.
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ABSTRACT
In this paper a systematic method to suppress transonic buzz with feedback is 
presented. A trailing edge control surface in the form of part-span flap was used only 
to modify and control the unsteady aerodynamic loading on the wing. The flap 
rotation was used to provide feedback, which consisted of a weighted linear 
combination of the amplitudes of the principal modes of the structure, referred to as 
the control law. A linear, optimal feedback control law, that is synthesised 
systematically based on pseudo-spectral time domain analysis, may be used in 
principle, to assess its capacity to actively suppress the buzz in the transonic flow 
domain by using a servo-controlled control surface to modify the unsteady, nonlinear 
aerodynamic loads on the wing. Thus it is essential that a set of feasible control laws 
are first constructed. In this paper, this is done by applying the doublet-lattice method 
(DLM). Restrictions, such as near-zero structural damping in the flap mode, were 
imposed on the aeroelastic model to facilitate the occurrence of transonic buzz. The 
feasible set of control laws were then assessed using the nonlinear transonic small 
disturbance (TSD) theory and an optimum control is selected to suppress the buzz. 
The essential difference of the behaviour of the closed loop system in non-linear 
transonic flow, when compared to the applications of linear optimal control in linear 
potential flow, are presented and discussed.

Keywords: Transonic buzz, Buffeting, Limit cycle oscillator, Feedback control,

Transonic small-disturbance theory.
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1. Introduction

There are two classes of aeroelastic instabilities driven by aerodynamic non-

linearities, which are commonly referred to as buffet and control surface buzz. 

Oscillations induced in the aircraft lifting or control surfaces due to the presence of a 

turbulent wake or under the influence of vortex flows are generally referred to as 

buffeting. Control surface buzz is a sustained aeroelastic oscillation which is a 

particular type of Limit Cycle Oscillation (LCO) and is observed on trailing edge 

control surfaces. The continuous interaction of the shocks with a boundary layer 

especially over a control surface results in the oscillation of the control surface and is 

known as a buzz. Lambourne (1964) and Bendiksen (1993) provided the earliest 

classifications of transonic buzz. Rampurawala (2005) has provided an excellent 

discussion of the existence of buzz in several real aircraft and also considered the 

prediction of buzz using computation fluid dynamics based analysis techniques. 

Timme and Badcock (2009) and Woodgate and Badcock (2009) have discussed the 

application of techniques such the higher order harmonic balance methods to the 

prediction of transonic buzz. Greco Jr. and Lan (2010) have applied the nonlinear 

TSD theory to the problem of buzz prediction in the frequency domain rather than in 

the time domain. Edwards (2010) was able to predict the onset of buffet and the 

existence of LCOs at transonic speeds. In earlier reviews Dowell and Hall (1996), 

Dowell, Edwards and Strgnac (2003) and Dowell (2010) have covered the past 

developments in the prediction of transonic buzz. 

The use of high-fidelity methods to obtain the transonic buzz boundaries can 

be computationally expensive. Considering a typical set of the three-dimensional 

unsteady Euler equations in conservative differential form and in curvilinear 

coordinates the state vector is defined by the conservative flow variables vector. The 

flow variables vector, in its simplest form is at least five dimensional, consisting of 

the density, flow momentum in three Cartesian directions and the energy. Given the 

amount of computational time required to perform high-fidelity fluid-structure 

interaction analyses using the five-dimensional Euler equations over a computational 

grid spanning the flow field, the model orders are reduced by introducing relevant 

reduction techniques such as Proper Orthogonal Decomposition (POD) or Polynomial 

Chaos Expansion. When a reduced order model is adopted, the number of flow 

variables over the entire flow field are also generally reduced. These computations 
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must be repeated several times in order to study the oscillatory behaviour under 

transonic flow conditions. Comparing with the Nonlinear TSD methodology, where 

one is using only a two-dimensional set of flow variables, the computational cost is 

reduced substantially, even when reduced order modelling is adopted. Greco Jr. and 

Lan (2010), Im, Kim and Choi (2018), Shukla and Patil (2017), Howison et al (2018), 

Taddei (2021), Vuong, Kim and Dinh, (2021), Li and Ekiki (2019), Munk et al 

(2020), He et al (2019), Prasad (2020) and Prasad and Choi (2020) while Yang et al 

(2020) used various reduced order models to predict transonic buzz. 

Considering the active feedback control of transonic buzz there have been a 

few attempts to systematically study the effects of feedback on transonic buzz.  

Verstraelen, Kerschen, Dimitriadis (2017) have attempted to suppress transonic buzz 

using dynamic vibration absorbers. Marzocca, Silva and Librescu (2002) have alos 

considered the closed loop analysis of transonic buzz. Goa et al (2017) have 

considered the analysis of transonic buffet with active controls.

The primary focus of this paper is the suppression of transonic buzz by the use 

of feedback control. In this paper a systematic, computational model based method to 

suppress transonic buzz with feedback is presented. There are several unsteady 

mechanisms in transonic flow, including transonic buzz, pre-buffet flow and transonic 

buffet onset, forced vibration of aerofoil motion and buffeting response and unstable 

transonic buffet flow. Although different qualitative interpretation of transonic buzz 

exist, two conditions must be present for transonic buzz type LCOs to persist. First the 

linear dynamics of the flap must be in a near state of simple harmonic oscillations. 

Secondly the nonlinear perturbations to the dynamics due to shock wave motions, 

boundary layer separation and related transonic phenomenon must be able to sustain 

the limit cycle oscillations in the single-degree of freedom system. If either of these 

two conditions are not present, transonic buzz would be inhibited. In this paper, a 

linear feedback control law is synthesized, so that the first condition is not met. Thus a 

basic principle for the synthesis of a control law to suppress transonic buzz was 

established based on the pseudo-spectral time domain analysis of LCOs. 

In this paper, furthermore, a trailing edge control surface was used to provide 

full state feedback. Given a feedback control law, it is possible in principle, to assess 

its capacity to actively suppress the buzz in the transonic flow domain by using a 

servo-controlled control surface to modify the unsteady aerodynamic loads on the 

wing. Thus it is essential that a set of feasible linear control laws are first constructed 
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by applying the doublet-lattice method (DLM) as was successfully implemented 

earlier by Vepa and Kwon (2021) for the active suppression of transonic flutter. In 

this paper the methodology is modified, so the modes of buzz oscillations can be 

controlled.  Restrictions, such as near-zero structural damping in the flap mode, were 

imposed on the aeroelastic model to facilitate the occurrence of transonic buzz. This 

aspect is explained in the section 3, after reviewing the analysis of LCOs in section 2. 

The buzz prediction methodology is discussed in section 4 and the assessment and the 

selection of an optimum control law to suppress the buzz is considered in section 5. A 

typical example is considered and the results are presented in sections 6.

2. Analysis of Limit Cycle Oscillators

First the fascinating subject of the analysis of LCOs will be briefly revisited. 

The Poincaré-Bendixson theorems can be used to identify the presence and absence of 

limit cycles and establish their uniqueness. These important theorems are explained 

and are briefly summarized in Vepa (2016). As a result of the Poincaré-Bendixson 

theorems (see for example Vepa, 2016), in the case of the following second-order 

equation,

, (1)    0 xfxxgx 

where,  is a displacement,  and  are nonlinear functions of  and the dot x  f x  g x x

over the variable  represents differentiation with respect to time . One may state  x& t

without proof, that it has a periodic solution which is unique and that this solution is 

an asymptotically stable orbit under a given set of conditions.

To present the gist of the method of variation of parameters, consider a non-

linear system with governing equation of motion expressed as,

, (2a)      0,  xxFtxtx  

subject to the initial conditions,

, , (2b)  00 atx t 


  00 
ttx

where  is the displacement,  is a non-linear function, is a small non- tx  xxF , 

linearity or perturbation parameter and  is a constant. When is set equal to zero 0a 

the solution is of the form,

. (3)    tatx cos0
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Hence, when the perturbation parameter is not equal to zero the solutions for the 

displacement and velocity are assumed to be of the form,

, (4)      tttatx  cos       tttatx  sin

where  is a time dependent slowly varying amplitude function and  is again a  ta  t

time dependent and slowly varying phase angle, relative to a vector rotating in the 

phase plane with a constant angular velocity.

Differentiating the assumed solutions and solving for  and , one obtains, ta  t

, (5a)     sincos,sin aaFta 

(5b)     coscos,sin aaFt 

where, , is the phase angle of the amplitude vector relative to its initial  tt  

direction. The approximation, known as the Krylov-Bogoliubov averaging is 

introduced by replacing the periodic terms in the right hand sides of the above 

equations for  and , by their averages over one period of oscillation; i.e.   ta  t 0

to . Further both   and  are assumed to be constant over the  2  ta  t

integration period. Without any loss of generality, the averaged equations take the 

form,

, . (6)   afta KB    agt KB 

The response and stability of the slowly varying amplitude function is determined by 

the first of these averaged equations (6) while the phase angle is the obtained from the 

second. Orthogonal series expansion in the amplitude and phase plane in terms of 

ultra-spherical polynomials also leads to equations similar to equations (6).

The method of analysis was first postulated by Denman (1964) and developed 

by several others. Caughey and Payne (1969) have also considered a similar class of 

oscillators with stochastic excitation. 

Expanding the right hand sides of the equations for the amplitude,  and  ta

phase  in terms of the variable , in an orthogonal series of ultra-spherical  t z

polynomials with parameter  and retaining only the first term, one has the 

approximations,

, , (7)    ,afta U     ,agt U

as the polynomial, is a constant. In particular when ,  zP
0 21
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, (8a)      afafta KBU ,
2
1 







. (8b)     agagt KBU ,
2
1 







Thus the averaging technique may be interpreted as a generalised orthogonal 

series expansion based approximation of the equations governing the dynamics in the 

amplitude and phase plane. 

3. Principles of Control Law Synthesis for suppression of LCOs

Following the discussion in the preceding section, to synthesize a controller, 

since the system behaves like a periodic system as it approaches the limit cycle, and 

from equations (8),  and . Thus it is     ,  0Ua t f a & ;     ,  0Ut g a  & ;

possible to set,  and from equation (5a), one has, = 0

. (9)          , 0x t x t F x x x t x t  && & &&; ;

In first order form, with the inclusion of a control input ,u

. (10)
0 1 0
1 0 1

x xd u
x xdt

       
               & &

If one wishes to design a steady state feedback regulator that minimizes the 

performance index,

 . (11) 2 2

0
J x x dt


  &

An algebraic Riccati equation must be solved and it can be shown that,

. (12)     1 2 0.4142 1.3522T Tu k k x x x x   & &

The above control input based on the linear-quadratic regulator theory, is independent 

of . A simple example will illustrate the open and closed loop responses of a  ,F x x&

typical oscillator.

The typical example considered is the modified van der Pol equation with 

parameters  which may be expressed as,  ibb

(13)              2 2 2 2 4
1 2 3 41 1 1 1x t x t b x b x b x x b x x t u          && & & &

Ignoring the control input, the equations corresponding to (5a) and to (5b) may be 

respective expressed as,
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, (14a)   








 


3

1 2
2cos1

n
nnb

nftata    










3

1 2
2sin

n
nnb
ngt 

where, the functions  and  may be expressed in terms of amplitude  as,nbf nbg  ta

(14b)


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
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b
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f
f
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b
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b

and

. (14c)




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






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




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
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
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b

b

Expanding  and  in terms of ultra-spherical polynomials in n2cos n2sin

the interval  and retaining only the first term in the orthogonal series  2,0

expansion, the equations corresponding to equations (7) may be expressed as,

 , (15a)     



4

1n
nn afbtata   0t

where,

(15b)



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
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f
f
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f

and

. (15c)     
  21 kkJU k 

The parameter  is chosen to be equal to 2 but similar results were obtained for 

several other choices such that . The LCO behaviour can be verified by 290  

solving equations (15) and plotting the phase-plane trajectory.

A typical set of limit cycle oscillator responses are also generated by 

simulating equation (13) with the additional control input given by equation (12) and 

with the parameter set,

. (16) 1000b
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The limit cycle responses obtained for the simulated limit cycle oscillator with 

 given by equation (16) and with and without the control input are compared in b

figure 1. Also shown is the closed loop response for the initially assumed alternate 

parameter set,  given by equation (17), b

. (17) 1 0 0 0b

Fig. 1 Comparison of the limit cycle oscillator responses with  given by equation b

(16) and closed loop responses with b given by equations (16) and (17).

The principle established in the preceding equations will be applied to the 

problem of controlling transonic buzz. 

4. Prediction of Transonic buzz

In general three-dimensional flow, the unsteady equation for the potential 

function ,  may be written in conservation form as,

, (18)0 31 2 0f ff f
x y z   

  
   

   

where the functions  are functions of the partial derivatives of  given by,if 

, , ,  2
0 2

x
f M       2 2 2

1 1
x x y

f M F G        2 y x y
f H     

. (19)3 z
f  
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In the equations (19), the coefficients F, G, and H are respectively given by,

, , . (20)  21 2F M     23 2G M    21H M  

where , is the free stream Mach number. Furthermore, M M

, , , . (21)/ rx x c  / ry y c  / rz z c  / rtU c 

There are alternate coefficients that could be used for the coefficients F, G, and H.

subsonic supersonic
Far upstream 0 0

Far downstream 0 xtC  0x
Far above 0 ztD  0 zt 
Far below 0 ztD  0 zt 

Far spanwise 0 ytD  0 yt 
Symmetry plane 0y 0y

Table I The applicable boundary conditions

The applicable boundary conditions are summarised in Table I. In Table I, the 

coefficients , D and C, are given by, 

, ,  12  M  22 21   xFMMD

. (22)    222 22   xx FMFDC

The streamwise flux is a major component in the potential equation and is,

. (23) 2 2 2
1 1

x x y
f M F G       

An efficient three-dimensional aerodynamic code based on the nonlinear TSD 

theory was developed by Batina (1988, 1989, 1992) and later improved by Kim et al 

(2005) and by Kwon, Yoo and Lee (2018).

Generally, given a reference length such as the root chord , the free stream rc

density  and the free stream flow velocity  , one can construct the generalized  U

aerodynamic forces matrix  defined by,Q

, (24)     2 31
,2 , , , ,r i r p j j r

S
U c z x y c C z c x y M dS



    
   Q
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where  is the vibration mode shape function of the structure in the   mode,  is jz thj S

the non-dimensional planform area,  and  are the non-dimensional coordinates x y

of a point in the planform, and  is the free stream Mach number, the ratio of the M

free stream flow velocity to the local speed of sound. Furthermore 

 is the unsteady pressure distribution on the wing surface   , , , ,p j j rC z c x y M 


induced by the jth modal displacement.

The equations of motion of the vibrating wing, including the partial-span 

trailing edge flap, take the form,

, (25)   ,,  , ,  ,tsd tsdM M     Mq Cq Kq Q q q Q q q&& & & &

where the vectors  and   are obtained using a code  ,  ,tsd MQ q q&  , ,  ,tsd M Q q q&

based on the nonlinear TSD formulation. The integration of the equations (25) is done 

by a time-marching method, with the appropriate initial conditions as described by 

Kwon, Kim and Lee (2004) and is the basis of the coupled time integration method 

(CTIM). In the frequency domain, with all the initial conditions set to zero, a pulse 

input is used to generate the response as in the transient pulse method (PM), described 

by Kwon, Kim and Lee (2004). 

 

5. Control Law Synthesis for the Suppression of Transonic Buzz

In the equation (24) for the generalized aerodynamic forces matrix, the 

integration is performed over the planform area. The modal displacements and slopes 

at the sending and receiving points in the Doublet Lattice Method (DLM) code are 

obtained by spline interpolation of the modal displacements at nodes of the structural 

model. The matrix  is generally complex and a function of the reduced  kQ Q

frequency of oscillation, . If one assumes a matrix Padé approximant representation, k

the matrix  may approximated as, kQ

, (26)  1
0 1 p rk ik ik


     Q Q Q I Q Q

where  and  are the steady state and low frequency asymptote that can be 0Q 1ikQ

computed independently, from the steady state and low frequency asymptotes of the 
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subsonic kernel function as outlined by Vepa (1977). If one assumes, the augmented 

poles are relatively fast, which is usually the case, , and,p Q 0

. (27)  0 1 rk ik  Q Q Q Q

Generally the matrices , the residue matrix and , the matrix related to rQ pQ

the poles corresponding to the augmented states, are constructed by matching the 

matrix  to the coefficient matrices in the matrix Padé approximant  kQ

representation at some low value of the reduced frequency,   close to the fk k

estimated flutter reduced frequency, and assuming  is small, it follows that,k

. (28)     0 Re Re
f

r fk k
k k


  Q Q Q Q

Thus , computed by the DLM, may be approximated by the zeroth order matrix  kQ

Padé approximant and is given by,

. (29)     1Re fk k ik Q Q Q

Thus given the stiffness matrix , of the structural system, and choosing a suitable K

model for the structural damping matrix  which is assumed to be diagonal matrix, g

the structural damping matrix is . The equations of motion are expressed as,C gK

 . (30)     1Re f rk c U   Mq Cq Kq Q q Q q&& & &

or equivalently, with the flap included explicitly as,

 ,      1Re
T T

f rk q c U q          Mq Cq Kq Q q Q q&& & & &

, (31) 2 22 ,  ,  ,  cq q q q q                HQ q q&&& & &

where the vector  does not include the flap degree of freedom,  is the amplitude q q

of flap degree of freedom,  is the flap actuator command input,  is flap actuator c 

natural frequency,  is the flap actuator damping ratio and  is the aerodynamic  HQ

flap hinge moment. It is assumed that the damping ratio in the flap mode is zero as the 
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flap is in a state oscillation. The assumption is extremely important for the purpose of 

the synthesis of the control law.

The equations of motion defined by equations (31) may then be cast in the 

state space form as,

. (32)c x Ax B&

Now it is completely feasible to construct an optimal control law based on the above 

model formulation, defined by equation (32). The optimal control is assumed to 

minimize a cost function of the form,

, (33)        00 0, ft T T T
x f f ftJ t t r dt t t  x x Q x u Ru x Q x

where  is a scalar used to alter the control weighting matrix  in the formulation of r R

the optimal control law synthesis,  is the state vector weighting matrix and  is xQ fQ

the weighting matrix for the state vector at the final time . For the single input ft t

case, . The steady-state control law takes the form,1R

, , (34)  11 T
c fr 

    u R B P x K x 1T T
      P A A P Q P BR B P 0

where  satisfies the above algebraic Riccati equation which is solved using a P

standard function in MATLAB.

Thus given a range of monotonically increasing free stream Mach numbers  , ,kM

 as well as a set values for the relative weighting scaling parameter , one 1,2, ,k  L r

can construct families of control laws, with differing closed-loop stability 

characteristics. The parameter r, in accordance with optimal control theory, is the ratio 

maximum magnitude of an element in the state vector to the maximum magnitude of 

the control input as explained by Vepa and Kwon (2021).

In this paper, the parameter , provides a single scalar parameter to obtain a large r

distribution of control laws. Each of the control laws may then be used with the open 

loop dynamics, reformulated in the transonic domain based on the nonlinear TSD 

theory, and an optimal solution may be selected.

6. Application Example
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The example considered, illustrated in figure 2, is the one considered by 

Kwon, Kim and Lee (2004). The model properties are summarised in Table II. The 

aerodynamic grid generated and used to solve for the nonlinear TSD aerodynamics is 

shown in Figure 3. The first three modes in the dynamic model are the first bending, 

the first torsion mode and the flap oscillation mode controlled by a servo-actuator, 

while the remaining are higher order modes.

 = 31.9 o

TR = 0.31

0.
36

2
m

Fl
ap

w
ith

18
%

ch
or

d

AR = 2.98

Hinge Line

0.640 m

0.
62

4
m

Fig.2 Planform of the application example considered (All dimensions shown are in 

metres.)

Hinge Stiffness, K 73.4 Nm/rad
Flap Moment of Inertia, I 0.000842 kgm2

Material Density,  2770 kg/m3

Young’s Modulus, E 7.311010 Pa

Poisson’s ratio,  0.33

Table II Model properties.
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Fig. 3 Aerodynamic grid.

(a)

(b)

(c)

Page 15 of 46

http://mc.manuscriptcentral.com/jvc

Journal of Vibration and Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Fig. 4 Aeroelastic responses at Mach 0.95; (a) 1.49 kPa (Stable), (b) 1.67 kPa (Buzz), 

(c) 4.83 kPa (Unstable).

7. Typical Simulation Results

In figure 4 are shown the responses of the flap mode at 3 different values of 

dynamic pressure assuming the flow Mach number far upstream to be  . It 0.95M 

is seen from figure 4 (b) the response exhibits a transonic buzz type behaviour 

characterised by sustained periodic oscillations. 

(a)

(b)
Fig. 5 Flutter and buzz boundaries with (a) dynamic pressure, (b) frequency versus 

Mach number.
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Fig. 6 Typical open and closed loop transonic buzz responses at Mach 0.95 and 

 kPa as well as the control input time history.1.67q 

(a)
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(b)

Fig. 7 Open and closed loop transonic buzz boundaries: (a) dynamic pressures at the 
boundary and (b) frequencies at the boundary.

The corresponding transonic flutter and buzz boundaries are compared in figure 5. 

The computations were done by the DLM and the coupled time integration method 

(CTIM) in the time domain and by the transient pulse method (Pulse) in the frequency 

domain, for one case, as a check. A single degree of freedom instability associated 

with the flap mode was observed at a similar set of Mach numbers. These results were 

used to synthesize the control laws and for  values, in equations (33) and (34), r

ranging from 1 to 200, in steps of 10 and for 6 different Mach numbers, on the buzz 

boundary, representing a total of 120 gain vector sets to facilitate a wide search for the 

optimum set of gains, as explained in sections 3 and 5. 
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(b) Mach 0.95, kPa2.97q 

Fig. 8 Transonic buzz control response for   and  (a) Mach 0.85, 1r  5r 
 kPa and (b) Mach 0.95, kPa.3.49q  2.97q 
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The cases in the range of , seem to provide the best control laws for 1 5r 

maximizing the closed loop buzz velocity or buzz Mach number. In figure 6 are 

shown a typical set of closed loop transonic buzz responses at Mach 0.95 and 

 kPa as well as the control input time history. The open loop response is 1.67q 

also shown in the background.

In figure 7 are shown a typical set of closed loop transonic buzz boundaries for 

 and . In the subsonic range below Mach 0.85,  values greater than 1, in 1r  5r  r

the range  are effective in suppressing buzz. A summary of the control 1 5r 

parameter set applied to the simulation at Mach 0.85, is shown in Table III.

Control gain set
b1 b2 b3 b4 b5 b6

0.0326 -4.3537 2.3285 -2.7834 0.0000 0.0000 
b7 b8 b9 b10 b11 b12

r=1

-0.0012 0.0244 0.0860 -0.0175 0.0000 0.0000 
b1 b2 b3 b4 b5 b6

0.0065 -0.8745 0.4676 -0.5586 0.0000 0.0000 
b7 b8 b9 b10 b11 b12

r=5

-0.0002 0.0049 0.0173 -0.0035 0.0000 0.0000 

Table III Full state control gain set applied at Mach 0.85

However, in the transonic speed range, such as Mach 0.9 and 0.95,  values r

much lower than or equal to 1 are not sufficient to suppress buzz. For high Mach 

numbers, greater than 0.85, the computation of the closed loop buzz boundary at  1r 

was quite difficult due to the control surface deflection being too large for these cases, 

and the closed loop results tend to approach the open loop results. This feature is 

illustrated in figure 8, for two different  values,  and . The control surface r 1r  5r 

deflection is too large, for  values below . Consequently the optimum range of r 1r 

 values is between  and .r 1r  5r 

8. Discussion and Concluding Remarks

Quite unlike linear optimal control, there is generally only a finite range of  r

values, over which the closed loop system is stable with the occurrence of transonic 

buzz effectively suppressed with reasonable magnitudes of inputs. For higher  r

values, the magnitude of the control input is insufficient to influence the buzz 
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behaviour. For lower values of the parameter , the control inputs are very large and r

the nonlinear behaviour of the transonic loads is accentuated. In the subsonic range of 

Mach numbers, below about Mach 0.85, a small value of  is effective in suppressing r

the buzz. However, in the transonic range of Mach numbers, a value of  equal to or r

less than one is in-effective in suppressing buzz. This is because the smaller the value 

of , the greater the displacement of the control surface, and the unsteady r

aerodynamics and consequently the wing response is sensitive to the larger 

displacement of the control surface in the transonic range. The small range of values 

of  for which the closed loop is stable, implies that for certain configurations, it may r

be quite impossible for the transonic buzz to be suppressed unless the control surface 

is designed and optimized specifically for the purpose of suppressing the transonic 

buzz. Control laws for suppressing transonic buzz must be selected to avoid both low 

and high magnitudes of control surface deflections. This is the principal contribution 

of this paper, apart from demonstrating the feasibility of suppressing the occurrence of 

transonic buzz, by the use of feedback.
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ABSTRACT 

In this paper a systematic method to suppress transonic buzz with feedback is 

presented. A trailing edge control surface in the form of part-span flap was used only 

to modify and control the unsteady aerodynamic loading on the wing. The flap 

rotation was used to provide feedback, which consisted of a weighted linear 

combination of the amplitudes of the principal modes of the structure, referred to as 

the control law. A linear, optimal feedback control law, that is synthesised 

systematically based on pseudo-spectral time domain analysis, may be used in 

principle, to assess its capacity to actively suppress the buzz in the transonic flow 

domain by using a servo-controlled control surface to modify the unsteady, nonlinear 

aerodynamic loads on the wing. Thus it is essential that a set of feasible control laws 

are first constructed. In this paper, this is done by applying the doublet-lattice method 

(DLM). Restrictions, such as near-zero structural damping in the flap mode, were 

imposed on the aeroelastic model to facilitate the occurrence of transonic buzz. The 

feasible set of control laws were then assessed using the nonlinear transonic small 

disturbance (TSD) theory and an optimum control is selected to suppress the buzz. 

The essential difference of the behaviour of the closed loop system in non-linear 

transonic flow, when compared to the applications of linear optimal control in linear 

potential flow, are presented and discussed. 
 

Keywords: Transonic buzz, Buffeting, Limit cycle oscillator, Feedback control, 

Transonic small-disturbance theory. 
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1. Introduction 

There are two classes of aeroelastic instabilities driven by aerodynamic non-

linearities, which are commonly referred to as buffet and control surface buzz. 

Oscillations induced in the aircraft lifting or control surfaces due to the presence of a 

turbulent wake or under the influence of vortex flows are generally referred to as 

buffeting. Control surface buzz is a sustained aeroelastic oscillation which is a 

particular type of Limit Cycle Oscillation (LCO) and is observed on trailing edge 

control surfaces. The continuous interaction of the shocks with a boundary layer 

especially over a control surface results in the oscillation of the control surface and is 

known as a buzz. Lambourne (1964) and Bendiksen (1993) provided the earliest 

classifications of transonic buzz. Rampurawala (2005) has provided an excellent 

discussion of the existence of buzz in several real aircraft and also considered the 

prediction of buzz using computation fluid dynamics based analysis techniques. 

Timme and Badcock (2009) and Woodgate and Badcock (2009) have discussed the 

application of techniques such the higher order harmonic balance methods to the 

prediction of transonic buzz. Greco Jr. and Lan (2010) have applied the nonlinear 

TSD theory to the problem of buzz prediction in the frequency domain rather than in 

the time domain. Edwards (2010) was able to predict the onset of buffet and the 

existence of LCOs at transonic speeds. In earlier reviews Dowell and Hall (1996), 

Dowell, Edwards and Strgnac (2003) and Dowell (2010) have covered the past 

developments in the prediction of transonic buzz.  

The use of high-fidelity methods to obtain the transonic buzz boundaries can 

be computationally expensive. Considering a typical set of the three-dimensional 

unsteady Euler equations in conservative differential form and in curvilinear 

coordinates the state vector is defined by the conservative flow variables vector. The 

flow variables vector, in its simplest form is at least five dimensional, consisting of 

the density, flow momentum in three Cartesian directions and the energy. Given the 

amount of computational time required to perform high-fidelity fluid-structure 

interaction analyses using the five-dimensional Euler equations over a computational 

grid spanning the flow field, the model orders are reduced by introducing relevant 

reduction techniques such as Proper Orthogonal Decomposition (POD) or Polynomial 

Chaos Expansion. When a reduced order model is adopted, the number of flow 

variables over the entire flow field are also generally reduced. These computations 
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must be repeated several times in order to study the oscillatory behaviour under 

transonic flow conditions. Comparing with the Nonlinear TSD methodology, where 

one is using only a two-dimensional set of flow variables, the computational cost is 

reduced substantially, even when reduced order modelling is adopted. Greco Jr. and 

Lan (2010), Im, Kim and Choi (2018), Shukla and Patil (2017), Howison et al (2018), 

Taddei (2021), Vuong, Kim and Dinh, (2021), Li and Ekiki (2019), Munk et al 

(2020), He et al (2019), Prasad (2020) and Prasad and Choi (2020) while Yang et al 

(2020) used various reduced order models to predict transonic buzz.  

Considering the active feedback control of transonic buzz there have been a 

few attempts to systematically study the effects of feedback on transonic buzz.  

Verstraelen, Kerschen, Dimitriadis (2017) have attempted to suppress transonic buzz 

using dynamic vibration absorbers. Marzocca, Silva and Librescu (2002) have alos 

considered the closed loop analysis of transonic buzz. Goa et al (2017) have 

considered the analysis of transonic buffet with active controls. 

The primary focus of this paper is the suppression of transonic buzz by the use 

of feedback control. In this paper a systematic, computational model based method to 

suppress transonic buzz with feedback is presented. There are several unsteady 

mechanisms in transonic flow, including transonic buzz, pre-buffet flow and transonic 

buffet onset, forced vibration of aerofoil motion and buffeting response and unstable 

transonic buffet flow. Although different qualitative interpretation of transonic buzz 

exist, two conditions must be present for transonic buzz type LCOs to persist. First the 

linear dynamics of the flap must be in a near state of simple harmonic oscillations. 

Secondly the nonlinear perturbations to the dynamics due to shock wave motions, 

boundary layer separation and related transonic phenomenon must be able to sustain 

the limit cycle oscillations in the single-degree of freedom system. If either of these 

two conditions are not present, transonic buzz would be inhibited. In this paper, a 

linear feedback control law is synthesized, so that the first condition is not met. Thus a 

basic principle for the synthesis of a control law to suppress transonic buzz was 

established based on the pseudo-spectral time domain analysis of LCOs.  

In this paper, furthermore, a trailing edge control surface was used to provide 

full state feedback. Given a feedback control law, it is possible in principle, to assess 

its capacity to actively suppress the buzz in the transonic flow domain by using a 

servo-controlled control surface to modify the unsteady aerodynamic loads on the 

wing. Thus it is essential that a set of feasible linear control laws are first constructed 
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by applying the doublet-lattice method (DLM) as was successfully implemented 

earlier by Vepa and Kwon (2021) for the active suppression of transonic flutter. In 

this paper the methodology is modified, so the modes of buzz oscillations can be 

controlled.  Restrictions, such as near-zero structural damping in the flap mode, were 

imposed on the aeroelastic model to facilitate the occurrence of transonic buzz. This 

aspect is explained in the section 3, after reviewing the analysis of LCOs in section 2. 

The buzz prediction methodology is discussed in section 4 and the assessment and the 

selection of an optimum control law to suppress the buzz is considered in section 5. A 

typical example is considered and the results are presented in sections 6. 

2. Analysis of Limit Cycle Oscillators 

First the fascinating subject of the analysis of LCOs will be briefly revisited. 

The Poincaré-Bendixson theorems can be used to identify the presence and absence of 

limit cycles and establish their uniqueness. These important theorems are explained 

and are briefly summarized in Vepa (2016). As a result of the Poincaré-Bendixson 

theorems (see for example Vepa, 2016), in the case of the following second-order 

equation, 

 ( ) ( ) 0=++ xfxxgx ɺɺɺ , (1) 

where, x  is a displacement, ( )f x  and ( )g x  are nonlinear functions of x  and the dot 

over the variable ( )xɺ  represents differentiation with respect to time t . One may state 

without proof, that it has a periodic solution which is unique and that this solution is 

an asymptotically stable orbit under a given set of conditions. 

To present the gist of the method of variation of parameters, consider a non-

linear system with governing equation of motion expressed as, 

 ( ) ( ) ( ) 0, =++ xxFtxtx ɺɺɺ ε , (2a) 

subject to the initial conditions, 

 ( ) 00
atx

t
=

=
, ( ) 0

0
=

=t
txɺ , (2b) 

where ( )tx  is the displacement, ( )xxF ,ɺ  is a non-linear function,  ε is a small non-

linearity or perturbation parameter and 0a  is a constant. When  ε is set equal to zero 

the solution is of the form, 

 ( ) ( )φ+= tatx cos0 .  (3) 
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Hence, when the perturbation parameter  ε is not equal to zero the solutions for the 

displacement and velocity are assumed to be of the form, 

 ( ) ( ) ( )( )tttatx φ+= cos , ( ) ( ) ( )( )tttatx φ+−= sinɺ  (4) 

where ( )ta  is a time dependent slowly varying amplitude function and ( )tφ  is again a 

time dependent and slowly varying phase angle, relative to a vector rotating in the 

phase plane with a constant angular velocity. 

Differentiating the assumed solutions and solving for ( )taɺ  and ( )tφɺ , one obtains, 

 ( ) ( ) ψψψε sincos ,sin aaFta −=ɺ , (5a) 

 ( ) ( ) ψψψεφ coscos ,sin aaFt −=ɺ  (5b) 

where, ( )tt φψ += , is the phase angle of the amplitude vector relative to its initial 

direction. The approximation, known as the Krylov-Bogoliubov averaging is 

introduced by replacing the periodic terms in the right hand sides of the above 

equations for ( )taɺ  and ( )tφɺ , by their averages over one period of oscillation; i.e. 0=ψ  

to πψ 2= . Further both  ( )ta  and ( )tφ  are assumed to be constant over the 

integration period. Without any loss of generality, the averaged equations take the 

form, 

 ( ) ( )afta KB ε=ɺ , ( ) ( )agt KB εφ =ɺ . (6) 

The response and stability of the slowly varying amplitude function is determined by 

the first of these averaged equations (6) while the phase angle is the obtained from the 

second. Orthogonal series expansion in the amplitude and phase plane in terms of 

ultra-spherical polynomials also leads to equations similar to equations (6). 

The method of analysis was first postulated by Denman (1964) and developed 

by several others. Caughey and Payne (1969) have also considered a similar class of 

oscillators with stochastic excitation.  

Expanding the right hand sides of the equations for the amplitude, ( )ta  and 

phase ( )tφ  in terms of the variable z , in an orthogonal series of ultra-spherical 

polynomials with parameter λ  and retaining only the first term, one has the 

approximations, 

 ( ) ( )λε  , afta U=ɺ , ( ) ( )λεφ  , agt U=ɺ , (7) 

as the polynomial, ( )zP
λ

0 is a constant. In particular when 21=λ ,  
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 ( ) ( ) ( )afafta KBU   , 
2

1 ελε
λ

==
=

ɺ , (8a)  

 ( ) ( ) ( )agagt KBU   , 
2

1 ελεφ
λ

==
=

ɺ . (8b) 

Thus the averaging technique may be interpreted as a generalised orthogonal 

series expansion based approximation of the equations governing the dynamics in the 

amplitude and phase plane.  

3. Principles of Control Law Synthesis for suppression of LCOs 

Following the discussion in the preceding section, to synthesize a controller, 

since the system behaves like a periodic system as it approaches the limit cycle, and 

from equations (8), ( ) ( ) ,  0Ua t f aε λ=ɺ ≃  and ( ) ( ) ,  0Ut g aφ ε λ=ɺ ≃ . Thus it is 

possible to set,  = 0ε  and from equation (5a), one has, 

 ( ) ( ) ( ) ( ) ( ) , 0x t x t F x x x t x tε+ + +ɺɺ ɺ ɺɺ≃ ≃ . (9) 

In first order form, with the inclusion of a control input u , 

 
0 1 0

1 0 1

x xd
u

x xdt

       
= +       −       ɺ ɺ

. (10) 

If one wishes to design a steady state feedback regulator that minimizes the 

performance index, 

 ( )2 2

0

J x x dt
∞

= +∫ ɺ  . (11) 

An algebraic Riccati equation must be solved and it can be shown that, 

 [ ][ ] [ ][ ]1 2 0.4142 1.3522
T T

u k k x x x x= − = −ɺ ɺ . (12) 

The above control input based on the linear-quadratic regulator theory, is independent 

of ( ),F x xɺ . A simple example will illustrate the open and closed loop responses of a 

typical oscillator. 

The typical example considered is the modified van der Pol equation with 

parameters [ ]ib=b  which may be expressed as,  

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 2 2 2 4
1 2 3 41 1 1 1x t x t b x b x b x x b x x t u+ − − + − + − − + − =ɺɺ ɺ ɺ ɺ  (13) 

Ignoring the control input, the equations corresponding to (5a) and to (5b) may be 

respective expressed as, 
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 ( ) ( )∑
=








 −
=

3

1 2

2cos1

n
nnb

n
ftata

ψ
ɺ , ( ) ∑

=









=

3

1 2

2sin
 

n
nnb

n
gt

ψ
εφɺ  (14a) 

where, the functions nbf  and nbg  may be expressed in terms of amplitude ( )ta  as, 
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and 
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. (14c) 

Expanding ψn2cos  and ψn2sin  in terms of ultra-spherical polynomials in 

the interval [ ]π2 ,0  and retaining only the first term in the orthogonal series 

expansion, the equations corresponding to equations (7) may be expressed as, 

 ( ) ( ) ( )∑
=

=
4

1n

nn afbtataɺ  , ( ) 0=tφɺ  (15a) 

where, 
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 (15b) 

and 

 ( ) ( ) ( )λ
λ ππλ 21 kkJU k +Γ= . (15c) 

The parameter λ  is chosen to be equal to 2 but similar results were obtained for 

several other choices such that 290 ≤≤ λ . The LCO behaviour can be verified by 

solving equations (15) and plotting the phase-plane trajectory. 

A typical set of limit cycle oscillator responses are also generated by 

simulating equation (13) with the additional control input given by equation (12) and 

with the parameter set, 

 [ ]1000=b . (16) 
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The limit cycle responses obtained for the simulated limit cycle oscillator with 

b  given by equation (16) and with and without the control input are compared in 

figure 1. Also shown is the closed loop response for the initially assumed alternate 

parameter set, b  given by equation (17),  

 [ ]1 0 0 0=b . (17) 

 

Fig. 1 Comparison of the limit cycle oscillator responses with b  given by equation 

(16) and closed loop responses with b given by equations (16) and (17). 

 

The principle established in the preceding equations will be applied to the 

problem of controlling transonic buzz.  

 

4. Prediction of Transonic buzz 

In general three-dimensional flow, the unsteady equation for the potential 

functionφ ,  may be written in conservation form as, 

 0 31 2 0
f ff f

x y zτ ∗ ∗ ∗

∂ ∂∂ ∂
+ + + =

∂ ∂ ∂ ∂
, (18) 

where the functions if  are functions of the partial derivatives of φ  given by, 

( )2
0 2

x
f M τφ φ ∗= − + , ( )2 2 2

1 1
x x y

f M F Gφ φ φ∗ ∗ ∗= − + + , 2 y x y
f Hφ φ φ∗ ∗ ∗= + , 

3 z
f φ ∗= .  (19) 
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In the equations (19), the coefficients F, G, and H are respectively given by, 

 ( ) 21 2F Mγ= − + , ( ) 23 2G Mγ= − , ( ) 21H Mγ= − − . (20) 

where M M∞= , is the free stream Mach number. Furthermore,  

 / rx x c
∗ = , / ry y c

∗ = , / rz z c
∗ = , / rtU cτ ∞= . (21) 

There are alternate coefficients that could be used for the coefficients F, G, and H. 

 

 subsonic supersonic 

Far upstream 0=φ  0=φ  

Far downstream 0=+ xtC φφ  0=xφ  

Far above 0=+ ztD φφ  0=+ zt φβφ  

Far below 0=− ztD φφ  0=− zt φβφ  

Far spanwise 0=+ ytD φφ  0=+ yt φβφ  

Symmetry plane 0=yφ  0=yφ  

 

Table I The applicable boundary conditions 

 

The applicable boundary conditions are summarised in Table I. In Table I, the 

coefficients β , D and C, are given by,  

 12 −= Mβ , ( )22 21 βφ −+= xFMMD ,   

 ( )( ) ( )222 22 βφβφ −−−= xx FMFDC . (22) 

The streamwise flux is a major component in the potential equation and is, 

 ( )2 2 2
1 1

x x y
f M F Gφ φ φ∗ ∗ ∗= − + + . (23) 

An efficient three-dimensional aerodynamic code based on the nonlinear TSD 

theory was developed by Batina (1988, 1989, 1992) and later improved by Kim et al 

(2005) and by Kwon, Yoo and Lee (2018). 

Generally, given a reference length such as the root chord rc , the free stream 

density ρ∞  and the free stream flow velocity U∞  , one can construct the generalized 

aerodynamic forces matrix Q  defined by, 

 ( )( ) ( )( )2 31
,2

, , , ,r i r p j j r
S

U c z x y c C z c x y M dSρ
∗

∗ ∗ ∗ ∗ ∗
∞ ∞ ∞∫= ∆Q , (24) 
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where jz  is the vibration mode shape function of the structure in the th
j   mode, S

∗  is 

the non-dimensional planform area, x
∗  and y

∗  are the non-dimensional coordinates 

of a point in the planform, and M∞  is the free stream Mach number, the ratio of the 

free stream flow velocity to the local speed of sound. Furthermore 

( )( ), , , ,p j j rC z c x y M
∗ ∗

∞∆  is the unsteady pressure distribution on the wing surface 

induced by the jth modal displacement. 

The equations of motion of the vibrating wing, including the partial-span 

trailing edge flap, take the form, 

 ( ) ( ),,  , ,  ,tsd tsdM Mη η∞ ∞+ + = +Mq Cq Kq Q q q Q q qɺɺ ɺ ɺ ɺ , (25) 

where the vectors ( ),  ,tsd M∞Q q qɺ  and ( ), ,  ,tsd Mη ∞Q q qɺ   are obtained using a code 

based on the nonlinear TSD formulation. The integration of the equations (25) is done 

by a time-marching method, with the appropriate initial conditions as described by 

Kwon, Kim and Lee (2004) and is the basis of the coupled time integration method 

(CTIM). In the frequency domain, with all the initial conditions set to zero, a pulse 

input is used to generate the response as in the transient pulse method (PM), described 

by Kwon, Kim and Lee (2004).  

  

5. Control Law Synthesis for the Suppression of Transonic Buzz 

In the equation (24) for the generalized aerodynamic forces matrix, the 

integration is performed over the planform area. The modal displacements and slopes 

at the sending and receiving points in the Doublet Lattice Method (DLM) code are 

obtained by spline interpolation of the modal displacements at nodes of the structural 

model. The matrix ( )k=Q Q  is generally complex and a function of the reduced 

frequency of oscillation, k . If one assumes a matrix Padé approximant representation, 

the matrix ( )kQ  may approximated as, 

 ( )
1

0 1 p rk ik ik
−

 ≅ + + + Q Q Q I Q Q , (26) 

where 0Q  and 1ikQ  are the steady state and low frequency asymptote that can be 

computed independently, from the steady state and low frequency asymptotes of the 
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subsonic kernel function as outlined by Vepa (1977). If one assumes, the augmented 

poles are relatively fast, which is usually the case, p ≈Q 0 , and, 

 ( ) 0 1 rk ik≈ + +Q Q Q Q . (27) 

Generally the matrices rQ , the residue matrix and pQ , the matrix related to 

the poles corresponding to the augmented states, are constructed by matching the 

matrix ( )kQ  to the coefficient matrices in the matrix Padé approximant 

representation at some low value of the reduced frequency, fk k=   close to the 

estimated flutter reduced frequency, and assuming k  is small, it follows that, 

 ( )( ) ( )( )0 Re Re
f

r f
k k

k k
=

+ ≅ =Q Q Q Q . (28) 

Thus ( )kQ , computed by the DLM, may be approximated by the zeroth order matrix 

Padé approximant and is given by, 

 ( ) ( )( ) 1Re fk k ik≅ +Q Q Q . (29) 

Thus given the stiffness matrix K , of the structural system, and choosing a suitable 

model for the structural damping matrix g  which is assumed to be diagonal matrix, 

the structural damping matrix is =C gK . The equations of motion are expressed as, 

 ( )( ) ( ) 1Re f rk c U∞+ + = +Mq Cq Kq Q q Q qɺɺ ɺ ɺ  . (30) 

or equivalently, with the flap included explicitly as, 

  ( )( ) ( ) 1Re
T T

f rk q c U qη η∞   + + = +   Mq Cq Kq Q q Q qɺɺ ɺ ɺ ɺ ,  

 ( )2 22 ,  ,  ,  cq q q q qη η η η η η η η η ηζ ω ω ω η+ + + =HQ q qɺɺɺ ɺ ɺ , (31) 

where the vector q  does not include the flap degree of freedom, qη  is the amplitude 

of flap degree of freedom, cη  is the flap actuator command input, ηω  is flap actuator 

natural frequency, ηζ  is the flap actuator damping ratio and ηHQ  is the aerodynamic 

flap hinge moment. It is assumed that the damping ratio in the flap mode is zero as the 
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flap is in a state oscillation. The assumption is extremely important for the purpose of 

the synthesis of the control law. 

The equations of motion defined by equations (31) may then be cast in the 

state space form as, 

 cη= +x Ax Bɺ . (32) 

Now it is completely feasible to construct an optimal control law based on the above 

model formulation, defined by equation (32). The optimal control is assumed to 

minimize a cost function of the form, 

 ( )( ) ( ) ( ) ( )
00 0, ft T T T

x f f ft
J t t r dt t t∫= + +x x Q x u Ru x Q x , (33) 

where r  is a scalar used to alter the control weighting matrix R  in the formulation of 

the optimal control law synthesis, xQ  is the state vector weighting matrix and fQ  is 

the weighting matrix for the state vector at the final time ft t= . For the single input 

case, 1=R . The steady-state control law takes the form, 

 ( ) 11 T
c frη −

∞= = − ≡ −u R B P x K x , 1T T−
∞ ∞ ∞ ∞+ + − =P A A P Q P BR B P 0 , (34) 

where ∞P  satisfies the above algebraic Riccati equation which is solved using a 

standard function in MATLAB. 

Thus given a range of monotonically increasing free stream Mach numbers ,kM∞  , 

1,2, ,k = ⋯  as well as a set values for the relative weighting scaling parameter r , one 

can construct families of control laws, with differing closed-loop stability 

characteristics. The parameter r, in accordance with optimal control theory, is the ratio 

maximum magnitude of an element in the state vector to the maximum magnitude of 

the control input as explained by Vepa and Kwon (2021). 

In this paper, the parameter r , provides a single scalar parameter to obtain a large 

distribution of control laws. Each of the control laws may then be used with the open 

loop dynamics, reformulated in the transonic domain based on the nonlinear TSD 

theory, and an optimal solution may be selected. 

 

6. Application Example 
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The example considered, illustrated in figure 2, is the one considered by 

Kwon, Kim and Lee (2004). The model properties are summarised in Table II. The 

aerodynamic grid generated and used to solve for the nonlinear TSD aerodynamics is 

shown in Figure 3. The first three modes in the dynamic model are the first bending, 

the first torsion mode and the flap oscillation mode controlled by a servo-actuator, 

while the remaining are higher order modes. 

 

Λ = 31.9
o

TR = 0.31
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0
.6

2
4

m

 

Fig.2 Planform of the application example considered (All dimensions shown are in 

metres.) 

 

 

Hinge Stiffness, θK  73.4 Nm/rad 

Flap Moment of Inertia, Iα 0.000842 kgm2 

Material Density, ρ 2770 kg/m3 

Young’s Modulus, E 7.31×1010 Pa 

Poisson’s ratio, ν 0.33 

 

Table II Model properties. 
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Fig. 3 Aerodynamic grid. 

 

 

(a) 

 

(b) 

 

(c) 
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Fig. 4 Aeroelastic responses at Mach 0.95; (a) 1.49 kPa (Stable), (b) 1.67 kPa (Buzz), 

(c) 4.83 kPa (Unstable). 

 

7. Typical Simulation Results 

In figure 4 are shown the responses of the flap mode at 3 different values of 

dynamic pressure assuming the flow Mach number far upstream to be 0.95M∞ =  . It 

is seen from figure 4 (b) the response exhibits a transonic buzz type behaviour 

characterised by sustained periodic oscillations.  

 

 
(a) 

 

 
(b) 

Fig. 5 Flutter and buzz boundaries with (a) dynamic pressure, (b) frequency versus 

Mach number. 
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Fig. 6 Typical open and closed loop transonic buzz responses at Mach 0.95 and 

1.67q∞ =  kPa as well as the control input time history. 

 

 

 
(a) 
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(b) 

 

Fig. 7 Open and closed loop transonic buzz boundaries: (a) dynamic pressures at the 

boundary and (b) frequencies at the boundary. 

 

The corresponding transonic flutter and buzz boundaries are compared in figure 5. 

The computations were done by the DLM and the coupled time integration method 

(CTIM) in the time domain and by the transient pulse method (Pulse) in the frequency 

domain, for one case, as a check. A single degree of freedom instability associated 

with the flap mode was observed at a similar set of Mach numbers. These results were 

used to synthesize the control laws and for r  values, in equations (33) and (34), 

ranging from 1 to 200, in steps of 10 and for 6 different Mach numbers, on the buzz 

boundary, representing a total of 120 gain vector sets to facilitate a wide search for the 

optimum set of gains, as explained in sections 3 and 5.  
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(a) Mach 0.85, 3.49q∞ = kPa 
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(b) Mach 0.95, 2.97q∞ = kPa 

Fig. 8 Transonic buzz control response for  1r =  and 5r =  (a) Mach 0.85, 

3.49q∞ =  kPa and (b) Mach 0.95, 2.97q∞ = kPa. 
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The cases in the range of 1 5r≤ ≤ , seem to provide the best control laws for 

maximizing the closed loop buzz velocity or buzz Mach number. In figure 6 are 

shown a typical set of closed loop transonic buzz responses at Mach 0.95 and 

1.67q∞ =  kPa as well as the control input time history. The open loop response is 

also shown in the background. 

In figure 7 are shown a typical set of closed loop transonic buzz boundaries for 

1r =  and 5r = . In the subsonic range below Mach 0.85, r  values greater than 1, in 

the range 1 5r≤ ≤  are effective in suppressing buzz. A summary of the control 

parameter set applied to the simulation at Mach 0.85, is shown in Table III. 

 

 
Control gain set 

r=1 

b1 b2 b3 b4 b5 b6 

0.0326  -4.3537  2.3285  -2.7834  0.0000  0.0000  

b7 b8 b9 b10 b11 b12 

-0.0012  0.0244  0.0860  -0.0175  0.0000  0.0000  

r=5 

b1 b2 b3 b4 b5 b6 

0.0065  -0.8745  0.4676  -0.5586  0.0000  0.0000  

b7 b8 b9 b10 b11 b12 

-0.0002  0.0049  0.0173  -0.0035  0.0000  0.0000  

 

Table III Full state control gain set applied at Mach 0.85 

 

However, in the transonic speed range, such as Mach 0.9 and 0.95, r  values 

much lower than or equal to 1 are not sufficient to suppress buzz. For high Mach 

numbers, greater than 0.85, the computation of the closed loop buzz boundary at 1r =  

was quite difficult due to the control surface deflection being too large for these cases, 

and the closed loop results tend to approach the open loop results. This feature is 

illustrated in figure 8, for two different r  values, 1r =  and 5r = . The control surface 

deflection is too large, for r  values below 1r = . Consequently the optimum range of 

r  values is between 1r =  and 5r = . 

8. Discussion and Concluding Remarks 

Quite unlike linear optimal control, there is generally only a finite range of r  

values, over which the closed loop system is stable with the occurrence of transonic 

buzz effectively suppressed with reasonable magnitudes of inputs. For higher r  

values, the magnitude of the control input is insufficient to influence the buzz 
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behaviour. For lower values of the parameter r , the control inputs are very large and 

the nonlinear behaviour of the transonic loads is accentuated. In the subsonic range of 

Mach numbers, below about Mach 0.85, a small value of r  is effective in suppressing 

the buzz. However, in the transonic range of Mach numbers, a value of r  equal to or 

less than one is in-effective in suppressing buzz. This is because the smaller the value 

of r , the greater the displacement of the control surface, and the unsteady 

aerodynamics and consequently the wing response is sensitive to the larger 

displacement of the control surface in the transonic range. The small range of values 

of r  for which the closed loop is stable, implies that for certain configurations, it may 

be quite impossible for the transonic buzz to be suppressed unless the control surface 

is designed and optimized specifically for the purpose of suppressing the transonic 

buzz. Control laws for suppressing transonic buzz must be selected to avoid both low 

and high magnitudes of control surface deflections. This is the principal contribution 

of this paper, apart from demonstrating the feasibility of suppressing the occurrence of 

transonic buzz, by the use of feedback. 
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