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Sleep monitoring using ear-centered setups:
Investigating the influence from electrode

configurations
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Abstract— Modern sleep monitoring development is
shifting towards the use of unobtrusive sensors com-
bined with algorithms for automatic sleep scoring. Many
different combinations of wet and dry electrodes, ear-
centered, forehead-mounted or headband-inspired designs
have been proposed, alongside an ever growing variety of
machine learning algorithms for automatic sleep scoring.

Objective: Among candidate positions, those in the facial
area and around the ears have the benefit of being relatively
hairless, and in our view deserve extra attention. In this
paper, we seek to determine the limits to sleep monitoring
quality within this spatial constraint.

Methods: We compare 13 different, realistic sensor se-
tups derived from the same data set and analysed with the
same pipeline.

Results: All setups which include both a lateral and an
EOG derivation show similar, state-of-the-art performance,
with average Cohen’s kappa values of at least 0.80.

Conclusion: If large electrode distances are used, posi-
tioning is not critical for achieving accurate sleep scoring.

Significance: We argue that with the current competitive
performance of automated staging approaches, there is
a need for establishing an improved benchmark beyond
current single human rater scoring.

Index Terms— EEG, ear-EEG, Deep Learning, Sleep scor-
ing

I. INTRODUCTION

During an 80 year lifespan, a human spends roughly 27
years asleep. As such, it should not be surprising that sleep has
a large impact on virtually every major disease category, from
cardiovascular disease over psychiatric disorders to cancer
[1]. However, diagnosis of sleep disorders is still largely
confined to dedicated sleep laboratories. Laboratory-based
polysomnography (PSG) is the main method to gather insight
in a patient’s sleep, certainly when neurophysiological data is
needed. Although sleep is an essential part of several disorders,
such as neuropsychiatric disorders, the practical limitations for
wide scale use of PSG’s hamper the integration of sleep as a
vital component in diagnostic and therapeutic trajectories of
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patients with these disorders. Moreover, the sleep laboratory is
a very artificial environment, which has an influence on sleep
itself. In order to better understand the impact of healthy and
abnormal sleep-wake patterns on various disease conditions,
there is an urgent need for sleep monitoring over prolonged
periods of time outside traditional sleep clinics.

In the past decade, multiple studies have explored the use
of digital wearable (e.g. actigraphy) and bed-side (e.g. radar-
based) sensors to quantify various aspects of sleep, but failed
to capture the neurophysiological signatures that underpin the
quantification of sleep based on the AASM convention [2].
With the introduction of various wearable EEG sensors (ear-
EEG, cEEGrid, sleep zeo, Dreem) which capture brain activity
from unconventional places (e.g. on the forehead, in or around
the ears or using a headband), personalized long-term sleep
monitoring on the general population is within reach [3]–[10].

Visually reviewing the large amount of time series sleep data
that could be recorded with this new generation of wearable
EEG would be time-consuming and costly, in addition to re-
quiring re-training of the human scorers for each new wearable
(which would be highly inefficient [10]). Initial approaches
to automatic sleep scoring were based on traditional, hand-
crafted features, designed using domain knowledge of sleep
experts. These features were fed into a suitable machine
learning algorithm ([11], [12]). A modern upgrade to this
approach is neural network models, in which also the feature
extraction is handled by the algorithm. This lead to a variety of
promising automated sleep analysis approaches. An important
advantage of automated scoring approaches is the absence of
intra-scorer variability [13]. Machine learning algorithms for
sleep scoring are primarily developed and validated on large,
publically available PSG data sets. As was shown recently
[14], these same algorithm designs can also produce state of
the art results on wearable sleep data. In this paper we also
investigate whether such PSG data sets can be used to improve
performance on wearable data through pre-training.

Due to the variety of available wearable sensors and the
experimental nature of data collection with those devices,
‘wearable’ datasets are still an order of magnitude smaller
compared to PSG data sets, and performance of automated
staging approaches requires further investigation.

In this paper, we apply one of the leading analysis pipelines,
the SeqSleepNet [15], to multiple different, realistic sensor
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Fig. 1. The recording setup used in this study. A: example of the
soft ear-EEG electrode holders, with embedded dry-contact electrodes,
placed in each ear. B: cap-mounted PSG setup using 8 scalp EEG
electrodes, 2 EOG electrodes and 3 EMG electrodes. See [3] for a
detailed description.

configurations. ‘Realistic’ in this sense means that we only test
montages where a limited number of electrode positions are
used at a time, and only positions that are reasonably hidden
and easy to access (out of the hair line and only on the sides
of the head).

The SeqSleepNet pipeline was validated by an independent
group on two different datasets, showing that the performance
of the network outperformed the average human annotator
[16]. In this paper, we show that this network, originally
developed and trained for automatically staging PSG, can be
directly applied to in-ear EEG data. In addition, we investigate
the likely upper limits to mobile sleep scoring accuracy and
the variations between different approaches.

II. METHODS

A. Data

We used the 80 nights of sleep recordings (4 nights from
20 subjects each) which were presented in Mikkelsen et
al 2019[3]. This data set consists of concurrent PSG (13
electrodes) and ear-EEG (6 electrodes in each ear) recordings.
See Figure 1 for an example of the setup. Data collection
was conducted in accordance with the Good Clinical Practice
guide lines and the declaration of Helsinki. Monitoring was
performed by the GCP unit at Aarhus University, and the
protocol was accepted by the Danish Medicines Agency (ref.
nr. 2017111085) and Central Denmark Region Committees on
Biomedical Research Ethics (ref. nr. 1-10-72-413-17).

The recordings were sampled with a TMSi Mobita amplifier,
with a sampling frequency of 500 Hz. The Mobita amplifier
is a mobile EEG amplifier with 24 bit resolution in a 400 mV
dynamic range (peak-to-peak), individually shielded inputs,
less than 0.4 µV RMS noise in the 0.1–10 Hz band, and greater
than 100 dB CMRR.

Rather than using the raw data, we work with the sleep
recordings after artefact rejection, as described in Mikkelsen et
al [3]. In this artefact rejection pipeline, artefacts are identified
on an individual electrode basis, and are removed by changing
the relevant sample values to ‘NaN’ (which enables discarding
samples from individual channels). During preparation of

the various derivations, NaN-values are ignored when EEG
electrodes are averaged (as is the case with ear derivations). If
there were any NaN’s in a final derivation, the missing samples
were linearly interpolated from the nearest non-missing values.
For extended missing sections, the interpolated values decayed
exponentially towards zero (with time constant 1 second).

The PSG recordings have been scored by two independent
and experienced sleep technicians (‘scorer 1’ and ‘scorer 2’),
according to the AASM guidelines [2]. We have decided to
treat scorer 1 as the ground truth, to which the automatic
sleep classifiers will be compared (and trained on). In contrast,
scorer 2 is an independent source of labels, which will be used
in studying the possible causes of classifier errors.

B. Choice of electrode configurations and epochs
Figure 2 shows all electrode derivations under consideration

in this study. As can be seen, we have chosen to rely more
on the left than right side of the head. This was done both to
reduce the number of derivations at play, and because previous
work had shown the left ear electrodes to be slightly more
reliable than the right ear electrodes [3]. We will elaborate
more on this in the ‘Results’ section. In designing the ‘Scalp’
and ‘EMG’ derivations, we decided to make them as reliable as
possible, by combining multiple derivations in one. This was
done because we are primarily interested in the performance
of a mobile sleep monitoring setup, and we do not consider
chin EMG or scalp EEG electrodes to be prime candidates for
user friendly mobile setups. Therefore, the primary concern
for these data channels is that they are responsible for as little
data rejection as possible.

Epoch rejection: To make the comparison of different setups
(meaning different combinations of derivations) as unambigu-
ous as possible, we only use epochs for which all derivations
are well defined. In this regard, a derivation is considered ‘ill
defined’ if all samples in that epoch for that derivation have
been rejected (replaced with ‘NaN’ values). In cases when a
derivation is constructed by averaging a set of channels, any
‘NaN’-values of an individual channel are ignored.

Using these statistics, we evaluate whether any derivations
should be excluded from the analysis. In this regard, the im-
portant metric is not the individual reliability of the derivation,
but rather to which degree the derivation is well-defined at the
same time as others. If it is not, it will be directly responsible
for reducing the number of viable epochs. As is shown later,
we end up removing the ‘right ear’ derivation.

C. Derivation distances
In the course of our analysis, we compare classifier per-

formance to the total derivation distance of the electrode
setup used. This means that we have measured representative
values for the distances between the electrodes of the different
derivations under investigation. When multiple derivations are
used, we have simply summed the distances of each.

For the in-ear derivations, we have measured the distances
between bottom of ear canal and middle of concha, using the
ear pieces of the 20 participants in the study, and used the
average of these numbers. For all other derivations, we have
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Fig. 2. Overview of different derivations used. ‘Left ear’ and ‘right ear’ uses the average over the three innermost ear electrodes versus the
average of the three outermost electrodes, in each ear. ’LR ears’ uses the average of all electrodes in each ear. ‘M1-ear’, ‘EOG 1-ear’ and ‘EOG
2-ear’ references a single electrode to the average of all left ear electrodes. For ‘Scalp’, both C3-M2 and C4-M1 are calculated; for each recording
we used the derivation with the least rejected or lost samples. For ‘Chin EMG’, all three derivations between all three EMG electrodes (l, r, c) are
calculated. If l-r has a missing sample, r-c is used instead. If r-c is missing as well, l-c is used.
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Fig. 3. Illustration of SeqSleepNet. From the bottom: for L epochs, up to three channels are passed as spectrograms into a filter bank layer. After
the filter bank, a recurrent layer processes each epoch (consisting of T steps each). The output form this recurrent layer is passed to an attention
layer, which is followed by a second recurring layer, traversing the L epochs. The outputs from this recurrent layer are passed to softmax functions,
yielding L epoch labels for L epochs. The figure is adapted from [15], and in this paper, L = 20.

used electrode positions on a standard polystyrene model head
used in teaching, measured in direct lines. The distances are
reported in Table I.

D. The SeqSleepNet classifier

In this study we used SeqSleepNet [15], illustrated in Fig.
3, as the base classifier. SeqSleepNet works by analysing a
sequence of L consecutive epochs and classifying them at
once into a sequence of L sleep stage labels (i.e., sequence-

to-sequence). We set L = 20 in this study as recommended in
[15]. The data input to the network can be single- or multiple-
channel log-scale spectrograms. The data of each channel was
normalized to have zero mean and unit variance for each
frequency bin using the normalization parameters computed
from the training data.

The i-th epoch, 1 ≤ i ≤ L, in the input sequence, was
encoded into a feature vector āi via the epoch encoder. The
epoch encoder is composed of (1) filter-bank layers, one for
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TABLE I
OVERVIEW OF DERIVATION DISTANCES. SEE FIGURE 2 FOR A

DESCRIPTION OF THE DERIVATIONS

Derivation Distance [cm]
Left ear, Right ear 1.8

M1-ear, M2-ear 4.5
LR ears 15.0

EOG1-ear 14
EOG2-ear 16

EMGl-r 3.5
M1-M2 15.5

scalp 15.5

each input channel, (2) a bidirectional recurrent layer realized
by a long short-term memory (LSTM) cell, and (3) an attention
layer. The spectrogram channels first have their frequency
dimension smoothed and reduced via the filter-bank layers.
The filtered spectrograms are then stacked along the frequency
direction and presented to the LSTM, which converts them
into a sequence of output vectors. The output vectors in this
sequence are eventually combined, using weights learned by
the attention layer to form the feature vector āi.

Going through the epoch encoder, the input sequence was
transformed into a sequence of feature vectors. An LSTM-
based bidirectional recurrent layer was then employed for
inter-epoch sequential modelling, converting the sequence of
feature vectors into a sequence of output vectors. These output
vectors were finally presented to a fully-connected layer,
followed by a softmax layer, for classification, producing a
sequence of labels, each label corresponding to an epoch in
the input sequence. The network was trained end-to-end to
minimize the cross-entropy loss averaged over the sequence.
See [15] for more details.

E. Classifier training and transfer learning
Training: To test a wide selection of different, relevant elec-

trode combinations, we used different subsets of the electrode
derivations as inputs to the network, these are listed in Table II.
Here, ‘+’ means that multiple derivations are given as separate
inputs. The SeqSleepNet was configured similarly to the origi-
nal implementation [15], meaning that: each 30-second epoch
was transformed into a spectrogram of 129 frequency bins
and 29 time bins. We used 20 spectrograms, the filterbanks
each had 32 filters (with different banks for different input
channels), and the banks had low and high frequencies of 0
and 50 Hz. We used a dropout-rate of 0.25, attention size and
hidden sizes of both GRU layers were 64, the learning rate
was 1e-4 and the L2-regularization lambda was 1e-3. Batch-
size was 32. For a public code repository of seqsleepnet, we
suggest https://github.com/pquochuy/SeqSleepNet.

Transfer learning: As an alternative to training directly on
the reduced electrode set, we also studied the effect of transfer
learning [17]. To this end, we pretrained SeqSleepNet with the
Montreal Archive of Sleep Studies (MASS) database, which
consists of 200 subjects [18]. For this test, only a single-
input version of the network was prepared, using the C4-
A1 derivation. The pretrained networks were then used as the
starting points and further trained (i.e., the entire network were
finetuned) with our data.

TABLE II
OVERVIEW OF CHANNEL COMBINATIONS USED. ‘+’ MEANS USING

MUTIPLE, SEPARATE DATA CHANNELS.

Single, double or triple channel input:
Single Double Tripple

‘Left ear’
‘M1-ear’
‘EOG 1-2’
‘LR ears’
‘M1-M2’
‘scalp’

‘M1-ear’+‘EOG1-ear’
‘M1-ear’+‘EOG2-ear’
‘LR ears’+‘EOG1-ear’
‘LR ears’+‘EOG2-ear’
‘LR ears’+‘EOG 1-2’

‘scalp’+‘EOG 1-2’+‘EMG’
‘LR ears’+‘M1-ear’+‘M2-ear’

Performance evaluation: In the remainder of this paper, we
shall refer to a SeqSleepNet trained for a specific set of inputs
as a ‘classifier’. When discussing both manual sleep scorers
and automatic classifiers, we shall refer to all of them as
‘scorers’.

Each classifier was trained and tested in a leave-one-subject-
out fashion. Of the remaining 19 subjects, 15 were used as
training set, and 4 were as validation set for early stopping
and to avoid overfitting to the training set. For each subject,
all available recordings were used. As each recording is on
average 843 epochs long after epoch rejection, and three
subjects were only represented by 3 recordings, the average
number of epochs used in each training fold was 48679, and
the average test set was 3245 epochs.

To quantify classifier performance, we calculate Cohen’s
kappa [19] between the automatic and manual scoring (from
scorer 1) on the test epochs. Since we are performing cross
validation, all epochs serve as test epochs at some point,
making it possible to calculate kappa values for the full data
set (after epoch rejection). This means that all kappa statistics
are based on 64905 epochs.

Cohen’s kappa was chosen due to its historical use in
automatic sleep scoring development, ease of interpretation,
and its property of correcting for chance agreement.

III. RESULTS

Figure 4 shows how the set of accepted epochs depends on
the chosen set of derivations. On the left is shown rejection
statistics for individual derivations. We see that the epoch-
wise rejection rate is quite stable across derivations, varying
between 3.2% and 6.0%. For comparison, scorer 1 marked
3.5% of the epochs as unclassified. However, more important
than the single derivation statistics is the impact on epoch
rejection when multiple derivations are considered. On the
right, statistics are shown for when all but one derivation are
used. Again, we see that excluding a single derivation mostly
does not change the overall rejection rate. However, we note
that removing the ‘right ear’ derivation reduces the number of
recordings that are completely rejected (from 4 to 3). Because
of this, we decided to exclude the ‘right ear’ derivation from
the rest of the analysis, and use the 83% of epochs which are
accepted in all other derivations (including being scored by
scorer 1). This results in excluding 2 recordings (from two
different subjects).

It is here important to point out that the main driver of the
left vs. right ear difference is random hardware issues. During
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Fig. 4. The relationship between data channels used and amount of accepted epochs. Left, top: percentage of epochs rejected based on a single
data channel. Left, bottom: number of recordings for which at least 30, 80 and 100 percent of epochs were rejected based on a single data channel.
Right, top: percentage of epochs rejected when all data channels except one were included (the excluded channel is shown on the bottom x-axis).
Right, bottom: number of recordings for which at least 30, 80, and 100 percent of epochs were rejected when all data channels except one were
included.

a subset of the recordings, some electrodes, in particular the
three ‘ear canal’ electrodes in the right ear, were plagued by
instability issues which were caused by faulty shielding. Even
though the issue was fixed, the slight imbalance caused by it
persists in the data set.

Additionally, please note that EMG, EOG and Scalp deriva-
tions have been excluded from the comparison in Figure 4.
This is because these derivations are all necessary to perform
our analysis (constituting a three-channel PSG classifier), and
thus their inclusion is obligatory.

Figure 5 shows boxplots for distributions of Cohen’s kappa
between the classifier output and the manual labels assigned
by scorer 1. It is interesting to note how any classifier which
combines both lateral and EOG information reaches kappa
values of about 0.8 or above (in particular how well ‘EOG 1-2’
performs). Also, we see that the ‘scalp’+‘EOG 1-2’+‘EMG’-
classifier actually reproduces scorer 1 better than scorer 2 does.
This indicates that SeqSleepNet manages to incorporate the
special quirks of scorer 1, and that it is probably unwarranted
to attempt further improvements in PSG-based scoring (at least
when training against a single scorer). In the bottom part of
the figure is shown the summed derivation distances for each
automatic classifier. We note a quite nice relationship between
classifier performance and derivation distance, in particular
when focusing on the ‘mobile’ setups without scalp electrodes.

It is worth noting that we have found no indication that
the specific choice of epochs used here (as described above)

is particularly easy to score, which would introduce a bias
towards artificially high kappa values. We have tested the
random forest based classifier presented in Mikkelsen et al.
2019 [3], on the same, reduced epoch set, (used for both
testing and training), however it only attains an average kappa
coefficient of 0.72 (compared to the 0.73 which was achieved
using a larger set of epochs).

In the case of transfer learning, we tested the effect on the
‘LR ears’, ‘LR ears’+‘EOG1-ear’, ‘LR ears’+ ‘EOG2-ear’ and
‘M1-M2’. We found average increases in Cohen’s kappa of
0.016, 0.009, 0.005 and 0.029, relative to the scratch-trained
classifiers. When performing a two-tailed permutation test of
whether these changes are significantly different from 0, we
find p-values of 0.0050, 0.0208, 0.0612 and 0.0002, meaning
that all but the smallest increase (that for ‘LR ears’+‘EOG2-
ear’) are statistically significant.

Figure 6 shows a visual comparison between all scorers,
both manual and automatic. For each scorer, all kappa values
are calculated relative to all other scorers (by bundling all
recordings into one, and calculating one total kappa value), and
the two highest values are plotted as edges on the graph. This
means that while some nodes (each representing a scorer) have
more than two connected edges, all nodes have at least two.
The edges are coloured depending on the kappa value, and the
nodes are coloured depending on the kappa value between the
scorer and scorer 1.

An interesting observation can be made from Figure 6: even
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Fig. 5. Top:Distributions of all kappas for all scratch-trained classifiers,
relative to the labels from scorer 1. Numbers at the top are averages.
Bottom: Total derivation distances for each setup (’scorer 2’ excluded).

though ‘scorer 1’ is the target that all automatic classifiers
are aiming at, they do in fact agree more with each other
than with scorer 1. This happens even for classifiers that do
not have any input derivations in common (e.g. ‘M1-ear’ +
‘EOG2-ear’ and ‘LR ears’ + ‘EOG 1-2’ may share electrodes,
but not derivations). In particular, we note that even though
‘scalp’+‘EOG 1-2’+‘EMG’ attains the highest kappa relative
to scorer 1 of any scoring method, it still attains even higher
kappa values with other automatic classifiers. We can think of
two plausible causes of this: (1) the manual scorer likely also
makes some mistakes, meaning that there is an upper limit to
how well an entirely rules-based sleep classifier can predict
manual scoring. (2) it is possible that the manual sleep scorer
uses information not available to the classifiers - either because
the manual scorer considers more than the last 10 minutes
of recording when scoring a given epoch, or because they
consider other aspects of the recording, such as time of night,
total duration etc., which are not revealed to the automatic
classifier.

When we further analyse the discrepancies between manual
and automatic scoring, we find, not surprisingly, that most
errors happen close to state transitions. This is shown in Figure
7 where we see that almost 60% of discrepancies between
manual and automatic scoring happens immediately before or
after a stage transition (as judged by scorer 1). Including three
additional epochs to either side of the transition brings the total
up to around 80%. For comparison, only 20% of epochs are
right next to a transition, and 45% percent are within 4 epochs
of a transition.

Given the high agreement between many of the automatic
classifiers, we decided to specifically study the level of consen-
sus between some of the most well-performing classifiers. We
chose the following 5: ‘LR ears’+‘EOG2-ear’,‘EOG 1-2’,‘M1-

ear’+‘EOG2-ear’,‘scalp’,‘scalp’+‘EOG 1-2’+‘EMG’. When
comparing each of the 5 classifier outputs to their own majority
vote, we overwhelmingly find that the 6 classifiers mutually
agree. Figure 8 shows the average number of votes for the
majority (maximum 5) for different sleep stages (as judged by
the majority). We see that in 80% of cases there is complete
consensus, except for stage N1, which is also considered the
least well-defined stage.

IV. DISCUSSION AND CONCLUSION

By applying an advanced sleep scoring algorithm to high
quality wearable EEG data, we achieve a high scoring per-
formance relative to previous studies. Relevant comparisons
in this regard are Stepnowski et al 2013 [12] which achieved
a kappa value of 0.61, Lewendowski et al 2017 [4] which
achieved 0.63, Mikkelsen et al 2019 [3] which achieved
0.73, and Arnal et al 2020 [7] which reached a kappa of
0.75. Obviously these different studies used slightly different
electrode setups, but except for Mikkelsen et al, they are
comparable to either the ‘EOG 1-2’ setup or ‘LR ears’+‘EOG
1-2’ (Mikkelsen et al. essentially used the ‘LR ears’ deriva-
tion). This means that we are seeing kappa improvements of
at least 0.05 relative to previously published work. This is
central for the realization of light weight sleep monitoring,
and our results here show that this can be reality. Additionally,
importantly, we find that a broad selection of electrode place-
ments, all having in common that they have both lateral and
EOG components, achieve very similar performances, with
a trend towards longer electrode distances leading to better
classifiers. This is likely because sleep, and sleep stage-
specific oscillations, are global phenomena [20], and as long
as the used derivations have a sufficiently large region of
sensitivity, it is possible to distinguish between sleep stages.
A contributing factor is presumably also that some noise
sources (amplifier and thermal electrode noise) are distance
independent, meaning a worse signal-to-noise ratio for short
electrode distances, and a resulting poor sleep scoring. All
of this means that electrode placements should be chosen
based on unobtrusiveness, reliability and comfort, and if the
recording setup is otherwise sound, we predict that a very large
number of different sensor combinations can make a viable
sleep monitor. This is interesting from a design perspective
of mobile sleep monitors, particularly ear-EEG setups: given
different constraints posed by different patient groups and
different medical contexts, we are relatively free to choose a
number of sensors and placements, and still expect a useable
sleep monitor (given adequate training data etc.). We believe
that for most home-recording scenarios, a kappa value of 0.76
is sufficient. This means that for ‘young healthy’ subjects, such
as the ones used in this study, simple setups like either a single-
sided setup (as in ‘M1-ear’+‘EOG1-ear’) or a horizontal-only
setup (like ‘LR ears’) will be adequate. However, it is clear
that by combining both EOG and horizontal derivations, a
distinct improvement is possible. We anticipate that for more
challenging user groups, the expected decrease in kappa for
the ‘simple’ setups can be counter-acted by upgrading to,
for instance, ‘LR ears’+‘EOG2-ear’. This approach should be
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Fig. 6. Left: Matrix showing all pairwise Cohens kappa coefficients, ordered to maximise nearest neighbour values. Right: Graph ordering scorers
based pairwise kappas. Each node represents a scorer, and the edge weights represent the kappa value between the two scorer outputs. The
node color shows the kappa value between classifier output and scorer 1 labels. For clarity, only the two strongest edges for each node have been
included.

Error before

 transition

Error after

 transition

Rapid transitions

-4 -2 0 2 4 Rest

Distance from error to transition (in full epochs)

0

0.1

0.2

0.3

0.4

0.5

P
ro

b
. 
D

is
tr

ib
u
ti
o
n

LR ears+EOG2-ear

M1-ear+EOG2-ear

EOG 1-2

scalp

scalp+EOG 1-2+EMG

scorer 2

Fig. 7. Distribution of automatic classifier errors as a function of
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where scorer 1 only spends a single epoch in the given stage, meaning
that possible error is both immediately before and after the transition.
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tested in future studies. We note that these considerations are
similar to what is discussed in the recent study by da Silva
et al [21] focusing only on single-sided around-the-ear EEG,
where an ear-EEG setup very similar to the ‘M1-ear’+‘EOG1-
ear’ combination is specifically discussed.

In particular, we found that a PSG-based automatic scorer,
which performed very well in reproducing scorer 1, still
had a higher Kappa value with at least two other automatic
classifiers. This indicates that the high internal consistency
among the automatic classifiers is not entirely due to limited
sleep information in the non-PSG derivations, but is likely
also related to the human peculiarities in the scoring by scorer
1. Apparently, the automatic classifiers all manage to define
certain special cases more consistently than scorer 1, leading
to the ‘scalp+EOG 1-2+EMG’ classifier attaining both the
highest kappa value with scorer 1, while at the same time
having higher agreement with other automatic classifiers.

Based on this observation, it would be very interesting to
compare the output of the classifiers presented here with output
from consensus-trained PSG-based classifiers such as the one
presented in Stephansen et al 2018 [22], which the authors
believe could be more consistent than the gold standard manual
sleep scoring.

In future work, it will be interesting to see how these
results change when a more challenging cohort is used - it
is possible that as sleep and its associated biomarkers change
with age or infirmity, the optimal electrode locations will
change accordingly.

On the topic of future directions, we feel that this work
highlights the need for a change in focus regarding how
machine learning is used to improve clinical sleep analysis.
Given the apparent high reliability of automatic sleep scoring
shown in this paper and others, we believe that the goal
of reproducing manual scoring for ‘regular sleep’ has been
largely reached. Rather than marking any kind of end to the
project of updating clinical sleep analysis, we believe this
points to the beginning of a new phase. To anyone following
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this field, it should be clear that cost-effective, long term sleep
monitoring is becoming a reality. The question now is, how
can automatic scoring be transformed into a trusted, clinical
tool (as was recently suggested by the American Academy of
Sleep Science [23]), and how can we use this tool to actually
update the framework within which sleep is analyzed? For
instance, the work presented in this paper would likely have
benefitted from a more finegrained definition of sleep stages,
such as the ‘hypnodensities’ that some researchers have been
advocating [24]. This concept also includes higher temporal
resolution, which would presumably have changed the results
discussed in Figure 7. We believe that ’hypnodensity’ is an
example of how the existence of accurate, automatic sleep
scoring, suitable for long-term monitoring, can motivate and
support development of new approaches. We hope that much
more of such developments are on the way.
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