
Automatic Optimization of Software Data Planes
Sebastiano Miano

Politecnico di Torino, IT
sebastiano.miano@polito.it

Gábor Rétvári
Budapest University of Technology

and Economics, HU
retvari@tmit.bme.hu

Fulvio Risso
Politecnico di Torino, IT
fulvio.risso@polito.it

Andrew W. Moore
University of Cambridge, UK
andrew.moore@cl.cam.ac.uk

Gianni Antichi
Queen Mary University London, UK

g.antichi@qmul.ac.uk

ABSTRACT
In this poster, we make a case for a compiler that continuously
optimizes software data planes at run-time. Furthermore, we pro-
pose its architecture and discuss the challenges associated with its
design.

KEYWORDS
Network Functions, Data Plane Compilation, eBPF, DPDK

1 INTRODUCTION
Implementing network data planes entirely in software is a widely
recognised possibility, e.g., Linux Foundation’s Open vSwitch, Face-
book’s Katran load balancer. Traditional approaches to design and
develop those solutions are based on static compilation: the com-
piler receives as input a description of the forwarding plane seman-
tics and outputs a binary code that is agnostic to both its config-
uration, i.e., entries in the match/action tables, and input traffic
patterns.

Improving the performance of generic software programs at
runtime is possible with compilers, e.g., GCC, LLVM, that sup-
port Profile Guided Optimizations (PGO) and Feedback Directed
Optimizations (FDO). This is the case, for example, of Google’s
AutoFDO [2] or Facebook’s Bolt [5] that take advantage of local
data conditions to recompile on demand portions of the original pro-
gram based on the runtime execution profile. Unfortunately, those
solutions have been conceived to optimize only generic computer
programs and do not easily address the peculiar characteristics
of packet processing programs. To demonstrate this, we tested two
different applications: one built on top of DPDK, the other on linux
eBPF/XDP. The former, i.e., flow-classify1, is a five-tuple classifier
that matches incoming packets against a configurable set of rules
and outputs them to different destination ports. The latter is Katran2,
Facebook’s open-source layer-four load balancer. We connected
two servers back-to-back through Intel XL710 40GbE NICs. We
used one server to generate high-throughput traffic with the DPDK
application pktgen-dpdk3, while in the other we installed the data
plane program under test, pinned to a single core. We evaluated
flow-classify with 50 statically configured rules matching on the
5-tuple and with a input traffic distributed among all of them with
an high skewness: 5 elephant flows sending the 95% of traffic. We

1https://doc.dpdk.org/guides/sample_app_ug/flow_classify.html
2https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-
network-load-balancer/
3https://github.com/Pktgen/Pktgen-DPDK/

 0
 4
 8

 12
 16
 20

Flow-classify (DPDK)
Th

ro
ug

hp
ut

 (M
pp

s)
Katran (eBPF) 0

 1
 2
 3
 4
 5
 6
 7

Baseline
AutoFDO

Bolt
Manually Optimized

Figure 1: Improvements with manual optimizations applied
to both DPDK and eBPF based data planes.

optimized at runtime this application using two different state-of-
the-art FDO-based tools, i.e., AutoFDO and Bolt. We then manually
tweaked the original application code by exploiting the knowledge
of the configured rules and the input traffic. Specifically, we embed-
ded the lookup results for the most-matched entries directly into
the code and we removed all the unnecessary branches and instruc-
tions: if no rule matches a specific header field, then its parsing can
be avoided. In Figure 1, we compare the performances we obtained
with this handcrafted optimizer, i.e., Manually Optimized, and with
state-of-the-art FDO tools. We repeated a similar test with the Ka-
tran eBPF-based load balancer. Here, we configured five different
Virtual IPs, each of them with a hundred of backend servers and
we exploited the knowledge of the runtime configuration as well as
the input traffic patterns to manually optimize its implementation.
Specifically, we embedded into the code the mapping for the most
common flows and we changed the LPM table into a hash-based
lookup table that performs better for the type of input traffic we
generated. On top of this, we applied some of the standard packet
processing program optimization tricks, see e.g., [1].

In Figure 1, we show a performance improvement of around
100%4. In both cases, the gain strongly depends on the input traffic
patterns: the modifications cannot be valid for every scenario. Nev-
ertheless those tests provide a qualitative assessment on how much
it is possible to optimize a network function. Bolt and AutoFDO did
not sensibly improve the performance of flow-classify because
of the different nature of generic programs and packet processing
functions. The performance of the latter indeed depends on metrics
(e.g., number of table accesses, packet burst size, table’s size and
algorithm) that are not taken into account by such tools.

4We were unable to run the FDO tools on eBPF-based application, since it is not
possible to correctly isolate the perf profile for a single eBPF application.

1

https://doc.dpdk.org/guides/sample_app_ug/flow_classify.html
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://github.com/Pktgen/Pktgen-DPDK/

SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA S. Miano et al.

Software
Data Plane

IR New
(Optimized)
Data Plane

Compiler Runtime

Analysis
(identify configuration variables,

MAT functions)

Instrumentation
(extract traffic patterns,

recurrent flows)

Optimization
(dead code elimination,

data structure specialization, …)

Feedback
Loop

Figure 2: The compiler pipeline.

2 RUNTIME DATA PLANE COMPILATION
The performance of software data planes depends on a number of
factors: (1) network configuration, i.e., CPU cycles can be saved by
pruning (at compilation time) instructions that result unreachable
given the current configuration pattern [3], e.g., an application
is designed to handle VLAN traffic may not actually enforce any
VLAN. (2) run time table content, i.e., the lookup process can be
improved by selecting the most appropriate data structure to store
current data [4, 6]. (3) traffic patterns, i.e., by creating a fast path
for the most frequently accessed entries [1].
Our idea. We propose a new runtime compiler for data plane pro-
grams that takes into account all the above-mentioned aspects. Its
execution can be triggered at given time slots, or as a consequence
of an external event which may invalidate the optimizations applied
within the previous cycle, i.e., an update of some match-action table
(MAT) entries. Figure 2 shows its building blocks. The input is the
Intermediate Representation (IR) of the application code including
the modifications applied in the last optimization cycle. Working
at the IR level makes the compiler agnostic to the specific language
being used to write the software data plane, thus making our solu-
tion technology independent, e.g., DPDK, eBPF. The compiler first
analyzes the IR to identify specific patterns e.g., retrieve config-
uration variables, operations on match-action tables (MAT). The
output of this stage is an IR code marked with debug information
that is stored into the compiler’s internal data structures. This is
fed into the second stage that, starting from the received debug
data, instruments the code by adding more instructions that can
help in characterizing input traffic patterns.

By doing so, it is possible to retrieve the most frequent flows
on a particular code branch or other runtime information such as
the content of a specific MAT. The final step is to perform code
optimization; Here, the results from the previous two stages are
taken into account: for example, if the analysis stage spots an un-
used code branch in the current data plane configuration then this
branch can be safely removed temporarily; if the instrumentation
installed in the previous optimization cycle has spotted a hot code
path, then this information can be used to optimize that piece of
code by, for example, hard-coding a specific flow processing and
thus reducing the number of MAT accesses (Table 1 shows a list of
optimizations). Once this stage is completed, the compiler emits the
optimized IR code and calls the compiler’s back-end to generate the
final executable. The main challenges to be faced are the following:
Challenge #1: Identify relevant logic.Writing a packet process-
ing program in software can be done in a number of different ways.

Pass Name Description
Dead Code Elimination Prunes instructions unreachable within the run-

time config.
Data Structure Specialization ChangesMAT layout and size to better fit runtime

config.
Cached Computation Caches the most accessed entries within the code

itself.
Fast Path Creation Aggregates multiple MATs.

Table 1: Example of compiler optimization passes.

The compiler shall be able to spot and extract only relevant patterns
into the code. This is possible by having a clear separation between
stateless and stateful code so that it is easier to find MAT lookups
and associate them with the forwarding behavior of the data plane.
eBPF, Vigor and Click-NF follow this approach by design.
Challenge #2: The cost of instrumentation. Adding additional
logic to characterize input traffic patterns can negatively affect
performance, to the point that that it may nullify the effect of the
optimization. This overhead can be reduced by instrumenting only
performance-critical parts in the code.
Challenge #3: Preserve original data plane semantic. The op-
timizations shall not modify the semantic of the original application.
The compiler should introduce safety measures (e.g., guards) to re-
store to the original data plane code when the optimization is not
valid anymore.
Challenge #4: Harmless pipeline swap. At each iteration, the
compiler creates a new optimized version of the original program.
This shall substitute the program currently running avoiding packet
processing inconsistencies or losses. The compiler can use a combi-
nation of indirect jumps and relocations to load and substitute the
newly generated code.

Acknowledgments. We thank the anonymous reviewers. This
work is sponsored by the UK’s Engineering and Physical Sciences
Research Council (EPSRC) under the EARL project (EP/P025374/1),
the EPSRC New Investigator Award NEAT (EP/T007206/1) and
the European Commission (project ASTRID, Grant Agreement
no.786922). Gábor Rétvári is also with the MTA-BME Network
Softwarization Research Group and the MTA-BME Information
Systems Research Group.

REFERENCES
[1] Omid Alipourfard and Minlan Yu. 2018. Decoupling Algorithms and Optimizations

in Network Functions. In Workshop on Hot Topics in Networks (HotNets). ACM.
[2] Dehao Chen, Tipp Moseley, and David Xinliang Li. 2016. AutoFDO: Automatic

feedback-directed optimization for warehouse-scale applications. In Symposium
on Code Generation and Optimization (CGO). IEEE/ACM.

[3] Bangwen Deng, Wenfei Wu, and Linhai Song. 2020. Redundant Logic Elimination
in Network Functions. In Proceedings of the Symposium on SDN Research (SOSR).
ACM.

[4] Molnár, László and Pongrácz, Gergely and Enyedi, Gábor and Kis, Zoltán Lajos
and Csikor, Levente and Juhász, Ferenc and Kőrösi, Attila and Rétvári, Gábor. 2016.
Dataplane Specialization for High-Performance OpenFlow Software Switching. In
Special Interest Group on Data Communication (SIGCOMM). ACM.

[5] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. BOLT: A
Practical Binary Optimizer for Data Centers and Beyond. In Symposium on Code
Generation and Optimization (CGO). IEEE/ACM.

[6] Rétvári, Gábor and Molnár, László and Enyedi, Gábor and Pongrácz, Gergely.
2017. Dynamic Compilation and Optimization of Packet Processing Programs. In
Workshop on Networking and Programming Languages (NetPL). ACM.

2

	Abstract
	1 Introduction
	2 Runtime data plane compilation
	References

