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Nonverbal signals play an important role in social interaction. Body orientation,
posture, hand, and leg movements all contribute to successful communication,
though research has typically focused on cues transmitted from the torso alone.
Here, we explore lower body movements and address two issues. First, the empirical
question of what social signals they provide. Second, the technical question of how
these movements could be sensed unintrusively and in situations where traditional
methods prove challenging. To approach these issues, we propose a soft, wearable
sensing system for clothing. Bespoke “smart” trousers with embedded textile
pressure sensors are designed and deployed in seated, multiparty conversations.
Using simple machine learning techniques and evaluating individual and community
models, our results show that it is possible to distinguish basic conversational
states. With the trousers picking up speaking, listening, and laughing, they present
an appropriate modality to ubiquitously sense human behavior.

NONVERBAL COMMUNICATION
VIA CLOTHES

TEXTILES are a material we have been familiar with
for thousands of years, often in the form of
clothing. Seen as an extension of our skin, we

use it to culturally and socially express ourselves. The
fabrics worn on the body can therefore be understood
as tools of nonverbal communication. Turned into a
sensing surface, they capture a large range of bodily
cues that are part of such communication. Together
with other cues like gestures, gaze, and posture, non-
verbal behavior makes up a significant part of human
interaction and contains detailed information about
the nature of a conversation.

From spatial arrangements and body orientation
alone, it is possible to identify people’s engagement
and interpersonal relationships.1,2 We use gestures,
head movement, and postural shifts to manage
speaker turns, mark topic shifts, signal attitude, affect
or health related behavior.2–5 Most of these signals
derive from the torso. There is little work on legs as

interactionally relevant body parts, despite indications
that they are rich in social cues too. Postures such as
leg crossing or stretching can be signals of perceived
behaviors and emotions.2

Here, we draw attention to the lower body and
explore its role in interaction, expanding work on
social signals. To do so, we have designed a wearable
sensing system that can capture nonverbal behavior
unintrusively: bespoke trousers with embedded textile
pressure sensors. Our basic research question is, what
information about a conversation can we infer from
textiles on the lower body? Can they help to investi-
gate previously overlooked nonverbal cues?

Capturing Social Signals
Sensing sometimes subtle nonverbal cues can be
challenging. Many techniques require the physical
space to be instrumented. The most common
approach to capturing nonverbal behavior in human
interaction are camera-based systems. However, the
reliance on visual cues is vulnerable to problems with
occlusion and can provoke privacy concerns.

On-body sensing avoids this and can be more
selective about what data are collected. Ubiquitous
approaches have been used to sense affective states
with pressure sensors,4 group dynamics with acceler-
ometers,6 or support interactional engagement with
radio frequency tags.7,8 Many such sensors and
recording systems employ conspicuous forms of
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industrial design, e.g., encapsulated in plastic or inte-
grated in other rigid gadget-like devices, such as wrist-
bands, watches, or belts.9 This material augmentation
such wearable computing systems entail can be over-
come with the use of a less intrusive modality: textiles.
They provide beneficial properties to sense bodily data
and advantages compared to other sensing systems:
textiles are soft, flexible, and comfortable to wear on
the body. From book covers to car seats to our under-
pants, they are omnipresent in our environment.

Textile Sensing Systems
As a body-centric sensing surface, textiles have been
established as a fundamental part of wearable comput-
ing for many decades, used for a variety of applications
including healthcare,9,10 sports,11 or performing arts,12,13

identifying gestures, torso movement,14 sitting pos-
tures,15 and even micromovements like shoulder lifts or
breathing.16 Piezoresistive pressure sensors have proven
particularly useful when capturing body posture.12,15,17

“Posture-aware” clothing mostly tracks upper body
postures,14 with few explorations toward placing textile
sensors on the lower body.11,18 This parallels the litera-
ture on studying social behavior. Moreover, smart tex-
tiles are broadly used for egocentric approaches, and
are less investigated as a methodology for capturing
interaction between humans.7 With clothes “woven”
into embodied social interaction, it is surprising they

have not been exploited to a larger extent to capture
nonverbal behavior.

The system presented here addresses these gaps
and captures basic conversational states using sen-
sors made entirely from textiles with bespoke tailoring
techniques.

DESIGNING SENSING TROUSERS
We designed bespoke “smart” trousers, fabricated
with custom made textile pressure sensors to mea-
sure postural movement during social encounters.
Ethnography-based textile sensor design is married
with pattern cutting methods from tailoring to design
an ideal wearable sensing system, presenting a novel
approach of textile sensor integration.

Ethnographic Observations
To develop the sensors and the garment embedding
them, we conducted a series of ethnographic observa-
tions of seated multiparty conversations, identifying
patterns of postural movement that correlate with dif-
ferent behaviors.

Special attention was given to lower body pos-
tures, examining which areas are most commonly
touched, traces of hand and leg touch illustrated in
Figure 1, and observed speaker and listener movement
informed the choice of placement, and shape of sen-
sors. With more hand touch on the upper thighs, a
denser sensor distribution is required there compared
to the side of the legs. The overview of behavioral
movement findings is shown in Table 1, indicating the
appropriate type of sensor and which behaviors dis-
played distinct postural movement.

Textile Sensor Design
The observations determine that detecting pressure is
a reasonable means to sense postural behaviors on
the lower body. The sensing system thus needs to
detect both the amount of pressure and the location
where it occurs—a task suited to a 2-D matrix of pres-
sure sensors.12,17

Matrix Design
Two textile pressure matrices, one on each leg, are
constructed using three conductive layers. The top
and bottom layers are conductive strips of material
with each layer arranged perpendicular to the other.
Between the two layers is a single sheet of piezoresis-
tive fabric, which decreases its electrical resistance
when pressure is applied.

The sensor designed for the trousers uses 1 cm
stripes to form a 10�10 matrix, creating 100 data

FIGURE 1. Left: Findings of ethnographic observations—most

common touch surface areas of hands (red) on thighs and of

leg crossing postures (green), and the resulting sensor distri-

bution around thighs and buttocks (blue grid). Middle: Final

prototype of our “smart trousers,” turned inside out to show

the sensormatrix layer and electronic components. Right: The

different materials used in the sensor—gray piezo-resistive

stretch fabric; conductive stripes of “Zebra” Fabric; and black

nonconductive viscose jersey for the trouser shell. Bottom

Right: Embroideredwiring along inside panels of inner legs.
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points around each leg (200 in total). The matrix is
positioned around the thighs and the buttocks and
the sensors’ distribution mapped according to the
density of common touch points around these areas.

Materials
The trousers consist of three types of material. For the
outer shell and legs, a black cotton single jersey knit
fabric is used, which ensures a high wearing comfort,
elasticity, and good washability. The lining of the trou-
sers, which forms the pressure sensor matrix, consists
of three combined layers. The two outer layers of the
pressure matrix are constructed from conductive
stripes of single jersey knit, cut and sewn onto non-
conductive jersey, see Figure 1. The conductive rows
and columns of the matrix are 1 cm wide strips of knit-
ted silver-plated nylon thread. A layer of piezoresistive
fabric is placed between the rows and columns layers.

Up until this point, only textile materials are used in
the trousers, but rigid materials are introduced in
order to record the change in pressure from each
crossing point of the matrix. The rows and columns of
the textile matrix are connected to a Teensy 3.2 micro-
controller with thin and flexible insulated wires that
are embroidered onto the fabric on one end, and sol-
dered to connectors attached to the circuit board
(PCB) on the other. The circuit design and microcon-
troller code is adapted from Donneaud et al.12 All rigid
electronics are concealed in the hem of the trousers.

Tailoring Smart Trousers
Trousers that are to be tested with a large number of
different people need to fit each person and fulfill
standards of wearing comfort. Both are requirements

for the pattern construction of the trousers and are
supported by the choice of fabrics that are used. Addi-
tionally, the “seamless” and unintrusive integration of
the sensors influences the engineering of a basic trou-
ser pattern block.

Pattern Development
A standard pattern block for trousers made of stretch
fabric can be seen in Figure 3. The side seam was
removed to enable an easier integration of the sensor
matrix around the thighs, for which a continuous flat
surface was preferable. Housing the microcontroller
and 20 wires per leg linking the matrix’ rows and col-
umns with the circuit board unintrusively adds certain
requirements to the construction of the trousers. On
the inside of the legs, a tubular panel was integrated,
so all wiring could be pulled through it down to the
hem, where it was attached to the circuit board. This
panel, manufactured in a technique similar to a
“french seam” in tailoring jargon, prevents the elec-
tronic components from coming into direct contact
with the skin as it is concealed between layers of the
soft nonconductive fabric.

The stretch fabric used accommodates multiple
clothing sizes with one pattern cut. To allow for a wide
range of sizes, however, a grading system was devel-
oped, and three sizes of trousers were manufactured,
following a process common in the tailoring industry.

Validation of the Embedded Sensors
Fabricating your own sensor out of a flexible, deform-
able material requires careful testing before deploying
a wearable sensing system in an uncontrolled environ-
ment. The reliability and overall performance of our

TABLE 1. Overview of the coding scheme for the annotated behavioral cues, as well as a summary of ethnographic observations

of embodied social behaviors and postural patterns of speakers and listeners.

Class Subclasses Description for Annotations Observed Body Postures

Speaker Verbal utterance; onset of speaking; overt speech sitting up straight; no overt movements;
distinct gesturing; fewer postural

adjustments overall

Active
Listener

Backchannels Verbal response to speaker; repair initiation, e.g.,
“uhm,” “yeh,” “ah,” etc.

leg crossing; rubbing thighs; more
frequent postural changes; more

shoulder movement

Laughter Verbal and “embodied” laughter; no ‘social’ smile occasional lifting of thighs

Nodding Distinct up- and downwards movement of head; no
separate head turns

as response to speaker when being
addressed

Incidental
Listener

“Silence”; no distinct listener behavior; includes
shoulder shrugging, coughs; other head movement;
posture changes; scratching; other ‘inattentive,’

unspecified listener movement

leaning back; more side activities and
overt postural changes
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trousers has been validated in pilot studies with single
users wearing the trousers and performing instructed
movements. Hereby, we determined the appropriate
further data processing and analysis.

EVALUATION
Assuming that different conversational states corre-
late with postural signatures, we must assure that
the sensing system we use is able to distinguish
between a variety of such postures. Here, we cap-
ture the richness of micromovements and seemingly
“invisible” shifts of pressure that may be important
indicators for social behaviors. To investigate this
further, we have conducted an ethics committee
approved user study to evaluate whether the
changes in pressure detected by the trousers can
be correlated with social behaviors exhibited during
a seated conversation.

Participants
We recruited a total of 42 participants to record 14
three-way conversations that took place in all possible

gendered arrangements. The data evaluated here
stems from a subset of 20 participants, 13 female, and
7 male between 20 and 45 years. All sizes of the trou-
sers are represented.

Procedure
The groups of three were sat around a circular table to
encourage equal rights to participate.1 Each group
was given the same conversational task—a moral
dilemma—to discuss and resolve between them-
selves. All conversations lasted between 15 and 25
min.

Data Collection
Throughout the duration of the conversation, the raw
data from the 200 sensor points of each pair of trou-
sers was recorded with 10 bits of resolution at 4 Hz.
This results in 800 measurements (or 400 per leg) per
second, which we refer to as one reading or one
instance.

In addition to collecting the pressure sensor data
from each of the three pairs of trousers, the 14

FIGURE 2. Confusionmatrices of the RandomForest classification for individual, withheld and communitymodel (from top to bot-

tom) for 2, 3, 4, and 5 class discrimination. The scale for all matrices is the proportion of all instances. (Note the confusionmatrices

show the results of the classifier weighting each class equally, not balancing theweights to account for smaller dataset classes.).
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sessions were recorded with two video cameras that
were placed in different corners of the room to cap-
ture each participant from various angles.

Coding Behavioral Cues
The video recordings were annotated for four differ-
ent behavioral states: talking, backchanneling, laug-
hing, and nodding. These were previously selected
as basic conversational states and behaviors dis-
playing marked bodily movement, following our
observational findings. For modes of talking, we
focused on utterances determined through the on
and offset of speech. The other modes we distin-
guish are attentive listener behaviors. Backchannels
are identified as verbal responses and initiated
repair. When coding for laughter, only concurrent
laughter was accounted for, and for nodding is
determined by distinct up- and downward head
movement. All other movements count toward
unspecified behaviors, and were included as a fifth
mode that we determine as incidental movement.
The definitions of these behaviors can be seen in
Table 1.

Each video was hand coded by at least two anno-
tators, and a set of annotation rules was established
to identify an annotation with correct starting and
end points. Cooccurrences of two behaviors were
removed for analysis purposes, and annotations fur-
thermore synchronized with the sensor data of both
legs.

Sensor Data Preprocessing
The raw sensor data from the pressure sensor matrix
was normalized before any further processing. The
time stamp of each leg’s sensor data was recreated to
be merged with the annotations’ timeline. In the scope
of this data collection, we encountered two issues:
broken sensors and imbalanced datasets.

Any sensor data from malfunctioning sensors was
removed before further analysis. In order to evaluate
the same set of sensors for each participant, any sen-
sors that broke for one participant’s data, were
removed from all others’. The final distribution of
remaining sensors across both legs of the trousers is
visualized in Figure 3.

Based on the hand coded annotations for all
identified behaviors, the datasets for each of them
were of different size. This derives from the fact
that these behaviors occur more or less frequently
in relation to each other. Durations of talk are natu-
rally longer than the more brief listener responses
(backchannels) or nods. Processing such imbal-
anced datasets, independent of the analysis techni-
ques to be used, can be handled in different ways.
The results reported below stem from an analysis
maintaining all of the collected data without modify-
ing the size of datasets and without removing or
synthetically adding data of any class. Issues that
derive from this approach are accounted for in the
classifying methods and address potential problems
of imbalanced datasets.

FIGURE 3. Sensor importance of community models from all 20 participants for all 2–5 class discrimination variations. The

grayed out circles illustrate the sensors not used for analysis (a total of 64 malfunctioning sensors, 28 on the right, 36 on the left

leg). The visualization shows the pattern construction of the trousers and distribution of the sensors around the front and back

legs. The dashed line shows where the inner panel conceals the wiring.
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RESULTS
The analysis first explores whether the trousers’ pres-
sure sensors can discriminate between the two most
basic conversational states: speaking and listening. It
then explores whether it can discriminate between
three basic states of speaking, active listening, and
“incidental movement” of participants not overtly dis-
playing recipiency. Second, we explore whether the
trousers’ pressure sensors could discriminate
between the nonverbal response directed movements
characteristic of active listeners (backchannels, nods,
and laughter), first without including incidental move-
ments and then with incidental movements. This
resulted in testing for the ability to automatically dis-
criminate between the following behaviors:

› 2 classes: Speaker and Active Listener cues;
› 3 classes: Speaker, Active Listener, and Inciden-
tal Listener cues;

› 4 classes: Speaker, Backchannels, Laughter, and
Nodding cues;

› 5 classes: Speaker, Backchannels, Laughter,
Nodding, and Incidental Listener cues.

Furthermore, the ability to discriminate between
these classes was examined at the individual level for
each of the 20 participants and at the community level
for a generalized model representative of all
participants.

In total, the dataset consists of 22 870 instances of
talking gathered from all 20 participants and 12 095
instances of active listener behaviors (backchannels +
nods + laughter). Among active listener behaviors,
backchannels had the fewest instances (2380—equiv-
alent to ca. 10 min), followed by laughter (4383) and
nods (5062). The distribution of cues derives from the
duration and frequency of occurrence of each of the
behaviors. Measures were taken to compensate for
the imbalanced number of instances.

Classifier Model Selection
There is a variety of classification algorithms that can
be used and have previously been used in connection
with smart textiles and social signal processing.

Four types of models to distinguish between the
behaviors were initially investigated: Support vector
machines (SVM), K-nearest neighbour (KNN) algo-
rithm, Gaussian Naive Bayes (GNB), and random for-
ests. Each of them bears different advantages and
disadvantages in regards to the type of data we work
with, and by testing the different models, we explored
these characteristics before selecting a random forest

classification to carry further and analyze our data
with. We will elaborate on random forest in detail
below, and give a brief summary of the results of the
other classifiers here. For all tests, the data were kept
in its original, imbalances format and split into a train-
ing (60%) and test set (40%).

The SVM and GNB showed the poorest results.
While overall average accuracies for individual and
community models appear good especially for 2 and 3
class discriminations, examining the F-Measures dem-
onstrates the weakness of the two models for our
data and classification task. The KNN achieved prom-
ising overall accuracies for all classes.

In comparison, a random forest classifier outper-
formed the above for both, individual and community
models for all different social behavior analyses. Based
on these performances, we focus here on reporting
only the results of random forest. The particular model
we evaluate here uses a fivefold cross validation with
stratified data and bagging with 100 iterations. The
trees are built with unlimited depth. Considering the
imbalanced datasets we are evaluating against each
other here, the different classes are weighted
inversely proportional to how frequently they appear
in the overall dataset.

Speakers and Listeners
Two sets of models were trained and evaluated using
fivefold cross validation: one to discriminate between
the two classes of speakers and active listeners only,
and a second set of models to discriminate between
three classes, adding incidental listening. These are
the instances where neither active listening nor
speaking behaviors are exhibited.

First, each participant was treated as an indepen-
dent dataset and an individual model was trained and
evaluated using fivefold cross validation. Then, the
aggregate dataset of all participants was used to train
a model also evaluated using fivefold cross validation.
Last, 20 models trained with 19 participants were eval-
uated against the withheld participant.

Individual Models
The best mean accuracy across all individual models is
the one discriminating between two classes, both with
equally weight distribution and balanced weigh
assignment based on the size of datasets. Also, Preci-
sion, Recall, and F1 Scores (F-Measures) are high, aver-
aging between 0.91 and 0.93. The F1 Measures are 0.86
for listeners and 0.96 for speakers, averaged across all
participants, as shown in Table 2.
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All results are average outputs of the classifier
across participants.

When the third class for incidental listeners is
included, the overall mean accuracy drops. This also
reflected in Recall, Precision, and F-Measure results
across all 20 participants.

Moreover, including incidental listening leads to
more variation between listeners and speakers, too,
see Table 2. An overview of the average results of
Recall, F1 Measures, Precision, and the two calculated
accuracies are listed in Table 2.

Looking at misclassifications, for both 2 and 3
class discriminations, speakers, and listeners are
rarely mixed up. Expectedly, incidental listener move-
ment is rather misclassified as listeners than it is as
speakers. Figure 2 also reveals that adding this addi-
tional class does not necessarily decrease the perfor-
mance of the model.

Community Models
Applying the same cross validation with 100 trees to a
general community model, the results are of similarly
high accuracies, with 93.1% correctly classified instan-
ces for the 2 class discrimination, and a lower 87.7%,
and similarly when balancing the weight so that
smaller datasets are assigned more weight, see
Table 2.

Examining the confusion matrices of these com-
munity models, we can see that speaking always per-
forms slightly better than active listening, which yet
shows good average Precision, Recall, and F-Meas-
ures. Talk is proportionally rarely misclassified, even in
the 3 class scenario. Both community model confu-
sion matrices are illustrated in Figure 2 with plotted
normalized results.

Leaving One Out
Each participant was tested against a community level
when being withheld from the training set, which con-
sisted of the data of the remaining 19 participants.
Here, the average percentage of correct classification
present a notable decrease in overall performance
compared to a general community model, and is
sometimes just above chance. Modifying the weight
of the differently sized datasets, the mean balanced
accuracy is slightly better for the 2 class discrimina-
tion, but slightly worse when including incidental lis-
tening. The average results for Precision, Recall, and
F1 Measures can be seen in Table 2.

We can also compare the withheld participant’s
performance with the individual model, as is pre-
sented through the normalized confusion matrices in
Figure 2. This shows that even the participant with the
best results in the individual model does not keep up
when tested against the community model, but shows
results around the average. Other participants that
performed among the best in the individual models
did not have better results when being withheld from
the training set.

TABLE 2. F1 Measures of the random forest (RF) classification

per class, averaged across individuals. below are the RF

classification results for individual participants, community

models, andwithheld participants across all classes.

2
classes

3
classes

4
classes

5
classes

F1 Measures for
Individuals per
class

Talk 0.958 0.856 0.976 0.865

Incidental Listener – 0.940 – 0.946

Active Listener 0.865 0.628 – –

Backchannels – – 0.519 0.263

Nodding – – 0.812 0.549

Laughter – – 0.788 0.667

Individual
Participants

Accuracy 0.932 0.879 0.904 0.872

Balanced
Accuracy

0.912 0.810 0.770 0.660

Precision 0.933 0.866 0.868 0.808

Recall 0.912 0.810 0.770 0.660

F1 Measure 0.919 0.830 0.798 0.701

Community Model

Accuracy 0.931 0.877 0.898 0.867

Balanced
Accuracy

0.920 0.825 0.783 0.677

Precision 0.931 0.868 0.878 0.832

Recall 0.920 0.825 0.783 0.677

F1 Measure 0.925 0.843 0.821 0.729

Withheld
Participants

Accuracy 0.521 0.463 0.615 0.457

Balanced
Accuracy

0.534 0.337 0.251 0.197

Precision 0.534 0.337 0.237 0.186

Recall 0.534 0.332 0.251 0.196

F1 Measure 0.488 0.284 0.200 0.164

36 IEEE Pervasive Computing July-September 2021

COMPUTATIONAL MATERIALS



Arguably, the number of instances of the test set
could be responsible for the variety of results and the
overall weak performance of withheld participants. In
cases of larger test sets, the performance overall was
better. On the other hand, a participant with a lower
number of training instances and a therefore higher
number of test instances shows more extreme Recall
results for each class: very low active listener and rela-
tively high speaker results. But these examples are
only marginal appearances and do not represent the
overall behavior of the community model.

Backchannels, Laughter, Nods
Next we explore whether the textile pressure sen-
sors can not only distinguish listeners from speak-
ers, but also more fine-grained conversational
states. The same training and evaluation procedure
used to evaluate the discrimination between speak-
ers and active listeners is now applied to 1) discrimi-
nating between the subclasses of active listeners
and then to 2) discriminating between speakers, the
subclasses of active listeners, and incidental listen-
ers through the addition of sensor data of the
unspecified “silence,” determined by the gaps of all
other coded behaviors.

Individual Models
For the 4 class individual model, the overall average
percentage of correct classifications is 90.4%, and
77.0% when balancing the weight distribution, while
for the 5 class model, it is 87.2%, but only 66.0% for a
balanced accuracy, compare Table 2. Like in the previ-
ous groupings of behaviors, this drop in results was
expected given that incidental listening entails all
unspecified movement and nonverbal signals.

Both, for the 4 and 5 behavior discrimination, Preci-
sion, Recall, and F-Measure results demonstrate that
among the differentiated active listener behaviors,
laughter performs best, followed by nodding, which
shows slightly better F1-Measures for 4 classes than
for 5.

In comparison, however, talk outperforms the
active listener behaviors by far, also including the
most diverse signals and movements. In the 5 class
scenario, incidental listening scores highest.

Examining confusion matrices of the 4 class
model, as well as Recall and F-Measure, we see that
while “talk” performs best, nodding and laughing also
show good results and rarely misclassify each other.
Most participants with high Recall and F-Measure
results for laughter and nods, also have above average
results for backchannels. This outcome could be an

indicator for the ability of the system to detect fine
grained differences of behavior, while it struggles
more to compare those against a more generic state.
These results are illustrated with the confusion matrix
of one representative participant in Figure 2 (top).

The confusion matrices reveal similar insights in
the 5 class discrimination, yielding talk as the stron-
gest and best performing category. This additional
behavioral category shows a wider spread of misclas-
sifications across the remaining four, but has overall
least mix ups with speaking.

Community Models
The general community model for the discrimination
between the specified 4 behaviors shows an overall
performance with Recall results of 0.777 for backchan-
nels, 0.833 for laughter, 0.809 for nods, and 0.706 for
talk, see Table 2, this reflects the good results of the
individual models, too.

The confusion matrix of the 4 class model in
Figure 2 (bottom) shows that all active listener behav-
iors are only on rare occasions confused with each
other, but rather with talk, which itself seems to be
more distinct to nods than to laughter with fewer mis-
classifications toward this class.

Including incidental listener movement yields the
lowest results for Precision, Recall, and F1 Measures,
so that the previously strong class of talking performs
weaker.

Leaving One Out
When training the community model for 19 partici-
pants and test it on the withheld one, the results are
of poor precision in both occasions. We can further
see a large difference in accuracies when applying the
different weighing of datasets to the classifier, as
Table 2 reveals. For the withheld participants, the mis-
classification results for the different behaviors vary a
lot with variations of the data size. In the 4 class dis-
crimination, the best Recall results are 0.875 for back-
channels, 0.544 for laughter and 0.124 for nods, while
talk performs much better with up to 0.988. Backchan-
nels and nods present mostly the smallest sample sets
among all behavioral cues, both resulting in the poor-
est F1 measures.

The worst results are drawn from the 5 class dis-
crimination for withheld participants. This can also be
observed in the confusion matrix in Figure 2 (middle),
which displays the results of a single, representative
participant. Almost all misclassifications happen
toward the biggest datasets—talking and incidental
listening.
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Feature Importance
In addition to the predictions the Random Forest classi-
fier provides, we evaluate the importance of each sensor
across the pressure matrices in both of the trousers’
legs. The feature vector is built from the sensor input and
is based on the gini impurity. This feature extraction
helps to gain a better understanding of the classifier, and
to reduce the high dimensionality of the 200 sensors.

The visualization of sensor importance shows that
the area around the upper buttocks is most significant
for all classes. The different legs of the trousers appear
to be of slightly asymmetric importance, and the front
outer thighs of lowest importance overall, as Figure 3
shows. On this first glance, there is a major overlap of
sensor importance across all four classification models.
When examining the results in detail, however, we can
find fine grained differences between the four scenarios.
In particular, there seems to be a shift in significant sen-
sors when including the class of incidental listening. For
example, the upper buttocks area appears more rele-
vant for the 2 and 4 classes only distinguishing between
speakers and listeners, while themid or central buttocks
are more relevant when incidental listening is included.
As for the sensors covering the thighs, finally, the sen-
sors in the crotch area seem to only distinguish between
the 2 class scenario and the rest. Differences between
speakers and active listeners yield the inner top thigh
close to the crotch area less important than in other
multiclassmodels.

Extracting the important features for each partici-
pant reveals a relatively large individual variation across
all multiclass discriminations. Some sensors and sensor
groups of seemingly low importance are specific to one
participant appear important for others. Compared to
the community model’s feature importance, we can
observe a minor trend toward slightly higher sensor
importance on the inner leg, as well as on the outer,
toward the side seam leaning buttocks area, rather than
onmid or inner buttocks, and the top thigh in general.

DISCUSSION
Overall, the results show that we can use wearable
textile pressure sensing systems in clothing to detect
basic conversational states. Our findings introduce
trousers as a suitable ubiquitous sensing surface that
helps us explore social signals the lower body trans-
mits—something previously left largely unattended.

Additional Cues and Classification
Features
The questions around detecting nonverbal cues the
lower body provides focused on three active listener

signals, but there aremore to exploit. The variety of “inci-
dental” movements can be split into further subclasses
like fidgeting or axis related postures, potentially improv-
ing classification accuracies. Another parameter affect-
ing the performance of the models is time. Including this
in the analysis, and collecting more data, other methods
like neural networks can be explored.

Moreover, detecting changes in pressure distribu-
tion can also be used to identify different addressees
and interpersonal correlations, as well as topic changes.
It has been shown that information on postural move-
ment can even be used to detect chronic pain behav-
ior.5 With trousers as a method to capture nonverbal
behavior, however, some signals remain undetected,
such as facial and gestural micromovements.

Even Smarter Trousers
The visualization of the feature importance yields
groups of sensors that are more significant than
others to discriminate the determined classes, spark-
ing discussions as to how many or few sensors are
needed to detect behavioral cues. Future iterations
can be designed to address this aspect, reducing the
amount of sensors significantly and optimizing their
placement. For example, examining the sensor impor-
tance draws attention to the buttocks as a relevant
area for detecting social signals. As one of largest
muscles and link between the upper and lower body,
they can be used to explore a wide range of nonverbal
cues expanding on the ones discussed previously.

Additionally, design engineering parameters like
the resolution of the recording frequency, the robust-
ness of hard-soft connections, and additional
manufacturing techniques such as19 allowing for an
ever better merging of layers and processes can be
reviewed and optimized for ever smarter trousers.

Individual Variation
Both, in the confusion matrices as well as the feature
importance, a large individual variation is observed.
While general community models that average the data-
set of all 20 participants used in this analysis, show good
performances, the F1 Measures drop when withholding
one participant from the training set and testing on the
individual. This indicates that when aiming to detect sig-
nals of unknown individuals, our system is not ready to
be deployed in its current state. The good performance
of the individual models across all classes, however, lets
us conclude that people show repetitive nonverbal pat-
terns, but everyone does so differently. This characteris-
tic can support trousers that are to identify their
wearers, for example, where their own sample data is
required, not that of others.
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CONCLUSION
Our approach of “socially aware clothing” explores
postural movement that proves challenging to
detect with more traditional technologies, and con-
tributes to a discussion of use cases for smart tex-
tiles in a social context. We have introduced a
sensing system to capture these signals without
modifying our surroundings—smart trousers with
embedded textile pressure sensors. This is a step
toward establishing textiles as a novel, wearable
sensing system for applications in social sciences,
and contribute toward a better understanding of
nonverbal communication.

In this work, the different groupings of behaviors
show excellent results for individual participants and
on a general community level. It is only when withhold-
ing a participant in the training set, the boundaries of
our sensing system are shown. While there are further
measures to address this, one conclusion we can
draw from these results is, that each of us has devel-
oped distinct signals of embodied social behavior that
we perform consistently, but that can be very different
from other conversation partners. We are, in this
sense, more similar to ourselves than to others. And
while this leads to poor results in the testing model
we report here, it also bears advantages in regards to
personalized, social computing applications.
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