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1 Introduction

Internet of Things (IoT) enriches the digital machines,
sensors and objects to observe the given infrastructure
and share the data to globe through Internet services.
It also consist of integration and analytical services for
produced data to take adequate action physically with
actuators. Therefore, it provides the platform to design
the smart devices with minimum interventions of human
(Gill et al. (2019a)). It is predicted that by 2025, IoT
devices will cross the 1 trillion devices (Zhu et al. (2020)).
Previously, cloud paradigm is considered to be sufficient
to deploy the IoT applications and deliver the services
to geographically distributed edge devices. However, the
distance between cloud datacenters and IoT devices
is quite large which hikes the delay in services and
data transfer (Chen et al. (2019)). The IoT applications
such as smart city, healthcare are the latency sensitive
and requires interaction at minimum-latency among
cloud datacenters and IoT devices. The large amount
of data is generated by IoT devices. This data when
transfer to the Internet at same time, produces a
network congestion. To solve these fundamental issues
of cloud computing for IoT paradigm, the edge and fog
computing concepts have emerged (Gill et al. (2019b)).
Fog and edge paradigms give priority to the edge devices
to run the IoT applications. The potential edge devices
are mobile phones, personal computers, Raspberry Pi,
micro-datacenters, routers, etc (Tuli et al. (2019)).
Some get confused between fog and edge due to the
similarity of edge devices, whether few considers the
edge computing inherited form fog computing (Tuli et al.
(2020a)).

The intermediate layer of cloud and IoT-based
system is managed by fog computing. Fog’s computing
instances are called fog nodes and distributively deployed
in the edge network. These fog nodes are providing
services similar to cloud such as software-as-a-service
(SaaS), platform-as-a-service (PaaS) and infrastructure-
as-a-service (IaaS) near to the IoT/edge devices. This
helps to improve the Quality of Experience (QoE) for the
users by minimizing the network congestion and delay in
services (Naeem et al. (2019)).

There are numerous advantages of the fog nodes,
besides, they are limited and heterogeneous, due to this
it is difficult to process every fine-grained task on these
nodes. Therefore, the cloud and fog environment must
be work in collaboration with IoT enabled infrastructure
to manage the flash requirements of the applications
(Mukherjee et al. (2017)). Usually, the integration
of these paradigms are top-down approach in cloud-
centric system. It is difficult to manage the fog devices
in such situation when higher processing power is
required for flash crowd (Mouradian et al. (2017)).
Here, the central decision of resource management may
ineffective. Therefore, the bottom-up approach is more
useful. Furthermore, the heterogeneous resources cause
the blockage in internal and external services during
the deployment or processing of the applications (Ni

et al. (2017)). In this situation, a generic approach
can remove the obstruction between node-to-node
data transfer and execution of the applications. It is
challenging task to design the integrated environment
due to diverse resource management policies, platform
and infrastructure (Mukherjee et al. (2018)). Further,
this complication increased with the horizontal/vertical
scaling, which could be solved by leveraging serverless
functions to provide cost-effective autoscaling (Gill;
Aslanpour et al. (2021)). Further, the utilization of latest
machine learning or Artificial Intelligence (AI) models
can optimize the system performance with an effective
resource management.

1.1 Motivation and Our Contributions

There is a need of system model which integrates various
paradigms such as cloud, fog, edge and serverless to
conduct a comparative study for the identification of
best paradigm in different scenarios (Jonas et al. (2019);
McGrath and Brenner (2017); Baldini et al. (2017)).
In this paper, we designed an integrated system model
which integrates cloud, fog, edge and serverless together
and used to test the performance of various machine
learning models through QoS parameters. The main
contributions of this article are:

1. To integrate computing paradigms with
IoT applications to manage the cloud, fog,
edge, serverless resources as per application
requirements.

2. To solve the heterogeneity issue in integration
by enabling the platform independence for nodes
interaction and application processing.

3. To design a system model for performance
evaluation of cloud, fog, edge, servelress computing
for IoT based healthcare application using latest
Machine Learning (ML) models.

4. To deploy the system model on FogBus (Tuli et al.
(2019)) & iFaaSBuS (Golec et al. (2021)) and
test the performance in terms of QoS parameters
such as energy consumption, latency, network
bandwidth, response time, scalability to find out
the best ML model.

5. To test the best machine learning model in cloud,
fog, edge, serverless computing environments for
performance comparison.

1.2 Article Structure

The rest of the article is structured as follows: Section 2
presents discusses the background technologies. Section
3 presents the related work. Section 4 presents the an
integrated system model. Section 5 discusses the case
study on smart healthcare system. Section 6 presents the
performance evaluation. Finally, Section 7 concludes the
article and highlights various future directions.

Copyright © 201X Inderscience Enterprises Ltd.
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2 Background Technologies

This section discuss the background technologies used in
this work.

2.1 Internet of Things (IoT)

IoT devices such as actuators, software, sensors and
computer components to collect and exchange data
between IoT devices and system for further processing
(Gill et al. (2019a)). The examples of IoT devices are
medical sensors, smart watches, fitness trackers etc.

2.2 Machine Learning

It is a branch of AI to automate the process of data
analysis to predict the trends, which would be helpful
to make effective decisions without the involvement of
humans (Gill et al. (2019a)).

2.3 Cloud Computing

It is a on-demand service, which is available over the
Internet for many cloud users to access the compute
intensive and data intensive resources using a given
user interface (Gill et al. (2019a)). Cloud computing
offers three different types of services such as software,
platform and infrastructure (Aslanpour et al. (2020)).

2.4 Fog Computing

It is a decentralized model which is designed to offer
assistance to cloud by locating between IoT devices and
cloud data center to reduce response time and latency for
deadline-oriented IoT applications (Singh et al. (2021a)).

2.5 Edge Computing

It is a distributed computing paradigm which improves
the response time and latency by moving the data
storage and computation service closed to the edge/IoT
devices (Aslanpour et al. (2021)).

2.6 Serverless Computing

It is cloud computing execution model that permits
cloud users to design and execute their services and IoT
applications without taking care of servers (Golec et al.
(2021)). In serverless computing, service is provided per
function instead of pay per use time model (Aslanpour
et al. (2021)).

3 Related Work

In literature (Chen et al. (2019) Mukherjee et al. (2017)
Mouradian et al. (2017) Ni et al. (2017) Mukherjee
et al. (2018) Bittencourt et al. (2018)), many authors
have been designed cloud, fog and IoT-enabled system’s

integration software framework. Most of the frameworks
are designed to support only platform independence and
parallel execution of applications (McGrath and Brenner
(2017)). This minimizes the developers scope and users
tailoring of services as per their requirements (Baldini
et al. (2017)). Moreover, these frameworks force the IoT
devices for raw data processing and excess storage for
cloud instances (Singh et al. (2021a)). The centralized
approach of existing frameworks gives poor QoS to
the users and open the integration system to certain
vulnerabilities (Golec et al. (2021)). In this section, we
discuss some similar studies briefly.

Abbasi et al. (2021) proposed workload scheduling
architecture using fog–cloud paradigm to optimize the
energy consumption for IoT applications. This work used
Genetic Algorithm (GA) for handling user requests to
improve quality of service. Further, the trade-off between
delay and energy consumption has been identified.
Mahmud et al. (2018) designed an IoT-based healthcare
solution using fog computing paradigm to optimize the
network delay. Further, iFogSim simulator is used to
evaluate the performance as compared to cloud and
results show that this work gives better performance
in terms of network delay and energy usage. Peña
and Fernández (2019) proposed architecture to improve
manage computation nodes dynamically in edge-cloud
environments for IoT applications. This work optimizes
the performance in terms of latency. Munir et al. (2017)
proposed fog centric architecture to for the optimization
of IoT-based smart transportation. Further, consumer
applications use case is designed to test the performance
of proposed architecture in terms of latency and energy.

3.1 Critical Analysis

Table 1 shows the comparison of our work with existing
frameworks. In (Abbasi et al. (2021) Mahmud et al.
(2018) Munir et al. (2017)), fog and cloud is integrated
to improve the QoS for IoT applications in terms of
energy. Further, latency is optimized only in (Munir
et al. (2017)). In (Peña and Fernández (2019)), edge and
cloud is integrated to improve in terms of latency for
IoT applications. None of existing studies have compared
the performance of IoT application in cloud, fog, edge
and serverless computing environment. In our article,
we designed a system model which integrates cloud,
fog, edge and serverless computing for IoT applications.
Further, our work uses machine learning models for
the optimization of performance in terms of network
bandwidth, latency, scalability, response time and energy
consumption.

4 System Model: Performance Evaluation
Benchmark

This integrated system model is a combination of various
software and hardware components to provide the
platform independence and structured communication.
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Table 1 Comparison of our work with existing frameworks*

Work Model IoT Performance Parameters Machine Learning Models
Cloud Fog Edge Serverless NB L RT E S EV LR RNN GBT AutoML

Abbasi et al. (2021) X X X X
Mahmud et al. (2018) X X X X
Peña and Fernández
(2019)

X X X X

Munir et al. (2017) X X X X X
Our work X X X X X X X X X X X X X X X

*Abbreviations for Table 1 - NB: Network Bandwidth, L: Latency, E: Energy, RT: Response Time, S: Scalability (Unsuccessful Response Rate),
LR: Linear Regression, RNN: Recurrent Neural Network, GBT: Gradient Boosting Trees and AutoML: Automated Machine Learning

Figure 1 shows the system model, which integrates
cloud, fog, edge and serverless computing. The main
components of the system model are:

4.1 Cloud Datacenter

IoT back-end applications are executed on cloud when
there are insufficient resources with Fog infrastructure to
process the application or latency-sensitive applications
are in execution. This way the system model explore
the computational resources for IoT applications.
It integrates with serverless platform. The main
components of cloud datacenter are resource scheduler
(for scheduling of physical and virtual resources), Virtual
Machine (VM) manager (for the management for VMs),
computing (to perform the computations) and storage
(to store the data for processing).

4.2 Servelress Platform

Servelress platform is an interface between cloud
datacenter and fog Infrastructure, which permits cloud
users to design and execute their services and IoT
applications without taking care of servers. It offers the
dynamic scalability and executes the IoT applications
in a cost-effective manner. The main components of
Servelress platform are storage (to store the data for
processing), computing (to perform the computations),
monitoring (to observe the execution of the system) and
provisioning (to provision the requested resources for
the execution of user requests).The other components
of Servelress platform are data manager, resource
manager, machine leaning model and security manager.
Data manager handles the gathered data from various
IoT devices for further processing. Resource manager
provisions and schedules the resources for the execution
of workloads. Machine leaning model is using dataset
to train and deploying for the predicting or forecasting
of trends as per the requirement of an IoT application.
Security manager provides the required level of security
using various security protocols.

4.3 Fog Infrastructure

The main components of fog infrastructure are fog
gateway nodes and fog computational nodes.

4.3.1 Fog Gateway Nodes (FGNs)

The FGNs are the entry point in the distributed
computing environment. In the proposed framework, the

IoT devices get assistance from the FGNs regarding
placement of jobs and processing of applications.
The interface of other application are also provided
through FGN such as backed program access, credentials
authentication, manage IoT devices, resource demand
for application processing and express the service
expectation. Moreover, FGN cleans the data and prepare
in a common format. The aggregation of data is also
performed after collection from the different sources.
The integrated environment used to transfer the data to
other computing nodes for large scale processing. Simple
network Management Protocol (SNMP) or Contained
Application Protocol (CoAP) are used to perform these
operations for fast communication.

4.3.2 Fog Computational Nodes (FCNs)

The proposed framework is devised to manage the
massive amount of FCNs in parallel. FCNs comes up
with different resource architecture and storage capacity.
FCNs are the consist of processing cores, storage,
memory and bandwidth for processing the tasks. The
roles of FCNs are:

1. Repository Nodes (RNs): The RNs are used
to manage the distributed database to perform
replication, data sharing, recovery and storage
security. RNs help in historical data analysis and
current data access. The meta-data is prepared and
managed for the applications such as dependencies,
processing requirements and model. Although,
these nodes are used for deciding the stopping-
point for anomaly driven applications where run-
time data is generated.

2. General Computing Nodes (GCNs): FGNs are not
directly approachable for every FCN. The Broker
Node (BNs) act as intermediater for FGN and
FCN. These BNs jobs is resource management
and, pass the application for processing along
with required data. A GCNs are capable to
serve various broker nodes simultaneously with
consistence performance. An automatic cluster
of GCNs is built under broker node during the
processing of distributed applications.

3. Broker Nodes (BNs): IoT applications back-end
execution is facilitates through available FCNs
with coordination of FGNs. FCNs starts the back-
end execution of the application with sufficient
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number of resources. In case, the FCN face a
overflow condition itself in term of resources
required, it act like a BN to provision the
resource on the behalf of FGN to process the
back-end application. It communicates with cloud
datacenter and other FCNs. Thus, it dispense the
task to various FCNs and synchronize, monitor
and coordinates its operations. The proposed
framework is designed to facilitate these borker
noes with deep learning for anomaly detection,
Blockchain for security features and replication for
fault tolerance. This is a robust framework which
provides a secure communication between FCNs,
FGNs and cloud datacenters.

4.4 Edge Network

The main components of the edge network are edge
gateway and edge nodes. Edge gateway is a mian
entry point for network to making a connection with
cloud/serverless and the examples of edge gateway are
multiplexers, routing switches, routers etc. Edge nodes
perform the required computations for execution of user
requests near the edge/IoT device.

4.5 Edge and IoT devices

Edge/IoT devices are used to spread the Internet
connection from normal devices such as smartphones,
laptops, tablets and desktop to non-Internet everyday
objects. Using this technology, these objects can interact
with Internet and, controlled and monitored from remote
locations.

5 Case Study: IoT based Smart Healthcare
System

In this work, we have considered smart healthcare
system called HealthFog (Tuli et al. (2020a)) as a case
study, which uses integrated IoT and fog computing
environments to collect the patient’s data and diagnose
the health status of heart patients automatically (Gill
et al. (2018)). The main components of the HealthFog
are:

5.1 IoT Devices

HealthFog collects the data from patients using IoT
devices of three different types such as environmental
sensors, activity sensors and medical sensors. Medical
sensors include glucose level sensor, respiration rate
sensor, temperature sensor, oxygen level sensor, Electro
Myo Graphy (EMG) sensor, Electro Encephalo Gram
(EEG) sensor and Electro Cardio Gram (ECG) sensor,
which forwarded the collected data to connected gateway
devices. We have considered tablets, laptop and mobile
phones as Gateway devices to gather data from sensors
and transfer to Broker nodes for data processing.

5.2 Machine Learning Module

This module uses dataset to train machine learning
models for the classification of data-points which are
feature vectors acquired after pre-processing the data
acquired from IoT devices. In previous work, we used
ensemble voting technique (Tuli et al. (2020a), Atallah
and Al-Mousa (2019)) to predict the status of heart
patients using Graphical User Interface (GUI). In this
work, we used latest machine learning algorithms such as
Linear Regression (Yao and Li (2014)), Recurrent Neural
Network (RNN) (Cho et al. (2014)), Gradient Boosting
Trees (Guelman (2012)) and AutoML (He et al. (2021))
for prediction of health status of heart patients.

5.3 Resource Manager in Cloud/Fog/Edge

Resource manager contains two main sub-components:
arbitration module and workload manager (Tuli et al.
(2019)). Workload manager processes the incoming job
requests and perform data processing while queuing
tasks. Arbitration module provisions and schedules
the fog/cloud resources for the execution of various
workloads based on their QoS requirements. Broker will
decide whether the job will be processed at fog or cloud
node, it depends on the user requirements.
In this system, credential archive is maintained to
preserve the authentication credentials of users. Further,
credential archive distributes the security keys and
description of every data block created by the broker
service to others (Tuli et al. (2019)). For cloud
integration, Transport Layer Security (TLS) and Secure
Socket Layer (SSL) certificates will be provided for data
encryption and decryption.

Authors can read HealthFog (Tuli et al. (2020a)) and
FogBus (Tuli et al. (2019)) for more details.

6 Performance Evaluation

This section presents the experimental setup, dataset
and results.

6.1 Experimental Setup for Fog-Edge-Cloud

We used real testbed i.e. FogBus (Tuli et al. (2019)) to
test the performance of proposed framework by using
various machine learning algorithms. FogBus (Tuli et al.
(2019)) is a real testbed to validate the IoT application
in an integrated Fog-Edge-Cloud environment. It helps
to connect various IoT devices to gateways sensors for
transfer of data among cloud servers, edge devices and
fog nodes. Broker layer performs resource management
and start execution of tasks using various fog nodes.
Further, HTTP RESTful APIs is used by FogBus to
perform various REST operations for collaboration.
FogBus uses encryption approaches and authentication
blockchain to offer data integrity, privacy and security,
which helps to improve the reliability, robustness and
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Figure 2 Comparison of Machine Learning algorithms
based on Response Time

Figure 3 Comparison of Machine Learning algorithms
based on Latency

consistency. Master node is controlling the computing
nodes and brokers using LAN. Every broker retains
its own Blockchain to ensure data confidentiality and
privacy. In this work, FogBus is used for healthcare smart
system by implementing different machine learning
models on various brokers and handles the shared data
on Blockchain platform. Authors can read FogBus (Tuli
et al. (2019)) for more details about experimental setup.

6.2 Experimental Setup for Serverless

We used real testbed i.e. iFaaSBus (Golec et al. (2021))
which uses Heroku (her (2021)) for the implementation
of serverless computing and Apache JMeter (Apa (2021))
for the measurements of scalability feature with changing
number of user requests. iFaaSBus is a real testbed
to validate the IoT application in Serverless computing
environment. We have done experiments for Serverless
computing with two important assumptions: 1) The
performance has been measured with reliable Internet

Figure 4 Comparison of Machine Learning algorithms
based on Network Bandwidth

Figure 5 Comparison of Machine Learning algorithms
based on Energy Consumption

connection to evaluate the performance more accurately.
2) Heroku service gives a free service up to a certain
number of users and processing power.

6.3 Dataset

To perform the experiments, we used dataset of heart
patients to identify the existence of symptoms related to
heart disease, which is a binary value 0 (no existence of
hear disease) or 1 (existence of hear disease) (Kato et al.
(2015), Malik et al. (2018), Dua and Graff (2019)). The
Cleveland database (Dua and Graff (2019)) is used to
conduct the experiments which was created by Andras
Janosi (M.D.) at the Gottsegen Hungarian Institute
of Cardiology, Hungary and others. In this work, we
are keeping the patient’s personal confidential. In this
dataset, 14 key attributes (target (num): diagnosis
of heart disease, thalassemia, the slope of the peak
exercise, depression induced by exercise relative to rest,
exercise induced angina, maximum heart rate, resting
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Figure 6 Comparison of Machine Learning algorithms
based on Unsuccessful Response Rate

electrocardiographic results, fasting blood sugar (greater
than 120 mg/dl), serum cholesterol (mg/dl), resting
blood pressure, chest pain type, sex, age) are given,
which we have considered to diagnose the status of
patient. Authors can read HealthFog (Tuli et al. (2020a))
for more details about dataset.

6.4 Results and Discussions

We have tested the system model in two different
scenarios: 1) Compares the performance of ML models
using Fog-Edge-Cloud environment and 2) Evaluates
the performance of Fog, Edge, Cloud and Serverless
computing.

6.4.1 Performance Comparison of ML models
using Fog-Edge-Cloud Environment

We have compared the performance of various machine
learning algorithms such as Linear Regression, RNN,
Gradient Boosting Trees, AutoML and Ensemble Voting
in terms of response time, network bandwidth, latency,
energy consumption and unsuccessful response rate. The
detailed description of these metrics is given in previous
work (Aslanpour et al. (2020)). For these experimental
results, we have considered 750 patients.

Figure 2 shows the response time for different
machine learning algorithms. In terms of response time,
AutoML is performing better than other ML algorithms
followed by Gradient Boosting Trees. The average value
of response time for AutoML is 4.5%, 5.5%, 6% and
8.5% less than Gradient Boosting Trees, RNN, Linear
Regression and Ensemble Voting respectively.

Figure 3 shows the latency for different machine
learning algorithms. In terms latency, AutoML and
Gradient Boosting Trees are giving almost same results
but AutoML outperforms. The average value of latency
for AutoML is 2.5%, 5.2%, 5.9% and 9% less than
Gradient Boosting Trees, RNN, Linear Regression and
Ensemble Voting respectively.

Figure 7 Comparison of Cloud, Fog, Edge and Serverless
computing based on Response Time

Figure 4 shows the network bandwidth for different
machine learning algorithms. In this experiment,
AutoML gives better results as compared to other ML
models. The average value of network bandwidth for
AutoML is 3.5%, 7.5%, 8% and 9.1% less than Gradient
Boosting Trees, RNN, Linear Regression and Ensemble
Voting respectively.

Figure 5 shows the energy consumption for different
machine learning algorithms. AutoML and Gradient
Boosting Trees are consuming less energy for processing
different the requests of different number of patients.
The average value of energy consumption for AutoML
is 6%, 9%, 9.8% and 10.5% less than Gradient Boosting
Trees, RNN, Linear Regression and Ensemble Voting
respectively.

Figure 6 shows the unsuccessful response rate for
different machine learning algorithms. AutoML and
Gradient Boosting Trees have less value of unsuccessful
response rate for processing different the requests of
different number of patients. The average value of
unsuccessful response rate for AutoML is 4%, 6.5%, 8.9%
and 11.2% less than Gradient Boosting Trees, RNN,
Linear Regression and Ensemble Voting respectively.

Experimental results are showing that AutoML is
performing better than other ML algorithms because
AutoML is very efficient in training and predicting.
Further, it shows that AutoML is utilizing the cloud,
fog, edge resources effectively for managing data coming
from various IoT applications.

6.4.2 Performance Comparison of Fog, Edge,
Cloud and Serverless Computing

We have conducted an experiment to test the
performance of best machine learning model (AutoML)
on both serverless and non-serverless computing to
identify the impact of number of user requests on
the QoS parameters. The experimental setup for Non-
Serverless (Fog, Edge, Cloud) is given in Section 6.1 and
Serverless is given in Section 6.2. For these experimental



Machine Learning for Cloud, Fog, Edge and Serverless Computing Environments 9

Figure 8 Comparison of Cloud, Fog, Edge and Serverless
computing based on Latency

Figure 9 Comparison of Cloud, Fog, Edge and Serverless
computing based on Network Bandwidth

results, we have considered 750 patients. Figure 7
shows the performance comparison of servleress and
non-serverless computing based on response time for
AutoML machine learning model. Edge gives better
results as compared to serverless till 450 user requests
but servelress gives better performance for 450+ job
requests. The average value of response time in serverless
computing is 1.5%, 8%, and 9.5% less than fog, edge
and cloud respectively. Figure 8 shows the performance
comparison of servleress and non-serverless computing
based on latency for AutoML machine learning model.
The average value of latency in serverless computing
is 3.2%, 4.5%, and 14% less than fog, edge and
cloud respectively. Figure 9 shows the performance
comparison of servleress and non-serverless computing
based on network bandwidth for AutoML machine
learning model. The average value of network bandwidth
in serverless computing is 4.3%, 6.1%, and 10.5%
less than fog, edge and cloud respectively. Figure 10
shows the performance comparison of servleress and

Figure 10 Comparison of Cloud, Fog, Edge and Serverless
computing based on Energy Consumption

Figure 11 Comparison of Cloud, Fog, Edge and Serverless
computing based on Unsuccessful Response Rate

non-serverless computing based on energy consumption
for AutoML machine learning model. The average
value of energy consumption in serverless computing
is 3.8%, 3.85%, and 17.45% less than fog, edge and
cloud respectively. Figure 11 shows the performance
comparison of servleress and non-serverless computing
based on unsuccessful response rate for AutoML machine
learning model. The average value of unsuccessful
response rate in serverless computing is 2.7%, 3.3%, and
15.75% less than fog, edge and cloud respectively. Results
clearly show that servleress computing gives better
performance as compared to non-serverless computing
for 750 user requests.

6.4.3 Analysis of Results

The integrated system model is scalable, easy to deploy
and cost-efficient. With proposed system model, the
application services providers can save the cost with
proper utilization of computing resources. The main
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Figure 12 Future Research Directions

reason of better performance in serverless computing
is dynamic scalability at runtime, which improves the
autoscaling and saves the money.

7 Conclusions and Future Scope

Machine learning plays a vital role for the optimization
of various parameters for effective management of
computing resources. In this paper, we have designed
an integrated system model for Cloud, Fog, Edge
and Serverless computing using machine learning
models. This system model is scalable and open to
test various IoT applications under the existing and
custom performance metrics. We implemented the
Linear regression, RNN, Ensemble Voting, Gradient
Boosting Trees and AutoML for response time,
latency, network bandwidth, energy consumption and
unsuccessful response rate. The comparative study shows
that the AutoML performance is superior as compare
to other machine learning algorithms. Finally, the
performance comparison of Cloud, Fog, Edge, Serverless
is presented which clearly shows the superiority of
serverless computing because serverless computing is
very effective in providing dynamic scalablilty. The
proposed integrated system model can be considered
as performance evaluation framework for future IoT
applications.

7.1 Future Research Directions

Figure 12 shows the possible future research directions.

1. Autonomic Serverless Computing: It is a technique
to provide the services on the usage basis. The
existing system charges based on number of
servers or bandwidth usage, whereas serverless

computing ensure the services solely on basis
of functionalities usage through the serverless
vendors (Gill, Aslanpour et al. (2021)). The
serverless computing have the capacity to shrink
the operational cost of cloud applications.

2. Quantum Computing: Our lives are already
revolutionized by the quantum physics by giving
us great products like transistor and laser.
Similar way, the quantum communication and
quantum computing has the potential to empower
the current systems such as finance, healthcare,
security, etc. Recent researches predict the million-
billion dollar quantum industry in next 5 to 10
years. The real-world implementation challenges of
quantum computing must be examined to make
this technology reliable (Gill, Gill et al. (2020)).

3. Dew Computing and Rainbow Platform: The
end-devices got the capacity of cloud with dew
computing. Rainbow computing ensure the low
cost for cross-cloud micro-services in open fog
computing platform (Ray (2017), Singh et al.
(2021b), Tuli et al. (2021)). In future, we will
develop the scalable framework for Dew computing
using Rainbow platform. In this paper, we used
Blockchain for security and privacy. In future,
the benchmark framework could be designed to
use various security mechanism as plug and play
manner.

4. Edge Intelligence: Proposed framework can utilize
the concept of edge intelligence to locate the
most effective edge device to improve network
performance by reducing latency, which can
further improve the resource utilization and save
energy consumption using various AI techniques
(Zhou et al. (2019)).

5. QoS Parameters: Further, other QoS parameters
such as reliability, availability, cost can be
incorporated in this framework to improve its
performance (Gill et al. (2019a)). Moreover, trade-
off among various QoS parameters can help to
identify the inter-dependency among various QoS
parameters. In this future, cost benefit analysis
can be done in terms of various overhead such as
training cost, training time and complexity.

6. IoT Applications: We have done experiments using
healthcare application related to heart patients,
but this framework can be extended for other
healthcare domains such as diabetes, cancer,
COVID-19 (Tuli et al. (2020b)). Further, this
framework Can be used for other IoT applications
such as agriculture, smart home and weather
forecasting (Gill et al. (2019a)).

7. Anomaly Detection: This framework can be
extended for anomaly detection by monitoring any
data sources such as servers, networks, devices and
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user logs (Benedict (2020)). Further, there is a need
to identify the zero-day attacks as well as unknown
security threats for more secure and reliable service
(Himeur et al. (2021)).
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