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1 Introduction

The Universe we inhabit contains nonlinear structures on small scales (. 100 Mpc) [1], and
linear structures on large scales (& 100 Mpc) [2]. The gravitational physics in these two
different regimes can both be understood by using weak-field expansions of Einstein’s field
equations, assuming one does not wish to resolve compact objects like neutron stars and
black holes [3]. However, the precise nature of the approach that is required to accurately
model each regime is not the same.

On small scales cosmologists routinely appeal to the post-Newtonian limit of Einstein’s
theory, as Newton’s law of gravity is capable of modelling the gravitational fields produced by
arbitrarily large density constrasts (assuming gravity remains weak, and the speed of matter
fields remain non-relativistic) [4]. However, on large-scales the Newtonian approach cannot
be applied, and cosmological perturbation theory must be used to model the gravitational
fields of matter [5]. Cosmological perturbation theory is extremely versatile, but is only
applicable in the limit where density constrasts and the peculiar velocity of matter fields are
both small (of the order of magnitude as the gravitational potentials themselves, i.e. ∼ 10−5).

The usual approach to dealing with the different mathematical expansions required in
each of these two limits is to assume that each can be performed independently of the other,
and that the results of both should overlap in some intermediary regime. While this is
plausible at linear order, it is unlikely to be a viable approach at second and higher order
in either of the two expansions. This is because second- (and higher-) order field equations
are known to mix scales. That is, functions that have support only on small scales only can
source large-scale fluctuations when combined quadratically, or in higher powers, with other
perturbations.
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The “2-Parameter Perturbation Theory” (2PPT) was recently introduced in order to
provide a mathematical framework in which to understand and study this problem [6, 7].
This approach simultaneously performs a (post-)Newtonian expansion and an expansion in
cosmological perutrbation theory around the same Friedmann background. It makes explicit
which features of each expansion can be understood as being independent of the other, as well
as the ways in which the two expansions are linked and interact. In particular, this approach
makes explicit how the Friedmann equations of the background cosmology are sourced by
the average of the Newtonian masses that exist within it, and how the linear perturbation
equations for large-scale perturbations can be sourced by quadratic and cubic combinations
of the Newtonian quantities from the small-scale sector of the expansion [8].

In a previous paper we examined the 2PPT approach in the test case of a universe
with vanishing cosmological constant (i.e. with Λ = 0), and during the epochs in which
the gravitational effects of relativistic matter are negligible [9]. The leading-order equations
for describing the small-scale physics in this case are identical to the usual equations used
to describe Newtonian gravity on an expanding background [10], and were solved using
Newtonian perturbation theory [11]. These solutions were then used to solve the equations
for the leading-order part of the gravitational fields on large scales, order-by-order in the
Newtonian perturbation theory expansion.

It was found that when Λ = 0 the leading-order contribution to the 2PPT equations
precisely reproduces the expected equations from cosmological perturbation theory and New-
tonian gravity, within their respective domains of applicability. The next-to-leading order
contributions to the 2PPT equations, which describe the evolution of long wavelength linear
perturbations on top of an FLRW background that has been allowed to develop short-scale
Newtonian nonlinear inhomogeneities, were then investigated. These contributions provide
terms that appear in the calculation of the bispectrum of matter fluctuations, and were
shown to produce sizeable corrections to the Newtonian bispectrum on scales k . 10−2 Mpc
[9]. They include most (though not all) of the terms that occur in second-order cosmological
perurbation theory, and give the leading-order relativistic effect of small-scale nonlinearities
on the matter bispectrum.

In this paper we generalize the study performed in Ref. [9] to Friedmann cosmologies
with non-zero cosmological constant, Λ 6= 0. Such situations are of obvious significance
for observational cosmology, and require separate study due to the extra complexity that a
non-zero Λ introduces into the evolution of perturbations. The mathematical foundations
of including Λ 6= 0 in the 2PPT approach have already been investigated in Ref. [7], where
the gauge depenencies and field equations that result were thoroughly investigated. Here
we will use these results to calculate the leading-order relativistic corrections to the matter
bispectrum within the 2PPT formalism, and with a non-vanishing cosmological constant.

We find that the time-dependence that the presence of a non-zero cosmological constant
induces into the first-order gravitational potentials significantly complicates the application
of the 2PPT equations, and increases the disparity between this approach and the more
traditional use of second-order cosmological perturbation theory. While the 2PPT equations
faithfully include the effects of small-scale nonlinearities on the relativisitic bispectrum, they
do not include the second-order effects of large-scale linear fluctuations, which are non-
negligible on very large scales. This demonstrates that the 2PPT approach may need to be
supplemented by additional terms in order to reliably include all relativistic effects in the
calculation of at least some cosmological observables on very large scales.

In Section 2 we explain the 2PPT formalism, as required for use in a ΛCDM universe.
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In Sections 3 and 4 we then solve these equations using Newtonian perturbation theory. This
is followed by a calculatation of the bispectra of gravitational potentials and dark matter in
Section 5, and a conclusion in Section 6. We use Latin letters for spatial indices and dashes
to refer to differentiation with respect to conformal time. Spatial derivatives are written ∂i,
and ∇2 refers to the Laplacian operator associated with these derivatives. We also choose to
work in geometrized units G = c = 1, and in longitudinal gauge [12], throughout.

2 Two-parameter perturbation theory in ΛCDM

Two-parameter perturbation theory is constructed by performing post-Newtonian and cosmo-
logical perturbation theory expansions around a single Friedmann background, which results
in a line-element that can be written in longitudinal gauge as [7]

ds2 = a(τ)

[
− (1 + 2U + 2φ)dτ2 + (1− 2U − 2ψ)δijdx

idxj
]
. (2.1)

In what follows, we will briefly outline the equations that must be obeyed in the presence of a
non-zero Λ by the Newtonian potential U , the scale factor a, and the large-scale cosmological
perturbations φ and ψ. For further details, and more thorough mathematical treatment,
justification and introduction, the reader is referred to Ref. [7].

2.1 Small-scale Newtonian equations

The U in this expression corresponds to the Newtonian gravitational potential, which is the
leading-order contribution to the line-element from the post-Newtonian expansion, and which
satisfies the usual Newton-Poisson equation on an expanding background:

∇2U = 4πa2ρ̄ δN , (2.2)

where ρ̄ = 〈ρN〉 is the cosmological average of the Newtonian mass density (taken over a
suitable domain), and δN = ρN/ρ̄N is the density contrast in this quantity. The evolution
equations for δN is given by the energy conservation equation,

δ′N + θN = −∂i
(
δNvNi

)
, (2.3)

where vNi is the 3-velocity of the Newtonian masses (assumed to be of order v2 ∼ U), which
has its own evolution equation as follows:

θ′N +HθN +
3H2

2
δN = −∂i

(
vNj∂

jvNi

)
, (2.4)

where θN = ∂ivNi is the corresponding velocity divergence. The relative size of the terms δ′N,
θ′N and H are determined in this expansion by noting that time derivatives add an order of
smallness ∼ v compared to spatial derivatives (see Ref. [6]).

These equations are all identical to the usual expressions for Newtonian gravity and
dynamics on an expanding background [10], but here are formally derived as the leading-
order parts of a relativistic post-Newtonian expansion on an expanding background [13],
which is used to describe gravitational fields on small scales. The reader will note that there
is no restriction implied on the magnitude of the quantity δN in these equations, though the
average of the density is found to be of order ρ̄ ∼ U . This means that δN can be used to
describe highly nonlinear structures. It may also be noted that the cosmological constant, Λ,
does not appear in these equations directly, and only influences U through the effect it has
on the scale factor, a(τ).
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2.2 Dynamical equations for the background

The background dynamics in the 2PPT approach are given by equations that are obtained
by averaging the Newtonian-level contributions to the field equations, which results in the
effective Friedmann equations [7]

H2 =
8πa2

3
ρ̄+

Λ

3
a2 , (2.5)

H′ = −4πa2

3
ρ̄+

Λ

3
a2 , (2.6)

where H = a′/a, and where primes denote differentiation with respect to conformal time τ .
The quantity ρ̄ that appears in these equations is the average of the Newtonian mass density,
which obeys the conservation equation [6]

ρ̄′ + 3Hρ̄ = 0 , (2.7)

where time derivatives have again been used to assign an extra order of smallness of order
∼ v, and where we have taken Λ ∼ v2.

The reader may note that the density ρ̄ that appears in these equations is the direct re-
sult of integrating the nonlinear Newtonian mass density ρN over large cosmological domains,
and is not a separate component of the energy density (as it is in cosmological perturbation
theory). Otherwise, these equations are identical to those of Friedmann cosmology containing
dust and a cosmological constant, and correspondingly have the same solutions.

2.3 Large-scale cosmological perturbations

The gravitational potentials φ and ψ, which appear in (2.1), correspond to the gravitational
fields generated by the low amplitude density contrasts δ � 1 that appear on scales k−1 &
102 Mpc. Given the existence of the small-scale Newtonian perturbations on a Friedmann
background, and assuming U ∼ φ ∼ ψ, gives the following evolution equation for these fields
[7]:

(ψ + U)′′ + 3H(ψ + U)′ + a2Λ(ψ + U) =
4πa2ρ̄

3
(1 + δN)v2

N +H(ψ′ − φ′) +
1

3
∇2(ψ − φ)

+
7

6
(∇U)2 +

2

3
(φ+ ψ + 2U)∇2U + a2Λ(ψ − φ) ,

(2.8)

and the constraints

∂i∂j(ψ − φ) + 2∂iU∂jU + 2(ψ + φ+ 2U)∂i∂jU

− 1

3
δij

[
∇2(ψ − φ) + 2(∇U)2 + 2(ψ + φ+ 2U)∇2U

]
= 8πa2ρ̄ (1 + δN)

(
viNvNj −

1

3
δijv

2
N

)
, (2.9)

1

3
∇2ψ −H(ψ′ + U ′)−H2(φ+ U)

=
4πa2ρ̄

3
δ +

4πa2ρ̄

3
(1 + δN)v2

N −
1

2
(∇U)2 − 4

3
(ψ + U)∇2U , (2.10)
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and

∂i
(
ψ′ +Hφ

)
= −3H2

2
(1 + δN)vi , (2.11)

where vi is the 3-velocity associated with the large-scale perturbations δ (not to be confused
with the nonlinear small-scale density contrast δN).

These equations have been derived under the assumption that vector and tensor modes
can be neglected, and exist at a higher order in the 2PPT perturbative expansion than
the previous sets presented in Sections 2.1-2.2. They combine both large and small scale
gravitational potentials, though the small-scale potentials U are already specified by the
Newton-Poisson constraint equation (2.2). They can also be seen to reduce to the linearized
scalar equations from cosmological perturbation theory [5], in the case where U vanishes and
quadratic products of density constrasts and 3-velocities are neglected.

In the absense of their neglect, there can be seen to be terms that are quadratic and cubic
in quantities that would normally be considered to be small in cosmological perturbation
theory. These terms appear in these equations because they are derived from the post-
Newtonian sector of the theory, and because they are required to not be small in order to
recover the appropriate Newtonian limit. Consistent application of the exact same logic
forces these terms to appear in Equations (2.8)-(2.11), where they can act as sources for the
large-scale gravitational potentials φ and ψ.

While equations (2.8)-(2.11) are intended to give the leading-order part of the field
equations for the large-scale gravitational potentials in 2PPT, it is instructive to be able
to compare them to the equations that one obtains from performing an expansion of the
field equations up to second order in cosmological perturbation theory. In this case, it can
readily be seen that there are both extra terms in the equations above, when compared
to the second-order cosmological perturbation theory equations, as well as missing terms.
In particular, equation (2.8) does not contain the terms 1

2(U ′)2, 4HU U ′ and 2a2ΛU2, and
equation (2.10) does not contain the terms −2H2U2 and −1

2(U ′)2. This is because, in every
case, these terms appear at order ∼ v6 in 2PPT expansion, which is smaller than every other
term in these equations (which are all ∼ v4). This difference originates from the fact that
time-derivatives add an order of smallness in this approach, as is required for self-consistency
of the post-Newtonian limit of this theory (see Ref. [6] for details).

On the other hand, equations (2.8)-(2.11) contain terms that would not only normally
appear at second-order in cosmological perturbation theory, but also a handfull of terms that
would not appear until third order. These include the term 4πa2ρ̄ δN v

2
N/3 in equation (2.8),

the term 8πa2ρ̄ δN(viNvNj − 1
3δ
i
jv

2
N) in equation (2.9), and 4πa2ρ̄ δN v

2
N/3 in equation (2.10).

The appearance of these terms at leading-order in the 2PPT approach demonstrates the fact
that δN is allowed to be non-perturbatively large in this approach, as is required for consistent
inclusion of non-linearities in the density field. We refer the reader to Refs. [6, 7] for a more
detailed explanation of the derivation of these equations, as well as for mathematical and
physical justification of the assumptions that go into them.

Here we will proceed to find solutions to equations (2.8)-(2.11) by using Newtonian per-
turbation theory to appropriately expand them, as we will now describe. Once we have found
solutions, we will compare these to the corresponding equations from second-order cosmo-
logical perturbation theory, which we have verified are obtained precisely by re-introducing
the terms discussed above into equations (2.8)-(2.11), and which can be found in Ref. [16].
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3 Solutions of the two-parameter equations

The order in which the 2PPT equations from Section 2 need to be solved goes as follows:

(i) Solve the effective Friedmann equations for the background evolution to find a(τ); i.e.
solve equations (2.5)-(2.7) from Section 2.2.

(ii) Use the scale factor a(τ) from step (i) to solve the equations for Newtonian gravity on
an expanding background; equations (2.2)-(2.4) from Section 2.1.

(iii) Use the solutions from steps (i) and (ii) to solve for the large-scale gravitational poten-
tials φ and ψ; using equations (2.8)-(2.11) from Section 2.3.

The first step here is straightforward, with known exact solutions available for spatially
flat FRW cosmologies with dust and Λ [14]. The second step is more complicated, and could
be approached in a number of ways [10, 11]. In this paper we use Newtonian perturbation
theory to model the solutions to these equations, in order to get approximate solutions for
step (ii). This will largely follow the treatments given in Refs. [9, 11, 15]. With solutions for
the U , δN and vNi in hand, we will then complete step (iii) by solving equations (2.8)-(2.11)
order-by-order in the Newtonian perturbation theory expansion. This will involve borrowing
techniques from second-order cosmological perturbation theory, as explained in Ref. [9].

Each step in the method described above will require the specification of appropriate
initial conditions, which we will discuss as we proceed. Once we have solutions on both
large and small scales, we will proceed to calculate the matter bispectrum of perturbations
in Section 5. This is the simplest statistic that can be constructed that will have non-trivial
contributions from the extra term in equations (2.8)-(2.11). For the rest of this section, we
will proceed to find solutions at first and second order in the Newtonian perturbation theory
expansion, which we will refer to as the ‘first’ and ‘second’ approximations.

3.1 First approximation

The Newtonian perturbation theory expansion we wish to use decomposes δN, θN and U into
linear, second-order, and higher-order parts as

δN = δ
(1)
N +

1

2
δ

(2)
N + · · · =

∞∑
n=1

δ
(n)
N

n!
, (3.1)

θN = θ
(1)
N +

1

2
θ

(2)
N + · · · =

∞∑
n=1

θ
(n)
N

n!
, (3.2)

U = U (1) +
1

2
U (2) + · · · =

∞∑
n=1

U (n)

n!
, (3.3)

where the label in brackets is denoting the order of a quantity in this expansion. These
expressions are then subsituted into Equations (2.3) and (2.4), which can be manipulated to
obtain

δ
(1)′′
N +Hδ(1)′

N − 3H2
0Ωm0

2a
δ

(1)
N = 0 , (3.4)

and

U (1)′′ + 3HU (1)′ + a2ΛU (1) = 0 . (3.5)
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The first of these two equations is solved by δ
(1)
N = D(a)δ

(1)
0 (x), where D(a) is the standard

growth factor and δ
(1)
0 (x) is the spatial initial condition. The second equation is solved

by U (1) = ϕ = g(τ)ϕ0(x), where g(τ) is a time-dependent factor and ϕ0(x) is the initial
condition for the gravitational potential itself. These equations are identical to the ones used
in standard Newtonian perturbation theory at linear in a ΛCDM universe, and we will not
dwell on them further here.

We can now find the first approximation to equations (2.8)-(2.11), using the linearized
solutions to the Newtonian equations given above. This begins by decomposing the cosmo-
logical variables into the different orders that will be solved for one-by-one using the solutions
from the Newtonian perturbation theory applied to the short-scale domain, and results in
the following:

δ = δ(1) +
1

2
δ(2) + · · · =

∞∑
n=1

δ(n)

n!
, (3.6)

θ = θ(1) +
1

2
θ(2) + · · · =

∞∑
n=1

θ(n)

n!
, (3.7)

ψ = ψ(1) +
1

2
ψ(2) + · · · =

∞∑
n=1

ψ(n)

n!
, (3.8)

φ = φ(1) +
1

2
φ(2) + · · · =

∞∑
n=1

φ(n)

n!
, (3.9)

where numbers in brackets again refer to the order of approximation in the Newtonian per-
turbation theory. These expression can be subsituted into Equations (2.8)-(2.11), which
immediately result in

ψ(1) = φ(1) . (3.10)

The evolution equation for the one degree of freedom that remains in the scalar sector of the
gravitational theory can then be found to be

(ψ(1) + U (1))′′ + 3H(ψ(1) + U (1))′ + a2Λ(ψ(1) + U (1)) = 0 . (3.11)

This equation is identical in form to Equation (3.5), and is therefore solved by function with
the same time dependency, g(τ). This fact leads us to consider ψ(1) + U (1) as one single
variable, with support on all length scales, which we will henceforth label as ϕ. Similarly
absorbing the parts of θ(1) and δ(1) that behave like the first-approximations to the corre-

sponding Newtonian quantities into θ
(1)
N and δ

(1)
N gives us that only remaining non-Newtonian

part of these quantities is given by

δ(1) = −2ϕ . (3.12)

This process of re-defining Newtonian quantities to absorb the long-wavelength parts of the
corresponding large-scale perturbations is described in more detail in Equations (5.12)-(5.16)
of Ref. [9], and proceeds in exactly the same way here.

These results show that the first approximation to the 2PPT equations gives identical
results to standard first-order cosmological perturbation theory in a ΛCDM universe. Let us
now consider the second approximation, which gives more interesting results.

– 7 –



3.2 Second approximation

After applying Newtonian perturbation theory to equations (2.2)-(2.4), we can extract the
following evolution equation at second approximation:

U (2)′′ + 3HU (2)′ + a2ΛU (2) =
4

3
g2

(
f2

Ωm
+

3

2
∇−2∂i∂

j(∂iϕ0∂jϕ0)

)
− g2(∇ϕ0)2 , (3.13)

where f = d(logD)/d(log a) is the growth rate of structure, and where g and ϕ0 are as in the
equations presented above. This equation is solved by the usual expression for second-order
Newtonian solutions in a ΛCDM universe [16]:

U (2) =
2D2

3aH0Ωm0
∂iϕ0∂

iϕ0 −
4(D2 + F)

3aH0Ωm0
Ψ0 , (3.14)

where we have used the Newtonian kernel Ψ0 = −1
2∇
−2
[(
∇2ϕ0

)2 − ∂i∂jϕ0∂
i∂jϕ0

]
, as well

as defining

F = D2

[
Ωm

4
− ΩΛ

2
− 1

U3/2

[
1− 3

2

U5/2

U3/2

]]
(3.15)

where

Uα =

∫ 1

0
dx

[
Ωm

x
+ ΩΛx+ 1− Ωm − ΩΛ

]−α
. (3.16)

To find the large-scale potentials φ and ψ at second approximation it is useful to isolate
the combination ψ(2)−φ(2), using the trace-free ij field equation. The cosmological constant
does not affect this equation, so the result is identical to the corresponding equation in an
Einstein-de Sitter universe [9]:

∇2∇2ψ(2) = ∇2∇2φ(2) − 4g2∇2∇2ϕ0 − 8g2

(
f2

Ωm
+

3

2

)
∇2∇2Θ0 − 4g2ϕ2

0 +Q , (3.17)

where

P ij = 2∂iϕ∂jϕ+ 8πa2ρ̄v(1)iv
(1)
j , ∇2N = ∂i∂

jP ij and ∇2Q = −P + 3N , (3.18)

and where P = P ii. Using this allows us to write the second-approximation to the large-scale
equations (2.8)-(2.11) as

ψ(2)′′ + 3Hψ(2)′ + a2Λψ(2) =− 4H2g2

(
2(f − 1) + Ωm

(
1− 1

Ωm

))
ϕ2

0

+ 12g2H2Ωm

(
2

(f − 1)2

Ωm
− 3

Ωm
+ 3

)
Θ0 , (3.19)

where we have in addition made use of the results

−4a2Λ = 4H2Ωm

(
1− 1

Ωm

)
, HQ′ + a2ΛQ = 12g2H2Ωm

(
2

(f − 1)2

Ωm
− 3

Ωm
+ 3

)
Θ0 ,

N =
4

3
g2

(
f2

Ωm
+

3

2
∇−2∂i∂

j(∂iϕ0∂jϕ0)

)
, −8Hϕϕ′ = −8H2g2(f − 1)ϕ2

0 . (3.20)
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If one were to compare Equation (3.19) to the corresponding equation in standard second-
order cosmological perturbation theory [17], it would be immediately apparent that there are
a number of differences. In particular the terms 8Hϕϕ′, (ϕ′)2, and 4a2Λϕ2 are all absent
here. This difference is due to the two-parameter counting scheme, which at leading-order
neglects the effects of terms that are quadratic in large-scale perturbations. Such a difference
does not occur in dust-only Einstein-de Sitter cosmologies [9], as in that case the potentials
are independent of time.

The solutions to Equation (3.19) can be written as

ψ(2) = b1
ϕ2

0

a
+ 6b2

Θ0

a
+

g

gin
ψ

(2)
in , (3.21)

where the bn satisfy

b′′1 +Hb′1 −
3

2

H2
0Ωm0

a
b1 = −4H2D2

a

(
2(f − 1) + (Ωm − 1)

)
, (3.22)

b′′2 +Hb′2 −
3

2

H2
0Ωm0

a
b2 =

2H2D2

a

(
2(f − 1)2 + 3(Ωm − 1)

)
. (3.23)

The solution for b2 is the same as in second-order cosmological perturbation theory [16], and
is given by

b2 = −2D(gin − g) . (3.24)

The solution for b1, on the other hand, is given by

b1 = −D
∫ a

ain

I
a2W

da+
H
a

∫ a

ain

DI
aHW

da , (3.25)

where I(a) and W(a) are the source and Wronskian functions

I =
H2D2

a

(
− 8f − 4Ωm + 12

)
and W = −H

2D
a

(
f +

3

2
Ωm

)
. (3.26)

This result can be seen to reduce to the Einstein-de Sitter limit as Λ→ 0, by noting that I →
0 in this case. While this result is cumbersome to deal with analytically, it straightforward
to evaluate numerically.

4 Initital conditions and kernels

Let us now turn to the question of how to set initial conditions at τin, for the expressions
derived in the previous section. For this we choose to proceed by using standard cosmological
perturbation theory to model the growth of structure in the early universe (before nonlinear
structures developed), and then mapping those perturbations onto our 2PPT variables as
some crossover time, τcross. We therefore take

gin = g(τcross) . (4.1)

Now, the function g(z) is known to approach a constant value in matter-domination, which
means we are free to select any moment of time as the crossover time, provided that it is
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Figure 1: A plot of b2PPT
1 = b2PPT

1 (a) and bCPT
1 = bCPT

1 (a), calculated through numerical
integration. The two curves can be seen to deviate when Λ becomes significant.

well within the matter-dominated era. We choose a redshift of z = 19 for zcross, which is
equivalent to ain = 0.05.

In the case of the quantity b1, we can note that we are free to add a homogeneous
solution to the differential equation it must obey. We use this fact to ensure continuity of
the metric at τin by setting

b2PPT
1 (a) = b1(a)− b1(ain)− bCPT

1 (ain)

D(ain)
D(a) , (4.2)

where bCPT
1 is the solution to the equivalent equation for b1 in standard second-order cos-

mological perturbation theory. This definition ensures that b2PPT
1 (ain) = bCPT

1 (ain), and
therefore that the metric is continuous at the crossover time. We plot b2PPT

1 in Figure 1,
along with bCPT

1 for comparison. The two quantities can be seen to differ at late times due to
the Λ-induced time-dependence of the first-order solutions, and the presence of extra terms
at second-order in cosmological perturbation theory that contain their time derivatives.

4.1 Gravitational potential kernel

In order to calculate the bispectrum of the gravitational potential, we write the solutions
from the previous section as

U (2) + ψ(2) = C1ϕ
2
0 + C2Θ0 + C3Ψ0 + C4(∇ϕ0)2 , (4.3)
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where

C1 = 2ggin

(
− 5

3
(aNL − 1)− 1

)
+
b2PPT
1

a
, (4.4)

C2 = 6

(
2g2 − 10

3
ggin

)
, (4.5)

C3 = − 4

3aH2
0Ωm0

(D2 + F) , (4.6)

C4 =
2

3aH2
0Ωm0

D2 . (4.7)

These are the same as the corresponding quantities in second-order perturbation theory [16],
apart from C1 which is modified due to the structure of the 2PPT equations. Taking the
Fourier transform of this expression we obtain

U (2)(k) + ψ(2)(k) =

∫
d3q1d3q2 δ

(3)(k − q1 − q2) ×[
C1 −

C2

2k4
q2

1q
2
2

(
1− (q̂1 · q̂2)2

)
− C2

3k2
q1q2(q̂1 · q̂2)

+
C3

2k2
q2

1q
2
2

(
1− (q̂1 · q̂2)2

)
+ C4 q1q2(q̂1 · q̂2)

]
ϕ0(q1)ϕ0(q2) , (4.8)

which immediately allows us to write down an expression for the kernel

KU+ψ
2 =

[
C1 −

C2

2k4
q2

1q
2
2

(
1− (q̂1 · q̂2)2

)
− C2

3k2
q1q2(q̂1 · q̂2)

+
C3

2k2
q2

1q
2
2

(
1− (q̂1 · q̂2)2

)
+ C4 q1q2(q̂1 · q̂2)

]
. (4.9)

Let us know consider the kernel for matter perturbations.

4.2 Dark matter kernel

Given all the constituent parts of our solution in Equation (3.21), we can proceed by using
the following expression to determine δ(2):

1

3
∇2ψ(2)−H(ψ(2) + U (2))′ −H2(ψ(2) + U (2))

=
1

2

H2
0Ωm0

a
δ(2) +

H2
0Ωm0

a
(v

(1)
N )2 − 8

3
g2ϕ0∇2ϕ0 − g2∇(ϕ0)2 . (4.10)

After some manipulation, we find that this equation implies

δ
(2)
N + δ(2) = J1(τ)ϕ2

0 + J2(τ)Θ0 + J3(τ)(∇ϕ0)2 + J4(τ)F + J5(τ)ϕ0∇2ϕ0 , (4.11)
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Figure 2: A plot of J1(z), and the corresponding quantity JCPT
1 (z) from standard second-

order cosmological perturbation theory.

where

J1 =

[
− 4HD′

H2
0Ωm0

gin

(
− 5

3
(aNL − 1)− 1

)
− 8H2D2

aH2
0Ωm0

− 2H
H2

0Ωm0
(b2PPT

1 )′

]
, (4.12)

J2 = −24HD′D
aH2

0Ωm0
, (4.13)

J3 =

[
− 4

9

Dgin
H2

0Ωm0
(1 + 10aNL) +

10

3

Dg
H2

0Ωm0
− 8(D′)2

9H4
0Ω2

m0

+
4

H2
0Ωm0

b2PPT
1

]
, (4.14)

J4 =
8HF ′

3(H2
0Ωm0)2

, (4.15)

J5 =

[
8Dgin

3H2
0Ωm0

(
− 5

3
(aNL − 1)− 1

)
+

16

3

Dg
H2

0Ωm0
+

4

H2
0Ωm0

b2PPT
1

]
. (4.16)

The functions J1, J3 and J5 differ from the corresponding quantities determined using second-
order cosmological perturbation theory, and are plotted in Figures 2, 3 and 4 for comparison.
It may be noted that the expected Einstein-de Sitter behaviour is recovered at high redshift,
up to a mathematical normalization that is physically unimportant.

The solution from Equation (4.11) can be expressed as

δ
(2)
N (k, τ) + δ(2)(k, τ) =

∫
d3q1 d3q2 δ

(3)(k − q1 − q2) δ
(1)
N (q1)δ

(1)
N (q2)K2(q1, q2, τ) , (4.17)
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Figure 3: A plot of J3(z), and the corresponding quantity JCPT
3 (z) from second-order

cosmological perturbation theory.

Figure 4: A plot of J5(z) solution, and the corresponding quantity JCPT
5 (z) from second-

order cosmological perturbation theory.
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where the kernel K2(k1,k2) is given by

K2(k1,k2) =

(
β − α

)
+ β

2 k̂1 · k̂2

(
k1
k2

+ k2
k1

)
+ α

(
k̂1 · k̂2

)2
+ γ
(
k1
k2
− k2

k1

)2(
1 + 3H2f

q21

)(
1 + 3H2f

q22

) , (4.18)

and where

α(k, τ) =

(
1− F
D2

)
+

(H2
0Ωm0)2

D2

[
− 9(4J3 + J4)

8k2
+

9J1

k4
− 3J2

8k4

]
, (4.19)

β(k, τ) = 2 +
(H2

0Ωm0)2

D2

[
− 9(J3 + J5)

2k2
+

18J1

k4
− 3J2

2k4

]
, (4.20)

γ(k, τ) =
(H2

0Ωm0)2

D2

[
− 9J5

8k2
+

9J1

4k4

]
. (4.21)

These expressions are identical to those from second-order cosmological perturbation theory
[18], except that in this case the functions Jn are given by Equations (4.12)-(4.16). These
expressions enable the calculation of the correlation functions of the dark matter overdensity.

5 Calculation of the matter bispectrum

In this section, we will present the results of the leading order corrections to the bispectra of

the metric potential ψ(2) + U (2) and the dark-matter overdensity δ(2) + δ
(2)
N .

5.1 Gravitational potentials

The leading order contribution to the dimensionless bispectrum of the scalar metric potential
ψ + U is calculated as follows:

〈(ψ + U)(ψ + U)(ψ + U)〉
'〈(ψ(2) + U (2))(ψ(1) + U (1))(ψ(1) + U (1))〉

=(2π)3δ(3)(k − q1 − q2)Kψ+U
2 (q1, q2,k)Pψ(q1)Pψ(q2) + 2 cycl. perms , (5.1)

where Pψ(k) is the dimensional linear power spectrum of the gravitational potential, as pre-
dicted by CLASS [19–22]. The implication of this result is that we can write the dimensionless

bispectrum Bψ+U in terms of the kernel Kψ+U
2 as

Bψ+U (k1, k2, k3) = Kψ+U
2 (q1, q2,k)∆ψ(q1)∆ψ(q2) + 2 cycl. perms , (5.2)

where ∆ψ = 2π2

k3
Pψ(k). We plot the dimensionless bispectrum of gravitational potentials at

redshift z = 0 in various different types of triangular configurations in Figures 5, 6 and 7.
These results are plotted together with the linear power spectrum ∆ψ in order to give the
reader a reference point for the magnitudes of the quantities involved.

These plots demonstrate how the 2PPT solution for the gravitational potential deviates
from the Newtonian prediction at small values of k. This behaviour can be anticipated from
the form of the integral kernel; Newtonian terms come with an extra k2 and hence dominate
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at large k, whereas relativistic corrections are dimensionless, and hence are only visible at
small values of k. The difference with cosmological perturbation theory solution is maximised
in the equilateral configuration, whilst it is significantly reduced in the flattened case.

In the case of the squeezed limit shown in Figure 6, it is clear that the differences
between the 2PPT solution and the second-order CPT solution is negligible even at scales
of k ∼ 10−4. This is because the kernel is dominated by the terms proportional to q̂1 · q̂2 in
this limit, and these terms are the same in both the cosmological perturbation theory and
2PPT case. We have verified that differences between 2PPT and CPT become negligible at
higher redshifts, even in the equilateral configuration, as in this case we move into the matter-
dominated era where the differences between the gravitational potentials in each approach
become negligible.

5.2 Dark matter overdensity

The second approximation to the dark-matter overdensity leads to the following expression
for the leading order bispectrum in our approach:

B2PPT(k1, k2, k3) = K2PPT
2 (k1,k2)P (k1)P (k2) + cycl perms . (5.3)

This quantity is plotted at redshift z = 0 in Figures 8, 9 and 10, in the equilateral, squeezed
and flattened configurations respectively.

Figures 8 9 and 10 display more significant deviation from the results of second-order
CPT than in the Einstein-de Sitter case examined in Ref. [9]. This is to be expected, as the
differences in the field equations are more significant. In the Einstein-de Sitter case, time
derivatives of the first-order solution vanished, meaning that the omission of time-dependent
terms like ϕ′2 and a2H2ϕ2 were not a factor. However, these terms are non-zero in ΛCDM.
The fact that they are present in the second-order CPT equations, but not the 2PPT field
equations, therefore leads to the deviations shown in the plots.

6 Discussion

We have studied the application of the 2-parameter perturbation theory (2PPT) approach
to a ΛCDM universe. This has involved solving for the short-scale Newtonian gravitational
potentials using the leading-order part of the 2PPT-expanded field equations, and then using
these solutions to determine the effects of nonlinear structure on long-wavelength cosmolog-
ical fluctuations. We have, in particular, calculated the dark matter bispectrum, and have
compared the results to standard second-order cosmological perturbation theory.

The method we used to solve the small-scale equations is Newtonian perturbation theory.
This method allows analytically tractable solutions to be found in the quasi-nonlinear regime,
where the equations of Newtonian physics on an expanding background are expected to
accurately describe the physics, but where perturbation theory is still expected to give a
realiable approximation to the true behaviour of the system. This approach has the very
considerable benefit of allowing solutions to be written down in a relatively straightforward
fashion, but suffers from the drawback that it does not accurately model the gravitational
fields of matter on scales where it is highly nonlinear (i.e. on scales . 10 Mpc).

With solutions for the Newtonian part of the gravitational field in hand, we then solved
for the long-wavelength cosmological perturbations. We found that the leading-order con-
tributions to the field equation that governs the evolution of these perturbations, (2.8), is

– 15 –



Figure 5: A plot of the equilateral configuration of the bispectrum of gravitational potentials
in 2PPT at redshift z = 0, as compared to Newtonian theory and second-order CPT.

Figure 6: A plot of the squeezed configuration of the bispectrum of gravitational potentials
in 2PPT at redshift z = 0, as compared to Newtonian theory and second-order CPT.
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Figure 7: A plot of the flatenned configuration of the bispectrum of gravitational potentials
in 2PPT at redshift z = 0, as compared to Newtonian theory and second-order CPT.

Figure 8: A plot of the equilateral configuration of the bispectrum of dark matter in 2PPT
at redshift z = 0, as compared to Newtonian theory and second-order CPT.

– 17 –



Figure 9: A plot of the squeezed configuration of the bispectrum of dark matter in 2PPT
at redshift z = 0, as compared to Newtonian theory and second-order CPT.

Figure 10: A plot of the flattened configuration of the bispectrum of dark matter in 2PPT
at redshift z = 0, as compared to Newtonian theory and second-order CPT.
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similar in form to the corresponding equation in second-order cosmological perturbation the-
ory, though not identical. This is in contrast to the case where Λ = 0, where no such
difference exists in the evolution equation [9]. The 2PPT equations are missing terms that
would have occurred if calculating the corresponding quantities in second-order cosmological
perturbation theory, and the bispectra that result are consequently modified (as shown in
Figs. 5 - 10).

Our findings illustrate both the advantages and disadvantages of using the 2PPT ap-
proach, as compared with other approaches to modelling structure in the Universe. First of
all, our results show that the effects of the quasi-nonlinear Newtonian regime on cosmological
fluctuations do indeed faithfully reproduce some of the known effects that are included in
second-order cosmological perturbation theory. However, our study also shows that there
exist large-scale relativistic effects that are not accounted for in the leading-order 2PPT
equations that we have studied here, and that the absense of the terms that correspond to
these effects can have considerable consequences for the calculation of observables such as
the matter bispectrum on large scales.

The occurence of deviations from second-order cosmological perturbation theory is ex-
pected. This is because second-order perturbation theory is a theory of second-order correc-
tions to the Einstein field equations in a regime where all fluctuations are small with respect
to the background. The 2PPT field equations instead describe the evolution of first-order
perturbations on top of a background which itself contains nonlinear Newtonian structure
on small scales. As such, 2PPT will necessarily not contain the same gravitational self-
interactions as a second-order theory. Such terms could be included by going to higher order
within the two-parameter expansion, or by selectively including terms which can be shown
to have significant consequences for a given observable. Our calculation of the bispectrum
shows that this may be necessary for at least some observables.

Instead, the strength of the 2PPT approach is that it can include the consequences of
nonlinear much more readily. One way of doing this, in the context of the present study,
would be to go to higer-order approximations in the Newtonian perturbation theory. This
would be significantly easier than going to higher than second-order in cosmological pertur-
bation theory, and could well provide a way of probing deeper into the regime of nonlinear
structure formation. A more direct route, though less analytically tractible, would be to use
the numerical output of Newtonian cosmological n-body simulations as the solutions to the
Newtonian sector of the 2PPT system. This would allow for the full nonlinear regime to be
included in ways that would be simply impossible in cosmological perturbation theory, and
could lead to significant departures from the predictions of second-order perturbation theory
on all scales, not just in the non-perturbative regime. We leave the study of these ideas for
future work.
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