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Abstract. We prove the stability of de Sitter space-time as a solution to the Einstein-
Vlasov system with massless particles. The semi-global stability of Minkowski space-time
is also addressed. The proof relies on conformal techniques, namely Friedrich’s conformal
Einstein field equations. We exploit the conformal invariance of the massless Vlasov equation
on the cotangent bundle and adapt Kato’s local existence theorem for symmetric hyperbolic
systems to prove a long enough time of existence for solutions of the evolution system implied
by the Vlasov equation and the conformal Einstein field equations.

Introduction

The Einstein-Vlasov system. Kinetic theory in general relativity is used to model the
global behaviour of a space-time when, for instance, galaxy clusters are identified with
particles. The Vlasov matter model is a sub-class of these kinetic models arising when the
collision of particles is neglected. This approximation is relevant when collisions either do not
affect the motion of the particles or can be neglected —for instance in the description of low-
density gases. In this article we consider ultra-relativistic matter —that is to say, particles
whose velocity is close to the speed of light. A good approximation would then be that the
particles, like photons, are massless and, in the context of general relativity, follow the path
of freely falling massless particles —i.e. null geodesics. Reviews on relativistic kinetic theory
can be found in [And11; Ren97].

In the context of general relativity, ultra-relativistic matter is modelled by the Einstein-
Vlasov system. In the following let (M̃, g̃) be a four dimensional Lorentzian manifold and
consider the subset of the cotangent bundle P defined by

P = {(x,p) ∈ T ∗M : g̃−1
x (p,p) = 0}.

The matter distribution at x with momentum p is a non-negative function

f : P → R+,

satisfying the transport equation

L̃f = 0,

where L̃ is the Liouville vector field —i.e. the Hamiltonian vector field of the Hamiltonian
function (x,p) 7→ −1

2 g̃
−1
x (p,p). The stress-energy tensor associated with this matter model

is

T [f ] = Tαβ[f ](x)dxα ⊗ dxβ, Tαβ[f ](x) = 8π

∫
P̃x
f(x, p) pαpβ ˜dvolP̃x .

2010 Mathematics Subject Classification. 35L04, 35Q75, 35Q76, 53A30.

1



THE CONFORMAL EINSTEIN FIELD EQUATIONS WITH MASSLESS VLASOV MATTER 2

The Einstein-Vlasov system couples the Einstein equations for the metric g̃ to the transport
equation satisfied by f :

Ricg̃ −
1

2
Rg̃g̃ + λg̃ = T [f ], (1a)

L̃f = 0. (1b)

Stability results. Written in an appropriate coordinates system, the Einstein-Vlasov system
is a hyperbolic system of partial differential equations for which the Cauchy problem is well-
posed and admits “ground state” solutions. These correspond to the absence of gravitational
radiation and the absence of matter. The ground states are Minkowski space-time when the
cosmological constant vanishes and de Sitter space-time when the cosmological constant is a
negative number in our metric signature convention. Since the Cauchy problem is well-posed,
the dynamical stability of such solutions can be discussed. We are proving here the following
theorem:

Theorem. The de Sitter space-time is a dynamically stable solution of the massless Einstein-
Vlasov system. In particular, any small enough perturbation of the de Sitter initial data leads
to a future lightlike and timelike geodesically complete space-time.

As part of our analysis, we also prove that the curvature of the perturbation and the stress-
energy tensor approach zero asymptotically. To that extent, this theorem can be seen as an
asymptotic stability result.

This result has already been proven by Ringström [Rin13]. The novelty lies here in the
approach. The particularity of the Vlasov equation, written on the cotangent bundle, is that
solutions are conformally invariant. This is a consequence of two facts: up to reparamet-
risation, null geodesics for conformal metrics coincide; and the Vlasov equation implies that
the distribution function is constant along null geodesics. This conformal invariance sug-
gests the use of conformal techniques to analyse the stability properties of solutions to the
Einstein-Vlasov system. The use of conformal techniques reduces the problem of the global
existence of solutions to the Einstein-Vlasov system to the study of the local existence for
sufficiently long times of a symmetric hyperbolic problem obtained from a conformal recasting
of the Einstein-Vlasov system. The long (enough) time of existence of solutions to this system
obtained using the theory developed by Kato [Kat75].

Following the same strategy, we also address the problem of the stability of Minkowski
space-time. It is well-known that the standard compactification of Minkowski space-time
contains a singular point, i0, corresponding to the end-points of the inextendible spacelike
geodesics. Hence, to avoid the problem of considering the evolution of the initial data from
the point i0, we work with perturbations which admit, initially, compact support —in the
spirit of the glueing results [CD02; CS06]. The construction of such data is not discussed
here. These data evolve to be compactly supported on a hyperboloid —that is to say, on a
spacelike hypersurface asymptote to a Minkowski light-cone, and transverse to the boundary
at infinity. From the Cauchy stability results for the Einstein-Vlasov system [CB71; Rin13] it
follows that small enough initial perturbations remain small in the evolution. We then prove
the following semi-global stability result of Minkowski space:

Theorem. Consider a hyperboloidal initial data set for the massless Einstein-Vlasov system
close enough to the initial data giving rise to the Minkowski space-time. These initial data
lead to a future lightlike and timelike geodesically complete space-time, solution to the massless
Einstein-Vlasov system.
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As before, the curvature and the stress-energy tensor asymptote zero, and this result can
consequently be considered as a semi-global asymptotic stability result. Note that, in the
absence of estimates for the conformal factor, this result contains no estimates on the beha-
viour of the curvature, other than the convergence to zero as a power of the conformal factor.
Nonetheless, it can be expected that the decay would be stronger than the decay obtained
through the vector field method by a factor (1 + |t− r|)1/2.

Following the work of Dafermos [Daf06] in spherical symmetry, Taylor has already proven
the stability of Minkowski space-time [Tay17] as a solution to the Einstein-massless Vlasov
system. The method relies on energy estimates in the double null gauge. It is interesting
to note that in that work the Vlasov matter is compactly supported both in space and
momentum, while the stability outside the space support of the matter distribution is handled
by the stability and peeling result of [KN03]. Nonetheless, the metric data handled in [Tay17]
are not compactly supported, hence, [Tay17] is a global stability result.

Conformal techniques and stability problems. The problem of stability of solutions in
general relativity has been, since the ’80s, at the core of many publications. A stepping stone
is the work by Christodoulou-Klainerman [CK93], which has been simplified, and reproduced
for other matters models (electro-magnetism [BZ09], non-linear electro-magnetism [Spe12],
Klein-Gordon [LM16], massless [Tay17], and massive Vlasov [FJS17b; LT19]). Nonetheless,
the first and pioneering stability result has been obtained by Friedrich [Fri86] for the de Sitter
space-time, by methods of a completely different nature, exploiting the conformal structure
of the underlying space-time.

Conformal methods are well adapted to the study of the longtime existence and stability of
asymptotically simple space-times. In [Fri91], Friedrich’s conformal Einstein field equations
have been used to study the semi-global stability of the Minkowski space-time and the global
stability of the de Sitter space-time under non-vacuum perturbations sourced by the Maxwell
and Yang-Mills fields. These results generalise the original vacuum stability results in [Fri86].
The key property that makes the Maxwell and Yang-Mills fields amenable to a treatment
using conformal methods is the fact that their energy-momentum tensor has vanishing trace.
As a consequence, the conservation equation satisfied by the energy-momentum tensor is
conformally invariant. Moreover, the field equations satisfied by the Maxwell and Yang-Mills
fields can also be shown to be suitably conformally invariant. Other fields with trace-free
energy-momentum tensor are the conformally coupled scalar field and a perfect fluid with
the equation of state of radiation —see e.g. [VK16]. Global existence results for the Einstein
field equations coupled to these fields have been given in [Hüb95] and [LV14], respectively. It
should be noticed that conformal methods (more specifically, conformal rescaling) have also
been used to study the occurrence of cosmological singularities [AT99].

Description of the result. It is well-known that de Sitter and Minkowski space-times admit
a conformal compactification —that is, these space-times can be conformally embedded into
a compact manifold with boundary. This compact manifold with boundary is often referred
to as the unphysical space-time. The trace on the boundary of the closure of the timelike and
lightlike geodesics in the unphysical space-time has two connected components (for the future
and past endpoints of these geodesics). These components form a subset of the boundary
which is timelike in the de Sitter case and light like in the Minkowski case. This particular
structure at infinity is characteristic of a larger class of spacetimes introduced by Penrose
in the 60s —the so-called asymptotically simple space-times. Since de Sitter space-time and
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Minkowski space-time both admit such an asymptotic structure, it could be expected that
small enough perturbations thereof would also lead to geodesically complete asymptotically
simple solutions to the Einstein equations. The rigidity of the asymptotic structure and of
the geodesic completeness for small enough perturbations would prove the stability of those
solutions.

This approach to the stability of solutions to the Einstein equation was developed by
Friedrich in the 80s. Although the Einstein equations are not conformally invariant, he proved
that it is possible to incorporate a conformal degree of freedom within these equations. The
resulting equations are known as the Conformal Einstein Field Equations (CFE). In the right
gauge, the conformal Einstein field equations imply a symmetric hyperbolic system. Moreover,
a global solution to the Einstein equations can be obtained as a local solution to the conformal
field equations. These observations allowed him to prove the stability of de Sitter space-time
and the semi-global stability of Minkowski space-time as a solution to the Einstein equations
in vacuum in his pioneering work [Fri86]. For this reason, we focus on our presentation on
the Vlasov equation and only recall the set-up and the necessary properties of the conformal
Einstein field equations.

A critical aspect of the study of the Einstein equations as evolution equations is, in the first
instance, the choice of the gauge. This choice guarantees that the Einstein equations become
symmetric hyperbolic and that a Cauchy problem can be discussed. The approach adopted
by Friedrich [Fri86] relies on the choice of a tetrad which satisfies a wave map. Following this
approach, we use the tetrad formalism as in [Lin66] or [Ren97] also for the Vlasov equation.
The formulation of the transport equation on the cotangent bundle can then be entirely
expressed in terms of the Cartan structure coefficients.

The conformal field equations require, in the presence of a matter field, control of the
derivatives of the energy-momentum tensor in the frame direction. Hence, equations for these
derivatives of the matter distribution need to be incorporated to the set of unknown functions
to complete the system. To that end, one needs to calculate the commutator of the tetrad
with the Liouville vector field. These commutators have been calculated in, for instance,
[SZ14] and lie at the core of the approach of [FJS17b]. The experience suggests working
with the derivatives which naturally appear in the expression of the Liouville vector field, the
horizontal lifts of the tetrad vectors, so that curvature terms appear in the expression of the
commutator —see [FJS17a, Appendix].

Finally, this work relies on the use of local existence results for symmetric hyperbolic
systems applied to the conformal equations coupled to the Vlasov equation. The fact that
the massive Vlasov equation is symmetric hyperbolic is discussed in many reviews [And11;
Ren97]. The local existence for the Einstein-Vlasov system has been addressed, by means of
standard energy estimates, in [CB71]. This local existence result, tailored to handle a coupling
with nonlinear wave equations and weighted Sobolev spaces (in particular to address the global
existence problem) is extended in [Rin13]. It is somehow expected that the Einstein-Vlasov
system (or the CFE-Vlasov system) should fit the framework developed by Kato [Kat75], as
it was, for instance, for the Vlasov-Maxwell equations [Wol87].

When applying Kato’s theorem to handle the local existence for the conformal field equa-
tions coupled to the massless Vlasov equations one has to be careful at several points. First,
the unknowns functions have different variables. This could be typically handled by consider-
ing separately the two systems. Secondly, the nature of the coupling in the Einstein equations
is integral, and it has to be verified whether this fits the framework for the non-linearity as
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required by Kato’s result. These two problems are solved by running, based on the linear res-
ult by Kato, the same fixed point argument. Finally, and specifically for the massless Vlasov
equation, the massless equation is singular for particles with vanishing velocities. This has
the consequence that the evolution ceases to be symmetric hyperbolic. This is difficulty is
dealt with by proving, in the context of the aforementioned fixed point argument, a priori
estimates on the support in momentum of the matter distribution.

Outline of the paper. Section 1 contains preliminaries and notation. The matter model is
presented in Section 2; the conformal transformations are specifically addressed in Section 2.2,
the equation for the derivatives of f are stated in Section 2.4, and the commutation formula
with the stress-energy tensor are to be found in Section 2.4. The hyperbolic nature of the
Vlasov system, made out of the matter distribution and its derivatives, is obtained in Section
3. In Section 4, the conformal Einstein field equations are recalled both in the frame and the
spin formalism, and the hyperbolic reduction of the conformal field equation is described. In
Section 6 we discuss the coupled symmetric hyperbolic system and adapt Kato’s existence
and stability theorems to it. Finally, the stability result for de Sitter and the semi-global
stability result for Minkowski are respectively derived in Sections 7 and 8.

Acknowledgements. M.T. thanks the A.E.I. for hospitality. J.J. thanks L. Andersson, and
H. Friedrich for their support, and friendly discussions.

1. Preliminaries and Notation

1.1. Index notation. The signature convention for (Lorentzian) space-time metrics is
(+,−,−,−). In this signature convention, the cosmological constant Λ of de Sitter space-time
is negative. Cosmological constants with negative values will be said to be de Sitter-like.

In what follows, Greek indices are used as coordinate indices. The Latin indices a, b, c, . . .
are used as abstract tensor indices while the boldface Latin indices a, b, c, . . . are used as space-
time frame indices taking the values 0, . . . , 3. In this way, given a frame {ea} a generic tensor
is denoted by Tab while its components in the given frame are denoted by Tab ≡ Tabeaaebb. We
reserve the indices i, j , k, . . . to denote frame spatial indices respect to an adapted spacelike
frame taking the values 1, 2, 3. If an object is a tensor, we write it in bold font, i.e. for a
vector field we write X = Xµ∂µ, respectively, Xa = Xbeb

a.
Moreover we make systematic use of spinors. We follow the conventions and notation of

Penrose and Rindler [PR87]. In particular, A, B, C , . . . are abstract spinorial indices while

A, B, C , . . . will denote frame spinorial indices with respect to some specified spin dyad {εAA}.
Greek indices µ, ν , λ will denote coordinate indices with respect to some local chart.

Our conventions for the curvature tensors are fixed by the relation

(∇a∇b −∇b∇a)vc = Rcdabv
d. (1.1)

1.2. The Einstein cylinder. Next we introduce the Einstein cylinder E = (R× S3, gE ). In
order to endow it with coordinates we view S3 as being embedded in R4 with coordinates
x1, . . . , x4, i.e. S3 = {(x1, . . . , x4) ∈ R4 : (x1)2+· · ·+(x4)2 = 1}. On any open neighbourhood
of S3, one can then choose three of the four coordinates x1, . . . , x4 in order to obtain an atlas
on S3. Completing this atlas with the time coordinate τ yields an atlas on the Einstein
cylinder. Sometimes we also will make use of the local coordinate chart ψ ∈ [0, π], θ ∈ [0, π],
ϕ ∈ [0, 2π) of angular coordinates. The metric gE of the Einstein cylinder is given by

gE = dτ ⊗ dτ − σ, (1.2)
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where σ is the round metric on S3. Moreover, the fields

c1 = x1∂x4 − x4∂x1 + x2∂x3 − x3∂x2 , (1.3a)

c2 = x1∂x3 − x3∂x1 + x4∂x2 − x2∂x4 , (1.3b)

c3 = x1∂x2 − x2∂x1 + x3∂x4 − x4∂x3 (1.3c)

in TR4 form an orthonormal frame on S3. With the field

c0 = ∂τ (1.4)

the collection {c1, c2, c3} can be completed to an orthonormal frame on the Einstein cylinder.

Both de Sitter space-time, denoted by (M̃dS, g̃dS), and Minkowski space-time, denoted by

(M̃M, g̃M), can be identified with the interior of certain compact submanifolds of the Einstein
cylinder. These submanifolds are denoted byMdS andMM. OnMdS andMM we then have
the relations

gE = Ξ2
dS g̃dS, ΞdS = cos(τ), (1.5a)

gE = Ξ2
M g̃M, ΞM = cos(τ) + cosψ, (1.5b)

respectively, where the conformal factors ΞdS and ΞM are functions globally defined on E .
They are explicitly given in Sections 7 and 8, below. The submanifolds MdS and MM are
the maximal connected submanifolds of E where ΞdS ≥ 0 or ΞM ≥ 0, respectively.

As already outlined in the introduction, the strategy in this article, as in [Fri86] for the
vacuum case, is to consider the Cauchy problem for the conformal Einstein field equations with
massless Vlasov matter with initial data provided on S3. We will prove that the solution to
this Cauchy problem provides a manifoldM endowed with a metric g and a conformal factor
Ξ defined on M. This manifold M, which we call the unphysical manifold, is diffeomorphic
to [τ0, τ•]× S3, where τ0 ∈ [−π/2, τ•) and τ• ∈ [3π/4,∞). The region on M̃ where Ξ > 0 we
call the physical manifold and the metric g̃ given by the relation

g̃ = Ξ−2g (1.6)

we call the physical metric. The space-time (M̃, g̃) will then be a perturbed version of de
Sitter space-time or Minkowski space-time, respectively.

1.3. Orthonormal frames. We denote by {ea}3a=0 and {ẽa}3a=0 the orthonormal frames on

TM̃ which correspond to g and g̃, respectively. The corresponding co-frames we denote by
{αa}3a=0 and {α̃a}3a=0, respectively. The co-frames {αa}3a=0 and {α̃a}3a=0 induce coordinates

on T ∗M̃ in the following way. Let x ∈ M̃ and p ∈ T ∗xM̃. Then we write

p = pµdx
µ = vaα

a = ṽaα̃
a. (1.7)

The relation between those coordinates is

Ξea
a = ẽa

a, αa
a = Ξα̃a

a, Ξva = ṽa. (1.8)

2. Massless Vlasov matter in the cotangent bundle formulation

2.1. Introduction of the model. On the cotangent bundle T ∗M̃ of the (physical) manifold

M̃ we define the particle distribution function f ∈ C1(T ∗M̃;R). Integrated over a volume
in phase space it gives the number of particles in the corresponding volume of physical space
which have momentum in the corresponding range in momentum space.



THE CONFORMAL EINSTEIN FIELD EQUATIONS WITH MASSLESS VLASOV MATTER 7

The Vlasov matter model describes an ensemble of freely falling particles. In other words,
the particles are assumed to move through phase-space TM̃ along the integral curves of the
Liouville vector field L̃. This behaviour is captured by the Vlasov equation

L̃f = 0. (2.1)

On T ∗M̃ we have the canonical coordinates (xµ, pν), µ, ν = 0, . . . , 3 —i.e. a co-vector v ∈
T ∗xM̃, x ∈ M̃, has the form v = pµdx

µ|x. In these coordinates the Liouville vector field L̃
reads

L̃ = g̃µνpµ∂xν −
1

2
∂xγ g̃

αβ pαpβ ∂pγ . (2.2)

The quantity m ≥ 0, given by

m2 ≡ −g̃µν(x)pµpν , x ∈ M̃, p ∈ T ∗xM̃, (2.3)

is interpreted as the rest mass of the particles. It can be shown that it stays constant along
the characteristic curves of the Vlasov equation (2.1). For this reason the particle distribution

function f can be assumed to be supported on the co-mass shell P̃m, a seven dimensional
submanifold of T ∗M̃, which defined to be

P̃m ≡ {(x,p) ∈ T ∗M̃ : g̃−1
x (p,p) = −m2, p is future pointing}. (2.4)

If f is supported on P̃m then it describes the distribution of particles which all have the
same rest mass m. In the remainder of this article we assume m = 0 and we denote the
corresponding mass shell simply by P̃. The particle distribution function f gives rise to an
energy momentum tensor T̃ via

T̃ [f ](x) = T̃αβ[f ](x) dxαdxβ, x ∈ M̃, (2.5)

where

Tαβ[f ](x) = 8π

∫
P̃x
f(x, p) pαpβ ˜dvolP̃x , (2.6)

where ˜dvolP̃x is the volume form on the mass shell fibre P̃x over x ∈ M̃. It can be expressed
by

˜dvolP̃x =

√
|det(gµν)|
g0µpµ

dp1dp2dp3. (2.7)

We see from the mass shell relation (2.3) that the massless Vlasov matter model gives rise to
a trace free energy momentum tensor.

In the remainder of this section we discuss the Vlasov matter model for massless particles
in more detail and we show that it is an amenable matter model for being integrated into the
hyperbolic reduction procedure described in Section 4, below.

Remark 2.1. Since we work with massless particles, the matter distribution is a mapping
over the massless mass shell P. Nonetheless, to ease the calculations, we consider a matter
distribution defined on the cotangent bundle, and then restrict it to the mass shell. It is then
necessary, when differentiating derivatives, to take derivatives parallel to the mass shell. This
is the case of the Liouville vector field L, as well as other derivatives afterwards, in particular,
the horizontal derivatives (2.38). To check that these vectors are tangent to the mass shell,
it is sufficient to either check they lie in the kernel of the differential of the Hamiltonian
(x,p) 7→ g−1

x (p,p), or orthogonal to L for the symplectic product (or orthogonal to the null
vector va∂va for the Sasaki metric), using the symmetry relation (2.20).
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2.2. Conformal properties of the Liouville vector field. In Section 2.1 the Liouville
vector field and the energy momentum tensor have been introduced. Both of these objects
are metric-dependent —the metric shows up directly in the definition (2.2) of the Liouville
vector field and the volume form in the definition (2.6) of the energy-momentum tensor.

If, on a manifold M̃, one has two metric tensors g̃ and g which are conformally related via

g = Ξ2g̃ (2.8)

each of these metrics gives rise to a different Liouville vector field and energy-momentum
tensor. We give now the relation between those quantities and prove that if a particle distri-
bution function f ∈ C1(T ∗M̃,R+) solves the Vlasov equation for one metric in the conformal
class, it solves the Vlasov equations for all metrics in the conformal class.

To this end we consider on T ∗M̃ the orthonormal frames {ẽa}3a=0 and {ea}3a=0 corres-
ponding to g̃ and g, respectively. The corresponding co-frames are denoted by {α̃b}3b=0 and

{αb}3b=0, respectively. Both frames give rise to coordinates (xµ, ṽa) and (xµ, va) on T ∗M̃,
respectively, cf. (1.7) and (1.8). Note, further, that with respect to this frame the mass shell
relation reads

(xµ, va) ∈ P ⇔ v0 = −|v|, |v| ≡
√

(v1)2 + (v2)2 + (v3)2, (2.9)

(xµ, ṽa) ∈ P̃ ⇔ ṽ0 = − |ṽ| , |ṽ| ≡
√

(ṽ1)2 + (ṽ2)2 + (ṽ3)2. (2.10)

We observe that

P̃ = P (2.11)

as a manifold. The definition of the Liouville vector field depends on the metric. We have
already defined L̃ for g̃ in equation (2.2). For each of the metrics g̃ and g we consider the

corresponding Liouville vector field L̃ and L, given by

L̃ ≡ g̃µνpµ∂xν −
1

2
∂xγ g̃

αβ pαpβ ∂pγ , (2.12a)

L ≡ gµνpµ∂xν −
1

2
∂xγg

αβ pαpβ ∂pγ . (2.12b)

Lemma 2.1. We have

L̃ = ηabṽaẽb
µ∂xµ + ηabṽaṽc Γ̃b

c
d ∂ṽd , Γ̃a

c
b ≡ α̃c

(
∇̃ẽa ẽb

)
, (2.13a)

L = ηabvaeb
µ∂xµ + ηabvavc Γb

c
d ∂vd , Γa

c
b ≡ αc (∇eaeb) . (2.13b)

Proof. The result is only proved for L since the calculation goes completely analogously for
L̃. We consider the coordinate transformation

xµ 7→ yµ(x) = xµ, pα 7→ va(x, p) = ea
αpα. (2.14)

This implies

∂pα = ea
α∂va , ∂xµ = ∂yµ + (∂µea

α)αb
αvb ∂va . (2.15)

Then, using gαβ = ηabea
αeβb and pµ = αa

µva we calculate

gµνpµ∂xν = ηabeb
νva∂yν + ηabvaeb

ν
(
∂νec

β
)
αd

βvd∂vc , (2.16)

−1

2
∂xγg

αβpαpβ∂pγ = −ηabvaecγ
(
∂γeb

β
)
αd

βvd∂vc . (2.17)
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Combined this yields

L = ηabeb
νva∂yν + ηabva

(
eb
ν
(
∂νec

β
)
− ecγ

(
∂γeb

β
))

αd
βvd∂vc . (2.18)

Now, noting that for the bracket we have(
eb
ν
(
∂νec

β
)
− ecγ

(
∂γeb

β
))

αd
β = [eb, ec]d. (2.19)

Using Cartan’s structure equation, [eb, ec]d = Γ[b
d
c], and the symmetry

Γa
d
bηdc + Γa

d
cηdb = 0 (2.20)

which holds for any connection which is metric (cf. [VK16]), we arrive at the asserted formula
for L (after renaming the coordinates yµ as xµ). �

Lemma 2.2. On P we have

L̃ = Ξ2L. (2.21)

Proof. Using the relations (1.8) the frames and co-frames with respect to g and g̃, respectively,
we derive

Γ̃b
c
d = α̃c

(
∇̃ẽb ẽd

)
=

1

Ξ
αc
(

Ξ∇̃eb(Ξed)
)

(2.22)

= αc (eb(Ξ)ed) + Ξαc
(
∇̃eb

)
(2.23)

= eb(Ξ)δcd + Ξ (Γb
c
d +Qb

c
d) , (2.24)

where Qb
c
d is the transition tensor, in the case of our conformal transformation given by

Qb
c
d =

1

Ξ
(eb(Ξ)δcd + ed(Ξ)δcb − ea(Ξ)ηacηbd) , (2.25)

cf. [VK16]. This yields

Γ̃b
c
d = ΞΓb

c
d + 2eb(Ξ)δcd + ed(Ξ)δcb − ea(Ξ)ηacηbd. (2.26)

We consider the Liouville vector field L̃ and we want to perform the change of coordinates
given by

xµ 7→ yµ(x) = xµ, ṽa 7→ va(x, ṽa) =
1

Ξ
ṽa, (2.27)

cf. the relations (1.8). This yields

∂ṽa =
1

Ξ
∂va , ∂xµ = ∂yµ + Ξva

(
∂µ

1

Ξ

)
∂va . (2.28)

Then, using the mass shell relation ηabvavb = 0, and inserting (2.26) and (2.28) into the
formula (2.13a) for L, we obtain the following assertion: �

Corollary 2.1. For any function f ∈ C1(P;R+) we have

L̃f = 0 ⇔ Lf = 0. (2.29)

Let f ∈ C1(T ∗M̃;R+). For different coordinate maps the particle distribution is realised

by different functions R7 → R. Let p ∈ T ∗M̃ be an arbitrary point with coordinates (xµ, ṽa)
and (xµ, va), respectively. We denote (abusing notation)

f(p) = f(xµ, pν) = f̃(xµ, ṽa) = f(xµ, va). (2.30)



THE CONFORMAL EINSTEIN FIELD EQUATIONS WITH MASSLESS VLASOV MATTER 10

The relation (1.8) yields

f(xµ, va) = f̃ (xµ,Ξva) . (2.31)

Remark 2.2. The scaling law (2.31) has a concrete physical meaning. We construct here
conformal compactifications of de Sitter like or Minkowski like space-times. These space-
times are compactly embedded into the Einstein cylinder on which we have the (almost) flat
unphysical metric g which is related to g̃ via (2.8) and the conformal factor Ξ approaches zero
as one approaches the boundary of this embedding. The massless Vlasov particles move along
null geodesics which, as sets, are invariant under the conformal rescaling. The parametrisation
of the geodesics, however, depends on the metric. As it will be shown later, measured with
respect to the unphysical metric, the (absolute value of the) velocities only change a little.
This means, by (2.31), that the velocity with respect to the physical metric approaches zero.
This is consistent since the conformal boundary, representing null infinity, cannot be reached
in finite time.

Next, we consider the energy-momentum tensor. Recall the definition on the physical
manifold

T̃ab[f ](x) ≡ 8π

∫
P̃x
f(x,p) papb ˜dvolP̃x , (x,p) ∈ T ∗M̃. (2.32)

The domain of integration is unchanged by the conformal rescaling (2.8) since P = P̃. How-
ever, the volume form depends on the metric. So we define as well

Tab[f ](x) ≡ 8π

∫
Px
f(x,p) papb ˜dvolPx , (x,p) ∈ T ∗M. (2.33)

A calculation shows

T̃ab[f ](x) = T̃ab[f ](x)ẽa
aẽb

b = −8π

∫
R3
v

f̃(xµ, ṽa)
ṽaṽb
|ṽ|

dṽ1dṽ2dṽ3, (2.34)

Tab[f ](x) = Tab[f ](x)ea
aeb

b = −8π

∫
R3
v

f(xµ, va)
vavb
|v|

dv1dv2dv3. (2.35)

Note that with respect to frame coordinates g0µpµ = −v0 = |v| and therefore volume form is
given by

dvolPx =
1

|v|
dv1dv2dv3. (2.36)

Lemma 2.3. Let f ∈ C1(P;R+). We have

T̃ [f ] = Ξ2T [f ]. (2.37)

Proof. Write T̃ = T̃abα̃
aα̃b and T = Tabα

aαb. Performing a change of variables ṽa 7→ Ξva
and using the scaling law (2.31) we obtain T̃ab = Ξ4Tab. Since α̃a = Ξ−1αa we obtain the
asserted relation. �

2.3. Commuting with the Liouville vector field. In the remainder of this section we
only consider the unphysical quantities. We define

êa ≡ ea + vcΓa
c
d ∂vd , (2.38)

as the horizontal lifts of the frame fields ea to the cotangent bundle T ∗M̃. For details on the
horizontal lifts, see [Lin66]. Observe that these vectors are tangent to the mass shell. Note
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that then the formula (2.13b) for the Liouville vector field with respect to the orthonormal
frame ea reads

L = ηabvaêb. (2.39)

Lemma 2.4. The Liouville vector field satisfies the commutator formulas

[L, êg] = ηab
(
vaΓ[b

c
g]êc − vcΓg

c
aêb
)

+ ηabvavc
(
Ξdcdbg + 2Sd[b

ceLg]e

)
∂vd , (2.40a)

[L, ∂vg ] = −ηgaêa − ηabvaΓb
g
c ∂vc . (2.40b)

Proof. First we verify formula (2.40a). We calculate

[L, êg] = ηabva[eb, eg] + ηab
[
vaeb, veΓg

e
f∂vf

]
− ηabvavceg (Γb

c
d)∂vd

+ ηabΓb
c
dΓg

e
f

[
vave∂vd , ve∂vf

]
= ηabva[eb, eg] + ηabvave e[b

(
Γg]

e
f

)
∂vf − η

abveΓg
e
aeb + ηabΓb

c
eΓg

e
fvavc∂vf

− ηabvevcΓb
c
dΓg

e
a∂vd − η

abvevaΓb
c
dΓg

e
c∂vd

There are two terms which are not given in terms of the variables xµ, va or the geometric
fields ea, Γa

c
b. Using curvature identities we can however make them disappear. These are

the no torsion condition and the expression of the Riemann tensor in terms of the frame field
and the Christoffel symbols, namely

0 = Σa
c
b = Γa

c
b − Γb

c
a − αc ([ea, eb]) , (2.41)

Rc
dab = e[a

(
Γb]

c
d

)
+ Γf

c
dΓ[b

f
a] + Γb

f
dΓa

c
f − Γa

f
dΓb

c
f , (2.42)

cf. [VK16]. Simplification and decomposing the Riemann tensor as

Rc
dab = Ξdcdab + 2Sd[a

ceLb]e (2.43)

yields formula (2.40a). Equation (2.40b) can be obtained by a straightforward calculation. �

2.4. Commuting with the energy momentum tensor. As it will be described in the
sections below, the source terms of the conformal Einstein field equations involve terms de-
pending on the matter fields. These terms are the components Tab, ∇aTbc of the energy
momentum tensor and its covariant derivative, respectively. It is important to express these
components without derivatives of the unknowns. For this reason we consider the components
of the covariant derivatives in more detail. Using the definition (2.38) of the lifts of the frame
vector fields we obtain the formula

∇aTbc[f ] = Tbc[ea(f)]− Γa
d
bTdc[f ]− Γa

d
cTbd[f ] (2.44)

= Tbc[êa(f)] + 8πΓa
e
d

∫
R3
v

(∂vdf(x
µ, va))

vevbvc
|v|

dv1dv2dv3 (2.45)

− Γa
d
bTdc[f ]− Γa

d
cTbd[f ].

This motivates to include the fields êa(f) and ∂vaf to the collection of unknowns.

3. The symmetric hyperbolic system for massless Vlasov matter

3.1. System for the matter fields. The conformal Einstein field equations (CEF) with
massless Vlasov matter will be formulated and solved in the coordinates (τ, x, va), where
x are coordinates on S3 and va, a = 0, . . . , 3 are the coordinates induced by the g-frame
{ea}3a=0.
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The matter field will be described by the unknowns

uf = (f, fa, ϕ
a), (3.1)

where

fa ≡ eaα∂xαf + vcΓa
c
d∂vdf, ϕa ≡ ∂vaf. (3.2)

In the remainder of this article these functions will be referred to as the matter fields. Denote
by Nf the number of components of uf —there are nine components.

Remark 3.1. It is important to note that the initial for uf are not independent. Indeed,
the initial data for the field ϕa can be calculated from the derivatives of f initially. Hence,
it is necessary to impose, initially, constraints on the initial data of this system. It is then
necessary to check that these constraints are propagated. The propagation of this constraints
is done in Section 5

Now, we consider the equation for the matter fields f, fa, ϕa. In frame coordinates these
equations read

ηabvaeb
µ∂xµf + ηabvavc Γb

c
d ∂vdf = 0, (3.3a)

ηabvaeb
µ∂xµfg + ηabvavc Γb

c
d ∂vdfg = ηab

(
vaΓ[b

c
g]fc − vcΓg

c
afb
)

+ ηabvavc
(
Ξdcdbg + 2Sd[b

ceLg]e

)
ϕd, (3.3b)

ηabvaeb
µ∂xµϕ

g + ηabvavc Γb
c
d ∂vdϕ

g = −ηgafa − ηabvaΓb
g
cϕ

c. (3.3c)

The first equation is just the Vlasov equation in the frame coordinates, cf. (2.13b). The last
two equations follow directly from the commutator formulas (2.40a) and (2.40b).

We want to write these equations in a more compact form. To this end, we denote the
collection of all geometric fields, i.e. the metric and concomitants, by ug —see the definition
in (4.13), below. We introduce the matrices Aµ

f [ug(τ, ·)](x, va), Ab[ug(τ, ·)](x, va), µ, b =

0, . . . , 3, and the vector Ff[ug(τ, ·),uf(τ, ·)](x, va) such that the equations (3.3a)–(3.3b) can
be written as

A0
f [ug(τ, ·)]∂x0uf +Ai

f[ug(τ, ·)]∂xiuf + Ac[u(τ, ·)]∂vcuf = Ff[ug(τ, ·),uf(τ, ·)], (3.4)

where

Ff[ug(τ, ·),uf(τ, ·)] =



0
ηab

(
vaΓ[b

c
0]fc − vcΓ0

c
afb
)

+ ηabvavc
(
Ξdcdb0 + 2Sd[b

ceL0]e

)
ϕd

...
ηab

(
vaΓ[b

c
3]fc − vcΓ3

c
afb
)

+ ηabvavc
(
Ξdcdb3 + 2Sd[b

ceL3]e

)
ϕd

−η0afa − ηabvaΓb
0
cϕ

c

...
−η3afa − ηabvaΓb

3
cϕ

c


(3.5)

and

Aµ
f [ug(τ, ·)](x, va) = ηabvaeb

µI7, Ad[ug(τ, ·)](x, va) = ηabvavcΓb
c
dI7, (3.6)

where I7 is the unit matrix in R7.

Remark 3.2. Observe that the matrix A0
f [ug(τ, ·)] looses rank if va = 0. Hence, whenever

va = 0 the system (3.4) is not symmetric hyperbolic.
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4. The conformal Einstein field equations and their hyperbolic reduction

In this section, we state the conformal Einstein field equations with matter which are sat-
isfied by the unphysical metric g. The system of equations will first be stated in general
coordinates and then with respect to an orthonormal g-frame and finally in the spinor form-
alism. This will be the starting point for the hyperbolic reduction procedure described in the
next section.

The statements in this section are valid for any matter model giving rise to a trace-free
energy momentum tensor, so in particular for massless Vlasov matter.

4.1. The metric equations. In the following let (M̃, g̃ab) denote a space-time satisfying the
Einstein field equations

R̃ab −
1

2
R̃g̃ab + λg̃ab = T̃ab (4.1)

with trace-free matter, that is,

T̃a
a = 0. (4.2)

Moreover, let (M, gab) denote a conformally related (unphysical) space-time such that

gab = Ξ2g̃ab. (4.3)

An unphysical energy-momentum Tab is defined through the relation

Tab ≡ Ξ−2T̃ab. (4.4)

This definition is consistent with massless Vlasov matter, cf. Lemma 2.3. It can be readily
verified that

∇aTab = 0. (4.5)

For reference, we list here the metric conformal Einstein field equations coupled to trace-free
matter:

∇a∇bΞ = −ΞLab + sgab + 1
2Ξ3Tab,

∇as = −Lac∇cΞ + 1
2Ξ2∇cΞTac + 1

6Ξ3∇cTca,
∇cLdb −∇dLcb = ∇aΞdabcd + ΞTcdb,

∇adabcd = Tcdb,

6Ξs− 3∇cΞ∇cΞ = λ.

In the previous equations

Tabc ≡ Ξ∇[aTb]c +∇[aΞTb]c + gc[aTb]d∇dΞ, (4.6)

denotes the rescaled Cotton tensor, Lab is the Schouten tensor, s is the Friedrich scalar, and
dabcd is the rescaled Weyl tensor, cf. [VK16] for details.

4.2. The spinorial formulation of the equations. In this section we make use systematic
use of Penrose’s spinorial notation and conventions. The hyperbolic reduction of the CFE is
more conveniently discussed in terms of their spinorial formulation. The reader can refer to
[VK16] for further details. Since the machinery is heavy, and only the end result is of relevance
for this work, we just state with no further details the equations. The main ideas behind this
hyperbolic reduction procedure can be traced back to the work by Friedrich [Fri91].
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Given an orthonormal frame {ea}3a=0 one constructs a Newman-Penrose (NP) frame
{eAA′}3a=0. The spinorial components of the fields

Σa
c
b, Rcdab, Tab, Lab, dabcd, Tabc, Γa

b
c, (4.7)

will be denoted, respectively, by

ΣAA′
CC′

BB′ , RCC′
DD′AA′BB′ , TAA′BB′ ,

LAA′BB′ , dAA′
BB′CC′DD′ , TAA′BB′CC′ , ΓAA′

BB′
CC′ .

In particular, the connection coefficients can be decomposed in terms of reduced spin connec-
tion coefficients as

ΓAA′
BB′

CC′ = ΓAA′
B

CδC′
B′ + Γ̄AA′

B′
C′δC

B, (4.8)

where ΓAA′BC = ΓAA′(BC) as the connection is metric. The curvature spinor can be written
as

RCC′
DD′AA′BB′ = RC

DAA′BB′δD′
C′ + R̄C′

D′AA′BB′δD
C , (4.9)

where RCDAA′BB′ = R(CD)AA′BB′ . Their expression in terms of the reduced spin connection
coefficients is given by

RC
DAA′BB′ = eAA′(ΓBB′

C
D)− eBB′(ΓAA′

C
D)

−ΓFB′
C
DΓAA′

F
B − ΓBF ′

C
DΓ̄AA′

F ′
B′ + ΓFA′

C
DΓBB′

F
A

+ΓAF ′
C
DΓ̄BB′

F ′
A′ + ΓAA′

C
F ΓBB′

F
D − ΓBB′

C
F ΓAA′

F
D.

Moreover, in view of its symmetries one can write

RC
DAA′BB′ = −ΞφCDABεA′B′ + LDB′AA′δB

C − LDA′BB′δA
C , (4.10)

with φABCD and LAA′BB′ the components of the Weyl and Schouten spinors, respectively.
The spinorial counterpart of Tab satisfies, in view of its vanishing trace, the property

TAA′BB′ = T(AB)(A′B′).

Finally, exploiting the anti-symmetry Tcdb = −Tdcb of the rescaled Cotton tensor, one has the
split

TCC′DD′BB′ = TCDBB′εC′D′ + T̄C′D′BB′εCD,

where TCDBB′ ≡ 1
2TCQ′D

Q′
BB′ . Observe that TCDBB′ = T(CD)BB′ .

The spinorial counterparts of the frame conformal Einstein field equations are obtained
by suitable contractions with the Infeld-van der Waerden symbols. Simpler expressions are
obtained if one takes into account the remarks made in the previous subsection. The conformal
field equations in the spinorial formalism can then be stated, in an arbitrary Newman-Penrose
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tetrad (eAA′):

[eAA′ , eBB′ ]− (ΓAA′
CC′

BB′ − ΓBB′
CC′

AA′)eCC′ = 0 (4.11a)

eAA′(ΓBB′
C
D)− eBB′(ΓAA′

C
D)

−ΓFB′
C
DΓAA′

F
B − ΓBF ′

C
DΓ̄AA′

F ′
B′ + ΓFA′

C
DΓBB′

F
A

+ΓAF ′
C
DΓ̄BB′

F ′
A′ + ΓAA′

C
F ΓBB′

F
D − ΓBB′

C
F ΓAA′

F
D

+ΞφCDABεA′B′ − LDB′AA′δB
C + LDA′BB′δA

C = 0, (4.11b)

∇AA′∇BB′Ξ + ΞLAA′BB′ − sεABεA′B′ − 1
2Ξ3TAA′BB′ = 0, (4.11c)

∇AA′s+ LAA′CC′∇CC′Ξ− 1
2Ξ2∇CC′ΞTAA′CC′ − 1

6Ξ3∇CC′TAA′CC′ = 0, (4.11d)

∇CC′LDD′BB′ −∇DD′LCC′BB′ −∇AA′Ξd
AA′

BB′CC′DD′

−ΞTCC′DD′BB′ = 0, (4.11e)

∇AA′d
AA′

BB′CC′DD′ − TCC′DD′BB′ = 0, (4.11f)

6Ξs− 3∇CC′Ξ∇CC′Ξ− λ = 0. (4.11g)

The connection between the conformal Einstein field equations and the Einstein field equations
is given by the following:

Proposition 4.1. Let

(eAA′ ,ΓAA′
B

C ,Ξ, s, LAA′BB′ , φABCD, TAA′BB′)

denote a solution to the frame conformal field equations with

∇AA′TAA′BB′ = 0

and such that, on an open set U ⊂M,

Ξ 6= 0, det(εABεA
′B′eAA′ ⊗ eBB′) 6= 0,

where ε is the symplectic product on spinors related to the unphysical metric by gab =
εABεA′B′. Then the metric

g̃ = Ξ−2εABεA′B′ω
AA′ ⊗ ωA′B′

where {ωAA′}3a=0 is the dual frame to {eAA′}3a=0, is a solution to the Einstein field equations
(4.1) on U .

4.3. Basic set-up for the frame. In the following, all the calculations will be performed
in an open subset U ⊂ M of (M, g). On U one considers some local coordinates x = (xµ)
and an arbitrary frame {ca}3a=0 which may or may not be a coordinate frame. Let {αa}3a=0

denote the dual co-frame so that 〈αa, cb〉 = δb
a. Moreover, let ∇ denote the Levi-Civita

covariant derivative of the metric g.
It will be assumed that U is covered by a non-singular congruence of curves with tangent

vector τ satisfying the normalisation condition g(τ , τ ) = 2. The vector τ does not need to

be hypersurface orthogonal. Let τAA
′

denote the spinorial counterpart of τa. We restrict
attention to spin bases {εAA} satisfying the condition

τAA′ = ε0
Aε0′

A′ + ε1
Aε1′

A′ .

All spinors will be expressed in components with respect to this class of spin bases.
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Let {eAA′} and {ωAA′} denote, respectively, the null frame and co-frame associated to
the spin basis {εAA}. One therefore has that

〈ωAA′ , eBB′〉 = εB
AεB′

A′ .

At every point p ∈ U a basis of the subspace of T |p(U) orthogonal to τ is given by eAB =

τ(B
A′eA)A′ . The spatial frame can be expanded in terms of the vectors ca as eAB = eAB

aca.
Moreover, one also has that

eAA′ = eAA′
aca.

The frame coefficients can be decomposed using τAA′ as

eAA′
a = 1

2τAA′ − τQA′eAQ
a,

with

ea ≡ τAA′eAA′
a, eAB

a ≡ τ(A
A′eB)A′

a.

4.4. Gauge source functions. Following the hyperbolic reduction procedure introduced in
[Fri91, Section 6], see also [VK16, Section 13.2.2], we consider gauge source functions Fa(x),
FAB(x) and R(x) such that

∇AA′∇AA′eAA′
a = Fa(x), (4.12a)

∇CC′ΓCC′AB = FAB(x), (4.12b)

∇AA′LAA′BB′ = 1
6∇BB′R(x). (4.12c)

The fields Fa(x), FAB(x) and R(x) are, respectively, the coordinate gauge source function,
the frame gauge source and the conformal gauge source function. In particular, R(x) can be
identified with the Ricci scalar of the unphysical metric g.

4.5. Symmetric hyperbolic form of the CEF. It is convenient to introduce the unknown
function

ug =
(
Ξ, ΣAA′ , s, , e

µ
AA′ , ΓAA′BC , ΦAA′BB′ , φABCD

)
(4.13)

denoting the collection of all geometric fields and uf denotes the collection of all matter fields,
cf. Equation (3.1). Denote the number of independent components in ug by Ng. We can now
state the reduced hyperbolic form of the Einstein equations, the theorem initially proved by
Friedrich (see [Fri86, Section 2] for the first version, [Fri91, Sections 3 and 6] for the spinorial
version, and the monograph [VK16, Proposition 13.1])

Proposition 4.2. Given arbitrary smooth gauge source functions

Fa(x), FAB(x), R(x),

such that

∇QQ′eQQ′
a = Fa(x), ∇QQ′ΓQQ′AB = FAB(x),

∇QQ′LQQ′BB′ =
1

6
∇BB′R(x),

and assuming that the components of the matter tensors Tab and Tabc can be written in
such a way that they do not contain derivatives of the matter fields uf, then the conformal
Einstein field equations (4.11a)–(4.11g) imply a symmetric hyperbolic system of equations for
the independent components of the geometric fields ug of the form

A0
g[ug(τ, ·)](x) · ∂τug +Ai

g[ug(τ, ·)](x) · ∂xiug = Fg[ug(τ, ·),uf(τ, ·)](x), (4.14)
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where

Aµ
g : Hm

loc

(
M ; RNg

)
→ Hm

loc

(
M ; RNg×Ng

)
, µ = 0, . . . , 3, (4.15a)

Fg : Hm
loc

(
M ; RNg

)
×Hm

loc

(
P; RNf

)
→ Hm

loc

(
M ; RNg

)
(4.15b)

where uf : M → RNf is mapping containing as components the distribution matter f and some
of its derivatives, see Equation (3.1). The operator A0

g can be decomposed as

A0
g = I + Ã0

g

where I is the identity of the corresponding dimension, and Ã0
g is containing the actual de-

pendency on the metric quantity. Moreover the matrices Aµ
g [z] are polynomials in z ∈ RNg

of degree at most one with constant coefficients and they are symmetric.

5. Subsidiary equations and propagation of the constraints

The conformal field equations come with constraints imposed by the form of the system
(see for instance [VK16, Chapter 13.3]). This constraints relate quantities within the system
of conformal field equations, and form a system of compatibility equations which need to be
satisfied. In the presence of matter fields, the coupling imposes further constraints. These
have two origins: the constraints coming from the presence of matter in the conformal field
equations, and those directly related to the matter fields. Altogether, to verify that solutions
for the system (4.11a)-(4.11g) coupled to the system (3.3a) to (3.3c), it is necessary to check
that the following so-called zero quantities,

Zab ≡ ∇a∇bΞ + ΞLab − sgaa −
1

2
Ξ3Tab, (5.1a)

Za ≡ ∇as+ Lac∇cΞ− 1

2
Ξ2∇cΞTac −

1

6
Ξ3∇cTac, (5.1b)

∆cdb ≡ ∇cLdb −∇dLcb −∇aΞdacdb − ΞT cdb, (5.1c)

Λacd ≡ ∇ad
a
bcd − Tcdb, (5.1d)

Z ≡ 6Ξs− 3∇cΞ∇cΞ− λ, (5.1e)

Σa
c
b ≡ Γa

c
b − Γb

c
a − αc ([ea, eb]) , (5.1f)

Ξc
dab ≡ Ξdcdab + 2Sd[a

ceLb]e (5.1g)

−
(
e[a

(
Γb]

c
d

)
+ Γf

c
dΓ[b

f
a] + Γb

f
dΓa

c
f − Γa

f
dΓb

c
f

)
,

completed with the matter zero quantities

Φa ≡ ϕa − ∂vaf, (5.2a)

Fa ≡ fa − êa(f), (5.2b)

remain zero throughout the time evolution.
It is known that the constraints related to the Einstein equations, when the stress-energy

tensor is stress-free can be recast as a symmetric hyperbolic system (see [Fri91]; also [VK16,
Proposition 13.2]). Hence, if these quantities are initially vanishing, they will remain so during
the evolution. A similar calculation needs to be performed for the matter zero-quantities. We
prove the following
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Lemma 5.1. The zero quantities Φa and Fa, a = 0, . . . , 3 obey the homogeneous equations
in the zero quantities:

LΦg = −ηgaFa − ηabvaΓb
g
cΦc, (5.3a)

LFg = ηab
(
vaΓ[b

c
g]Fc − vcΓg

c
aFb

)
+ ηabvavc

(
Ξdcdbg + 2Sd[b

ceLg]e

)
Φd (5.3b)

+ ηabvavcΞc
dbg

(
ϕd − Φd

)
+ ηabvaΣb

c
g

(
fc − Fc − vfΓc

f
d(ϕd − Φd)

)
.

Proof. To perform this calculation, we need to calculate the commutator between the Liouville
vector field and derivatives of the matter field, without assuming that the expression of the
metric is torsion, or that that curvature expression hold. We observe that, using Equation
(2.40a),

[L, êg] = ηabvaΓ[b
c
g]êc − ηabvcΓg

c
aêb − ηabvaΣb

c
g

(
êc − vfΓc

f
d∂vd

)
+ ηabvavc

(
Ξdcdbg + 2Sd[b

ceLg]e − Ξc
dbg

)
∂vd .

We deduce that the zero quantity Fa satisfies (5.3b). In a similar fashion, we observe that,
using Equation (2.40b), we can establish (5.3a). �

6. Existence and Stability Theory

6.1. The initial value problem. The strategy here is as outlined in [Fri86]. The initial data
which we prescribe on S3 for the Cauchy problem will be chosen to be a background space-
time (de Sitter or Minkowski) plus a perturbation. The background space-times are discussed
and explicitly given in Section 7 and 8, below. The conformal Einstein field equations with
massless Vlasov matter are given with respect to the orthonormal g-frame {ea}3a=0. In order
to understand the space-times provided by the Cauchy problem as perturbation of de Sitter or
Minkowski we wish to have some notion of background frame on M̂ with whom the g-frame
{ea}3a=0 can be compared. With the help of so called cylinder maps φ : U ⊂ M̂ → R × S3

(cf. [Fri86]), one can on M̂ define the fields c0, . . . , c3 in terms of the φ-pull-backs of the

coordinate functions τ, x0, . . . x4 from the Einstein cylinder to M̂. By these means, one obtains
a collection of fields which are globally defined on M̂. Moreover, these are orthonormal with
respect to the φ-pull back of the metric gE of the Einstein cylinder and for the g-frame
{ea}3a=0 we have

ea = ea
bcb. (6.1)

In [Fri86], it is shown that this procedure fixes the gauge source functions Fa, FAB, R,
cf. (4.12a)–(4.12c), to be

F a = 0, FAB = 0, R = −6. (6.2)

We take the spinorial counterparts ebAA′ of the components ea
b of the frame fields ea with

respect to the vacuum frame fields cb as unknowns of the conformal Einstein field equa-
tions with massless Vlasov matter and express the other geometric fields in terms of these
unknowns. Note that as this place we make a specific choice for the frame fields {ca}3a=0

already mentioned in Section 4.3.
Combining the equations (3.4) for the matter fields and the equations (4.14) for the geomet-

ric fields, we obtain the the conformal Einstein field equations with massless Vlasov matter
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A0
g[ug(τ, ·)](x)∂τug +Ai

g[ug(τ, ·)](x)∂xiug = Fg[ug(τ, ·),uf(τ, ·)](x), (6.3a)

A0
f [ug(τ, ·)](x, va)∂τuf +Ai

f[ug(τ, ·)](x, va)∂xiuf + Ac[ug(τ, ·)](x, va)∂vcuf

= Ff[uf (τ, ·),uf(τ, ·)](x, va). (6.3b)

We recall that a solution u = (ug,uf) of the system (6.3a)–(6.3b) consists of the geometric
fields in ug as given by (4.13), and matter fields in uf, as given by (3.1).

In order to apply Kato’s theorem, we have to assume that, initially, the coefficient matrices
and the source terms are bounded from above, and that the A0-matrices are bounded away
from zero. This could, a priori, be problematic if the range of the va-variables is neither
bounded above, nor away from the zero velocity. Let δ ∈ (0, 1) and define

Ωδ ≡
{

(v0, v1, v2, v3) ∈ R4 : v0 = −|v|, δ ≤ |v| ≤ 1

δ

}
. (6.4)

In order to avoid the aforementioned boundedness issues we consider the matter fields as
functions from the space Hm

0 (S3 × Ω1/4; RNf) and we regard the coefficients and the source
terms in the system (6.3a)–(6.3b) as operators

Aµ
g : Hm

(
S3; RNg

)
→ Hm

(
S3; RNg×Ng

)
, µ = 0, . . . , 3, (6.5a)

Aν
f ,Aa : Hm

(
S3; RNg

)
→ Hm

0

(
S3 × Ω1/4; RNf×Nf

)
, ν,a = 0, . . . , 3, (6.5b)

Fg : Hm
(
S3; RNg

)
×Hm

0

(
S3 × Ω1/4; RNf

)
→ Hm

(
S3; RNg

)
, (6.5c)

Ff : Hm
(
S3; RNg

)
×Hm

0

(
S3 × Ω1/4; RNf

)
→ Hm

0

(
S3 × Ω1/4; RNf

)
. (6.5d)

Remark 6.1. One has the following:

(i) We assume later that m ≥ 5. At this level of regularity, the considered Sobolev spaces
are algebras. Since all the operators considered above are algebraic expressions in the
components ug, the integral in a compact v set of the components of uf, and of the
components of uf, they take values in the corresponding Sobolev space.

(ii) Kato [Kat75] considers uniformly local Sobolev spaces, which are not relevant for us
since we are working with spaces which are compact in space and velocities.

(iii) Moreover we remark that the operators (6.5a)–(6.5d) are special cases of the operators
considered in [Kat75]. There the operators are denoted by Gj(t), F (t) and they are
assumed to be non-linear operators sending functions with values in a Hilbert space
P to functions with values in B(P ) or P , respectively. These non-linear operators
have an explicit t-dependence. The operators (6.5a)–(6.5d) however have no explicit
t-dependence and the Hilbert space is RNg or RNf , respectively.

We will see that for the class of initial data which we prescribe for the system (6.3a)–(6.3b),
if the v-support is bounded initially in Ω1/2, say, it will remain bounded sufficiently long in
Ω1/4. We now discuss this class of initial data. To this end, we use the notation

ů = (ůg, ůf) ∈ Hm+1(S3 × Ω1/4; RNg+Nf), where ůf = 0 (6.6)

to denote a background solution. For technical reasons, we need to assume higher regular-
ity which is available since this background solution describes either the de Sitter or the
Minkowski space-time (see [Kat75, Theorem I and Eq. (3.29)]). The metric functions ůg are
explicitly given in Sections 7 and 8 below. At this stage, it is only important that these func-
tions solve the conformal Einstein field equations with massless Vlasov matter (6.3a)–(6.3b)
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on the whole Einstein cylinder R × S3. Denote furthermore, the initial data for ůg by ů?g
—this data is prescribed on the whole of S3.

Let ε, δ > 0 and define for τ ∈ [0, π]

Dg
ε(τ) ≡ {w ∈ Hm(S3; RNg) : ‖ůg(τ)−w‖Hm(S3;RN ) ≤ ε}, (6.7a)

Df
ε,δ ≡ {v ∈ H

m
0 (S3 × Ω1/4; RNf) : supp(v) ⊂ S3 × Ωδ, ‖v‖Hm

0 (S3×Ω1/4;RNf )
≤ ε}. (6.7b)

Note that Dg
ε(τ) and Df

ε,δ(τ) are bounded, closed subsets of Hm(S3; RNg) and Hm(S3 ×
Ω1/4;RNf), respectively. Finally, denote

D(ε,δ)(τ) ≡ Dg
ε(τ)×Df

ε,δ, (6.8)

and
Dg
ε ≡

⋃
τ∈[0,π]

Dg
ε(τ), D(ε,δ) ≡

⋃
τ∈[0,π]

D(ε,δ)(τ) (6.9)

The initial data ů will be chosen in D(ε,1/2)(0).

6.2. Application of Kato’s theorem. In the following lemmas we establish the necessary
conditions on the operators (6.5b)–(6.5d) so that Kato’s theorem can be applied. It has
already been discussed in Proposition 4.2 that the coefficients matrices (6.5a) of the system
(6.3a) of the geometric fields fulfil all necessary conditions.

Lemma 6.1. (Assumptions of Kato’s theorem – matter equations)
The operators (6.5b), (6.5c) in the system for the matter fields uf fulfil the following condi-
tions:

(i) There exists a constant ϑ > 0 such that for all ν,a = 0, . . . , 3 one has the bounds, for

all v ∈ Dg
ε and w ∈ Df

(ε,1/4),∥∥Aν
f [v]

∥∥
Hm(S3×Ω1/4;RNf×Nf )

+ ‖Aa[v]‖
Hm

ul (S3×Ω1/4;RNf×Nf )
≤ ϑ, (6.10a)

‖Ff[v,w]‖
Hm

0 (S3×Ω1/4;RNf )
≤ ϑ. (6.10b)

(ii) There exists a (Lipschitz) constant µ > 0 such that for all j = 1, 2, 3, a = 0, . . . , 3 one

has the bounds, for all v1,v2 ∈ Dg
ε and w1,w2 ∈ Df

(ε,1/4),∥∥∥Aj
f [v1]−Aj

f [v2]
∥∥∥
Hm(S3×Ω1/4;RNf×Nf )

≤ µ ‖v1 − v2‖Hm(S3;RNg ) , (6.11a)

‖Aa[v1]− Aa[v2]‖
Hm(S3×Ω1/4;RNf×Nf )

≤ µ ‖v1 − v2‖Hm(S3;RNg ) , (6.11b)

‖Ff[v1,w1]− Ff[v2,w2]‖
Hm

0 (S3×Ω1/4;RNf )
≤ µ

(
‖v1 − v2‖Hm(S3;RNg )

+ ‖w1 −w2‖Hm
0 (S3×Ω1/4;RNf )

)
. (6.11c)

(iii) There exists a (Lipschitz) constant µ′ > 0 such that, for all v1,v2 ∈ Dg
ε ,∥∥Aν

f [v1]−Aν
f [v2]

∥∥
Hm−1(S3×Ω1/4;RNf×Nf )

≤ µ′ ‖v1 − v2‖Hm−1(S3;RNg ) , (6.12)

(iv) For each ν = 0, . . . , 3 the matrices Aν
f [v](x, vb) and Aa[v](x, vb) are symmetric for all

x ∈ S3, vb ∈ Ω1/4.

(v) There exists a constant d > 0 such that, for all v,v1,v2 ∈ Dg
ε and w,w1,w2 ∈ Df

(ε,1/4),

A0
f [v](x, vb) ≥ d for all x ∈ S3, vb ∈ Ω1/4.
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Proof. By inspecting the formulas of the operators one can easily convince oneself that the
continuity and symmetry properties hold. For boundedness, it is essential that the v-variables
do not range over R4 but only over the bounded domain Ω1/4. �

For the source term in equation (6.5c) of the system (6.3a) for the geometric fields only
the source terms containing the matter fields have to be considered. For the other quantities
Proposition 4.2 provides the necessary properties.

Lemma 6.2. (Assumptions of Kato’s theorem – metric equations)

Consider u?g,u
?(1)
g ,u

?(2)
g ∈ Dg

ε and u?f ,u
?(1)
f ,u

?(2)
f ∈ Df

(ε,1/4) (defined in (6.8)), where

u?g = (. . . , (Γa
c
b)?, . . . ) , u?f =

(
f?, f

?
a, ϕ

b
?

)
. (6.13)

Consider the operators

Tab[u?f ](x) = 8π

∫
R3

f?(x, vc)
vavb√

v2
1 + v2

2 + v2
3

dv1dv2dv3, (6.14a)

Tabc[u?g,u
?
f ](x) = 8π(Γa

e
d)?(x)

∫
R3

ϕd
? (0, x, va)

vevbvc
|v|

dv1dv2dv3. (6.14b)

These operators fulfil the conditions:

(i) There exists a constant ϑ > 0 such that, for all a, b, c,d, e = 0, . . . , 3, the following

bounds hold: for all u?g ∈ D
g
ε and u?f ∈ D

f
(ε,1/4),∥∥Tab[u?f ]

∥∥
Hm(S3;RNg )

≤ ϑ, (6.15a)∥∥Tcde[u?g,u
?
f ]
∥∥
Hm(S3;RNg )

≤ ϑ. (6.15b)

(ii) There exists a (Lipschitz) constant µ > 0 such for that, all a, b, c,d, e = 0, . . . , 3, the

following bounds hold: for all u
?(1)
g ,u

?(2)
g ∈ Dg

ε and u
?(1)
f ,u

?(2)
f ∈ Df

(ε,1/4)∥∥∥Tab[u
?(1)
f ]− Tab[u

?(2)
f ]

∥∥∥
Hm(S3;RNg )

≤ µ
∥∥∥u?(1)

f − u
?(2)
f

∥∥∥
Hm

0 (S3×Ω1/4;RNg )
,

(6.16a)∥∥∥Tcde[u?(1)
g ,u

?(1)
f ]− Tcde[u?(2)

g ,u
?(2)
f ]

∥∥∥
Hm(S3;RNg )

≤ µ
( ∥∥∥u?(1)

g − u?(2)
g

∥∥∥
Hm(S3;RNg )

+
∥∥∥u?(1)

f − u
?(2)
f

∥∥∥
Hm

0 (S3×Ω1/4;RNf )

)
.

(6.16b)

Proof. Let u?g,u
?(1)
g ,u

?(2)
g ∈ Dg

ε and u?f ,u
?(1)
f ,u

?(2)
f ∈ Df

(ε,1/4), arbitrary.

(i) Boundedness of the operators can be seen as follows. Observe first that in the support
of w we have 1/4 < |v| < 4. So, the terms vavb/|v| are bounded and can be pulled out

of the integrals. Furthermore, since u?g,u
?(1)
g ,u

?(2)
g ∈ Dg

ε , the Christofell symbols of the

perturbation are bounded. Integrating over S3 and using Jensen’s inequality yield the
L2(S3 × Ω1/4; R)-norm of f times a constant. Note that there the compact support of f

in velocities is crucial. The L2(S3 ×Ω(1/4);R)-norm of f? can course be bounded by the

Hm
0 (S3 × Ω(1/4);R)-norm of f?, which in turn is smaller than ε.



THE CONFORMAL EINSTEIN FIELD EQUATIONS WITH MASSLESS VLASOV MATTER 22

(ii) Lipschitz-continuity with respect to w. Consider first (6.16a). Again, we observe that
due to the assumption on the support of w we can pull the factors vavb/|v| out of the
integrals. Now the claim follows by linearity of the integral. The operator Tabc can be
dealt with analogously.

�

We are now ready to state and prove our stability result.

Theorem 6.1. Let ε > 0 and consider initial data u? ∈ Dε,1/4, as defined in (6.8), on S3.

Given m ≥ 5 and τ• >
3
4π then, if ε is small enough this initial data give rise to a solution

u ∈ C0
(
[0, τ•];H

m(S3;RNg)×Hm(S3 × R4
v;RNf)

)
∩ C1

(
[0, τ•];H

m−1(S3;RNg)×Hm−1(S3 × R4
v;RNf)

)
(6.17)

of the conformal Einstein field equations with massless Vlasov matter, equations (4.11a)–
(4.11g), (3.3a)–(3.3c). This solution satisfies

supp(uf(τ, ·)) ∈ S3 ×
{

(v0, . . . , v3) ∈ R4
v : v0 = −|v|, 1

4
≤ |v| ≤ 2

}
(6.18)

for all τ ≤ T . Furthermore, given a sequence of initial data u
(n)
? = ů

(n)
? + ŭ

(n)
? such that

‖ ŭ
(n)
? ‖m< ε and ŭ

(n)
? → 0 as n→∞,

then for the corresponding solutions ŭ
(n)
n one has that ŭ(n) → 0 uniformly in τ ∈ [0, τ•] as

n→∞.

Remark 6.2. The proof of Theorem 6.1 relies on the proofs of [Kat75, Theorems II and III].
Our situation differs in in the following points from the situation considered there:

(i) In the current setting we look for an existence and stability result for a system of two
coupled, non-linear symmetric hyperbolic systems, one system for the geometric fields
ug and one system for the matter fields uf. The two systems cannot simply be considered
as one single system since the unknowns are of different dimensions.

(ii) The domain of the solution functions of the symmetric hyperbolic systems considered
in this article is not Rm for some m > 0 but S3 or S3 × Ω1/4. A localisation procedure
described in [Fri91] or [VK16] makes it possible to state and prove Kato’s existence and
stability theorems on compact manifolds without boundary (in particular on S3). For
solutions that are launched by initial data which are sufficiently close to the vacuum
solution and the matter fields of which have v-support contained in Ω1/2, we will show
that the support in the v-variables stays within Ω1/4. For this reason, for the specific
system of equations at hand and solutions close to the de Sitter solution we can work
with Ω1/4 instead of R4.

Proof of Theorem 6.1. In this proof we will use the shorthand

Hm ≡ Hm(S3; RNg)×Hm(S3 × Ω1/4; RNf), (6.19)

‖ · ‖m ≡ ‖ · ‖Hm . (6.20)

Recall that Ng denotes the number of independent components of the geometric fields and
Nf the number of independent components of the matter fields. Ω1/4 is defined in (6.4).

The proof consists in several steps. First a local existence result for the solution u with
initial data u? is demonstrated on a (short) time interval [0, T ′], T ′ ≤ τ• via a contraction
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argument [Kat75, Proof of Thm. II]. This proof implies that for initial data ũ? close to u?
a solution ũ exists on the same interval [0, T ′]. In the next step a local stability result is
established on the (short) interval [0, T ′], i.e. sup0≤τ≤T ′ ‖ũ(τ) − u(τ)‖m → 0, uniformly in
τ , as ‖ũ? − u?‖m → 0 [Kat75, Proof of Thm. III]. Finally these local results can be applied
successively in order to establish them on the interval [0, τ•] [Kat75, p. 200, last paragraph].

Remark 6.3. This proof relies on the proofs of Theorems II and III in [Kat75] and details
are given only for the parts which differ from these proofs. Since the reader might want to
compare with the proofs in [Kat75], we comment on the notation. In [Kat75], the contraction
for the local existence result is set up on a set S of functions which stay close to a function
u00. This is a technical help function, needed to use stability estimates for linear hyperbolic
systems which need more regularity. In our setting the background solution ů(τ) is chosen
for u00, with τ = 0 for the result on [0, T ′], and τ > 0 in the successive application of the
local result. At this point, the higher regularity of the initial data of the background solution
is used.

First we establish the local existence result.

Lemma 6.3. Let ε > 0 and consider initial data u? ∈D(ε,1/4)(0) such that ‖u? − ů?‖m ≤ ε2

for some ε2 ∈ (0, ε]. Then, if ε2 is chosen sufficiently small, there exists R such that

if (w,v) ∈ Hm and ‖(w,v)− ů?‖m ≤ R then (w,v) ∈Dε,1/2(0), (6.21)

ε2

(∥∥A0
g[v]

∥∥1/2

L∞
+
∥∥∥A0

f [v]
∥∥∥1/2

L∞

)
≤ R/3, for (w,v) ∈Dε,1/2(0). (6.22)

We define the operator

Φ : C1
(
[0, T ]; Hm(S3;RNg)×Hm

0 (S3 × Ω1/4;RNf)
)

→ C0
(
[0, T ]; Hm(S3;RNg)×Hm(S3 × R4;RNf)

)
(6.23)

which assigns to a function (w,v) the solution u(w,v) ≡ (u
(w,v)
g ,u

(w,v)
f ) of the linear hyperbolic

system

A0
g[w(τ, ·)](x)∂τu

(w,v)
g +Ai

g[w(τ, ·)](x)∂xiu
(w,v)
g = Fg[w(τ, ·),v(τ, ·)](x), (6.24)

A0
f [w(τ, ·)](x, va)∂τu

(w,v)
f +Ai

f[w(τ, ·)](x, va)∂xiu
(w,v)
f + Ac[w(τ, ·)](x, va)∂vcu

(w,v)
f (6.25)

= Ff[w(τ, ·),v(τ, ·)](x, va),

equipped with the initial data u? ∈D(ε,1/4). Note that the linear system (6.24)–(6.25) is not
coupled. So we can solve each system individually by Theorem I in [Kat75]. This shows that
the operator Φ is well-defined.

Next, we wish to set up a contraction argument. To this end we first define the set
S = S(R, T ′, L′) as the set of all functions (w,v) : [0, T ′]→ Hm such that

‖(w,v)(τ, ·)− ů?‖m ≤ R, τ ∈ [0, T ′], (6.26)

‖(w,v)(τ, ·)− (w,v)(τ ′, ·)‖m−1 ≤ L′(τ − τ ′), 0 ≤ τ ′ ≤ τ ≤ T ′, (6.27)

where T ′ ≤ T and L′ are positive constants to be determined later.
The next steps are now to check that if T ′ is chosen sufficiently small and L′ sufficiently

large we have for all (w,v) ∈ S that Φ(w,v) ∈ S, and that Φ acts as a contraction on S.
First we check that Φ(w,v) ∈ S. We have to verify (6.26), (6.27), and the support condition

supp(Φ(w,v)(τ, ·)) ⊂ S3 × Ω1/4, τ ∈ [0, T ′]. (6.28)
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[Kat75, Theorem I] provides the stability estimates∥∥∥u(w,v)
g (τ, ·)− ů?g

∥∥∥
Hm(S3;RNg )

≤ β(L′, T ′), (6.29)∥∥∥u(w,v)
f (τ, ·)− ů?f

∥∥∥
Hm(S3×R4;RNf )

≤ β(L′, T ′), (6.30)

and ∥∥∥∂τu(w,v)
g (τ, ·)

∥∥∥
Hm−1(S3;RNg )

≤ c(1 + ϑm−1)ϑ(1 + ‖ů?‖m + β(L′, T ′)), (6.31)∥∥∥∂τu(w,v)
g (τ, ·)

∥∥∥
Hm−1(S3×R4;RNf )

≤ c(1 + ϑm−1)ϑ(1 + ‖ů?‖m + β(L′, T ′)), (6.32)

where c > 0 is a universal constant and, furthermore,

β(L′, T ′) = cϑeα(L′)T ′
(
‖u? − ů? ‖m + c(1 + ϑm)ϑ(1 + ‖ů?‖m+1)T ′

)
, (6.33)

α(L′) = c(ν + µ′L′ + ϑ+ ϑm+1), (6.34)

and the constants ϑ, µ, and µ′ are the constants of Lemma 6.1. Since

‖ · ‖m . ‖ · ‖Hm(S3;RNg ) + ‖ · ‖
Hm(S3×R4;RNf )

(6.35)

the conditions (6.26) and (6.27) follow similarly as in [Kato, 1975].
The support property (6.28) can be shown by an analysis of the characteristic system of

the Vlasov equation. Let ς 7→ (xµ(ς), va(ς), ς ∈ R be a solution of the characteristic system
of the massless Vlasov equation reading

ẋµ(ς) = ηab
w

ea
µ(x(ς)) vb(ς), (6.36a)

v̇d(ς) = ηab
w

Γb
c
d(x(ς)) va(ς)vc(ς), (6.36b)

where the mass shell condition

v0(ς) = −
√

(v1(ς))2 + (v2(ς))2 + (v3(ς))2 (6.37)

is propagated. The notation
w
ec
µ,

w
Γa

c
b indicates that we refer to the components of w which

correspond to ec
µ and Γa

c
b, respectively.

The support of f consists in characteristic curves ς 7→ (xµ(ς), vb(ς)) which are launched
from the initial hypersurface S3×Ω1/2, which is characterised by τ = 0, i.e. x0(0) = 0. Denote
further

xµ? ≡ xµ(0), v?b ≡ vb(0). (6.38)

The functions
w
ec
µ,

w
Γa

c
b can be written as

w

Γa
c
b = Γ̊a

c
b + Γ̆a

c
b,

w

ec
µ = e̊c

µ + ĕc
µ, (6.39)

the quantities with a “˚” denote quantities of the background solution and quantities with
“ ˘ ” denote a small perturbation. In view of the explicit expressions given in (7.2)–(7.3) for
de Sitter or (8.2)–(8.3) for Minkowski, this yields∣∣∣∣ w

Γa
c
b

∣∣∣∣ ≤ ε0acb + ε,

∣∣∣∣ w

e0
µ

∣∣∣∣ ≥ δ0
µ − ε,

∣∣∣∣ w

ei
µ

∣∣∣∣ ≥ 1− ε (6.40)
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on S3× [0, T ′). Without loss of generality we assume T ′ ≤ 3π/4. Otherwise we just change T ′

to 3π/4. Consider now the differential equation for v0. Observing that Γ̊b
c
0 = 0 we deduce

that there exists a constant C > 0 such that

|v̇0(ς)| =
∣∣∣ηabΓ̆b

c
0(x(ς)) va(ς)vc(ς)

∣∣∣ ≤ Cε(v0(ς))2.

This equation yields

|v0(ς)| ≥
(

1

v?0
+ ες

)−1

≥ (2 + ες)−1 , (6.41)

where in the last inequality |v?0| ≥ 1
2 has been used. Next, we control the range of the affine

parameter ς for which the characteristic curve (xµ(ς), vb(ς)) reaches x0(ς) = T ′. We have

ẋ0(ς) =

∣∣∣∣ ηab w

ea
µvb

∣∣∣∣ ≥ (1− ε) |v0(ς)| ≥ 1− ε
2 + ες

. (6.42)

In the second inequality we used |v0| ≥ |v1|, |v2|, |v3| and in the last inequality we substituted
(6.41). This yields

x0(ς) ≥ 1− ε
ε

ln

(
2 + ε2

2

)
(6.43)

and therefore see that x0(ς) reaches min{T ′, 3π/4} before ς reaches

ς̂ ≡ 2

ε

(
e

3π
4

ε
1−ε − 1

)
. (6.44)

Substituting this again into (6.41) yields

∀ς ≤ ς̂ , |v0(ς̂)| ≥ 1− 1

2
e

3π
4

ε
1−ε ≥ 1

4
, (6.45)

provided that ε is small enough. Now we have established that for all (w,v) we have Φ(w,v) ∈
S. The next step is to show that Φ acts as a contraction on S. This goes however analogously
to the proof of [Kat75, Lemma 4.5]. By Banach’s fixed point theorem, the local existence of
the solution on [0, T ′] follows.

The remaining steps of the proof require very little modification of the original proofs of
[Kat75, Theorems II and II]. The operator Φ and the norms (6.35) have to be replaced.
Furthermore, as above, results for linear hyperbolic systems have to be applied to each of the
subsystems (6.24) and (6.25) separately. Finally, when the local result is applied successively
in order to obtain the result on the interval [0, τ•], in the above, ů? has to be replaced by
ů(T ′) etc. �

7. De Sitter like space-times

In this section we state the non-linear stability result for the de Sitter space-time. It is
obtained by applying Theorem 6.1 to initial data where the background solution ů is de Sitter
space-time.

Let udS be the collection of functions

udS ≡ (ΞdS, (ΣAA′)dS , sdS, (eAA′
a)dS , (ΓAA′BC)dS , (ΦAA′BB′)dS , (φABCD)dS) , (7.1)

where

ΞdS = cos(τ), sdS = −1

4
cos(τ), (eAA′

a)dS = σAA′
a, (7.2)
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with σAA′
a the Infeld-van der Waerden symbols and the remaining functions are the spinorial

counterparts of

(Γa
c
b)dS = ε0a

c
b, (Σi)dS = 0, (Lab)dS = δa

0δb
0 − 1

2
ηab, (dabcd)dS = 0. (7.3)

We are now using [VK16, Lemma 15.1].

Lemma 7.1. The functions udS defined over the Einstein cylinder R×S3 constitute a solution
to the spinorial vacuum conformal Einstein field equations, where the gauge source functions
associated to these solutions are given by (6.2).

The de Sitter spacetime corresponds to the domain

M̃dS = {(τ, x) ∈ E : τ ∈ (−π, π), x ∈ S3}. (7.4)

In particular, observe that M̃dS is a domain in E where ΞdS > 0. Furthermore, we denote

u?dS ≡ udS

∣∣
τ=0

. (7.5)

Hence, u?dS is initial data which, if prescribed on S3, yields udS on [0,∞)× S3.
The perturbation ansatz gdS + ğ of the de Sitter metric gdS on the Einstein cylinder E gives

rise to initial data u? on S3. It turns out (cf. [VK16, Section 15.2]) that this initial data is of
the form u? = udS + ŭ? and that u? ∈ D(ε,1/2), if ğ is small enough, where in the definition
(6.8) of D(ε,1/2) we choose u?dS as background solution ů?. We assume that the initial data

u? solves the conformal constraint equations on S3 with source terms generated by the initial
value u?f of the particle distribution function. Then Theorem 6.1 yields a solution u (which

can be extended) on [0, τ•] × S3 × R4
v which is close to the de sitter solution udS, where

τ• ≥ 3π/4.
Initially, the conformal factor Ξ is not zero (it is close to one to be precise). We will now

demonstrate that there exists a hypersurface I +, diffeomorphic to S3 such that Ξ = 0 on I +

and Ξ > 0 on the domain bounded by {τ = 0} and I +. This domain will then be identified
as the perturbed de Sitter space-time. This characterisation is now made precise.

Lemma 7.2. Given a solution ŭ as given by Theorem 6.1 with ‖ŭ?‖m < ε sufficiently small,
there exists a function τ+ = τ+(x), x ∈ S3 such that 0 < τ+(x) < τ• and

Ξ > 0 on M̃ ≡
{

(τ, x) ∈ [0, τ•]× S3 | 0 ≤ τ < τ+(x)
}
,

Ξ = 0 and ΣaΣ
a = −1

3λ < 0 on I + ≡
{

(τ+(x), x) ∈ R× S3
}
.

Remark 7.1. From the previous lemma, it follows that the solution to the Einstein-Vlasov
equations obatined from Theorem 6.1 is future asymptotically simple. Accordingly, the space-
time is null geodesically complete —see e.g. [PR88]. The future timelike geodesic complete-
ness of the solution can be obtained using the notion of conformal geodesics as described
in [LVK12]. Conformal geodesics provide a convenient conformal description of physical
geodesics. The completeness of these curves in the physical portion of the conformal space-
time follows from the Cauchy stability of solutions to ordinary differential equations and the
fact that is possible to obtain a common ε for all the curves starting on the initial hypersurface
as it is compact.

Theorem 7.1. Given m ≥ 5, a de Sitter-like solution u? = u?dS + ŭ? to the Einstein-Vlasov
conformal constraint equations such that ||ŭ?||m < ε for ε > 0 suitably small gives rise to a
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unique Cm−2 solution to the conformal Einstein-Vlasov field equations on

M≡ M̃ ∪I +

with M̃ and I + as defined in Lemma 7.2. The solution implies, in turn, a solution (M̃, g̃), to
the Einstein field equations with de Sitter-like cosmological constant for which I + represents
conformal infinity. The space-time (M̃, g̃) is geodesically complete.

Proof. Once a solutions u on [0, τ•] ×S3 is obtained by virtue of Theorem 6.1, the remaining
properties can be shown by using that the geometric fields ug are close to the de Sitter ones,
udS. The arguments are identical to the vacuum case and we refer to [VK16, Section 8]. �

8. Minkowski-like space-times

Theorem 6.1 also allows to obtain a semi-global stability result for the Minkowski sace-
time. To this end, we first discuss the background solution uM on the Einstein cylinder E .
Locally on S3 we work with the coordinates (ψ, ϑ, ϕ) ∈ [0, π]× [0, π]× [0, 2π). Let uM be the
collection of functions

uM ≡ (ΞM, (ΣAA′)M , ΣM, (eAA′
a)M , (ΓAA′BC)M , (ΦAA′BB′)M , (φABCD)M) , (8.1)

where

ΞM = cos τ + cosψ, sM = −1

4
(cos τ − 3 cosψ), (eAA′

a)M = σAA′
a, (8.2)

and σAA′
a are the Infeld-van der Waerden symbols. The remaining functions in uM are the

spinorial counterparts of

(Γa
c
b)M = ε0a

c
b, (Σi)M = 0, (Lab)M = δa

0δb
0 − 1

2
ηab, (dabcd)M = 0. (8.3)

Lemma 8.1. The functions uM defined over the Einstein cylinder R×S3 constitute a solution
to the spinorial vacuum conformal Einstein field equations, where the gauge source functions
associated to these solutions are given by (6.2).

In terms of the coordinates on E the Minkowski spacetime corresponds to the domain

M̃M = {x ∈ E : 0 < ψ < π, ψ − π < τ < π − ψ}. (8.4)

Recall that M̃M is the domain in E where ΞM > 0. As in the case of the de Sitter space time,
we want to identify an initial data set which evolves into Minkowski space-time (M̃M, g̃M).
This can however not be done in an analogous way as for the de Sitter space-time since the
initial data for the conformal Einstein field equations are generically singular at the point
i0 = {χ = π, τ = 0} describing space-like infinity —see e.g. [VK16, Chapter 21]. For this
reason we only prove a semi-global stability result where we prescribe initial data on the
hypersurface

S̄ =
{

0 ≤ ψ ≤ π

2
, τ =

π

2

}
(8.5)

which corresponds to a hyperboloid —any other positive value for τ would work as well. Only
a portion of the Minkowski (-like) space-time can be obtained this way. Following [Fri86] we
construct an initial data set for the conformal Einstein field equations with massless Vlasov
matter (6.3a)–(6.3b) on S3 with help of a so called extension operator

E : Hm(S; RNg)→ Hm(S3; RNg). (8.6)
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This operator permits to extend the initial data set on S to a vector-valued function on the
whole of S3 (which does not satisfy the constraints on S3 \ S) such that for a constant K > 0
there holds for any w ∈ Hm(S; RNg)

(Ew)(x) = w(x) a.e. inS, ‖Ew‖m ≤ K‖w‖Hm(S;RNg ). (8.7)

In view of the above we write
u?M ≡ E

(
uM

∣∣
S
)
. (8.8)

Accordingly u?M are initial data which, if prescribed on S3, yield a solution u of the conformal
Einstein field equations on [0,∞) × S3 which coincides with Minkowski space-time in the
causal future D+(S̄) of S̄.

As in the stability analysis of de Sitter space-time, we consider a perturbation ansatz gM+ğ
on the Einstein cylinder E which gives rise to initial data on S̄. This initial data can, by virtue
of the operator E, be extended to initial data u? on S3. It turns out (cf. [VK16]) that this
initial data is of the form u? = uM + ŭ? and that u? ∈D(ε,1/2), if ğ is small enough, where in
the definition (6.8) of D(ε,1/2) we choose u?M as background solution ů?. We assume that the
initial data u? solves the conformal constraint equations on S with source terms generated by
the initial value u?f of the particle distribution function. Then Theorem 6.1 yields a solution

u (which can be extended) on M• = [π/2, τ•]× S3 × R4
v, where τ• ≥ 3π/4, which is close to

the Minkowski solution uM.
The structure of the conformal boundary of the space-time thus obtained can be analysed

using the methods used in [Fri86] without any further modification. These methods allow
to show that the development of the hyperboloidal initial data set is asymptotically simple.
Moreover, there exists a point i+ ∈ (π/2, τ•) × S3 at which the generators of null infinity
intersect. The geodesic completeness of the spacetime can be studied with similar methods
to those used for perturbations of de Sitter spacetime —see Remark 7.1.

The above observations can be collected in the following:

Theorem 8.1. Given m ≥ 5, hyperboloidal initial data u? = uM + ŭ to the Einstein-Vlasov
conformal constraint equations such that ||ŭ||m < ε for ε > 0 suitably small gives rise to a
unique Cm−2 solution to the conformal Einstein-Vlasov equations such that there exists a point
i+ such that the causal past J−(i+) of i+ and the future domain of dependence D+(S̄) of S̄
in the Lorentz-space (M•, g) coincide. The conformal factor Ξ is positive on D+(S̄)\H+(S̄),
where H+(S̄) denotes the future Cauchy horizon of S̄. Furthermore, Ξ vanishes on H+(S̄),
dΞ 6= 0 on I + = H+(S̄)\{i+}, and dΞ = 0 but the Hessian is non-degenerate at i+. In
particular, one has the following: the metric g̃ = Ξ−2g on M• together with the particle
distribution function f is, whenever Ξ 6= 0, a solution of class Cm−2 (with curvature tensor
of class Cm−2) of the massless Einstein-Vlasov system which is future asymptotically simple,
thus future null geodesically complete, for which I + represents future null infinity and i+

future time-like infinity.
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