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Abstract

The current dominance of deep neural networks in natural language

processing is based on contextual embeddings such as ELMo, BERT, and

BERT derivatives. Most existing work focuses on English; in contrast,

we present here the first multilingual empirical comparison of two ELMo

and several monolingual and multilingual BERT models using 14 tasks in

nine languages. In monolingual settings, our analysis shows that mono-

lingual BERT models generally dominate, with a few exceptions such as

the dependency parsing task, where they are not competitive with ELMo

models trained on large corpora. In cross-lingual settings, BERT mod-

els trained on only a few languages mostly do best, closely followed by

massively multilingual BERT models.

1 Introduction

Deep neural networks have dominated the area of natural language processing
(NLP) for almost a decade. The establishment of contextual embeddings such as
ELMo [Peters et al., 2018] and BERT [Devlin et al., 2019] have advanced many
NLP tasks to previously unattainable performance, often achieving human lev-
els. At the same time, newer generations of transformer-based [Vaswani et al.,
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2017] neural language models have increased in size and training times to lev-
els unachievable to anyone but large corporations. While training BERT with
110 million parameters is possible on 8 GPUs in about a month, the T5 model
[Raffel et al., 2020] contains 11 billion parameters and GPT-3 [Brown et al.,
2020] contains 175 billion parameters. These large models are trained on En-
glish. With the exception of Chinese, no similar-sized models exist for another
language, while several BERT-sized models have sprouted for other languages.

In this paper, we focus on empirical mono- and cross-lingual comparison
of ELMo and BERT contextual models for less-resourced but technologically
still relatively well-supported European languages. This choice stems from
the enabling conditions for such a study: availability of contextual ELMo and
BERT models and availability of evaluation datasets. These constraints and
limited space have led us to select nine languages (Croatian, English1, Esto-
nian, Finnish, Latvian, Lithuanian, Russian, Slovene, Swedish) and seven cate-
gories of datasets: named-entity recognition (NER), part-of-speech (POS) tag-
ging, dependency parsing (DP), analogies, contextual similarity (CoSimLex),
terminology alignment, and the SuperGLUE suite of benchmarks (eight tasks).
While some tasks are well-known and frequently used in the presentation of
new models, others are used here for the first time in cross-lingual comparisons.
We compare two types of ELMo models (described in Section 3.2) and three
categories of BERT models: monolingual, massively multilingual and moder-
ately multilingual (trilingual to be precise). The latter models are specifically
intended for cross-lingual transfer.

The aim of the study is to compare i) the quality of different monolingual
contextual models and ii) the success of cross-lingual transfer between similar
languages and from English to less-resourced languages. While partial compar-
isons exist for individual languages (in particular English) and individual tasks,
no systematic study has yet been conducted. This study fills this gap.

The main contributions of the work are as follows.

1. The establishment of a set of mono- and cross-lingual datasets suitable for
the evaluation of contextual embeddings in less-resourced languages.

2. The first systematic monolingual evaluation of ELMo and BERT contex-
tual embeddings for a set of less-resourced languages.

3. The first systematic evaluation of cross-lingual transfer using contextual
ELMo and BERT models for a set of less-resourced languages.

The structure of the paper is as follows. Section 2 outlines related work. In
Section 3, we describe the monolingual and cross-lingual embedding approaches
used. We split them into four categories: baseline non-contextual fastText
embeddings, contextual ELMo embeddings, cross-lingual maps for these, and
BERT-based monolingual and cross-lingual models. In Section 4, we present

1We included English for comparison with other languages and for cross-lingual knowledge
transfer.
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our evaluation scenarios, divided into settings and benchmarks. Section 5 con-
tains the results of the evaluations. We first cover the monolingual approaches,
followed by the cross-lingual ones. We present our conclusions in Section 6.

2 Related works

Ever since their introduction, ELMo [Peters et al., 2018] and BERT [Devlin et al.,
2019] have attracted enormous attention from NLP researchers and practition-
ers. Rogers et al. [2020] present a recent survey of over 150 papers investigating
the information BERT contains, modifications to its training objectives and
architecture, its overparameterization, and compression.

At the time of its introduction, ELMo has been shown to outperform previ-
ous pretrained word embeddings like word2vec and GloVe on many NLP tasks
[Peters et al., 2018]. Later, BERT models turned out to be even more successful
on these tasks [Devlin et al., 2019] and many others [Wang et al., 2019a]. This
fact would seemingly make ELMo obsolete. However, concerning the quality of
extracted vectors, ELMo can be advantageous [Škvorc et al., 2020]. Namely, the
information it contains is condensed into only three layers, while multilingual
BERT uses 14 layers and the useful information is spread across all of them
[Tenney et al., 2019]. For that reason, we empirically evaluate both ELMo and
BERT.

There are two works analysing ELMo on several tasks in a systematic way.
Both are limited to English. The original ELMo paper [Peters et al., 2018] uses
six tasks: question answering, named entity extraction, sentiment analysis, tex-
tual entailment, semantic role labelling, and coreference resolution. Introducing
the GLUE benchmark, Wang et al. [2019b] analyzed ELMo on nine tasks: lin-
guistic acceptability, movie review sentiment, paraphrasing, question answering
(two tasks), text similarity, natural language inference (two tasks), and corefer-
ence resolution. For BERT, there are also two systematic empirical evaluations
on English. The original BERT paper [Devlin et al., 2019] used nine datasets
in the GLUE benchmark and three more tasks: question answering, NER, and
sentence completion. The SuperGLUE benchmark [Wang et al., 2019a] contains
eight tasks where BERT was tested: four question answering tasks, two natural
language inference tasks, coreference resolution, and word-sense disambiguation.

Other works study ELMo and/or BERT for individual tasks like NER [Taillé et al.,
2020], dependency parsing [Li et al., 2019], diachronic changes [Rodina et al.,
2020], sentiment analysis [Robnik-Šikonja et al., 2021], or coreference resolu-
tion [Joshi et al., 2019]. Several papers introduce language specific ELMo or
BERT models and evaluate it on tasks available in that language, e.g., Rus-
sian [Kuratov and Arkhipov, 2019], French [Martin et al., 2020], or German
[Risch et al., 2019]. The instances of these models used in our evaluation are
described in Section 3.4.2.

In cross-lingual settings, most works compare massively multilingual BERT
models such as mBERT [Devlin et al., 2019] and XLM-R [Conneau et al., 2019].
Ulčar and Robnik-Šikonja [2020] trained several trilingual BERT models suit-
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able for transfer from English to less-resourced similar languages. The mas-
sively multilingual and trilingual models are described in Section 3.4.1 and Sec-
tion 3.4.3, respectively.

In contrast to the above studies, our analysis of ELMo and BERT includes
nine languages (including English), 14 tasks, and covers both monolingual and
cross-lingual evaluation. By translating SuperGLUE tasks into Slovene, we offer
the first cross-lingual evaluation of multilingual BERT models in this benchmark
suite and also compare human and machine translations.

3 Cross-lingual and contextual embedding

In this section, we briefly describe the monolingual and cross-lingual approaches
that we compare. In Section 3.1, we briefly present the non-contextual fastText
baseline, and in Section 3.2, the contextual ELMo embeddings. Mapping meth-
ods for the explicit embedding spaces produced by these two types of approaches
are discussed in Section 3.3. We describe large pretrained language models
based on the transformer neural network architecture (i.e. BERT variants) in
Section 3.4.

3.1 Baseline fastText embeddings

As deep neural networks became the predominant learning method for text
analytics, it was natural that they also gradually became the method of choice
for text embeddings. A procedure common to these embeddings is to train a
neural network on one or more semantic text classification tasks and then take
the weights of the trained neural network as a representation for each text unit
(word, n-gram, sentence, or document). The labels required for training such
a classifier come from huge corpora of available texts. Typically, they reflect
word co-occurrence, like predicting the next or previous word in a sequence or
filling in missing words but may be extended with other related tasks, such as
sentence entailment. The positive instances for the training are obtained from
texts in the used corpora, while the negative instances are mainly obtained with
negative sampling (sampling from instances that are highly unlikely related).

Mikolov et al. [2013] introduced the word2vec method and trained it on a
huge Google News data set (about 100 billion words). The pretrained 300-
dimensional vectors for 3 million English words and phrases are publicly avail-
able2. Word2vec consists of two related methods, continuous bag of words
(CBOW) and skip-gram. Both methods construct a neural network to clas-
sify co-occurring words by taking as an input a word and its d preceding and
succeeding words, e.g., ± 5 words.

Bojanowski et al. [2017] developed the fastText method, built upon the
word2vec method but introduced subword information, which is more appro-
priate for morphologically rich languages such as the ones processed in this
work. They took the skip-gram method from word2vec and edited the scoring

2https://code.google.com/archive/p/word2vec/
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function used to calculate the probabilities. In the word2vec method, this scor-
ing function is equal to a dot product between two word vectors. For words wt

and wc and their respective vectors ut and uc, the scoring function s is equal
to s(wt, wc) = u⊤

t uc. The scoring function in fastText is a sum of dot products
for each subword (i.e. character n-gram) that appears in the word wt:

s(wt, wc) =
∑

g∈Gt

z⊤g uc,

where zg is a vector representation of an n-gram (subword) g and Gt is a set
of all n-grams (subwords) appearing in wt. As fastText is conceptually very
similar to word2vec, we do not treat them as different methods but only test
fastText as the baseline.

3.2 ELMo embeddings

ELMo (Embeddings from Language Models) embedding [Peters et al., 2018]
is an example of a pretrained transfer learning model. The first layer is a
CNN (Convolutional Neural Network) layer, which operates on a character
level. This layer is context-independent, so each word always gets the same
embedding, regardless of its context. It is followed by two biLM (bidirectional
language model) layers. A biLM layer consists of two concatenated LSTMs
[Hochreiter and Schmidhuber, 1997]. The first LSTM predicts the following
word, based on the given past words, where each word is represented by the
embeddings from the CNN layer. The second LSTM predicts the preceding
word based on the given following words. The second LSTM layer is equivalent
to the first LSTM, just reading the text in reverse.

The actual embeddings are constructed from the internal states of a bidi-
rectional LSTM neural network. Higher-level layers capture context-dependent
aspects, while lower-level layers capture aspects of syntax [Peters et al., 2018].
To train the ELMo network, one inputs one sentence at a time. The representa-
tion of each word depends on the whole sentence, i.e. it reflects the contextual
features of the input text and thereby polysemy of words. For an explicit word
representation, one can use only the top layer. Still, more frequently, one com-
bines all layers into a vector. The representation of a word or a token tk at
position k is composed of

Rk = {xLM
k ,
−→
h

LM

k,j ,
←−
h

LM

k,j | j = 1, . . . , L} (1)

where L is the number of layers (ELMo uses L = 2), index j refers to the level of
bidirectional LSTM network, x is the initial token representation (either word or
character embedding), and hLM denotes hidden layers of forward or backward
language model.

In NLP tasks, any set of these embeddings may be used; however, a weighted
average is usually used. The weights of the average are learned during the
training of the model for the specific task. Additionally, an entire ELMo model
can be fine-tuned on a specific end task.
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We compare two variants of ELMo models. The ELMoForManyLangs pro-
ject (EFML) [Che et al., 2018] trained ELMo models for several languages but
used relatively small datasets of 20 million words randomly sampled from the
raw text released by the CONLL 2017 shared task (wikidump + common crawl)
[Ginter et al., 2017]. We group ELMo models using the same architecture, but
trained on much larger datasets (from 270 million to 5,5 billion words) under the
name L-ELMo (Large ELMo). In L-ELMo we include the original English 5.5B
ELMo model3, Russian ELMo model trained by DeepPavlov4 on the Russian
WMT News, and the ELMo models trained by the EMBEDDIA project5 for
seven languages (Croatian, Estonian, Finnish, Latvian, Lithuanian, Slovene,
and Swedish) [Ulčar and Robnik-Šikonja, 2020].

3.3 Cross-lingual maps for fastText and ELMo

Cross-lingual alignment methods take precomputed word embeddings for each
language and align them with the optional use of bilingual dictionaries. The
goal of alignments is that the embeddings for words with the same meaning
shall be as close as possible in the final vector space. Søgaard et al. [2019]
overview the area of cross-lingual embeddings. A comprehensive summary of ex-
isting mapping approaches can be found in [Artetxe et al., 2018]. Special cross-
lingual mapping techniques for contextual ELMo embeddings are presented in
[Ulčar and Robnik-Šikonja, 2021].

Context-dependent embedding models calculate a word embedding for each
word’s occurrence; thus, a word gets a different vector for each context. Mapping
such vector spaces from different languages is not straightforward. Schuster et al.
[2019] observed that vectors representing different occurrences of each word form
clusters. They averaged the vectors for each word occurrence so that each word
was represented with only one vector, a so-called anchor. They applied the same
procedure to both languages and aligned the anchors using the supervised or
unsupervised method of MUSE [Conneau et al., 2018]. However, this method
comes with a loss of information. Many words have multiple meanings, which
cannot be averaged. For example, the word mouse can mean a small rodent or a
computer input device. Context-dependent models correctly assign significantly
different vectors to these two meanings since they appear in different contexts.
Further, a word in one language can be represented with several different words
(one for each meaning) in another language or vice versa. By averaging the
contextual embedding vectors, we lose these distinctions in meaning.

To align contextual ELMo embeddings, Ulčar and Robnik-Šikonja [2021] de-
veloped four methods that take different contexts and word meanings into ac-
count. All methods require a different type of contextual mapping datasets,
described below. The datasets map not only words but also their contexts. Two
mappings follow the existing mapping techniques used for static embeddings and

3https://allennlp.org/elmo
4https://github.com/deepmipt/DeepPavlov
5http://hdl.handle.net/11356/1277
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assume that the mapping spaces are isomorphic, while the other two drop this as-
sumption. The isomorphic mapping methods are called Vecmap [Artetxe et al.,
2018] and MUSE [Conneau et al., 2018], and two non-isomorphic mapping meth-
ods are named ELMoGAN-O and ELMoGAN-10k [Ulčar and Robnik-Šikonja,
2021].

To form a cross-lingual mapping between contextual embeddings, a word
in one language has to be represented with several different words (one for
each meaning) in another language. For that, we require two resources: a
sentence aligned parallel corpus of the two covered languages and their bilingual
dictionary. The dictionary alone is not sufficient, as the words are not given
in the context. Therefore, we can not use it for the alignment of contextual
embeddings. The parallel corpus alone is also not sufficient as the alignment
is on the level of paragraphs or sentences and not on the level of words. By
combining both resources, we take a translation pair from the dictionary and
find sentences in the parallel corpus, with one word from the pair present in
the sentence of the first language and the second word from the translation pair
present in the second language sentence. As a result, we get matching words
in matching contexts (sentences) which can serve as contextual anchor points.
The details are presented in [Ulčar and Robnik-Šikonja, 2021].

3.4 BERT embeddings

BERT (Bidirectional Encoder Representations from Transformers) embedding
[Devlin et al., 2019] generalises the idea of language models (LM) to masked
language models (MLM). The MLM randomly masks some of the tokens from
the input, and the task of LM is to predict the missing token based on its
neighbourhood. BERT uses the transformer architecture of neural networks
[Vaswani et al., 2017] in a bidirectional sense and further introduces the task
of predicting whether two sentences appear in a sequence. The input repre-
sentation of BERT are sequences of tokens representing subword units. The
input to the BERT encoder is constructed by summing the embeddings of cor-
responding tokens, segments, and positions. Some widespread words are kept
as single tokens; others are split into subwords (e.g., frequent stems, prefixes,
suffixes—if needed, down to single letter tokens). The original BERT project
offers pretrained English, Chinese, Spanish, and multilingual models.

To use BERT in classification tasks only requires adding connections between
its last hidden layer and new neurons corresponding to the number of classes in
the intended task. Then, the fine-tuning process is applied to the whole network;
all the parameters of BERT and new class-specific weights are fine-tuned jointly
to maximise the log-probability of the correct labels.

BERT has shown excellent performance on 11 NLP tasks: 8 from GLUE
language understanding benchmark [Wang et al., 2019b], question answering,
named entity recognition, and common-sense inference [Devlin et al., 2019]. The
performance on monolingual tasks has often improved upon ELMo. However,
while multilingual BERT covers 104 languages, its subword dictionary comprises
tokens from all covered languages, which might not be optimal for a particular
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language. Further, similarly to ELMo, its training and tuning are computation-
ally highly demanding tasks out of reach for most researchers.

Below we first describe the massively multilingual models, followed by mono-
lingual and trilingual models used in our experiments.

3.4.1 Massively multilingual BERT and RoBERTa models

The multilingual BERT model (mBERT) [Devlin et al., 2019] was trained si-
multaneously on 104 languages, using the available Wikipedia texts in these
languages. The mBERT model provides a representation in which the languages
are embedded in the same space without requiring further explicit cross-lingual
mapping. This massively multilingual representation might be sub-optimal for
any specific language or a subset of languages.

Deriving from BERT, Liu et al. [2019] developed RoBERTa, which drops
the sentence inference training task (predicting if two given sentences are con-
secutive or not) and keeps only masked token prediction. Unlike BERT, which
generates masked corpus as a training dataset in advance, RoBERTa randomly
masks a given percentage of tokens on the fly. In that way, in each epoch, a
different subset of tokens get masked. Conneau et al. [2019] used RoBERTa ar-
chitecture to train the massive multilingual XLM-RoBERTa (XLM-R) model,
using 100 languages, akin to the mBERT model.

3.4.2 Monolingual BERT-like models

Following the success of BERT, similar large pretrained transformer language
models appeared in other languages.

Kuratov and Arkhipov [2019] trained a monolingual Russian BERT (Ru-
BERT) on Russian Wikipedia and news corpus. They used multilingual BERT
(mBERT) to initialise all the model weights, except for the first layer embed-
dings, where they replaced the mBERT’s vocabulary with Russian-only vocab-
ulary. They offer the model via open source DeepPavlov library6.

Monolingual Finnish BERT (FinBERT) [Virtanen et al., 2019] model was
trained on a 3.3 billion token corpus, composed of news (Yle, STT), online
discussions (Suomi24) and internet crawl of Finnish websites. The online dis-
cussions part of the corpus represents more than half of the entire training data.
FinBERT model shares the architecture with the BERT-base model, with 12
transformer layers and the hidden layer size of 768.

Estonian (EstBERT) [Tanvir et al., 2020], Latvian (LVBERT) [Znotiņš and Barzdiņš,
2020], and Swedish (KB-BERT) [Malmsten et al., 2020] BERT models were
all trained in the same manner as FinBERT. Estonian EstBERT was trained
on a 1.1 billion word Estonian National Corpus 2017, comprised of Estonian
Reference Corpus (90s–2008), Estonian Web (2013 and 2017), and Estonian
Wikipedia (2017). Latvian LVBERT was trained on a relatively small corpus
with 500 million tokens. It consists mostly of articles and comments from var-
ious news portals, while including also Latvian Balanced corpus LVK2018 and

6https://github.com/deepmipt/DeepPavlov
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Latvian Wikipedia. National Library of Sweden (KB) trained KB-BERT on
modern Swedish corpora, using resources from 1940 to 2019. The 3.5 billion
word corpora are composed mostly of digitised newspapers and include also
government publications, Swedish Wikipedia, comments from online forums,
etc. The quality of these monolingual BERT models varies, mostly depending
on the training datasets size and quality.

Slovene (SloBERTa) and Estonian (Est-RoBERTa) monolingual models were
trained on large non-public high-quality datasets within the EMBEDDIA project7.
Both models closely follow the architecture and training approach of the Camem-
bert base model [Martin et al., 2020], which is itself based on RoBERTa. Both
models have 12 transformer layers and approximately 110 million parameters.
SloBERTa was trained for 200,000 steps (about 98 epochs) on Slovene corpora,
containing 3.47 billion tokens in total. The corpora are composed of general
language corpus, web-crawled texts, academic writings (BSc/BA, MSc/MA and
PhD theses) and texts from Slovenian parliament. Est-RoBERTa was trained
for about 40 epochs on Estonian corpora, containing mostly news articles from
Ekspress Meedia, in total 2.51 billion tokens. The subword vocabularies contain
32,000 tokens for SloBERTa model and 40,000 tokens for Est-RoBERTa model.
Both models are publicly available via the popular Hugging Face library8,9 and
for individual download from CLARIN10,11.

BERTić [Ljubešić and Lauc, 2021] is a transformer-based pretrained model
using the Electra approach [Clark et al., 2019]. Electra models train a smaller
generator model and the main, larger discriminator model whose task is to dis-
criminate whether a specific word is an original word from the text or a word
generated by the generator model. The authors claim that the Electra approach
is computationally more efficient than the BERT models based on masked lan-
guage modelling. BERTić is a BERT-base sized model (110 million parameters
and 12 transformer layers), trained on crawled texts from the Croatian, Bosnian,
Serbian and Montenegrin web domains. While BERTić is a multilingual model,
we use it as a monolingual model and apply it to the Croatian language datasets.
Two reasons are supporting this decision. First, most training texts are Croatian
(5.5 billion words out of 8 billion). Second, the covered South Slavic languages
are closely related, mutually intelligible, and are classified under the same HBS
(Serbo-Croatian) macro-language by the ISO-693-3 standard.

3.4.3 Trilingual BERT models

While massively multilingual models allow for a good cross-lingual transfer of
trained models, they contain a relatively small input dictionary for each lan-
guage and most of the words are composed of several tokens. A possible solution
is to build BERT models on fewer similar languages. Ulčar and Robnik-Šikonja

7http://www.embeddia.eu
8https://huggingface.co/EMBEDDIA/sloberta
9https://huggingface.co/EMBEDDIA/est-roberta

10http://hdl.handle.net/11356/1397
11https://doi.org/10.15155/9-00-0000-0000-0000-00226L
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[2020] constructed trilingual models featuring two similar languages and one
highly resourced language (English). Because these models are trained on a
small number of languages, they better capture each of them and offer better
monolingual performance. At the same time, they can be used in a cross-lingual
manner for knowledge transfer from a high-resource language to a low-resource
language or between similar languages.

We analyze three trilingual models, the first trained on Slovene, Croatian
and English data (CroSloEngual BERT), the second on Estonian, Finnish and
English (FinEst BERT), and the third on Latvian, Lithuanian and English
(LitLat BERT). The models are publicly available via the popular Huggingface
library12,13,14 and for individual download from CLARIN15,16,17. Each model
was trained on deduplicated corpora from all three languages.

FinEst BERT and CroSloEngual BERT were trained on BERT-base archi-
tecture [Ulčar and Robnik-Šikonja, 2020], using bert-vocab-builder18 to produce
wordpiece vocabularies (composed of subword tokens) from the given corpora.
The created wordpiece vocabularies contain 74,986 tokens for FinEst and 49,601
tokens for the CroSloEngual model. The training dataset is a masked corpus.
The training randomly masked 15% of the tokens in the corpus and repeated the
process five times, each time masking different 15% of the tokens. The dataset is
thus five times larger than the original corpora. On this data, trilingual BERT
models were trained for about 40 epochs, which is approximately the same as
multilingual BERT.

Later LitLat BERT is based on the RoBERTa architecture, which has proven
more robust and better performing than BERT. It offers two practical benefits
over the original BERT approach. By dropping the next-sentence prediction
training task, corpora shuffled on the sentence level can be used in training at
the expense of more limited context (compared to the original 512 tokens used
in BERT). The second benefit is that it allows for training on multiple GPUs
out of the box, while BERT can only be trained on a single GPU unless complex
workarounds are implemented. In training, the Lithuanian, Latvian and English
corpora were split into three sets, train, eval and test. Train dataset contains
99% of all the corpora; the other two sets contain 0.5% each. The sentencepiece
algorithm19 produced subword byte-pair-encodings (BPE) from a given train
dataset. The created subword vocabulary contained 84,200 tokens. The model
was trained for 40 epochs, with a maximum sequence length of 512 tokens. Like
with FinEst BERT and CroSloEngual BERT, 15% of the tokens were randomly
masked during the training.

12https://huggingface.co/EMBEDDIA/crosloengual-bert
13https://huggingface.co/EMBEDDIA/finest-bert
14https://huggingface.co/EMBEDDIA/litlat-bert
15http://hdl.handle.net/11356/1317
16https://doi.org/10.15155/9-00-0000-0000-0000-0021CL
17http://hdl.handle.net/20.500.11821/42
18https://github.com/kwonmha/bert-vocab-builder
19https://github.com/google/sentencepiece
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4 Evaluation scenarios

In this section, we describe the evaluation scenarios. First, in Section 4.1, we
describe the datasets and evaluation metrics used in the evaluation tasks. In
Section 4.2, we describe the settings of monolingual and cross-lingual evaluation
experiments.

4.1 Datasets and evaluation metrics

We used six categories of datasets: NER, POS-tagging, dependency parsing,
analogies, CoSimLex, and SuperGLUE. Each category contains datasets from
several languages, and some contain several types of tasks (e.g., SuperGLUE).
The categories are shortly described below.

4.1.1 Named entity recognition

In the NER experiments, we use datasets in nine languages: Croatian, En-
glish, Estonian, Finnish, Latvian, Lithuanian, Russian, Slovene and Swedish.
The number of sentences and tags present in the datasets is shown in Table 1.
The label sets used in datasets for different languages vary, meaning that some
contain more fine-grained labels than others. To make results across different
languages consistent, we trim labels in all datasets to the four common ones:
location (LOC), organisation (ORG), person (PER), and “no entity” (OTHR).
The latter includes every token that is not classified as any of the previous three
classes. As this covers a wide variety of tokens (including named entities that
do not belong to one of the three aforementioned classes, non-named entities,
verbs, stopwords, etc.), we ignore the OTHR label during the evaluation. That
is, we only take into account the classification scores of LOC, ORG, and PER
classes.

Table 1: The collected datasets for NER task and their properties: the number
of sentences and tagged words.

Language Dataset Sentences Tags
Croatian hr500k 24794 28902
English CoNLL-2003 NER 20744 43979
Estonian Estonian NER corpus 14287 20965
Finnish FiNER data 14484 16833
Latvian LV Tagger train data 9903 11599
Lithuanian TildeNER 5500 7000
Russian factRuEval-2016 4907 9666
Slovene20 ssj500k 9489 9440
Swedish Swedish NER 9369 7292

20The Slovene ssj500k originally contains more sentences, but only 9489 are annotated with
named entities.
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4.1.2 POS-tagging and Dependency parsing

We used datasets in nine languages (Croatian, English, Estonian, Finnish, Lat-
vian, Lithuanian, Russian, Slovene and Swedish) to test models on the POS-
tagging and DP tasks. The datasets are obtained from the Universal Depen-
dencies 2.3 [Nivre et al., 2018], except the Lithuanian ALKSNIS dataset, which
comes from the Universal Dependencies 2.8. The number of sentences and to-
kens is shown in Table 2. We used 17 Universal POS tags for the POS-tagging
task as they are the same in all languages and did not predict language-specific
XPOS tags.

Table 2: POS-tagging and dependency parsing datasets and their properties:
the treebank, number of sentences, number of tokens, and information about
the size of the splits.

Language Treebank Tokens Sentences Train Validation Test
Croatian SET 197044 8889 6983 849 1057
English EWT 254854 16622 12543 2002 2077
Estonian EDT 434245 30723 24384 3125 3214
Finnish TDT 202208 15136 12217 1364 1555
Latvian LVTB 152706 9920 7163 1304 1453
Lithuanian ALKSNIS 70051 3642 2341 617 684
Russian GSD 99389 5030 3850 579 601
Slovene SSJ 140670 8000 6478 734 788
Swedish Talbanken 96858 6026 4303 504 1219

We use two evaluation metrics in the dependency parsing task, the mean
of unlabeled and labelled attachment scores (UAS and LAS) on the test set.
The UAS and LAS are standard accuracy metrics in dependency parsing. The
UAS score is defined as the proportion of tokens that are assigned the correct
syntactic head. The LAS score is the proportion of tokens that are assigned the
correct syntactic head and the correct dependency label [Jurafsky and Martin,
2009].

4.1.3 CoSimLex

In contrast to other datasets which are used to evaluate the performance of
embeddings on specific tasks, the CoSimLex task [Armendariz et al., 2020] al-
lows direct investigation of embeddings’ properties. CoSimLex contains pairs of
words and their similarity ratings assigned by human annotators. The crucial
difference to previous such datasets is that the words appeared within a short
text (context) when presented to the human annotators. Therefore, the word
similarity ratings take the context into account, making the dataset suitable
to evaluate the contextualised embeddings. The dataset is based on pairs of
words from SimLex-999 [Hill et al., 2015] to allow comparison with the context-
independent case. CoSimLex consists of 340 word-pairs in English, 112 in Croa-
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tian, 111 in Slovene, and 24 in Finnish. Each pair is rated within two different
contexts, giving a total of 1174 scores of contextual similarity.

As the example in Figure 1 shows, for each pair of words, two different
contexts are presented in which these two words appear. The words in contexts
produce two similarity scores, each related to one of the contexts, calculated as
the mean of all the annotators’ ratings for that context. This is accompanied by
two standard deviation scores. and the four inflected forms of the words exactly
as they appear in the contexts. Note that in the morphologically rich languages
(such as Slovene, Croatian, and Finnish), many inflections of the two words are
possible.

Figure 1: An example from the English CoSimLex, showing a word pair with
two contexts, each with the mean and standard deviation of human similarity
judgements. The original SimLex values for the same word pair without context
are shown for comparison. The p-Value shown results from the Mann-Whitney
U test for similarity of distributions, showing that the human judgements differ
significantly between the two contexts.

Word1: man Word2: warrior SimLex: µ 4.72 σ 1.03
Context1 Context1: µ 7.88 σ 2.07
When Jaimal died in the war, Patta Sisodia took the command, but he too died
in the battle. These young men displayed true Rajput chivalry. Akbar was
so impressed with the bravery of these two warriors that he commissioned a
statue of Jaimal and Patta riding on elephants at the gates of the Agra fort.
Context2 Context2: µ 3.27 σ 2.87
She has a dark past when her whole family was massacred, leaving her an
orphan. By day, Shi Yeon is an employee at a natural history museum. By
night, she’s a top-ranking woman warrior in the Nine-Tailed Fox clan, charged
with preserving the delicate balance between man and fox.

p-Value: 1.3× 10−6

Model performance is evaluated using two metrics, which measure different
aspects of prediction quality:

M1 - Predicting Changes: The first metric measures the ability of a model
to predict the change in similarity ratings between the two contexts for
each word pair. This is evaluated via the correlation between the changes
predicted by the system and those derived from human ratings, using the
uncentered Pearson correlation. This gives a measure of the accuracy of
predicting the relative magnitude of changes and allows for differences
in scaling while maintaining the effect of the direction of change. The
standard centered correlation normalises on the mean, so it could give
high values even when a system predicts changes in the wrong direction,
but with a similar distribution over examples.

M1 = CCuncentered =

∑n

i=1(xi)(yi)
√

(
∑n

i=1 xi)2(
∑n

i=1 yi)
2
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M2 - Predicting Ratings: The second metric measures the ability to predict
the absolute similarity rating for each word pair in each context. This was
evaluated using the harmonic mean of the Pearson and the Spearman
correlation with gold-standard human judgements.

4.1.4 Monolingual and cross-lingual analogies

The word analogy task (x is to y as a is to b) was popularised by Mikolov et al.
[2013]. The goal is to find a term y for a given term x so that the relationship
between x and y best resembles the given relationship a : b. In the used datasets,
There are two main groups of categories: semantic and syntactic. To illustrate a
semantic relationship (country and its capital), consider, for example, that the
word pair a : b is given as “Finland : Helsinki”. The task is to find the term y

corresponding to the relationship “Sweden : y”, with the expected answer being
y = Stockholm. In syntactic categories, each category refers to a grammatical
feature, e.g., adjective degrees of comparison. The two words in any given pair
then have a common stem (or even the same lemma); e.g., given the word pair
“long : longer”, we have an adjective in its base form and the same adjective
in the comparative form. The task is to find the term y corresponding to the
relationship “dark : y”, with the expected answer being y = darker, i.e. a
comparative form of the adjective dark.

In the vector space, the analogy task is transformed into vector arithmetic.
We search for nearest neighbours, i.e. we compute the distance d between vec-
tors: d(vec(Finland), vec(Helsinki)) and search for word y which would give the
closest result in distance d(vec(Sweden), vec(y)). We use the monolingual and
cross-lingual analogy datasets in nine languages (Croatian, English, Estonian,
Finnish, Latvian, Lithuanian, Russian, Slovenian, and Swedish) [Ulčar et al.,
2020]. Here, the analogies are already prespecified so we do not search for the
closest result but only check if the prespecified word is indeed the closest; al-
ternatively, we measure the distance between the given pairs. The proportion
of correctly identified words in the five nearest vectors forms a statistic called
accuracy@5, which we report as the result.

In the cross-lingual setting, for two languages L1 and L2, the word analogy
task matches each relation in one language with each relation from the same
category in the other language. For cross-lingual contextual mappings, the
presented word analogy task is not well-suited as it only contains words without
their context. We describe our approach for applying this task in Section 4.2.4.

4.1.5 SuperGLUE tasks

SuperGLUE (Super General Language Understanding Evaluation) [Wang et al.,
2019a] is a benchmark for testing natural language understanding (NLU) of
models. It is styled after the GLUE benchmark [Wang et al., 2019b], but much
more challenging. It provides a single-number metric for each of its tasks that
enables the comparison and progress of NLP models. The tasks are diverse
and comprised of question answering (BoolQ, COPA, MultiRC, and ReCoRD
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tasks), natural language inference (CB and RTE tasks), coreference resolution
(WSC), and word sense disambiguation (WiC). Non-expert humans evaluated
all the tasks to give a human baseline to machine systems. Please refer to the
original paper for an extensive description of the tasks.

To evaluate cross-lingual transfer and test specifics of morphologically rich
languages, we translated the SuperGLUE datasets to Slovene. We used partially
human translation (HT) and partially machine translation (MT). The details are
presented in Table 3. Some datasets are too large (BoolQ, MultiRC, ReCoRD,
RTE) to be fully human translated with our budget. We thus provide ratios
between the human translated and the original English sizes. For MT from
English to Slovene, we used the GoogleMT Cloud service. In our evaluation, we
use six of the original eight tasks.

The WSC dataset cannot be machine-translated because it requires human
assistance and verification. First, GoogleMT translations cannot handle the
correct placement of HTML tags indicating coreferences. The second reason is
that in Slovene coreferences can also be expressed with verbs, while coreferences
in English are mainly nouns, proper names and pronouns. This makes the task
more difficult in Slovene compared to English because solutions cover more types
of words.

We did not include ReCoRD in the Slovene benchmark due to the low quality
of the resulting dataset, consisting of confusing and ambiguous examples. Be-
sides imperfect translations, there are differences between English and Slovene
ReCoRD tasks due to the morphological richness of Slovene. In Slovene, the
correct declension of a query is often not present in the text, making it impos-
sible to provide the correct answer. Finally, similarly to WSC, ReCoRD is also
affected by the problem of translating HTML tags with GoogleMT.

The WiC task cannot be translated and would have to be conceived anew
because it is impossible to transfer the same set of meanings of a given word
from English to a target language.

4.1.6 Terminology alignment

Terms are single words or multi-word expressions denoting concepts from specific
subject fields. The bilingual terminology alignment task aligns terms between
two candidate term lists in two different languages. The primary purpose of
terminology alignment is to build a bilingual term bank - i.e. a list of terms in
one language and their equivalents in another language.

Given a pair of terms ”t1” and ”t2”, where t1 is from one language and
t2 is its equivalent from the second language, we measured the cosine distance
between vector of t1 and vectors of all terms from the second language. If the
vector of t2 is the closest to t1 among all terms, we count the pair as correctly
aligned. For example, for a pair of terms from the Slovenian-English term
bank “računovodstvo - accounting”, we map the Slovene word embedding of
the word “računovodstvo” from Slovene to English and check among all English
word vectors for the vector that is the closest to the mapped Slovenian vector
for “računovodstvo”. If the closest vector is “accounting”, we count this as a
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Table 3: The number of instances in the original English and translated Slovene
SuperGLUE tasks. HT stands for human translation and MT for machine trans-
lation. The “ratio“ indicates the ratio between the number of human translated
instances and all instances.

Dataset split English HT ratio MT
BoolQ train 9427 92 0.0098 yes

val 3270 18 0.0055 yes
test 3245 30 0.0092 yes

CB train 250 250 1.0000 yes
val 56 56 1.0000 yes
test 250 250 1.0000 yes

COPA train 400 400 1.0000 yes
val 100 100 1.0000 yes
test 500 500 1.0000 yes

MultiRC train 5100 15 0.0029 yes
val 953 3 0.0031 yes
test 1800 30 0.0167 yes

ReCoRD train 101000 60 0.0006 /
val 10000 6 0.0006 /
test 10000 30 0.0030 /

RTE train 2500 232 0.0928 yes
val 278 29 0.1043 yes
test 300 29 0.0967 yes

WiC train 6000 / / /
val 638 / / /
test 1400 / / /

WSC train 554 554 1.0000 /
val 104 104 1.0000 /
test 146 146 1.0000 /

success, else we do not. This measure is called accuracy@1 score or 1NN score:
the number of successes, divided by the number of all examples, in this case,
dictionary pairs. A similar measure accuracy@n checks the proportion of correct
translations among n closest words. In this work, we use the term alignment
task to compare different embedding models.

For building contextualised vector representations of terms, we used the
Europarl corpus [Koehn, 2005, Tiedemann, 2012]. For Croatian, Europarl is not
available, so we used DGT translation memory [Steinberger et al., 2012] instead.
We used these corpora, composed of mostly EU legislation texts available in all
EU languages, to create contextual word embeddings. For single-word terms, we
represent each term as the average vector of all contextual vector representations
for that word, found in the corpus. For multi-word terms, we used a two-step
approach. If the term appears in the corpus, we represent each term occurrence
as the average vector of the words it is composed of. We then average over all
the occurrences, as with single-word terms. In case the term does not appear in
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the corpus, we represent it as the average of all words it is composed of, where
word vectors are averaged over all occurrences in the corpus.

To evaluate the performance of embedding-based terminology alignment, we
used Eurovoc [Steinberger et al., 2002], a multilingual thesaurus with more than
10,000 terms available in all EU languages. The models were evaluated for the
following pairs of languages: Croatian-Slovenian, Estonian-Finnish, Latvian-
Lithuanian, and English paired with each of the following: Croatian, Estonian,
Finnish, Latvian, Lithuanian, Slovenian, and Swedish. For each language pair,
we evaluated the terminology alignment in both directions, i.e. we took terms
from the first language and searched for the closest terms in the second language,
then repeated the procedure by taking the second language terms and searched
for the closest terms in the first language.

4.2 Evaluation settings

We split our evaluations into two categories: monolingual and cross-lingual. In
the monolingual evaluation, we compare fastText, ELMo, monolingual BERT-
like models (English, Russian, Finnish, Swedish, Slovene, Croatian, Estonian,
and Latvian), trilingual BERT models (FinEst, CroSloEngual, and LitLat BERT),
and massively multilingual BERT models (mBERT and XLM-R). The exact
choice of compared models depends on the availability of datasets in specific
languages. In the cross-lingual setting, we compare cross-lingual maps for ELMo
models, massively multilingual BERT models, and trilingual BERT models. The
specifics of models for individual tasks are described below.

4.2.1 Named entity recognition

For each of the compared embeddings, we tested a separate neural architecture,
adapted to the specifics of the embeddings. For fastText and ELMo embeddings,
we trained NER classifiers by inputting word vectors for each token in a given
sentence, along with their labels. We used a model with two bidirectional LSTM
layers with 2048 units. On the output, we used the time-distributed softmax
layer. For ELMo embeddings, we computed a weighted average of the three
embedding vectors for each token, by learning the weights during the training.
We used the Adam optimizer with a learning rate of 10−4 and trained for 5
epochs.

For BERT models, we fine-tuned each model on the NER dataset for 3
epochs. We used the code by HuggingFace21 for NER classification.

4.2.2 POS-tagging

For training POS-tagging classifiers with fastText or ELMo embeddings, we
used the same approach and hyper-parameters as described above for NER, but
a different neural network architecture. We trained models with four hidden
layers, three bidirectional LSTMs and one fully connected feed-forward layer.

21https://github.com/huggingface/transformers/tree/master/examples/legacy/token-classification
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The three LSTM layers have 512, 512, and 256 units, respectively. The fully
connected layer has 64 neurons.

For BERT models, we fine-tuned each model for 3 epochs, using the POS
classification code by HuggingFace as for NER.

4.2.3 Dependency parsing

To train dependency parsers using ELMo embeddings, we used the SuPar tool by
Yu Zhang22. SuPar is based on the deep biaffine attention [Dozat and Manning,
2017]. We modified the SuPar tool to accept ELMo embeddings on the input;
specifically, we used the concatenation of the three ELMo vectors. The modified
code has been made publicly available23. We trained the parser for 10 epochs
for each language, using separately L-ELMo and EFML embeddings.

For fine-tuning BERT models, we modified the dep2label-bert tool [Strzyz et al.,
2019, Gómez-Rodŕıguez et al., 2020] to work with newer versions of Hugging-
Face’s transformers library and to support both RoBERTa and BERT-based
models. We used the modified tool to fine-tune all the BERT/RoBERTa mod-
els on the dependency parsing task for 10 epochs. We used the arc-Standard
algorithm in transition-based sequence labelling encoding. The modified tool is
publicly available24.

4.2.4 Analogies

The word analogy task was initially designed for static embeddings. To eval-
uate contextual embeddings, we have to use the words of each analogy entry
in a context. Such contexts may not exist in general corpora for some cate-
gories. We used a boilerplate sentence ”If the term [w1] corresponds to the
term [w2], then the term [w3] corresponds to the term [w4].” Here, [w1] through
[w4] represent the four words from an analogy entry. We translated the boiler-
plate sentence to every language where a suitable analogy dataset is available
(Croatian, English, Estonian, Finnish, Latvian, Lithuanian, Russian, Slovene,
Swedish) [Ulčar et al., 2020].

For ELMo models, we concentrated on evaluating cross-lingual mapping ap-
proaches. Given a cross-lingual analogy entry (i.e. the first two words in one
language, and the last two words in another language), we filled the boilerplate
sentence in the training language with the four analogy words (two of them
being in the ”wrong” language) and extracted the vectors for words ”w1” and
”w2”. We then filled the boilerplate sentence in the testing language with the
same four words and extracted the vectors for words ”w3” and ”w4”. We evalu-
ated the quality of the mapping by measuring the distance between vector v(w4)
and vector v(w2)− v(w1) + v(w3).

BERT models are masked language models, so we tried to exploit that in
this task. We masked the word ”w2” and tried to predict it, given every other

22https://github.com/yzhangcs/parser
23https://github.com/EMBEDDIA/supar-elmo
24https://github.com/EMBEDDIA/dep2label-transformers
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word. In the cross-lingual setting, the sentence after the comma and the words
”w3” and ”w4” were therefore given in the source/training language, while
the sentence before the comma and word ”w1” were given in target/evaluation
language. The prediction for the masked word ”w2” was expected in the tar-
get/testing language, as well.

4.2.5 SuperGLUE

We fine-tuned BERT models on SuperGLUE tasks using the Jiant tool [Phang et al.,
2020]. We used a single-task learning setting for each task and fine-tuned them
for 100 epochs each, with the initial learning rate of 10−5. Each model was
fine-tuned using either machine translated or human translated datasets of the
same size.

4.2.6 Terminology alignment

For ELMo embeddings, we concatenated the three ELMo vectors into one 3072-
dimensional vector for each term. For BERT models, we extracted the vectors
from outputs of the last 4 layers and concatenated them to produce a 3072-
dimensional vector for each term.

5 Results

We present two sets of results. First, in Section 5.1 we evaluate monolingual
models, followed by evaluation of cross-lingual transfer in Section 5.2.

5.1 Monolingual evaluations

The monolingual evaluation is split into six subsections according to the type
of task. We start with NER, followed by POS-tagging, dependency parsing,
CoSimLex, analogies, and SuperGLUE tasks. The results shown for classifica-
tion tasks NER, POS-tagging, and dependency parsing are the averages of five
individual evaluation runs.

5.1.1 Named entity recognition

In Table 4, we present the results of fastText non-contextual baseline, compared
with two types of contextual ELMo embeddings, ELMoForManyLangs and L-
ELMo (described in Section 3.2). L-ELMo, trained on much larger datasets, is
the best in every language except Latvian. The fastText baseline lags behind
both ELMo embeddings.

The results of BERT models are presented in Table 5. Each of the listed
BERT models was fine-tuned on NER datasets in languages where that makes
sense: monolingual and trilingual BERT models were used in languages used
in their pretraining, and massively multilingual models (mBERT and XLM-R)
were fine-tuned for all used languages.
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Table 4: The comparison of fastText non-contextual baseline with two types
of ELMo embeddings, EFML and L-ELMo on the NER task. The results are
given as macro F1 scores. The best model for each language is in bold. There
is no Lithuanian EFML model.

Language fastText EFML L-ELMo
Croatian 0.570 0.733 0.810
English 0.807 0.879 0.922
Estonian 0.734 0.828 0.895
Finnish 0.692 0.882 0.923
Latvian 0.557 0.838 0.818
Lithuanian 0.359 N/A 0.755
Slovenian 0.478 0.772 0.849
Swedish 0.663 0.829 0.852

Table 5: The results of NER evaluation task for multilingual BERT (mBERT),
XLM-RoBERTa (XLM-R), trilingual BERT-based (TRI) and monolingual
BERT-based (MONO) models. The scores are macro average F1 scores of the
three named entity classes.

Language mBERT XLM-R TRI MONO
Croatian 0.801 0.833 0.886 0.881
English 0.938 0.941 0.944 0.943
Estonian 0.900 0.913 0.930 0.936
Finnish 0.934 0.932 0.957 0.952
Latvian 0.847 0.859 0.863 0.145
Lithuanian 0.833 0.802 0.863 -
Slovenian 0.885 0.912 0.928 0.933
Swedish 0.844 0.875 - 0.887

All BERT-like models perform similarly in English. XLM-R outperforms
mBERT on all languages, except Lithuanian and Finnish. Trilingual models
outperform both mBERT and XLM-R on all languages and outperform most
monolingual models, except Est-RoBERTa on Estonian and SloBERTa on Slove-
nian. The monolingual LVBERT model performs poorly, which is an indication
that this model was not trained on a large enough dataset. The best performing
trilingual model in English is CroSloEngual BERT. On Estonian, Est-RoBERTa
(F1 = 0.936) significantly outperforms EstBERT (F1 = 0.870). Again, the lat-
ter does not seem to be trained on a large enough dataset. Comparing BERT
results in Table 5 with ELMo results in Table 4, we can observe clear domi-
nance of BERT models. The extracted ELMo embedding vectors are clearly
not competitive to the entire pretrained BERT models on the NER task.
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5.1.2 POS-tagging

In Table 6, we present the results of fastText non-contextual baseline, compared
with two types of contextual ELMo embeddings, EFML and L-ELMo. Again,
L-ELMo models are the best in all languages. Some results are surprisingly low,
but this is the effect of the low quality of the datasets.

Table 6: The comparison of fastText non-contextual baseline with two types of
ELMo embeddings (EFML and L-ELMo) on the POS-tagging task. The results
are given as micro F1 scores. The best results for each language are in bold.
There is no Lithuanian EFML model.

Language fastText EFML L-ELMo
Croatian 0.512 0.573 0.963
English 0.769 0.603 0.952
Estonian 0.640 0.508 0.969
Finnish 0.506 0.389 0.966
Latvian 0.462 0.489 0.940
Lithuanian 0.303 N/A 0.316
Russian 0.518 0.349 0.929
Slovenian 0.527 0.541 0.966
Swedish 0.275 0.313 0.933

Table 7: The results of POS-tagging evaluation task for multilingual BERT
(mBERT), XLM-RoBERTa (XLM-R), trilingual BERT-based (TRI) and mono-
lingual BERT-based (MONO) models expressed with F1 scores. The best results
for each language are in bold.

Language mBERT XLM-R TRI MONO
Croatian 0.978 0.981 0.982 0.981
English 0.964 0.972 0.968 0.967
Estonian 0.966 0.970 0.973 0.977
Finnish 0.961 0.977 0.976 0.980
Latvian 0.946 0.960 0.966 0.048
Lithuanian 0.934 0.964 0.961 -
Russian 0.974 0.976 - 0.975
Slovenian 0.984 0.988 0.990 0.991
Swedish 0.979 0.981 - 0.988

The results of BERT models are presented in Table 7. Each of the listed
BERT models was fine-tuned on POS datasets in languages where that makes
sense: monolingual and trilingual BERT models were used in languages used
in their pretraining, and massively multilingual models (mBERT and XLM-R)
were fine-tuned for all used languages.
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The results show that trilingual models and massively multilingual BERT
models are very competitive in the POS-tagging task, differences being relatively
small and language-dependent. Nevertheless, for some languages the same pat-
tern appears as in NER: in Slovenian and Estonian monolingual models are the
best again, the trilingual models outperform monolingual Croatian and English
models, the monolingual Latvian BERT model, which was pretrained on in-
sufficient amounts of data, performs poorly again. The Est-RoBERTa model
outperforms EstBERT again (0.977 vs. 0.961), all trilingual models score the
same on English. Comparing BERT and ELMo results in Tables 6 and Table 7,
we again observe a clear dominance of BERT models.

5.1.3 Dependency parsing

In Table 8, we compare two types of contextual ELMo embeddings (EFML and
L-ELMo) on the dependency parsing task. L-ELMo models outperform EFML
on all languages. The difference between them is very small in English and
Russian, while the largest difference occurs in Slovenian and Estonian.

Table 8: The comparison of two types of ELMo embeddings (EFML and L-
ELMo) on the dependency parsing task. Results are given as UAS and LAS
scores. The best results for each language are typeset in bold. There is no
Lithuanian EFML model.

ELMoForManyLangs L-ELMo
Language UAS LAS UAS LAS
Croatian 88.18 79.45 91.74 85.84
English 90.28 86.29 90.53 87.16
Estonian 81.19 72.50 89.54 85.45
Finnish 88.27 83.44 90.83 86.86
Latvian 87.17 80.76 88.85 82.82
Lithuanian - - 82.84 72.16
Russian 89.28 83.29 89.33 83.54
Slovenian 85.55 77.73 93.70 91.39
Swedish 88.03 83.09 89.70 85.07

The results of BERT models are presented in Table 9. Each of the listed
BERT models was fine-tuned on POS datasets in languages where that makes
sense: monolingual and trilingual BERT models were used in languages used
in their pretraining, and massively multilingual models (mBERT and XLM-R)
were fine-tuned for all used languages.

The results show that the differences between monolingual, trilingual, and
massively multilingual BERT models are language-dependent. CroSloEngual is
again the best performing trilingual model in English. EstBERT performs well
on this task, but still worse than Est-RoBERTa (77.44 and 78.64 LAS score,
respectively).
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Table 9: The results of the evaluation in the dependency parsing task for mul-
tilingual BERT (mBERT), XLM-RoBERTa (XLM-R), trilingual BERT-based
(TRI) and monolingual BERT-based (MONO) models. The results are given as
LAS scores. The best results for each language are typeset in bold.

Language mBERT XLM-R TRI MONO
Croatian 70.38 78.39 82.36 -
English 83.19 84.94 83.91 83.55
Estonian 56.27 68.91 75.67 78.64
Finnish 57.22 71.12 79.96 83.64
Latvian 54.61 69.26 74.32 56.87
Lithuanian 44.08 56.61 61.66 -
Russian 70.00 73.47 - 80.90
Slovenian 68.08 79.27 85.38 84.41
Swedish 74.04 80.93 - 85.83

Surprisingly, comparing BERT and ELMo results in Tables 8 and Table 9,
shows that L-ELMo models dominate in all languages. These results indicate
that BERT models shall not always be the blind choice in text classification, as
ELMo might still be competitive in some tasks.

5.1.4 CoSimLex

In Table 10, we compare performance on the CoSimLex word similarity in con-
text task for two types of ELMo models (EFML and L-ELMo) and BERT
models (massively multilingual mBERT and two trilingual models: CroSloEn-
gual BERT and FinEst BERT). The performance is expressed with two metrics:
M1 measures the ability to predict the change in similarity due to a change in
context, measured as uncentered Spearman correlation between the predicted
and actual change of similarity scores; and M2 measures the ability to predict
absolute ratings of similarity in context, measured as the harmonic mean of
the Spearman and Pearson correlations between predicted and actual similarity
scores. See Section 4.1.3 for details.

Among ELMo models, L-ELMo models consistently outperform EFML mod-
els, producing closer scores to humans in both metrics and all four languages.
Among BERT models, the trilingual models (see Section 3.4.3) do best for
most languages and metrics. The exceptions are English, in which the original
monolingual BERT outperforms the trilingual models in both metrics, and the
monolingual Finnish model (FinBERT), which achieves the best results for M2.
We note that these best-performing models significantly outperform the stan-
dard multilingual BERT (mBERT) in all cases except M1 for Finnish, where
mBERT’s results are similar.

Comparing ELMo and BERT models, BERT models are more successful and
predict similarities closer to human assigned scores. Interestingly, looking at the
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Table 10: Comparison of different ELMo and BERT embeddings on the CoSim-
Lex datasets. We compare performance via the uncentered Spearman correla-
tion between the predicted and true change in similarity scores (M1), and the
harmonic mean of the Spearman and Pearson correlations between predicted
and true similarity scores (M2). Trilingual and monolingual models are based
on either a the original BERT model, b the Electra approach or c the RoBERTa
model.

ELMo models BERT Models
Model Metric EFML L-ELMo mBERT XLM-R TRI MONO
English M1 0.556 0.570 0.713 0.545 0.719a 0.729a

Croatian M1 0.520 0.662 0.587 0.444 0.715a 0.351b

Slovene M1 0.467 0.550 0.603 0.440 0.673a 0.574c

Finnish M1 0.403 0.452 0.671 0.260 0.672a 0.595a

English M2 0.449 0.510 0.573 0.440 0.601a 0.653a

Croatian M2 0.433 0.529 0.443 0.387 0.642a 0.391b

Slovene M2 0.328 0.516 0.516 0.355 0.589a 0.445c

Finnish M2 0.403 0.407 0.289 0.053 0.533a 0.570a

different types of BERT models, the ones that are based on the original BERT
model seem to do much better than more recent variants. Multilingual mBERT
does significantly better than XLM-RoBERTa, and the best model for every cat-
egory is based on the original BERT formulation (English BERT, CroSloEngual,
FinEst and FinBERT). The monolingual Slovene model (SloBERTa) performs
poorly (it is based on the same RoBERTa variant as XLM-RoBERTa). The
monolingual Croatian model (BERTić), trained using the Electra approach (see
Section 3.4.2), does especially poor on this task. It seems possible that the
Electra and RoBERTa approaches, due to their different pretraining objectives,
produce less human-like models in terms of their embedding similarities - but
further experiments are required to draw stronger conclusions.

5.1.5 Analogies

In Table 11, we present the comparison between two types of ELMo embed-
dings (EFML and L-ELMo) on the word analogy task. We used two distance
metrics to measure the distance between the expected and the actual result.
The results strongly depend on the used distance metric. Using the Euclidean
distance, EFML outperforms L-ELMo on five languages, and L-ELMo wins in
three languages. On these three languages (Croatian, Estonian, and Slovenian),
results of EFML are significantly worse than on other languages. Using co-
sine distance, which is more suited for high-dimensional vector spaces, L-ELMo
outperforms EFML on all languages.

The results for BERT models are presented in Table 12. Recall that the
task for BERT models is different from ELMo, as described in Section 4.2.4.
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Table 11: The comparison of two types of ELMo embeddings (EFML and L-
ELMo) on the word analogy task. Results are reported as the macro average
distance between expected and actual word vector of the word w4. Two dis-
tance metrics were used: cosine (Cos) and Euclidean (Euc). The best results
(shortest distance) for each language and metric are typeset in bold. There is
no Lithuanian EFML model.

EFML L-ELMo
Language Cos Euc Cos Euc
Croatian 0.652 73.54 0.428 33.48
English 0.442 23.89 0.432 42.99
Estonian 0.599 101.90 0.435 42.38
Finnish 0.459 31.04 0.410 41.65
Latvian 0.494 30.32 0.466 42.75
Lithuanian - - 0.389 29.37
Russian 0.495 29.47 0.429 44.24
Slovenian 0.568 99.22 0.408 28.16
Swedish 0.496 28.71 0.478 39.71

Each of the listed BERT models was used as a masked word prediction model
in languages where that makes sense: monolingual and trilingual models were
used for languages used in their pretraining, and massively multilingual models
were tested for all used languages. BERTić (Croatian monolingual) model was
not trained as a masked language model, so we omit it here.

Table 12: The results of the word analogy task expressed as Accuracy@5 for mul-
tilingual BERT (mBERT), XLM-RoBERTa (XLM-R), trilingual BERT-based
(TRI) and monolingual BERT-based (MONO) models. The best results for
each language are typeset in bold.

Language mBERT XLM-R TRI MONO
Croatian 0.090 0.138 0.278 -
English 0.404 0.413 0.439 0.114
Estonian 0.093 0.251 0.224 0.393
Finnish 0.067 0.208 0.285 0.173
Latvian 0.026 0.118 0.170 0.118
Lithuanian 0.036 0.107 0.214 -
Russian 0.102 0.189 - 0.000
Slovenian 0.061 0.146 0.195 0.409
Swedish 0.052 0.097 - 0.239

The results show that trilingual BERT models are strongly dominating in
most languages where they exist. The exceptions are Slovenian and Estonian,
where the monolingual models perform best. However, in most languages mono-
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lingual models perform poorly. The latter holds also for EstBERT, which scores
0.165 accuracy@5, placing it behind every model, except mBERT. FinEst BERT
is the best performing trilingual model on English for this task.

5.1.6 SuperGLUE tasks

The SuperGLUE benchmark is extensively used to compare large pretrained
models in English25. In contrast to that, we concentrate on the Slovene trans-
lation of the SuperGLUE tasks, described in Section 4.1.5. Experiments in
English have shown that ELMo embeddings are not competitive to pretrained
transformer models like BERT in GLUE benchmarks [Wang et al., 2019a]. For
this reason, we skip ELMo models and compare four BERT models in our exper-
iments: monolingual Slovene SloBERTa, trilingual CroSloEngual BERT, mas-
sively multilingual mBERT (bert-base-multilingual-cased26) and XLM-R (xlm-
roberta-base27). Each model was fine-tuned using either MT or HT datasets
of the same size. Only the translated content varies between both translation
types; otherwise, they contain exactly the same examples. The splits of in-
stances into train, validation and test sets is the same as in the English variant
(but mostly considerably smaller, see Table 3).

In our analysis, we vary the sizes of datasets, translation types, and predic-
tion models. Table 13 shows the results together with several baselines trained
on the original English datasets. Most comparisons to English baselines are
unfair because the reported English models used significantly more examples
(BoolQ, MultiRC) or, in the case of the BERT++ model, the English model
was additionally pretrained with transfer tasks that are similar to a target one
(CB, RTE, BoolQ, COPA). In terms of comparable datasets, fair comparisons
are possible with the CB, COPA, and WSC.

The single-number overall average score (Avg in the second column) com-
prises five equally weighted tasks: BoolQ, CB, COPA, MultiRC, and RTE. In
tasks with multiple metrics, we averaged those metrics to get a single task score.
For the details on how the score is calculated for each task, see [Wang et al.,
2019a].

Considering the Avg scores in Table 13, SloBERTa is the best performing
model. On average, all BERT models, regardless of translation type, perform
better than the Most Frequent baselines. From the translation type perspective,
the models trained on HT datasets perform better than those trained on MT
datasets by 1.5 points. The only task where MT is better than HT is MultiRC,
but looking at single scores, we can observe that none of the models learned
anything (all scores are below the Most Frequent baseline). There is a large
gap between the Most frequent baseline and the rest of the models. Analysis
of other specific tasks shows that for the BoolQ dataset all models predict the
most frequent class (the testing set might be too small for reliable conclusions in
BoolQ). We assume that training sample sizes are too small MultiRC and BoolQ

25https://super.gluebenchmark.com/leaderboard
26https://huggingface.co/bert-base-multilingual-cased
27https://huggingface.co/xlm-roberta-base
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Table 13: The SuperGLUE benchmarks in English (upper part) and Slovene
(lower part). All English results are taken from [Wang et al., 2019a]. The HT
and MT labels indicate human and machine translated Slovene datasets. The
best score for each task and language is in bold. The best average scores (Avg)
for each language are underlined.

Task Avg BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
Models/Metrics Acc. F1/Acc. Acc. F1a/EM F1/EM Acc. Acc. Acc.
Most Frequent 45.7 62.3 21.7/48.4 50.0 61.1/0.3 33.4/32.5 50.3 50.0 65.1
CBoW 44.7 62.1 49.0/71.2 51.6 0.0/0.4 14.0/13.6 49.7 53.0 65.1
BERT 69.3 77.4 75.7/83.6 70.6 70.0/24.0 72.0/71.3 71.6 69.5 64.3
BERT++ 73.3 79.0 84.7/90.4 73.8 70.0/24.1 72.0/71.3 79.0 69.5 64.3
Human (est.) 89.8 89.0 95.8/98.9 100.0 81.8*/51.9* 91.7/91.3 93.6 80.0 100.0
Most Frequent (sl) 49.1 63.3 21.7/48.4 50.0 76.4/0.6 - 58.6 - 65.8
HT-mBERT 54.3 63.3 66.6/73.6 54.2 45.1/8.1 - 57.2 - 61.6
MT-mBERT 55.2 63.3 65.1/68.8 54.4 55.4/11.7 - 57.9 - -
HT-CroSloEngual 55.6 63.3 62.1/72.4 58.2 53.0/8.4 - 58.6 - 56.2
MT-CroSloEngual 53.4 63.3 59.8/68.4 55.0 51.2/10.5 - 53.8 - -
HT-SloBERTa 57.2 63.3 74.0/76.8 61.8 53.0/10.8 - 53.8 - 73.3
MT-SloBERTa 55.8 63.3 68.6/74.8 58.2 57.1/12.0 - 49.6 - -
HT-XLM-R 53.5 63.3 66.2/73.2 50.0 53.3/0.9 - 57.2 - 65.8
MT-XLM-R 50.1 63.3 62.0/68.4 51.4 55.3/0.6 - 42.8 - -
HT-Avg 55.1 63.3 70.6 56.0 29.1 - 56.7 - 64.2
MT-Avg 53.6 63.3 67.0 54.8 31.7 - 51.0 - -

in these two tasks and have to be increased (we have only 92 HT examples in
BoolQ and 15 HT examples in MultiRC). The same is also true for RTE.

Compared to English models, the best Slovene model (SloBERTa) achieved
good results on WSC. It seems that none of the English models learned any-
thing from WSC, but the SloBERTa model achieved a score of 73.3 (the Most
Frequent baseline gives 65.8). Nevertheless, there is still a large gap compared
to human performance. All models showed good performance on CB and fell
somewhere between English CBoW and BERT. We expected better results on
the fully human translated COPA task. We are investigating the reasons for low
performance in this task. In general, SloBERTa was significantly better than
the rest of models in CB, COPA, and WSC.

We conclude that the best BERT models perform well on tasks with enough
training examples (CB, COPA, WSC) and show some level of language under-
standing above chance. Furthermore, the models benefited from human trans-
lated datasets compared to machine translation. For some datasets, we need
to increase the number of training and/or testing examples. In further work,
we intend to create a Slovene version of the WiC task from scratch and run
experiments on the cleaned and improved ReCoRD task.

5.2 Cross-lingual evaluations

The cross-lingual evaluation is split into six subsections according to the type of
task. We present results on NER, POS-tagging, dependency parsing, analogies,
SuperGLUE, and terminology alignment. We train models on a source language
dataset in each task and use it for classification in the target language, i.e. we
test the zero-shot transfer unless specified otherwise. For NER, POS-tagging,
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and dependency parsing tasks, the results are averaged over five individual eval-
uation runs, just like in the monolingual evaluations. Additionally, cross-lingual
ELMoGAN maps were trained five times and each of the five maps was paired
with one of the five classification models for each task during evaluation.

5.2.1 Named entity recognition

In Table 14, we present the results of cross-lingual transfer of contextual ELMo
embeddings. We compared isomorphic mapping with Vecmap and MUSE li-
braries, and two non-isomorphic mappings using GANs, ELMoGAN-O (EG-O)
and ELMoGAN-10k (EG-10k).

Table 14: Comparison of different methods for cross-lingual mapping of contex-
tual ELMo embeddings evaluated on the NER task. The best Macro F1 score
for each language pair is in bold. The “Reference“ column represents direct
learning on the target language without cross-lingual transfer. The upper part
of the table contains a scenario of cross-lingual transfer from English to a less-
resourced language, and the lower part of the table shows a transfer between
similar languages.

Source Target Dict. Vecmap EG-O EG-10k MUSE Reference
English Croatian direct 0.385 0.274 0.365 0.024 0.810
English Estonian direct 0.554 0.693 0.728 0.284 0.895
English Finnish direct 0.672 0.705 0.780 0.229 0.922
English Latvian direct 0.499 0.644 0.652 0.216 0.818
English Lithuanian direct 0.498 0.522 0.553 0.208 0.755
English Slovenian direct 0.548 0.572 0.676 0.060 0.850
English Swedish direct 0.786 0.700 0.780 0.568 0.852
Croatian Slovenian direct 0.387 0.279 0.250 0.418 0.850
Croatian Slovenian triang 0.731 0.365 0.420 0.592 0.850
Estonian Finnish direct 0.517 0.339 0.316 0.278 0.922
Estonian Finnish triang 0.779 0.365 0.388 0.296 0.922
Finnish Estonian direct 0.477 0.305 0.324 0.506 0.895
Finnish Estonian triang 0.581 0.334 0.376 0.549 0.895
Latvian Lithuanian direct 0.423 0.398 0.404 0.345 0.755
Latvian Lithuanian triang 0.569 0.445 0.472 0.378 0.755
Lithuanian Latvian direct 0.263 0.312 0.335 0.604 0.818
Lithuanian Latvian triang 0.359 0.405 0.409 0.710 0.818
Slovenian Croatian direct 0.361 0.270 0.307 0.485 0.810
Slovenian Croatian triang 0.566 0.302 0.321 0.518 0.810
Average gap for the best cross-lingual transfer in each language 0.147

The upper part of the table shows a typical cross-lingual transfer learning
scenario, where the model is transferred from resource-rich language (English) to
less-resourced languages. In this case, the non-isomorphic ELMoGAN methods,
particularly the ELMoGAN-10k variant, are superior to isomorphic mapping
with Vecmap and MUSE libraries. In this scenario, ELMoGAN-10k is always
the best or close to the best mapping approach. This is not always the case in
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the lower part of Table 14, which shows the second most important cross-lingual
transfer scenario: transfer between similar languages. In this scenario, isomor-
phic mappings with Vecmap and MUSE are superior. We hypothesise that
the reason for the better performance of isomorphic mappings is the similarity
of tested language pairs and less violation of the isomorphism assumption the
Vecmap and MUSE methods make. The results of the mapping with the MUSE
method support this hypothesis. While MUSE performs worst in most cases
of transfer from English, the performance gap is smaller for transfer between
similar languages. MUSE is sometimes the best method for similar languages,
but its results fluctuate considerably between language pairs. The second pos-
sible factor explaining the results is the quality of the dictionaries, which are
in general better for combinations involving English. In particular, dictionaries
obtained by triangulation via English are of poor quality, and non-isomorphic
translation might be more affected by imprecise anchor points.

In general, even the best cross-lingual ELMo models lag behind the reference
model without cross-lingual transfer. The differences in Macro F1 score are small
for some languages (e.g., 5.5% for English-Swedish), but they are significantly
larger for most languages. The average gap between the best cross-lingual model
in each language and the monolingual reference is 14.7% for ELMo models.

In Table 15, we present the results of cross-lingual transfer for contextual
BERT models. We compared massively multilingual BERT models (mBERT
and XLM-R) with trilingual BERT models (TRI).

The results show a clear advantage of trilingual models compared to mas-
sively multilingual models. The trilingual models dominate in 11 out of 12
transfers, except the transfer from English to Estonian, where XLM-R is better
for 0.1%. The results also show that the transfer from a similar language is
more successful than transfer from English. The average difference between the
most successful transfer from English and the most successful transfer from a
similar language averaged over target languages is considerable, i.e. 4.6%.

Comparing cross-lingual transfer of ELMo (in Table 14) with variants of
multilingual BERT (in Table 15), the transfer with BERT is considerably more
successful. This indicates that ELMo, while useful for explicit extraction of em-
bedding vectors, is less competitive with BERT in the prediction model transfer,
especially if we consider that ELMo requires additional effort for preparation of
contextual mapping datasets, while BERT does not need it.

Finally, the comparison between the best cross-lingual models (in the bottom
part of Table 15) and the best monolingual models (reference scores taken from
Table 5) shows that with cross-lingual transfer we lose on average 5.2%. This is
a very encouraging result, showing that modern cross-lingual technologies have
made significant progress and can bridge the technological gap for less-resourced
languages. Further, this score is for zero-shot transfer, while a few-shot transfer
(with small amounts of data in a target language) might be even closer to
monolingual results.
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Table 15: Comparison of multilingual BERT (mBERT), XLM-RoBERTa (XLM-
R) and trilingual BERT-based (TRI) models evaluated on the NER task as a
zero-shot transfer mode. The best Macro F1 score for each language pair is
in bold. The “Best monolingual“ column represents the best result for direct
learning on the target language without cross-lingual transfer. The upper part
of the table contains a scenario of cross-lingual transfer from English to a less-
resourced language, and the lower part of the table shows a transfer between
similar languages.

Best
Source. Target. mBERT XLM-R TRI monolingual
English Croatian 0.632 0.673 0.814 0.886
English Estonian 0.799 0.833 0.832 0.936
English Finnish 0.780 0.840 0.902 0.957
English Latvian 0.714 0.756 0.768 0.863
English Lithuanian 0.672 0.656 0.702 0.863
English Slovenian 0.742 0.755 0.847 0.933
Slovenian Croatian 0.751 0.769 0.841 0.886
Finnish Estonian 0.809 0.833 0.869 0.936
Estonian Finnish 0.832 0.881 0.911 0.957
Lithuanian Latvian 0.785 0.816 0.834 0.863
Latvian Lithuanian 0.718 0.731 0.776 0.863
Croatian Slovenian 0.844 0.882 0.901 0.933
Average gap for the best cross-lingual transfer in each language 0.052

5.2.2 POS-tagging

In Table 16, we present the results of cross-lingual transfer of contextual ELMo
embeddings. We compared isomorphic mapping with Vecmap and MUSE li-
braries and two non-isomorphic mappings using GANs (ELMoGAN-O and ELMoGAN-
10k), described in Section 3.2. The upper part of the table shows a cross-lingual
transfer learning scenario, where the model is transferred from resource-rich
language (English) to less-resourced languages, and the lower part shows the
transfer from similar languages.

The isomorphic mappings with MUSE are superior in the POS tagging task,
followed by Vecmap. The non-isomorphic methods are inferior in this task.
However, even the best cross-lingual ELMo models lag considerably compared
to the reference model without cross-lingual transfer. The average difference in
Macro F1 score is 22.3% (not taking into account Lithuanian which has a failed
monolingual ELMo model).

In Table 17, we present the results of cross-lingual transfer for contextual
BERT models. We compared massively multilingual BERT models (mBERT
and XLM-R) with trilingual BERT models (TRI).

The results show an advantage of trilingual models in transfer from similar
languages, while in the transfer from English, the massively multilingual XLM-
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Table 16: Comparison of different methods for cross-lingual mapping of con-
textual ELMo embeddings evaluated on the POS-tagging task. The best micro
F1 score for each language pair is in bold. The “Reference“ column represents
direct learning on the target language without cross-lingual transfer. The up-
per part of the table contains a scenario of cross-lingual transfer from English
to a less-resourced language, and the lower part of the table shows a transfer
between similar languages.

Source Target Dict. Vecmap EG-O EG-10k MUSE Reference
English Croatian direct 0.705 0.629 0.620 0.687 0.963
English Estonian direct 0.728 0.678 0.647 0.729 0.969
English Finnish direct 0.729 0.531 0.578 0.715 0.966
English Latvian direct 0.681 0.625 0.607 0.655 0.940
English Lithuanian direct 0.700 0.648 0.605 0.670 0.316
English Russian direct 0.415 0.488 0.491 0.665 0.929
English Slovenian direct 0.719 0.637 0.584 0.723 0.966
English Swedish direct 0.839 0.688 0.649 0.848 0.933
Croatian Slovenian direct 0.551 0.421 0.435 0.683 0.966
Croatian Slovenian triang 0.734 0.434 0.461 0.833 0.966
Estonian Finnish direct 0.586 0.522 0.533 0.706 0.966
Estonian Finnish triang 0.673 0.514 0.543 0.690 0.966
Finnish Estonian direct 0.619 0.596 0.590 0.792 0.969
Finnish Estonian triang 0.703 0.603 0.583 0.837 0.969
Latvian Lithuanian direct 0.620 0.668 0.630 0.757 0.316
Latvian Lithuanian triang 0.657 0.671 0.646 0.773 0.316
Lithuanian Latvian direct 0.310 0.312 0.315 0.321 0.940
Lithuanian Latvian triang 0.303 0.316 0.315 0.319 0.940
Slovenian Croatian direct 0.558 0.467 0.495 0.662 0.963
Slovenian Croatian triang 0.735 0.492 0.502 0.784 0.963
Avg. gap for the best transfer in each language 0.104
Avg. gap for the best transfer in each language (without Lithuanian) 0.184

R models are more successful. The transfer from a similar language is more
successful than the transfer from English, the average difference being 5.7%.

Similarly to NER, the comparison of ELMo cross-lingual transfer (in Ta-
ble 16) with variants of multilingual BERT (in Table 17) shows that the transfer
with BERT is considerably more successful. The comparison between the best
cross-lingual models (these are various BERT models in Table 17) and the best
monolingual models (reference scores taken from Table 7) shows that with the
cross-lingual transfer we lose on average 8.2%.

5.2.3 Dependency parsing

In Table 18, we present the results of cross-lingual transfer of contextual ELMo
embeddings. We compared isomorphic mapping with Vecmap and MUSE li-
braries and two non-isomorphic mappings using GANs (ELMoGAN-O and ELMoGAN-
10k). The upper part of the table shows a cross-lingual transfer learning sce-
nario, where the model is transferred from resource-rich language (English) to
less-resourced languages, and the lower part shows the transfer from similar
languages.
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Table 17: Comparison of multilingual BERT (mBERT), XLM-RoBERTa (XLM-
R) and trilingual BERT-based (TRI) models evaluated on the POS-tagging task
as a zero-shot knowledge transfer. The best F1 score for each language pair is in
bold. The upper part of the table contains a scenario of cross-lingual transfer
from English to a less-resourced language, and the lower part of the table shows
a transfer between similar languages.

Best
Source. Target. mBERT XLM-R TRI monolingual
English Croatian 0.837 0.846 0.827 0.982
English Estonian 0.799 0.849 0.851 0.977
English Finnish 0.799 0.857 0.839 0.980
English Latvian 0.756 0.828 0.829 0.966
English Lithuanian 0.766 0.833 0.822 0.964
English Russian 0.812 0.842 - 0.976
English Slovenian 0.807 0.834 0.819 0.991
English Swedish 0.908 0.925 - 0.981
Slovenian Croatian 0.900 0.910 0.921 0.982
Finnish Estonian 0.834 0.887 0.898 0.977
Estonian Finnish 0.813 0.889 0.890 0.980
Lithuanian Latvian 0.805 0.857 0.860 0.966
Latvian Lithuanian 0.821 0.890 0.900 0.964
Croatian Slovenian 0.895 0.919 0.924 0.991
Average gap for the best cross-lingual transfer in each language 0.082

The isomorphic mappings with Vecmap are superior in the dependency pars-
ing task, followed by MUSE. Similarly to POS-tagging, the non-isomorphic
methods lag. Again, the best cross-lingual ELMo models produce consider-
ably lower scores than the reference model without cross-lingual transfer. The
average difference in UAS score is 9.89%, and in LAS it is 23.79%.

In Table 19, we present the results of cross-lingual transfer for contextual
BERT models. We compared massively multilingual BERT models (mBERT
and XLM-R) with trilingual BERT models (TRI).

The results show an advantage of trilingual models in transfer from English
and similar languages. The transfer from a similar language is more successful
than the transfer from English, the average difference being 14.74%. The com-
parison between the best BERT cross-lingual models (from Table 19) and the
best monolingual models (reference scores taken from Table 9) shows that with
the cross-lingual transfer we lose on average 16.50%.

Contrary to other tasks and similarly to monolingual setting, the compari-
son of ELMo cross-lingual transfer (in Table 18) with variants of multilingual
BERT (in Table 19) shows that the transfer with ELMo is more successful. We
hypothesise that this is the result of better ELMo source language models.
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Table 18: Comparison of different contextual cross-lingual mapping meth-
ods for contextual ELMo embeddings, evaluated on the dependency parsing
task. Results are reported as the unlabelled attachments score (UAS) and la-
belled attachment score (LAS). The best results for each language and type
of transfer (from English or similar language) are typeset in bold. The col-
umn “Direct“ stands for direct learning on the target (i.e. evaluation) lan-
guage without cross-lingual transfer. The languages are represented with their
international language codes ISO 639-1.

Train Eval. Vecmap EG-O EG-10k MUSE Direct
lang. lang. Dict. UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
en hr direct 73.96 60.53 68.73 50.29 66.74 40.93 71.01 54.89 91.74 85.84
en et direct 62.08 40.62 52.01 30.22 44.80 24.59 58.76 34.07 89.54 85.45
en fi direct 64.40 45.32 50.80 25.23 42.65 22.66 55.03 37.61 90.83 86.86
en lv direct 77.84 65.97 68.51 49.47 67.09 39.41 76.26 63.45 88.85 82.82
en lt direct 63.33 40.56 50.04 31.26 50.04 31.26 58.70 37.78 82.84 72.16
en ru direct 72.00 16.62 60.74 8.92 60.68 8.18 65.23 14.77 89.33 83.54
en sl direct 79.01 59.84 68.82 48.20 67.04 43.34 77.18 56.53 93.70 91.39
en sv direct 82.08 72.74 74.39 59.70 73.81 59.63 82.17 72.78 89.70 85.07
hr sl direct 85.47 72.70 51.88 31.50 53.68 33.40 83.45 69.08 93.70 91.39
hr sl triang 87.70 76.51 54.34 36.32 59.61 38.83 87.70 76.40 93.70 91.39
et fi direct 79.14 66.09 55.67 36.85 51.35 30.66 76.66 60.01 90.83 86.86
et fi triang 80.94 67.35 52.63 29.94 52.83 28.70 76.96 63.37 90.83 86.86
fi et direct 75.81 57.32 54.69 33.99 53.27 32.28 74.96 58.14 89.54 85.45
fi et triang 79.04 61.86 53.64 32.73 53.86 30.13 76.74 60.27 89.54 85.45
lv lt direct 76.43 54.24 64.44 37.16 64.73 35.86 75.45 53.02 82.84 72.16
lv lt triang 76.26 53.59 65.91 37.91 65.45 33.62 75.12 51.14 82.84 72.16
lt lv direct 63.27 24.53 56.43 26.93 62.51 31.84 73.70 44.62 88.85 82.82
lt lv triang 61.32 27.29 61.89 29.39 61.95 30.11 72.39 43.15 88.85 82.82
sl hr direct 77.89 62.58 47.34 29.39 52.27 32.48 72.87 55.70 91.74 85.84
sl hr triang 81.32 67.51 50.96 32.82 56.17 35.96 78.63 63.96 91.74 85.84
Avg. gap for the best cross-lingual transfer in each language 9.89 23.79

33

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes


Table 19: Comparison of multilingual BERT (mBERT), XLM-RoBERTa (XLM-
R) and trilingual BERT-based (TRI) models evaluated on the dependency pars-
ing task as a zero-shot knowledge transfer. The best LAS score for each language
pair is in bold. The upper part of the table contains a scenario of cross-lingual
transfer from English to a less-resourced language, and the lower part of the
table shows a transfer between similar languages.

Best
Source. Target. mBERT XLM-R TRI monolingual
English Croatian 42.13 54.00 56.04 82.36
English Estonian 25.12 38.01 42.30 78.64
English Finnish 29.08 43.30 46.18 83.64
English Latvian 23.06 38.66 44.93 74.32
English Lithuanian 23.21 35.98 40.92 61.66
English Russian 43.41 48.19 - 80.90
English Slovenian 38.72 53.90 58.02 85.38
English Swedish 60.96 70.79 - 80.93
Slovenian Croatian 52.61 63.66 67.60 82.36
Finnish Estonian 37.34 53.98 63.08 78.64
Estonian Finnish 42.11 59.54 67.91 83.64
Lithuanian Latvian 31.26 48.10 52.33 74.32
Latvian Lithuanian 28.28 48.59 54.17 61.66
Croatian Slovenian 52.33 67.16 71.76 85.38
Avg. gap for the best cross-lingual transfer in each language 16.50
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5.2.4 Cross-lingual analogies

We present the results of cross-lingual transfer of contextual ELMo embed-
dings in Table 20. We compared isomorphic mapping with Vecmap and MUSE
libraries and two non-isomorphic mappings using GANs (ELMoGAN-O and
ELMoGAN-10k). The upper part of the table shows a cross-lingual transfer be-
tween English and lower-resourced language. The lower part of the table shows
a cross-lingual transfer between two similar languages.

Table 20: Comparison of different contextual cross-lingual mapping methods
for contextual ELMo embeddings, evaluated on the cross-lingual analogy task.
Results are reported as the macro average distance between expected and actual
word vector of the word w4. Two distance metrics were used: cosine (Cos) and
Euclidean (Euc). The best results (shortest distance) for each language and
type of transfer (from English or similar language) are typeset in bold. The
column “Direct“ stands for monolingual evaluation on the target (i.e. evalu-
ation) language without cross-lingual transfer. The languages are represented
with their international language codes ISO 639-1.

Train Eval. Vecmap EG-O EG-10k MUSE Direct
lang. lang. Dict. Cos Euc Cos Euc Cos Euc Cos Euc Cos Euc
en hr direct 0.603 23.47 0.814 40.02 0.763 42.40 0.603 44.54 0.428 33.48
en et direct 0.578 27.44 0.791 43.74 0.752 45.01 0.588 51.32 0.435 42.38
en fi direct 0.645 59.26 0.745 39.21 0.694 40.82 0.588 52.45 0.410 41.65
en lv direct 0.635 21.46 0.809 44.62 0.778 46.58 0.623 50.79 0.466 42.75
en lt direct 0.697 30.39 0.812 38.67 0.719 40.84 0.598 41.55 0.389 29.37
en ru direct 0.573 64.35 0.771 41.49 0.705 43.28 0.574 53.20 0.429 44.24
en sl direct 0.613 32.29 0.836 38.42 0.731 40.07 0.664 42.92 0.408 28.16
en sv direct 0.615 64.66 0.787 37.35 0.720 38.84 0.587 47.11 0.478 39.71
hr sl direct 0.690 7.59 0.732 41.02 0.721 41.29 0.592 36.37 0.408 28.16
hr sl triang 0.715 23.89 0.729 40.91 0.727 41.45 0.564 35.22 0.408 28.16
et fi direct 0.545 11.08 0.796 47.04 0.775 48.08 0.549 50.27 0.410 41.65
et fi triang 0.816 33.33 0.799 46.50 0.759 47.97 0.527 49.06 0.410 41.65
fi et direct 0.598 11.27 0.685 41.99 0.653 43.10 0.551 48.47 0.435 42.38
fi et triang 0.692 30.25 0.725 41.23 0.644 43.09 0.554 48.42 0.435 42.38
lv lt direct 0.587 11.96 0.704 39.52 0.624 41.80 0.563 39.99 0.389 29.37
lv lt triang 0.681 19.77 0.711 39.81 0.621 41.77 0.570 40.17 0.389 29.37
lt lv direct 0.690 12.10 0.814 45.38 0.758 46.86 0.524 43.26 0.466 42.75
lt lv triang 0.704 18.18 0.812 45.28 0.752 46.47 0.525 43.36 0.466 42.75
sl hr direct 0.591 6.62 0.663 38.00 0.645 38.23 0.526 38.17 0.428 33.48
sl hr triang 0.572 20.02 0.665 37.45 0.651 38.44 0.501 36.92 0.428 33.48
Average gap for the best cross-lingual transfer in each language 0.118 -20.29

The results depend largely on the metric used for evaluation. With cosine
distance, the mappings with MUSE are the best in most cases. For language
pairs, where the MUSE method is not the best, it is a close second. However,
with Euclidean distance, Vecmap mappings perform the best in most language
pairs, especially between similar languages, where they significantly outperform
even monolingual results. This can be partially explained by the fact, that the
Vecmap method changes both the source and target language embeddings during
the mapping. For three language pairs, English-Finnish, English-Russian, and
English-Swedish, Vecmap mappings do not perform well using the Euclidean
distance. In those cases, ELMoGAN-O mappings perform best.
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In Table 21, we present the results of contextual BERT models on the
cross-lingual analogy task. We compared massively multilingual BERT models
(mBERT and XLM-R) with trilingual BERT models: Croatian-Slovene-English
(CSE), Finnish-Estonian-English (FinEst), and Lithuanian-Latvian-English (Lit-
Lat). Recall that in the cross-lingual setting, the word analogy task tries to
match each relation in one language with each relation from the same category
in the other language. For cross-lingual contextual mappings, the word analogy
task is less adequate, and we apply this task to words in invented contexts. The
upper part of the table shows a cross-lingual scenario from the resource-rich
language (English) to less-resourced languages, and the lower part shows the
transfer from similar languages.

Table 21: Comparison of multilingual BERT (mBERT), XLM-RoBERTa (XLM-
R) and trilingual BERT-based (TRI) models, evaluated on the word analogy
task as a zero-shot knowledge transfer. The best accuracy@5 score for each
language pair is in bold. The upper part of the table contains a scenario of
cross-lingual transfer from English to a less-resourced language, and the lower
part of the table shows a transfer between similar languages.

Best
Source. Target. mBERT XLM-R TRI monolingual
English Croatian 0.025 0.015 0.103 0.278
English Estonian 0.018 0.029 0.074 0.393
English Finnish 0.001 0.013 0.114 0.285
English Latvian 0.006 0.036 0.033 0.170
English Lithuanian 0.011 0.034 0.042 0.214
English Russian 0.045 0.088 - 0.189
English Slovenian 0.007 0.055 0.091 0.409
English Swedish 0.065 0.053 - 0.239
Slovenian Croatian 0.024 0.088 0.139 0.278
Finnish Estonian 0.019 0.035 0.073 0.393
Estonian Finnish 0.003 0.020 0.137 0.285
Lithuanian Latvian 0.005 0.016 0.032 0.170
Latvian Lithuanian 0.011 0.033 0.068 0.214
Croatian Slovenian 0.013 0.086 0.178 0.409
Average gap for the best cross-lingual transfer in each language 0.174

The results show an advantage of trilingual models in transfer from both En-
glish and similar languages (the only difference being the transfer from English
to Latvian, where the XLM-R is more successful). The transfer from a similar
language is mostly more successful than the transfer from English.

5.2.5 SuperGLUE tasks

In the cross-lingual scenario, we tested three models, mBERT, CroSloEngual
BERT (CSE), and XLM-R, in the model transfer between English and Slovene
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(both directions). For Slovene as the source language, we used the available
human translated examples. To make the comparison balanced, we only used
the same examples from English datasets. We tested both zero-shot transfer
(no training data in the target language) and few-shot transfer. In the few-
shot training, we used 10 additional examples from the target language for each
task. To achieve more statistically valid results, we randomly sampled these 10
examples five times and reported averages. The fine-tuning hyperparameters
are the same as in the monolingual setup.

The results are presented in Table 22. Averaged over all tasks, some models
improved the Most frequent baseline. In general, they were quite unsuccessful
on BoolQ, MultiRC, and WSC but showed some promising results on COPA,
RTE, and especially CB. Additional training examples in the few-shot scenario
brought some visible improvements. It seems that models perform better in
the English-Slovene direction than vice versa. The best performing model is
XLM-R, followed by CroSloEngual BERT and mBERT.

Table 22: Cross-lingual results on human translated SuperGLUE test sets. The
source (s.) and target (t.) language is either Slovene (sl) or English (en). The
best results for zero-shot and few-shot scenarios are in bold.

Transfer Model s. t.
Avg BoolQ CB COPA MultiRC RTE WSC

acc. F1/acc. Acc. F1a/EM Acc. Acc.

Zero-shot

CSE
en sl 49.8 56.7 43.7/60.0 54.6 48.0/6.6 58.6 50.7
sl en 52.6 60.0 53.8/70 59.6 56.7/9.6 48.3 58.2

mBERT
en sl 47.4 56.7 36.2/57.2 50.2 47.3/8.7 55.2 64.4
sl en 48.3 60.0 44.6/50.4 49.8 56.2/8.7 51.7 57.5

XLM-R
en sl 53.8 63.3 62.9/68.4 53.6 48.5/0.3 62.1 56.2
sl en 51.7 63.3 59.1/67.2 47.2 52.9/12.9 51.7 65.8

Few-shot

CSE
en sl 54.4 60.0 52.4/68.6 55.0 52.8/9.72 65.5 54.1
sl en 53.0 60.0 53.8/70.0 59.5 56.0/12.1 49.7 58.2

mBERT
en sl 50.9 60.1 53.1/66.2 50.4 50.8/9.8 53.8 64.4
sl en 51.3 60.7 51.8/58.2 50.3 57.2/11.1 56.5 56.8

XLM-R
en sl 57.0 63.3 65.8/69.8 53.3 76.4/0.6 62.1 57.4
sl en 53.0 63.3 63.0/69.6 48.3 51.4/10.6 55.8 65.8

Most frequent 52.4 63.3 23.0/52.7 50.0 77.3/0.3 58.6 65.8

The low overall performance can be explained by a low number of training
examples in the source language. If we take a closer look at specific models,
we can observe that XLM-R shows good results on CB in both directions and
evaluation scenarios. CroSloEngual BERT achieved similarly good result on
COPA, where it is the only model that overpassed the baseline.

We can conclude that for the difficult SuperGLUE benchmark, the cross-
lingual transfer is challenging but not impossible. In the future, we plan to
expand the current set of experiments in several directions. First, we will train
English models on the full SuperGLUE datasets and transfer them to Slovene
human and machine-translated datasets. Second, we will train Slovene models
on the combined machine and human translated datasets and transfer them to
full English datasets. We will combine Slovene and English training sets and
apply the models to both languages. Finally, we will also combine training for
several tasks and test transfer learning scenarios.
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5.2.6 Terminology alignment

We present the results of cross-lingual terminology alignment of contextual
ELMo embeddings in Table 23. We compared the same four mapping methods
as in the previous tasks. For each language pair, we evaluate the terminology
alignment in both directions. That is, given the terms from the first language
(source), we search for the equivalent terms in the second language (target),
then we repeat in the other direction.

Results show that for the terminology alignment between English and other
languages, the two non-isomorphic mappings perform the best on all language
pairs. With English as the target language, ELMoGAN-10k always performs the
best. In cases where English is the source language, ELMoGAN-O is usually the
best. For terminology alignment between similar languages, isomorphic methods
outperform the non-isomorphic methods on similar languages. In most cases,
MUSE is the best method. If we just look at the best dictionary and mapping
direction for each language pair, MUSE is the best in each language pair not
involving English.

The terminology alignment is in most cases better from English than from
a similar language as the source. The exceptions are Croatian and Finnish (as
the targets).

In Table 24, we present the results of contextual embeddings, extracted from
multilingual and trilingual BERT models. In the same table, we also compare
the BERT embeddings with the best ELMo alignments. The results show that
trilingual models significantly outperform massively multilingual models. The
exception is alignment between Latvian (source) and Lithuanian (target), where
mBERT and LitLat-BERT perform equally. Compared to ELMo embeddings,
trilingual BERT models achieve better results on alignment between similar
languages. However, ELMo outperforms BERT models on most language pairs,
where source terms are in English (the exceptions are Croatian and Slovenian).
The mBERT model performs poorly in most cases.

6 Conclusions

We performed a large scale evaluation of monolingual and cross-lingual contex-
tual embedding approaches on several languages with sufficient resources. We
concentrated on recently most successful contextual embeddings, in particular
ELMo and BERT models. For ELMo models, we compared monolingual em-
beddings from two sources and several cross-lingual mappings with and without
assumption of isomorphism. For BERT models, we compared monolingual mod-
els, massively multilingual models, and trilingual models. In the evaluation, we
used several tasks: NER, POS-tagging, dependency parsing, CoSimLex, analo-
gies, terminology alignment, and the SuperGLUE benchmarks.

Overall, the results show that L-ELMo models are superior to other ELMo
models, but in general, there is a clear advantage of BERT models over ELMo
models. In the monolingual setting, monolingual and trilingual BERT models
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Table 23: Comparison of contextual cross-lingual mapping methods for ELMo
embeddings, evaluated on the terminology alignment task. Results are reported
as accuracy@1, based on the cosine distance metric. The best results for each
language and type of transfer (from English in the upper part or from a similar
language in the lower part) are typeset in bold. The languages are represented
with their international language codes ISO 639-1. Direction in the third col-
umn represents the direction of vector mapping: from→to.

Source Target Dictionary Vecmap EG-O EG-10k MUSE
lang. lang. (direction)
en sl direct (sl→en) 0.079 0.152 0.151 0.096
sl en direct (sl→en) 0.099 0.139 0.195 0.126
en hr direct (hr→en) 0.080 0.153 0.135 0.116
hr en direct (hr→en) 0.084 0.139 0.153 0.102
en et direct (et→en) 0.092 0.177 0.167 0.128
et en direct (et→en) 0.091 0.117 0.133 0.118
en fi direct (fi→en) 0.092 0.166 0.176 0.132
fi en direct (fi→en) 0.087 0.083 0.116 0.112
en lv direct (lv→en) 0.084 0.157 0.147 0.102
lv en direct (lv→en) 0.091 0.122 0.140 0.111
en lt direct (lt→en) 0.095 0.181 0.172 0.114
lt en direct (lt→en) 0.097 0.132 0.171 0.102
en sv direct (sv→en) 0.125 0.183 0.187 0.161
sv en direct (sv→en) 0.112 0.111 0.167 0.109
sl hr direct (hr→sl) 0.109 0.037 0.031 0.102
sl hr triang (hr→sl) 0.130 0.056 0.046 0.156
sl hr direct (sl→hr) 0.109 0.039 0.038 0.100
sl hr triang (sl→hr) 0.130 0.053 0.057 0.155
hr sl direct (hr→sl) 0.084 0.029 0.028 0.082
hr sl triang (hr→sl) 0.097 0.042 0.044 0.121
hr sl direct (sl→hr) 0.084 0.023 0.021 0.084
hr sl triang (sl→hr) 0.097 0.039 0.033 0.121
fi et direct (et→fi) 0.130 0.092 0.078 0.121
fi et triang (et→fi) 0.130 0.102 0.080 0.124
fi et direct (fi→et) 0.129 0.085 0.089 0.122
fi et triang (fi→et) 0.130 0.090 0.094 0.145
et fi direct (et→fi) 0.143 0.091 0.094 0.167
et fi triang (et→fi) 0.148 0.095 0.103 0.166
et fi direct (fi→et) 0.143 0.108 0.092 0.166
et fi triang (fi→et) 0.148 0.118 0.097 0.189
lv lt direct (lt→lv) 0.102 0.080 0.061 0.123
lv lt triang (lt→lv) 0.119 0.090 0.076 0.134
lv lt direct (lv→lt) 0.102 0.059 0.071 0.123
lv lt triang (lv→lt) 0.119 0.065 0.077 0.128
lt lv direct (lt→lv) 0.099 0.061 0.069 0.102
lt lv triang (lt→lv) 0.112 0.064 0.076 0.116
lt lv direct (lv→lt) 0.099 0.071 0.057 0.102
lt lv triang (lv→lt) 0.112 0.083 0.069 0.110

are very competitive, and frequently the trilingual BERT models dominate. In
the cross-lingual setting, BERT models are much more successful compared to
ELMo models. The trilingual models are mostly better than the massively
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Table 24: Comparison of mBERT, XLM-R, and trilingual BERT-based mod-
els (TRI), evaluated on the terminology alignment task. Results are reported
as accuracy@1, based on the cosine distance metric. The best results for each
language pair are typeset in bold. The languages are represented with their
international language codes ISO 639-1. The best ELMo result for each lan-
guage pair (from Table 23) is in the rightmost column. The best overall results
for each language pair are underlined.

Source lang. Target lang. mBERT XLM-R TRI best ELMo
en hr 0.054 0.049 0.187 0.153
hr en 0.029 0.073 0.230 0.153
en et 0.057 0.064 0.121 0.177
et en 0.069 0.086 0.183 0.133
en fi 0.084 0.090 0.146 0.176
fi en 0.026 0.105 0.215 0.116
en lv 0.068 0.059 0.107 0.157
lv en 0.016 0.088 0.156 0.140
en lt 0.072 0.058 0.099 0.181
lt en 0.016 0.081 0.147 0.171
en sl 0.060 0.055 0.195 0.152
sl en 0.103 0.098 0.284 0.195
en sv 0.135 0.151 - 0.187
sv en 0.063 0.178 - 0.167
sl hr 0.251 0.143 0.267 0.156
hr sl 0.099 0.124 0.250 0.121
fi et 0.063 0.130 0.217 0.145
et fi 0.150 0.145 0.233 0.189
lt lv 0.177 0.128 0.206 0.116
lv lt 0.195 0.133 0.195 0.134

multilingual models. There are a few exceptions to these general conclusions.
The main outlier is the dependency parsing task, where the L-ELMo embeddings
are better than BERT models. The results also indicate that for the training of
BERT-like models, large enough datasets are a prerequisite. For example, 500
million tokens used for LVBERT is not enough and even 1.1 billion tokens used
for EstBERT does not guarantee good performance.

We can conclude that cross-lingual transfer of trained prediction models is
feasible with the presented approaches, especially from similar languages and
using specifically designed trilingual models. For several tasks, the performance
of the best cross-lingual transferred models lags behind the monolingual models
by only a few percent, confirming findings described in [Robnik-Šikonja et al.,
2021]. The exact performance drop depends on the task and language.

In future work, it would be worth testing other forms of cross-lingual transfer,
in particular different degrees of few-shot learning. While we compare the cross-
lingual transfer of models with the human translation baselines in SuperGLUE
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tasks, a wider comparison using more tasks would be welcome.
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Bruno Taillé, Vincent Guigue, and Patrick Gallinari. Contextualized embed-
dings in named-entity recognition: An empirical study on generalization.
In Joemon M. Jose, Emine Yilmaz, João Magalhães, Pablo Castells, Nicola
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