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1 Introduction18

A classic question in macroeconomics concerns the transmission of monetary policy surprises19

into the economy. The interest in this question stems from the notion that empirical impulse-20

responses can guide the development of theory (eg, Christiano, Eichenbaum, and Evans,21

1999). This research strategy, however, rests on the assumption that one can identify the22

relevant impulses (shocks) in the data. The traditional approach to this identification prob-23

lem relies on monthly or quarterly vector auto-regressions (VAR) combining macroeconomic24

data with a short-term nominal interest rate, taken as a proxy for a policy instrument.25

Various identification schemes have been proposed within this approach (see Ramey, 2016,26

for a review). What they have in common, however, is that the identified shocks at best27

reflect monetary policy surprises relative to the mathematical expectations of the regression28

model.1 Furthermore, VAR-based identification is limiting once financial data are included.29

How does one invert the reduced-form VAR residuals to identify monetary policy shocks30

when, at monthly or quarterly frequency, financial markets react to monetary policy and31

policy makers partially base their decisions on information contained in asset prices? At the32

same time, ignoring financial data is inefficient, as asset prices may reveal expectations and33

uncertainty about future monetary policy and some sectors, for instance the housing market,34

are sensitive to asset prices (long-term interest rates).235

High-frequency (HF) data can ameliorate the identification problem (Bagliano and Favero,36

1999; Kuttner, 2001; Cochrane and Piazzesi, 2002; Gürkaynak, Sack, and Swanson, 2005a,37

are early contributions). The idea is that, up to a measurement error, the announcement of38

the outcome of a policy meeting is the only (exogenous) event impacting on asset prices in39

a tight enough window around the announcement. Asset price movements in that window40

1An alternative identification strategy, proposed by Romer and Romer (2004), is based on central bank
narrative.

2Evans and Marshall (1998) is an early attempt to include long-term interest rates in a macro VAR model
with monetary policy shocks identified in one of the traditional ways. Rudebusch (1998) questions VAR-
based policy shocks. Woodford (2005) provides a theoretical discussion of the key role of long-term interest
rates in the transmission of monetary policy.



can thus provide instruments for policy shocks.3 The dynamic effects of the shocks identified41

by the HF instruments can then be studied in a standard empirical macroeconomic model.42

Gertler and Karadi (2015) carry out such an exercise and arrive at a stark conclusion: mon-43

etary policy transmits into the economy almost exclusively through changes in term premia,44

with expected future interest rates left almost unaffected.4 This finding presents a challenge45

to quantitative-theoretical models used for monetary policy analysis. In most models, mone-46

tary policy transmits through changes in the conditional mean of the nominal pricing kernel,47

not its variance, the relevant part for movements in term premia (eg, Atkeson and Kehoe,48

2009). Furthermore, in practice, communication aimed at managing expectations of future49

monetary policy is an integral part of modern central banking (eg, Woodford, 2005).50

In this paper, we revisit the relevance of expected future interest rates vs. term premia51

in the monetary transmission mechanism. However, we go beyond this basic decomposition.52

By imposing additional structure on estimated expectations and term premia, we decom-53

pose the HF yield curve movements in terms of components that can be assigned economic54

interpretation. These structural components are then used to identify policy shocks in local55

projections and study their dynamic effects. Our focus is on the nominal yield curve in56

the period 1996-2007, characterized by conventional monetary policy. In more detail, the57

analysis proceeds as follows58

First, we employ an estimated affine term structure model (ATSM) to decompose the59

HF movements in yields around Federal Open Market Committee (FOMC) announcements60

into expected future interest rates and term premia.5 Importantly, the ATSM is estimated61

subject to restrictions (Joslin, Singleton, and Zhu, 2011), leading to more precise estimates62

of expected interest rates and term premia than those obtained from VARs, the framework63

3An implicit assumption in this approach is that asset prices reflect all available public information up
to the point of the announcement.

4Term premia reflect risk compensation for holding a long-term bond and can be estimated as a difference
between the observed long-term interest rate of a given maturity and a forecast of the path of the short rate
over that time horizon (ignoring technical details such as measurement errors and Jensen’s inequality).

5ATSMs are the go-to models in empirical finance to study the term structure of interest rates. See
Diebold, Piazzesi, and Rudebusch (2005), Piazzesi (2006), Duffee (2012), or Gürkaynak and Wright (2012)
for an introduction.
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used by Gertler and Karadi (2015).6 The estimates from the restricted ATSM show that64

expected interest rates are as important as term premia in explaining yield curve movements,65

including those around FOMC announcements. For instance, at the 10-year maturity, the two66

components have about the same variance.7 Second, we use principal components (PCs) of67

the estimated HF changes in expectations and term premia around FOMC announcements as68

basis to construct orthogonal instruments for monetary policy shocks. A particular rotation69

is applied to a subset of the PCs to obtain components with an economic interpretation: (i)70

action, taking the form of a change in the current policy rate; (ii) change in the expected71

path of future policy rates; and (iii) change in uncertainty about future monetary policy.872

Finally, we use the instruments in a local projections (LP) macro model (Jordà, 2005) to73

trace out the dynamic effects of the policy shocks, identified by the instruments, on macro74

variables. Most of the estimated responses can be justified through the lenses of existing75

theories, although we also document some new patterns. The analysis delivers especially76

tight findings for the housing market, a sector which, through mortgage finance, is closely77

related to the term structure.978

We view our analysis as the natural next step in the line of research using HF data to iden-79

tify monetary policy shocks. The first HF studies used a single asset, fed funds rate futures80

for the current month, to identify a single monetary policy shock—an action—capturing an81

unexpected change in the current policy rate (eg, Kuttner, 2001; Gürkaynak et al., 2005a;82

Beechey, 2007). Recognizing the complexity of monetary policy announcements, the work of83

Gürkaynak, Sack, and Swanson (2005b) extended the single-shock approach to two shocks:84

6Due to a small sample bias (eg, Bauer, Rudebusch, and Wu, 2012), VARs substantially underestimate
the responses of expected interest rates to current shocks, thus prescribing a bulk of the observed movements
in long-term interest rates to term premia.

7In terms of the specific restrictions imposed on the ATSM, we follow two approaches proposed by
Bauer et al. (2012) and Bauer (2018).

8In the literature, the term “target” is sometimes used for what we refer to as “action”; the terms “path”,
“statement” or “forward guidance” are used for what we call “expected path”. As “forward guidance” is
often used specifically in the context of the post-2008 zero-lower bound period, we prefer to avoid this term.
We also prefer the term “expected path” to “path” or “statement” in order to stress that this component is
extracted from the expectations part of the yield curve.

9The findings reported in the main text are based on the ATSM estimated on monthly data, which is the
standard in the literature. In an Online Appendix we confirm that estimates based on daily data, which in
terms of frequency are closer to the HF data, deliver similar properties of the ATSM model.
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action and statement (see also Campbell, Evans, Fisher, and Justiniano, 2012). In this case,85

the shocks are identified from HF changes in a spectrum of fed funds rate futures with ma-86

turities up to a year. Under the assumption that term premia for such a short horizon are87

small, the fed funds rate futures reflect expectations of the policy rate for the coming year.88

In this approach, the statement does not affect the current rate but captures any changes89

in expectations for the policy rate one year ahead, not inferred from the action itself.10 We90

extend this approach to information contained in the entire yield curve (up to 10-year matu-91

rity). This is possible due to the ATSM, which allows us to extract expectations separately92

from term premia, while avoiding the problems, in this task, inherent in a VAR. Two or-93

thogonal instruments (action and expected path) are extracted from the expectations part94

of the yield curve. Unlike action, the expected path component is restricted not to affect95

the current short rate. The third orthogonal instrument (uncertainty) is obtained from term96

premia. This instrument affects neither the current short rate nor its expected future path97

and can be interpreted as any residual uncertainty surrounding future monetary policy not98

already inferred from the other two components.11 Term premia and uncertainty in our99

framework are thus closely related. The three instruments have very different loadings on100

the HF changes in yields: action has a declining pattern across maturities, expected path101

has a tent-like pattern with a peak at the 2-year horizon, and uncertainty has an increasing102

pattern. To provide support for the economic interpretation of the components, we compare103

the first two components to those obtained by previous studies from fed funds rate futures104

(Gürkaynak et al., 2005b) and the third component to implied and estimated interest rate105

volatility.12106

10For instance, the FOMC may surprise markets by a wording that makes bond traders revise their
expectations about future monetary policy, even when there is no surprise in the action.

11As expectations and term premia in an ATSM can be correlated, the uncertainty instrument is obtained
from the part of term premia orthogonalised with respect to the two expectations components.

12Swanson (2021) also uncovers three components of monetary policy surprises. However, in each subsam-
ple of his analysis only two components are operative: target and path (which incorporates both expectations
and term premia) in the pre-2008 period and path and large scale asset purchases in the post-2008 period.
Like here, his decomposition is based on the entire yield curve, but without separating expectations from
term premia. Hanson and Stein (2015), Gertler and Karadi (2015) and Nakamura and Steinsson (2018), in
contrast, summarise multidimensional monetary policy surprises by a single factor, based on either fed funds
rate futures or one-year or two-year government bond rates.
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The interpretation of the three instruments is derived solely from their HF effects on the107

yield curve. Further structural content of the shocks they identify is based on the responses108

of macro and financial variables in the LP model. The effects of the shock identified by109

action are consistent with a standard monetary policy shock in a New-Keynesian model, in-110

cluding its extensions with the financial accelerator (Bernanke, Gertler, and Gilchrist, 1999)111

and time-varying term premia (Rudebusch and Swanson, 2012). The shock identified by112

the expected path component is associated with a strong response of interest rate expec-113

tations and produces responses of other variables that are consistent with both the Fed114

information effect (Nakamura and Steinsson, 2018) and the Fed response to news channel115

(Bauer and Swanson, 2020).13 Finally, the responses to the uncertainty component are a116

little less clear-cut to map into existing theories. We propose a hypothesis, based on the LP,117

that could be explored in future research. In the data, term premia and various measures of118

monetary policy uncertainty increase in response to the shock. The effect on output, how-119

ever, is mixed and we ascribe it to a fall in excess bond premium (Gilchrist and Zakraǰsek,120

2012), a variable capturing tightness in the corporate credit market. Specifically, an increase121

in the term premium increases the 30-year mortgage rate. New home sales and demand for122

mortgages decline, thus possibly allowing more credit to flow to the corporate sector. This123

effect may be counteracting any negative effect of uncertainty on output.124

For all three instruments, our analysis uncovers a particularly tight connection between125

monetary policy and the housing market. Regardless of the shock, an increase in the 10-year126

bond yield, no matter whether occurring due to expectations or term premia, is associated127

with a similar increase in the 30-year mortgage rate and a sharp contraction in the housing128

market (new home sales and house prices).129

HF intra-day data have been increasingly used to study various phenomena. Besides the130

context most directly related to us, the literature can be divided into two mutually non-131

exclusive categories: yield curve decomposition (including real and inflation components)132

13The local projections alone cannot discriminate between the two mechanisms. In an Online Appendix
we show that the instrument extracted from a model that is subject to the small sample bias is unable to
identify this shock.
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and identification of shocks. The first category includes, for instance, Beechey (2007),133

Beechey and Wright (2009), Bauer (2015), Gertler and Karadi (2015), Hanson and Stein134

(2015), and Hördahl, Remolona, and Valente (2015). Daily data are sometimes also used135

(Abrahams, Adrian, Crump, Moench, and Yu, 2016). Some studies employ ATSMs, while136

others use regressions. The second category includes, eg, Bernanke and Kuttner (2005),137

Miranda-Agrippino and Ricco (2015), Nakamura and Steinsson (2018), Cieslak and Schrimpf138

(2019), Jarocinski and Karadi (2020), and Bauer and Swanson (2020).14 In terms of the139

housing market, a subset of our findings is consistent with those reported by Hamilton140

(2008), who follows a different methodology.15141

The paper proceeds as follows. Section 2 discusses the HF data, Section 3 introduces the142

ATSM and the necessary notation, Section 4 provides an overview of the estimation method143

and the restrictions imposed, Section 5 reviews the estimates, applies the model to the HF144

data, and carries out the LP analysis. Finally, Section 6 concludes. Robustness checks and145

technical details related to the estimation are included in an Online Appendix.146

2 High-frequency data147

In order to study the HF yield curve reactions, we measure yields at various maturities in148

a narrow window around FOMC announcements. In doing so, we build on the literature149

studying monetary policy shocks within the HF approach. As noted in the Introduction,150

this literature focuses on short maturities, whereas we explore the reaction of the entire yield151

curve. Our HF data source is Refinitiv Tick History, except the 3-month T-bill rate, which152

has substantial gaps in the database at the required dates; the 3-month T-bill rate series was153

kindly provided to us by Refet Gürkaynak. As in the earlier literature, the changes in yields154

14Swanson (2021) contains references for studies that, unlike us, focus on the post-2008 zero-lower bound
period.

15A part of the literature, Kim and Orphanides (2012) being an early example, complements yield curve
data with surveys of professional economists as a source of data for expected future interest rates. To keep
the paper focused on the improvement of the estimation of the yield curve components relative to VARs, we
confine ourselves only to yield curve data.
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are measured in a 30-minute window starting 10 minutes before and ending 20 minutes after155

the announcement.156

We focus on the period January 1996-August 2007, characterized by conventional mon-157

etary policy. In some cases, the data could be scarce, especially in the 1990s, with only158

a dozen of intra-day observations available. Therefore, for a few announcement dates our159

window has to be wider than 30 minutes. Despite this, the estimated changes in rates are160

similar to those reported by other studies (eg, Miranda-Agrippino, 2016). At the beginning161

of the sample, Treasury bonds with maturities longer than 10 years were traded relatively162

infrequently. Therefore, our longest maturity is based on the 10-year Treasury yield series.163

At medium-term maturities, Treasuries were not as frequently traded as LIBOR-based swaps164

(especially in the 1990s). Hence we faced a trade-off between having the same instrument165

but captured at different times due to relative illiquidity, or having all rates captured at the166

same time but taken from similar rather than the same instrument. We chose the latter and167

estimated the HF changes at 2-, 3-, and 5-year maturities from LIBOR-based swaps, which168

enabled us to create consistent narrow windows around the announcements. As noted above,169

at the short end, we use the change in the 3-month Treasury bill rate.16170

The observed changes across the various maturities around the announcements are shown171

in Figure 1, which displays a consistent response pattern across all maturities. Table 1172

presents basic statistics for the responses across maturities. Several observations follow.173

First, during the sample period, monetary policy surprises were slightly negative on average,174

with the shortest maturities affected the most and the impact declining with maturity. Sec-175

ond, all maturities display a strong reaction to the announcements, with the largest volatility176

occurring at the 2- and 3-year maturity.17 Third, the yield curve tends to respond to the an-177

16To analyse the behaviour of the yield curve around the announcements in a systematic way, we con-
structed a consistent yield curve across all maturities, adjusting for observed daily LIBOR spreads. We do
this by estimating the spreads between LIBOR swap rates and the corresponding maturity yields observed
at the close of business on the pre-announcement dates and then apply them to LIBOR rates around the an-
nouncements. The 3-month Treasury bill rate is left unadjusted, as the available data are already measured
as a change in the rate.

17While the maximum response at the 2- and 3-year horizon persists across various splits of the sample,
the relative volatility of the 3-month vs. 10-year maturity has changed towards the end of our sample. In
the subsample 1996-2003, the standard deviation of the 3-month T-bill rate was 5.5 vs. 4.3 for the 10-year
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nouncement in a consistent way, as indicated by the positive correlations between reactions178

across maturities, although the correlations are declining with maturity. Interestingly, the179

responses are highly correlated across medium and long maturities, with all the correlations180

between them being around 0.9.181

3 The ATSM framework182

The aim of this section is to provide a brief overview of the ATSM and introduce concepts183

and notation used in the rest of the paper. An underlying assumption behind an ATSM is184

the fundamental principle of finance, applied to default-free zero-coupon bonds of different185

maturities. Specifically,186

Et

[
Mt+1R

(j)
t+1

]
= 1, (1)

where the expectation operator is with respect to information in period t, the scalarMt+1 > 0187

is a kernel that prices all bonds and R
(j)
t+1 is a one-period gross return on a bond of any188

maturity j. That is, R
(j)
t+1 = P

(j−1)
t+1 /P

(j)
t , where P

(j)
t is the price in period t of a bond of189

maturity j, which becomes a bond of maturity j − 1 one period later. Of course, P
(0)
t = 1,190

as one dollar today has a value of one dollar.191

ATSMs assume a specific functional form for the pricing kernel192

− logMt+1 = rt +
1

2
λ

′
tλt + λ

′
tεt+1. (2)

The popularity of this functional form lies in its practicality: when combined with the state193

space described below, it leads to a convenient affine solution for yields satisfying the no-194

arbitrage condition (1). Here, rt is the continuously compounded short-term nominal interest195

rate, λt is a N × 1 vector of risk prices for N underlying risk factors, and εt+1 is a N × 1196

vector of innovations specified below. The N risk factors summarise the state space and are197

bond. This has reversed to 2.0 vs. 4.26 in the period 2003-2007.
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assumed to follow a first-order Gaussian VAR198

Xt = μ+ ΦXt−1 + Σεt, (3)

with εt ∼ N(0, IN). This VAR process generates a ‘P-measure’ and the implied dynamics199

are referred to as the ‘P-dynamics’.200

Both the short rate and the risk prices are assumed to be related to the N factors through201

affine mappings202

rt = δ0 + δ
′
1Xt, (4)

203

λt = Σ−1(λ0 + λ1Xt), (5)

where δ0 δ1, Σ
−1, λ0, and λ1 are commensurate to the variables. In particular, λ1 is N ×N .204

That is, the risk price of a particular factor can be affected by all factors. Observe that205

under risk neutrality (zero risk prices), the pricing kernel is simply Mt+1 = exp(−rt). That206

is, future cash flows are discounted with the short rate. Equations (1)-(5) summarize the207

ATSM.208

Starting with P
(0)
t = 1, the model can be solved recursively for equilibrium bond prices209

(see, eg, Gürkaynak and Wright, 2012).18 The vector of any J yields, Ŷt, can be written as210

Ŷt = A+BXt, (6)

where Ŷt is a J × 1 vector. Equation (6) describes the model-implied yield curve—the cross-211

section of yields at a point in time that is consistent with no-arbitrage. (In an empirical212

implementation of the model, model-implied yields can potentially differ from observed yields213

due to measurement error and the lack of fit.) The arbitrage-free loadings A and B are214

18Given the functional assumptions on the pricing kernel and the state space, the solution is an affine
mapping from the factors to the logarithm of bond prices. Continuously compounded yields can then be

inferred from the bond prices through standard discounting, P
(j)
t = exp(−jy

(j)
t ), which can be inverted to

obtain yields as y
(j)
t = (−1/j) logP

(j)
t . Yields are thus also affine in factors. For j = 1, we get the short

rate: y1t = rt.
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non-linear, recursive, functions of the model parameters δ0, δ1, λ0, λ1, μ, Φ, and Σ (see,215

eg, Gürkaynak and Wright, 2012). It can then be shown that the coefficients A and B in216

equation (6) are unaffected by switching to risk neutral pricing, Mt+1 = exp(−rt), and a217

risk-adjusted law of motion for the risk factors218

Xt = μQ + ΦQXt−1 + Σεt, (7)

where219

μQ = μ− λ0 and ΦQ = Φ− λ1. (8)

The VAR process (7) is referred to as the ‘Q-measure’, describing the ‘Q-dynamics’. That220

is, dynamics under risk neutral pricing. Observe that under risk neutral pricing, the model221

is parameterised in terms of δ0, δ1, μQ, ΦQ, and Σ. Thus, to derive the cross-sectional222

implications of the model summarized by equation (6), all that is required is the Q-measure.223

The knowledge of the P-measure and the risk prices λt is not required. To put it differently,224

the cross-section identifies the parameters of the Q-measure, not the P-measure.225

Under the Q-measure, the expected value of the short rate j periods ahead can be ob-226

tained from the short rate equation (4) and the VAR process (7). The effect of Xt on the227

expected value is given by (ΦQ)j. The effect of Xt on the average expected short rate over228

the forecast horizon j under the Q-measure is thus229

Bj =
1

j
δ′1
[
I + ΦQ + · · ·+ (ΦQ)j−1

]
, (9)

which is the jth row in the loading matrix B in equation (6). Under the P-measure, the230

expected value of the short rate j periods ahead can be obtained from the short rate equation231

(4) and the VAR process (3). In this case, the effect of Xt on the expected value is given by232

Φj and the average expected short rate over the forecast horizon is given by233

BP
j =

1

j
δ′1

[
I + Φ + · · ·+ Φj−1

]
. (10)
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The difference Cj ≡ Bj − BP
j is the effect of Xt on the term premium in yield y

(j)
t and,234

as follows from the relationship (8), depends on λ1. (Observe that B = BP + C.) Thus,235

while the knowledge of the P-measure is not required for the cross-sectional implications of236

the model, it is necessary for deriving a decomposition between term premia and expected237

interest rates. Observe that the P-measure can be identified either from the time-series of238

Xt and equation (3) or the cross-section of yields and the knowledge of λ0 and λ1 through239

the relationship (8).240

4 Estimation of the ATSM241

This section provides an overview of the estimation method and the restrictions imposed.242

All technical details are contained in the Online Appendix.243

4.1 The importance of restrictions244

In principle one could estimate a VAR on yields, and possibly macro variables, and then245

iterate it forward j times to obtain forecasts of the short rate between now and the jth period246

ahead, thus obtaining the expectations and term premium components for the jth maturity247

(eg, Gertler and Karadi, 2015). There are two problems with this approach. First, the VAR-248

based forecasts of future yields of different maturities may imply arbitrage opportunities.249

Second, nominal interest rates are highly persistent, which, in samples of the length typically250

observed, leads to both a downward bias in the persistence of the VAR process and high251

standard errors of its estimates. This problem arises because we do not observe frequent252

enough mean reversions of interest rates in the data to estimate the parameters of the253

driving process well.19254

By construction, ATSMs resolve the first issue. ATSMs can also resolve the second issue,255

but only if they are estimated subject to restrictions. As ATSMs are estimated on both time256

19See the classic results of Kendall (1954), Nicholls and Pope (1988), and Shaman and Stine (1988) and,
for a discussion in the context of ATSMs, Bauer et al. (2012). As demonstrated by Pierse and Snell (1995),
increasing the sampling frequency does not resolve the problem.
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series and cross-sectional data, they use more information than a VAR. In particular, the257

cross section of yields at a point in time can potentially provide very precise information for258

the model dynamics.20 However, the cross-section identifies only the parameters of the Q-259

measure and to arrive at a decomposition into term premia and expectations, the knowledge260

of the parameters of either risk prices or the P-measure is required. Further, Joslin et al.261

(2011) demonstrate that in a canonical ATSM—the maximally flexible model that is sub-262

ject only to normalizing restrictions—the cross-sectional data convey no information for the263

estimation of the other parameters (see also Hamilton and Wu, 2012). As a result, the P-264

dynamics are solely estimated from time series data and the estimates of expected interest265

rates (and thus term premia) are equivalent to those obtained from a simple VAR.21 To266

improve the estimates relative to a VAR, the ATSM is estimated subject to restrictions to267

correct for the downward bias in the underlying VAR.268

4.2 Model nomenclature: M0, M1 and M2269

To ensure identification, we employ the normalising restrictions of Joslin et al. (2011), leading270

to their canonical representation. Under this representation, the N risk factors are defined271

as linear combinations of yields, Xt = WŶt, where W is a weighting matrix, and the model272

parameters are mapped into a set of unknowns kQ, φQ, μ, Φ, and Σ, which fully characterize273

the P- and Q-dynamics, (μ,Φ) and (μQ,ΦQ) respectively. Here, kQ determines the mean of274

the short rate under the Q-measure and φQ is a N × 1 vector that contains the eigenvalues275

of ΦQ. Following Joslin et al. (2011), the risk factors Xt are calculated as the first N < J276

PCs of the yields and W is the associated N×J loading matrix. Finally, the observed yields277

Yt are assumed to be measured with error: Yt = Ŷt + et. Under the assumption that Xt278

is observed in the estimation (ie, N linear combinations of yields using the weights W are279

20To illustrate this, suppose investors were risk neutral (ie, prices of risk were equal to zero) and so observed
yields were equal to expected future interest rates. Then one could simply read off expected future interest
rates from the cross-section, thus avoiding the problematic time series data altogether.

21Conceptually, the Gertler and Karadi (2015) results can thus be viewed as estimated from an unrestricted
ATSM.
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estimated exactly by the model), the J − N independent measurement errors are normal280

with variance σ2
e . We use N = 4, with the first three PCs resembling the standard level,281

slope and curvature factors. This choice is motivated by studies arguing that more than282

three factors are needed to properly capture the term structure (Cochrane and Piazzesi,283

2008; Christensen, Diebold, and Rudebusch, 2009; Adrian, Crump, and Moench, 2013). To284

accommodate this viewpoint, while maintaining parsimony, we proceeded by testing N = 3285

vs. N = 4. The RMSE criterion prefers N = 4 (eg, for the model M1, RMSE=4.39, as286

opposed to 7.35, when the fourth factor is dropped).287

We estimate three versions of the model. Model M0 is the maximally flexible benchmark288

that is only subject to the Joslin et al. (2011) normalising restrictions. As a result, the289

estimates of the parameters of the P-measure (μ, Φ) are based only on time-series data.22290

Model M1 places zero restrictions on λ0 and λ1.
23 To impose such restrictions, we use a291

stochastic search variable selection (SSVS) algorithm employed by Bauer (2018). It is clear292

from equation (8) that setting some risk prices to zero has the effect of ‘pulling up’ the VAR293

parameters μ and Φ towards μQ and ΦQ, thus ameliorating the small sample bias. Model M2294

is based on the analysis of Bauer et al. (2012), who propose a statistical method to estimate295

and correct the small sample bias in μ and Φ. In this case, the model is estimated subject to296

the restriction that, assuming it is the data-generating process, it produces the same small297

sample bias as in the data. As a result, this procedure increases the persistence of the VAR298

under the P-measure, relative to model M0.299

4.3 Bayesian procedure300

In the Joslin et al. (2011) canonical representation, the likelihood function factors into two301

components302

f (Yt|Yt−1,Θ) = f
(
Yt|Xt, φ

Q, kQ,Σ, σ2
e

)× f(Xt|Xt−1, μ,Φ,Σ), (11)

22The parameters of risk prices are then obtained residually as λ0 = μ− μQ and λ1 = Φ− ΦQ.
23This strategy has been implemented, in various forms, by Cochrane and Piazzesi (2008), Duffee (2011),

Joslin et al. (2011), Joslin, Priebsch, and Singleton (2014), and Bauer (2018).
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where Θ =
(
φQ, kQ,Σ, σ2

e , μ,Φ
)
denotes the parameters to be estimated. Note that the first303

term in this factorisation is the ‘Q-likelihood’, as it incorporates information from the cross-304

section of yields. In contrast, the second term is the ‘P-likelihood’, based on information305

derived from the time-series of the risk factors.24306

We employ a Bayesian approach to estimate the three versions of the model, using the307

Gibbs sampling algorithm proposed by Bauer (2018). The Bayesian approach is particularly308

useful as it provides a systematic and efficient method to impose restrictions on μ and Φ (or309

equivalently on λ0 and λ1) in the likelihood function (11). This means that there is no need310

to carry out an explicit model comparison exercise that can involve estimation of a large311

number of restricted specifications. Moreover, maximisation of the likelihood of the ATSM312

is a non-trivial task that is made even more challenging by the small sample of the typical313

data set.25314

4.4 Data for the ATSM estimation315

The three versions of the model are estimated on monthly data for yields at maturities316

of 1, 3 and 6 months and 1 through 10 years. That is, thirteen maturities in total. The317

data at maturities of one year and above are obtained from the Federal Reserve Board318

database on the nominal yield curve (the Gürkaynak-Sack-Wright data set), with rates at319

shorter maturities taken from the FRED database. The sample runs from January 1990 to320

December 2008.26321

24As Joslin et al. (2011) show, the fact that the two likelihoods share Σ does not affect the estimates of
the other parameters.

25Bayesian estimation does not rely on maximisation of the likelihood function and, instead, aims to
approximate the joint posterior distribution of the model parameters. MCMC methods make this task
easy by working with the two conditional distributions associated with the joint posterior. Finally, as the
Bayesian approach approximates the posterior distribution, error bands for parameter estimates are obtained
directly. In contrast, frequentist approaches rely on asymptotic standard errors that may be inaccurate in
small samples; bootstrap methods in the ATSM case have high computational costs.

26As noted in the Introduction, for robustness, the Online Appendix reports estimates obtained also on
daily data.
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5 Results322

The results are presented in the following steps: (i) we inspect the impact of the restrictions323

on the estimated models (Section 5.1), (ii) extract and analyse three main components of324

monetary policy surprises from the HF data (Sections 5.2-5.4), and (iii) use the components325

as instruments in a local projections model (Section 5.5).326

5.1 Inspecting the estimated ATSMs327

All models display a good fit to the monthly data with root mean squared errors that are328

below five basis points.27 Figure 2 shows the estimated posterior distributions of the largest329

eigenvalues of ΦQ and Φ. Under the Q-measure, the three models have a very similar profile330

in terms of persistence. This, of course, is expected as the estimates are based on the same331

cross-sectional information and the partial likelihoods for the Q-measure differ across the332

models only in terms of Σ. The results, however, are very different for the eigenvalues under333

the P-measure. The maximally flexible model has the lowest median persistence out of the334

three models and the widest posterior distribution. Restrictions on risk prices or statistical335

bias correction thus lead to a substantial increase in persistence, as well as in the precision336

of the estimates.28 As a result, at the median estimates, in M1 and M2 the volatility of337

expectations is about twice as high as in M0 and roughly at par with the volatility of term338

premia.339

27The estimates of the P and Q parameters, and the implied λ’s, are shown in the Online Appendix. There
we also report results for the daily models, as well as additional results for the monthly models, including
plots of the time series of expectations and term premia over time and their correlations with economic
activity over the business cycle. Regarding the latter, here we only note that in M1 and M2 the 10-year
term premium is counter-cyclical, whereas in M0 it is uncorrelated with the business cycle.

28To illustrate this, take the median values to the power of 120 to derive their effect on expected interest
rates ten years ahead. This exercise results in 0.12, 0.41, and 0.63 percentage point increase in the nominal
short rate in ten-years time for the three models respectively, for one percentage point increase in the current
short rate.
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5.2 High-frequency yield curve decomposition340

The decomposition is based on the median estimates. Let ΔX̃t denote the vector of changes341

in the risk factors in the 30-minute window around FOMC announcements. ΔX̃t is obtained342

as the first four PCs of the changes in yields in that window. Recall that the HF data are343

for maturities of 3 months, and 2, 3, 5, and 10 years. The HF changes in term premia and344

expectations are then computed using ΔX̃t and the estimated models.29345

In terms of the notation of Section 3, the vector of changes in the expectations component,346

for the five maturities, is given by ΔỸ E
t = BPΔX̃t and the vector of changes in term premia is347

given by ΔỸ TP
t = CΔX̃t, where B

P and C are derived from the parameters of the estimated348

models as described in Section 3. We also derive ΔỸt = BΔX̃t, where ΔỸt is a vector of349

changes in the fitted HF yields and B = BP + C. An implicit assumption in using the350

estimated ATSM for the HF decomposition is that a model estimated on monthly data is351

suitable to describe the yield curve at the HF. The fact that the models estimated on daily352

data (see the Online Appendix) have similar properties as the monthly models gives us353

confidence that this assumption, for our purposes, is reasonable.30354

Figure 3 provides a summary of the movements of the yield curve around FOMC an-355

nouncements explained by the three models. It plots the volatility curve of the HF changes356

in expectations and term premia across maturities (refer back to Table 1 for the volatility of357

the changes in the observed yields). The figure demonstrates that imposing restrictions on358

the estimated ATSM increases the reaction of expected future interest rates to FOMC an-359

nouncements. While in the unrestricted model M0, term premia at the 10-year horizon, for360

instance, are significantly more volatile than expectations, the relative volatility is reversed361

in model M1 and in model M2 the variance of the two components is roughly at par.31362

29Given that the set of maturities in the HF dataset is only a subset of the maturities used to estimate
the models, one may wonder how different the estimated parameters of the ATSMs would be if only the
maturities of the HF dataset were used in the estimation. It turned out that the estimates are almost
identical. The maturities in the HF dataset thus seem to capture all of the main movements in the yield
curve over time.

30The root mean squared error of the fit of the models at the HF is about three basis points across all
models (monthly and daily), comparable to their fit at the monthly and daily frequencies.

31Recall that term premia and expectations can be correlated. The variances of the two components thus
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Before moving on to the next stage, the HF reaction of the 3-month maturity (the shortest363

maturity at our disposal at the HF) deserves attention. In Figure 3, all three models display364

a standard deviation of term premia at the 3-month maturity of about one basis point. In365

the estimated ATSM, the shortest maturity is one month. At that maturity, risk premia are366

zero. There are, however, some nonzero elements in the C matrix at the 3-month maturity,367

especially for the fourth risk factor. The variation in risk premia at the 3-month maturity368

observed in Figure 3 occurs due to a few data points in the HF sample at which the typically369

unimportant fourth risk factor had an unusually large realisation. However, the restrictions370

imposed below effectively eliminate the effects of these sporadic events from the subsequent371

analysis.372

5.3 Instruments for policy shocks373

The instruments are obtained in three steps. First, we decompose the HF changes in ex-374

pectations into PCs and select the most important PCs. Second, we orthogonalise term375

premia with respect to the selected PCs of expectations. The PCs of expectations are mu-376

tually orthogonal by definition. However, expectations and term premia (and thus their377

respective PCs) can be correlated. The second step addresses this correlation, leaving us378

with movements of term premia that are orthogonal to the PCs of expectations. We then379

carry out a PC decomposition of the part of term premia that is orthogonal to the PCs of380

expectations. Finally, in the third step, we apply a particular orthogonal rotation to the PCs381

of expectations and the PCs of the above part of term premia to assign them an economic382

interpretation.383

Formally, recall that ΔỸ E
t = BPΔX̃t, where ΔX̃t is the HF change in the N risk factors384

(N = 4), ΔỸ E
t has a dimension J̃ × 1 (J̃ = 5), and BP is determined by the parameters of385

the estimated model. A PC decomposition of expectations returns: ΔỸ E
t = ΩEPE

t . Here,386

ΩE is a J̃ × N loadings matrix and PE
t are the corresponding PCs. The dimension of the387

do not necessarily add up to the variance of the respective yield. The solid lines at the bottom of the charts
in Figure 3 plot the correlation at a given maturity.
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PCs is equal to N , as the changes in expectations are constructed from N risk factors.32 We388

select the first NE ≤ N most important PCs. Thus, ΔỸ E
t ≈ ΩE

1 PE
1t, where the subscript “1”389

refers to the selected PCs and their corresponding loadings matrix, which is a partition of390

ΩE . The approximation sign denotes the fact that we are not using all but only the most391

important PCs. To ensure orthogonality of the PCs of term premia, with respect to the392

selected PCs of expectations, we run the following regression for each j = 1, ..., J̃393

ΔỸ TP
jt = αj + β�

j PE
1t + ξjt, (12)

where ΔỸ TP
jt is the jth element of ΔỸ TP

t = CΔX̃t, with C determined by the parameters394

of the estimated model. Let ΔỹTP
t = [ξ1t, . . . , ξJ̃t]

� collect the parts of term premia that395

are orthogonal to the selected PCs of expectations. We then carry out a PC decomposition396

of ΔỹTP
t , retaining only the first NTP ≤ N most important PCs, denoted by PTP

1t . Thus,397

ΔỹTP
t ≈ ΩTP

1 PTP
1t . This procedure leaves us with a vector of mutually orthogonal components398

of the HF changes in expectations and term premia, [PE
1t ,PTP

1t ]�. Orthogonal matrixes399

QE and QTP , which have dimensions NE × NE and NTP × NTP , respectively, are then400

applied to PE
1t and PTP

1t , respectively, producing new components PE∗
1t ≡ QEPE

1t and PTP∗
1t ≡401

QTPPTP
1t . The associated loadings for ΔỸ E

t and ΔỹTP
t of these rotated components are,402

respectively: ΩE∗
1 ≡ ΩE

1 (Q
E)−1 and ΩTP∗

1 ≡ ΩTP
1 (QTP )−1. That is, ΔỸ E

t ≈ ΩE∗
1 PE∗

1t and403

ΔỹTP
t ≈ ΩTP∗

1 PTP∗
1t .404

The rotated components [PE∗
1t ,PTP∗

1t ]� are the instruments. By construction, they are405

orthogonal to each other. By imposing the rotation on the PCs of expectations and orthog-406

onalised term premia, we are implicitly imposing a rotation on the underlying risk factors.407

Working with the PCs of expectations and term premia, however, is more intuitive and is408

closer to the practice in the literature.33409

32A PC decomposition of J̃ time series returns J̃ PCs. However, as there are only N < J̃ risk factors, the
remaining J̃ −N PCs have zero variance and can thus be ignored.

33The mapping between the two is as follows. Start with the fact that expectations can be expressed
either in terms of their PCs or the risk factors. Thus, var(ΔỸ E

t ) = ΩEΛE(ΩE)� = BPΛX(BP)�, where
ΛE = PE

t (PE
t )� is a diagonal covariance matrix and ΛX = ΔX̃t(ΔX̃t)

� is also a diagonal covariance matrix,
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5.4 Implementation and inspection of the instruments410

We have shown that the restricted models M1 and M2 generate substantially stronger411

responses of expected interest rates to FOMC announcements than modelM0. To economize412

on space, we therefore continue only with M1 (similar results for M2 are contained in the413

Online Appendix). Following the steps described above, the data suggest NE = 2: the414

first two PCs of expectations account for 98.6% of the total variance of expectations across415

maturities, with the respective contributions of 87.6% and 11%. The orthogonalised term416

premia are explained by two PCs, which account, respectively, for 92% and 8% of their417

variance.34418

The two PCs of expectations, PE
1t, and the two PCs of orthogonalised term premia, PTP

1t ,419

are rotated to create [PE∗
1t ,PTP∗

1t ]� such that ΩE∗
1 and ΩTP∗

1 have the following properties:420

(i) in ΩE∗
1 the first element in the second column is equal to zero and (ii) in ΩTP∗

1 the first421

element in the first column is equal to zero. This means that only the first component of422

PE∗
1t affects the 3-month T-bill rate; the second component of PE∗

1t does not. Also, the first423

component of PTP∗
1t does not affect the 3-month T-bill rate, while the second one does.35424

The rotation of PE
1t is based on Gürkaynak et al. (2005b). Given the above restrictions,425

the first component of PE∗
1t is interpreted as a surprise in action, while the second component426

is interpreted as a surprise in expected path. The expected path component captures any427

as both PE
t and ΔX̃t are PCs. In general, however, ΩE �= BP and ΛE �= ΛX and BP is not orthogonal (BP

is derived from the ATSM, not a PC decomposition). Nevertheless, there exists a (N ×N) matrix H such
that var(ΔỸ E

t ) = (BPH−1)HΛXH�(BPH−1)�. We can thus relate PE
t to ΔX̃t as PE

t = HΔX̃t, where
H = (ΩE)�BP. The rotated PCs of expectations are thus related to the risk factors as PE∗

t = QEPE
t =

QEHΔX̃t. When the rotation is applied only to a subset of PE
t , such as the NE most important PCs, the

relationship is QEPE
1t = QEH1ΔX̃t, where QE is NE ×NE and H1 is the partition of H commensurate to

the first NE PCs. The same applies to the orthogonalised term premia.
34The first two PCs of raw term premia (ie, before they are orthogonalised with respect to the PCs of

expectations) make up 78% and 21% of the total variance of raw term premia. Their correlations with
the first two PCs of expectations are significantly different from zero only in the case of the second PC of
expectations (around -0.45 for both PCs of term premia). These statistical relationships get picked up by
the orthogonalisation regressions (12). The R2s of the regressions for the five maturities are 0.30, 0.35, 0.32,
0.16, and 0.02, respectively. The regressions thus do not explain much of the term premia at the 5- and
10-year horizon. (The positive correlations between expectations and term premia at the 5- and 10-year
horizon observed in Figure 3 are mainly due to the third PC of expectations.) As a result, term premia at
the 5- and 10-year horizon are almost completely explained by the PCs of orthogonalised term premia.

35Before the rotation is applied, [PE
1t,PTP

1t ]� are normalised to have a unit standard deviation, a standard
normalisation required for identification.
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surprise in the FOMC announcement that affects expectations of future policy rates above428

and beyond the information already inferred from action. Following the same logic, we429

interpret the first component of PTP∗
1t (the one that does not affect the 3-month T-bill430

rate) as capturing any surprise in the FOMC announcement affecting perceived uncertainty431

surrounding the expected path of policy rates, not already inferred from the action and432

expected path components. We refer to it as a surprise in uncertainty.36 A number of studies433

have established that central bank communication contains elements affecting uncertainty434

about future monetary policy, as perceived by financial markets. For instance, Swanson435

(2006) shows that improvements in Fed communication since the 1990s have substantially436

reduced policy rate uncertainty. Wright (2011) demonstrates that a decline in inflation437

uncertainty, achieved through advances in the monetary policy framework, has reduced term438

premia.37439

There is no degree of freedom left to impose restrictions on the second component of440

PTP∗
1t , whose presence in the analysis is a necessary consequence of the fact that there are441

four risk factors in the ATSM and term premia have been orthogonalised with respect to two442

PCs of expectations.38 This “residual” component is thus free to affect the 3-month T-bill443

rate. Nevertheless, its contribution is visible only on a few occasions in the HF sample, as444

shown in the Online Appendix (these occasions are related to the unusually large realizations445

of the generally small fourth risk factor in the ATSM, see the discussion in Section 5.2). Its446

contribution to other maturities is equally small; at the 10-year horizon it is minuscule. We447

thus leave it out from the subsequent analysis and work with three instruments: action,448

expected path and uncertainty.449

Table 2 reports the loadings of the five maturities in the HF dataset on the three in-450

36Husted, Rogers, and Sun (2020) follow a similar orthogonalisation strategy with respect to action and
expected path, although in a different framework, to isolate the marginal effect of an uncertainty factor.

37Blinder, Ehrmann, Fratzscher, de Haan, and Jansen (2008) provide a thorough review of an early liter-
ature on central bank communication, including its effects on monetary policy uncertainty; Tillmann (2020)
contains a number of recent references on monetary policy uncertainty and term premia.

38The 2 × 2 rotation matrix QTP allows for only four restrictions. One is the orthogonality of the two
components, other two impose normalised unit variance on the factors, and the fourth is the zero response
of the 3-month T-bill rate to the first component.
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struments (ie, it reports the first and second column of ΩE∗
1 and the first column of ΩTP∗

1 ).451

The loadings are normalized relative to the loading at the two-year horizon to allow easy452

comparison with other studies. The patterns clearly differ across the three instruments.453

Action has a declining pattern across maturities, expected path has a tent-like pattern with454

a peak at the 2-year horizon, and uncertainty has an increasing pattern. Different com-455

ponents of policy announcements thus give rise to very different HF reactions of the term456

structure. Gürkaynak et al. (2005b) extract their two components, target and path from457

a spectrum of fed funds futures rates and regress the HF changes in longer maturities on458

the two components. Kuttner (2001) carries out the same exercise for a single target com-459

ponent, extracted from a single fed funds futures rate.39 The declining pattern exhibited460

by our action component is consistent with the target component in both Kuttner (2001)461

and Gürkaynak et al. (2005b). Our expected path component has a similar pattern as the462

Gürkaynak et al. (2005b) path component.463

The contributions of the three components to the HF changes in yields can be observed464

in Figure 4, for the 3-month, 5-year and 10-year maturities. By construction, only action465

affects the 3-month maturity. The contribution of this instrument declines with maturity.466

Expected path is important both at the 5- and 10-year maturity, while uncertainty has467

clearly the largest impact at the 10-year maturity. An interesting aspect of the figure is468

an apparent decline in the importance of uncertainty, and an increase in the importance of469

expected path, in contributing to the movements at the 10-year maturity from about 2001.470

This finding can be interpreted, at least partially, as being in line with the conclusions of471

Swanson (2006) and Wright (2011) that better Fed communication and transparency since472

the late-1990s have reduced monetary policy uncertainty.40473

The bottom chart of Figure 4 shows that two (positive) realisations of the uncertainty474

39There are some differences across the studies and ours in terms of the maturities and the period covered.
Nevertheless, relative to other studies in the literature, the time span is quite similar, in the sense that it
focuses on the pre-2008 period of conventional monetary policy.

40In principle, uncertainty could be about the underlying state of the economy, the transmission mecha-
nism, and the response function of monetary policy with respect to the state of the economy. The evidence
in Swanson (2006) and Wright (2011) concerns the last type of uncertainty.
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component stand out: February 3, 1999 and January 3, 2001. The February 3, 1999, meeting475

was not accompanied by a statement (before May 1999, statements were not issued after476

every meeting). Based on the market commentary, a justification for the increase in the477

uncertainty component could be that the market was speculating if or when the Fed may478

embark on a tightening cycle, after the policy rate was cut on three occasions in the previous479

quarter in fear of a recession that did not materialise.41 On January 3, 2001, FOMC cut480

the policy rate by 50 basis points, following a conference call, which came nearly four weeks481

ahead of the regularly-scheduled policy meeting. According to market commentary, this482

emergency meeting caught most investors off guard.42483

To cross-check the economic interpretation of the instruments, Figure 5 compares the484

first two instruments with the target and path components derived from fed funds futures485

by Gürkaynak et al. (2005b), for the part of the sample where our and their sample overlap.486

The third instrument is compared with two popular proxies for monetary policy uncertainty:487

implied volatility from options on fed funds futures or swap rates (eg, Swanson, 2006; Wright,488

2017) and estimated interest rate uncertainty (Jurado, Ludvigson, and Ng, 2015). These two489

proxies of uncertainty are for daily, rather than intra-day, changes bracketing the FOMC an-490

nouncements. For implied volatility we use options on one-year swap rates; interest rate491

uncertainty is estimated as time-varying volatility of the forecast error in forecasts of the492

3-month T-bill rate one year ahead.43 Given that our instruments are derived from differ-493

ent data than any of the measures they are compared with, we would not expect perfect494

correspondence. Nevertheless, Figure 5 reports that in all four cases there is a statistically495

significant positive relationship, with the p-values in all but one case below 1% (below 5% in496

the remaining case).44 As a caveat, the less then perfect correlation between our instruments497

41Source: https://money.cnn.com/1999/02/03/economy/fed/.
42Source: https://money.cnn.com/2001/01/03/economy/fed/.
43Kaminska and Roberts-Sklar (2018) provide a list of various measures of monetary policy uncertainty

proposed in the literature, including those based on computational linguistics and surveys. Most of these
measures, however, are available only at monthly or lower frequency.

44Interestingly, the R2 in the regression of the expected path component on the Gürkaynak et al. (2005b)
path component raises from under 0.1 before 2000 to 0.35 in 2004, while the slope coefficient raises from
0.2 in 1996 to 0.65 in 2004 (the estimates are based on time-varying coefficient regression, using the Gibbs
sampling algorithm proposed by Cogley and Sargent, 2002). It appears that as the Fed communication has
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and the variables used to cross-check their interpretation suggests that the instruments may498

be picking up some additional mechanisms than those proposed by their interpretation. In499

particular, the uncertainty instrument may be picking up some other factors determining500

term premia movements around FOMC meetings, such as liquidity or the demand effects of501

yield oriented investors stressed by Hanson and Stein (2015).502

5.5 Local projections503

To estimate the dynamic impact of policy shocks on macroeconomic and financial variables

of interest, we use Bayesian local projections, introduced by Miranda-Agrippino and Ricco

(2015). The Bayesian approach addresses concerns regarding efficiency of standard LP esti-

mates.45 As in Jordà (2005), the model is

Zt+h = c(h) +B
(h)
1 Zt +

P∑
j=1

b
(h)
j Zt−j + vt+h,

where Zt is a vector of the M variables of interest, h is the impulse-response horizon504

and vt+h denotes residuals. The impulse-responses for the shocks of interest at horizon505

h can be calculated as B
(h)
1 A0, where A0 denotes the contemporaneous impact matrix.506

The contemporaneous impulse-responses in a LP are equivalent to those in a VAR (see507

Miranda-Agrippino and Ricco, 2015). A column of the A0 matrix corresponding to a given508

shock can thus be estimated from residuals of a VAR (in Zt) and a HF instrument using509

the method of Mertens and Ravn (2013). The three HF instruments identify three different510

contemporaneous responses at the monthly frequency (columns of A0), A0,k, k = 1, 2, 3. The511

dynamic impulse-responses in the LP model are then computed as B
(h)
1 A0,k.512

The LP model is estimated on monthly data for 1990-2007, a period typical for studies513

that focus on conventional monetary policy, using twelve lags as controls.46 The benchmark514

improved over time, the information content about the expected future path of policy rates obtained from
different markets got more aligned.

45Technical details and sensitivity analysis are contained in the Online Appendix.
46As in Miranda-Agrippino and Ricco (2015), the prior distributions are set using a training sample, which
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model has the following variables: log of industrial production, the CPI inflation rate, the515

Gilchrist and Zakraǰsek (2012) excess bond premium (EBP), and the first two PCs of yields516

that were used as risk factors in the ATSM. The first three variables are standard in the517

empirical macro literature.47 The first two PCs are included as summary statistics for the518

responses of the yield curve (they account for 99% of the total variation in yields across519

maturities at the monthly frequency). The responses of the short rate and the 10-year520

yield are then obtained by multiplying the responses of the two PCs with the PC loadings521

corresponding to these two interest rates (adding the third and fourth PCs did not affect522

the LP results in any substantial way). Then additional variables are added one by one,523

including their twelve lags as controls:48 the 30-year mortgage rate, implied volatility used524

in Section 5.4, the Husted et al. (2020) monetary policy uncertainty index (MPU)49, the log525

of S&P 500, the log of real house prices, the log of new single-family home sales, and the526

estimated 10-year expectation and term premium components.50527

Figures 6-8 report the findings. The responses to the shock identified by the action in-528

strument (Figure 6) appear to be broadly consistent with responses to a standard Taylor529

rule shock in a New-Keynesian (NK) model. Industrial production declines and inflation530

also exhibits a declining tendency. As in a version of the NK model with a financial ac-531

celerator (eg, Bernanke et al., 1999), EBP rises. The 10-year bond yield at the monthly532

frequency initially declines. A number of NK models in which the implicit inflation target533

is not constant have this property. In, eg, Gürkaynak et al. (2005a) the decline occurs due534

to expectations, whereas in Rudebusch and Swanson (2012) it is due to term premia. The535

spans the period 1982-1989.
47The excess bond premium is the component of the spread between an index of rates of return on corporate

securities and a similar maturity government bond rate that is left after the component due to default risk
is removed. It is typically interpreted as a measure of tightness in the credit market for non-farm business
sector.

48In principle, this can change the responses of the original variables, but in practice the responses remained
similar. The alternative is to have a larger set of variables from the outset, but this is difficult from a
computational view point due to the relatively small sample size.

49This is a broader measure of monetary policy uncertainty than implied volatility, derived from media
analysis using computational linguistics.

50Except the excess bond premium, implied volatility, the MPU index, and the yield curve data, the data
come from either FRED or Haver.
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responses in Figure 6 give more support to the latter. The observed decline in the term536

premium is accompanied also by initial reductions in monetary policy uncertainty, exhibited537

by both proxies used. The S&P500 falls, which is consistent with the standard discount fac-538

tor channel (Bernanke and Kuttner, 2005).51 Finally, the 30-year mortgage rate essentially539

mimics the 10-year bond yield. The housing market variables (house prices and new home540

sales) in turn mimic the mortgage rate, but with a negative sign.52541

The responses to the shock identified by the expected path instrument (Figure 7) are542

markedly different from the responses to the shock identified by action. Specifically, in-543

dustrial production and inflation increase. Also the 10-year bond yield increases and the544

increase is mainly due to an increase in the expectations component. The S&P500 rises too545

and there is not much change in the two measures of monetary policy uncertainty. These546

responses are suggestive of either the Fed information effect (Nakamura and Steinsson, 2018)547

or the Fed response to news channel (Bauer and Swanson, 2020).53 If the Fed information548

effect is present, the instrument identifies a revelation, by the FOMC announcement, of549

positive news about the future state of the economy, which was not in the public domain550

before the FOMC meeting. If the Fed response to news channel is present, the instrument551

instead identifies a change in the market’s assessment of the Fed’s future path of monetary552

policy due to a revision in the market’s estimate of the Fed’s responsiveness to the economy.553

On the basis of the LP alone, it is not possible to discriminate between the two theories554

(see Bauer and Swanson, 2020, for how to discriminate between the two theories). Although555

both theories are based on a positive underlying news, the housing market contracts, as the556

30-year mortgage rate increases in line with the 10-year bond yield.54557

Finally, Figure 8 contains responses to a shock identified by the uncertainty instrument.558

51See also the ‘monetary policy shock’ in Jarocinski and Karadi (2020).
52The negative relationship between the mortgage rate and the housing market variables is in line with

the price effect of monetary policy in Garriga, Kydland, and Šustek (2017).
53See also the ‘central bank information shock’ in Jarocinski and Karadi (2020).
54In the Online Appendix we show that the expected path instrument extracted from the unconstrained

model M0 is unable to identify the shock. This is because the small sample bias in model M0 implies
that the expectations component at long horizons is relatively unimportant. This reduces drastically the
relevance of the expected path instrument.
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Supporting the uncertainty interpretation of the instrument, the two proxies of monetary559

policy uncertainty rise on impact. The term premium at the monthly frequency also in-560

creases, accompanied by an increase in the expectations component, leading to an increase561

in the 10-year yield. Interestingly, the responses of industrial production and inflation do562

not conform to macroeconomic effects of uncertainty shocks (Bloom, 2009) and the S&P500563

remains broadly flat. However, the shocks explored by the uncertainty shocks literature are564

not about future monetary policy and therefore it is not guaranteed that the conclusions565

carry over to the present context. The responses in Figure 8 suggest a mechanism that could566

be explored in future research. The increase in the 10-year bond yield is followed by a similar567

increase in the 30-year mortgage rate and a contraction in the housing market. The resulting568

decline in demand for mortgages may free up loanable funds for the corporate sector, leading569

to the observed decline in the EBP. The easier access to credit by firms (Bernanke et al.,570

1999) may in turn counteract any negative effects of uncertainty on industrial production.571

6 Conclusions572

HF changes in the yield curve around FOMC announcements are used to advance our un-573

derstanding of monetary policy surprises and their effects on the macroeconomy. To this574

end, we adopt a three-stage procedure. First, we decompose high-frequency movements in575

the yield curve around FOMC meetings into expectations and term premia. Unlike existing576

work on the topic, we carry out this decomposition using term structure models (and we577

also correct for a small sample bias in the estimates of the two components).578

Second, we decompose the HF reaction of expected interest rates and term premia across579

maturities into their respective PCs and use these to construct orthogonal instruments to580

identify monetary policy shocks. An orthogonal rotation of the PCs provides an economic581

interpretation of the instruments as a monetary policy action, expected path and its uncer-582

tainty. The instruments extend the proxies for monetary policy shocks employed in previous583

studies, which were typically based either on a single maturity or extracted only from the584
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short-end of the yield curve.585

Third, impulse-responses provide further structural interpretation. Responses to the586

shock identified by the action instrument are consistent with a standard monetary policy587

shock in a New Keynesian model with financial frictions. The expected path instrument588

appears to identify a shock that induces responses that are consistent with a Fed informa-589

tion effect or the Fed response to news channel. The shock identified by the uncertainty590

instrument is associated with an increase in term premia and monetary policy uncertainty.591

However, the excess bond premium, measuring tightness in corporate credit market, declines592

in response to the shock, mitigating the impact of a rise in uncertainty on output. All three593

shocks have a pronounced effect on the housing market, whereby an increase in long-term594

interest rates is associated with a decline in new home sales and house prices.595

Our analysis has been carried out on the sample preceding the 2008 global financial596

crisis and the subsequent zero lower bound and unconventional monetary policies. The597

findings thus characterise the transmission mechanism in a conventional setting. Following598

the approach of Swanson (2021), the analysis could be extended to the subsequent period.599

However, to adequately account for the zero lower bound, the term structure model would600

need to depart from the convenient affine representation, as, for example, in Wu and Xia601

(2016). We see such extensions as a promising avenue for future research.602
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Table 1: Effect of FOMC announcements on yields across maturities

3-month 2-year 3-year 5-year 10-year

Average response, bps -1.4 -1 -1.1 -0.5 -0.3
Minimum, bps -23 -22 -23 -16 -16
Maximum, bps 9 19 21 19 13
St. Deviation 4.6 5.9 6.1 5.2 4.3

Correlations

3-month 1 0.57 0.49 0.41 0.35
2-year 1 0.92 0.93 0.86
3-year 1 0.91 0.85
5-year 1 0.90

Note: The sample is from January 1996 to August 2007.
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Table 2: Loadings on the components of policy surprises

3-M 2-YR 3-YR 5-YR 10-YR

Rotated PCs PE∗
1t and PTP∗

1t

Expectations
Action 1.48 1.00 0.84 0.68 0.51
Expected path 0 1.00 0.97 0.84 0.64

Term premia
Uncertainty 0 1.00 1.05 1.40 2.23

Gürkaynak et al. (2005b)
Target 2.07 1.00 n/a 0.57 0.27
Path 0 1.00 n/a 0.90 0.69

Kuttner (2001)
Target 1.29 1.00 n/a 0.78 0.51

Note: The loadings for action are the first column of ΩE∗
1 ; the load-

ings for expected path are the second column of ΩE∗
1 ; the loadings

for uncertainty are the first column of ΩTP∗
1 . For ease of compar-

ison across studies, the loadings are normalised to be equal to one

at the 2-year maturity. Our sample is January 1996-August 2007.

Gürkaynak et al. (2005b): Table 5, sample July 1991-December 2004.

Kuttner (2001): Table 3, sample June 1989-February 2000, daily

changes.
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Figure 1: Yield changes around FOMC announcements across maturities.
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