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Abstract. We show that every totally ergodic generalised matrix equilibrium

state is ψ-mixing with respect to the natural partition into cylinders and hence
is measurably isomorphic to a Bernoulli shift in its natural extension. This

implies that the natural extensions of ergodic generalised matrix equilibrium

states are measurably isomorphic to Bernoulli processes extended by finite
rotations. This resolves a question of Gatzouras and Peres in the special case

of self-affine repelling sets with generic translations.
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1. Background and motivation

Given a dynamical system f : M → M defined on a manifold M it is a matter
of fundamental interest to be able to describe the behaviour of typical trajectories.
Here “typical” is often understood in measure-theoretic terms, leading us to ask
what happens to trajectories whose starting point belongs to a set of full, or at
least positive, Lebesgue measure. There are however situations in which this is
insufficient: for example, a dynamical system may admit a repelling invariant set
such that Lebesgue almost every point in an open neighbourhood of the invariant
set eventually leaves that open set never to return; but it may still be of interest
to understand which behaviours are typical among those points whose trajectories
remain on the repelling set at all future times. Since the repelling set itself will
usually have zero Lebesgue measure, a natural way to understand this question
is to look for invariant measures supported on the repelling set with the largest
possible dimension, which in this article will always be taken to mean Hausdorff
dimension. This raises obvious fundamental questions: do such measures exist,
are they unique, and what are their ergodic properties? Questions and conjectures
in this direction have been raised on numerous occasions by various authors (for
example [17, 37, 38, 51]). The following conjecture of D. Gatzouras and Y. Peres
is representative of this general type of question:

Conjecture 1 ([30]). Let f : M →M be an expanding map and K ⊆M a compact
invariant set which satisfies specification. Then K supports a unique ergodic f -
invariant measure with the same Hausdorff dimension as K. This measure is mixing
for f and, perhaps, its natural extension is measurably isomorphic to a Bernoulli
shift.

Here an invariant set is said to satisfy specification if it admits a Markov partition
which satisfies a certain quantitative topological mixing property; for details we
refer the reader to [30]. This property is in particular satisfied if the dynamical
system f : K → K is topologically conjugate to the full shift on finitely many
symbols, which will be the case for all of the examples considered in this article.
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Remarkably, the conjecture of Gatzouras and Peres has been answered negatively
in every particular. It has been shown that the measure of maximal dimension can
fail to exist, and even that the supremum of the dimensions of invariant measures
can fall short of the dimension of K itself (see [18]); it has been shown that the
measure of maximal dimension can exist but fail to be unique (see [6, 46]); and it
has been shown that the measure of maximal dimension can exist but fail to be
totally ergodic (and in particular fail to be mixing), a result which is implied by
previous work of the author [42, §2].

The fundamental difficulty of Conjecture 1 is as follows. If f : M →M is an ex-
panding map, its absolutely continuous invariant measures can be characterised as
the invariant measures µ which maximise the quantity h(µ)−

∫
log |detDxf | dµ(x),

where h(µ) denotes the entropy of µ with respect to f ; we call such measures equi-
librium states of the function x 7→ − log |detDxf |, which we call a potential. This
definition can be alternatively presented by saying that the absolutely continuous
invariant measure µ maximises the entropy minus the total of the d := dimM
different Lyapunov exponents of f with respect to µ. When the dimension of the
set K in Conjecture 1 is instead equal to s ∈ (0, d), the measure of maximal di-
mension is believed to be typically characterised by the property of maximising
the entropy minus the sum of the bsc least expanding Lyapunov exponents, mi-
nus (s − bsc) times the next least expanding Lyapunov exponent. If all of the
Lyapunov exponents are equal then this sum of weighted Lyapunov exponents is
simply (s/d) times the logarithm of the Jacobian, and the potential can then be
realised as a continuous real-valued function. This makes the classical thermody-
namic formalism of Bowen, Ruelle and Sinai, which applies to Hölder continuous
real-valued potentials, applicable to the problem. For this reason Conjecture 1 has
for some time been substantially understood in the special case of repelling sets of
conformal expanding maps in which all Lyapunov exponents of a given invariant
measure are guaranteed to be equal. Outside this special case the problem becomes
more difficult in that we are obliged to consider equilibrium states of a potential
which is defined in terms of several distinct Lyapunov exponents and cannot be
reduced to the classical thermodynamic formalism of continuous potentials such as
x 7→ − log |detDxf |. The investigation of the candidate measures of maximal di-
mension in this case thus requires the development of a subadditive thermodynamic
formalism capable of dealing with Lyapunov exponents in place of the ergodic av-
erage of a function. This project has seen substantial progress in the last few years
(see e.g. [10, 24, 26, 35, 45, 47, 50]) and this article is concerned with the descrip-
tion in detail of the equilibrium states yielded by this thermodynamic formalism in
the case of locally constant cocycles over the full shift.

To address the complete generality of Conjecture 1 would require a theory of
equilibrium states which allowed the consideration of arbitrary differentiable (or
perhaps just Hölder continuous) linear cocycles defined over repelling sets. Such a
theory appears to be significantly beyond the range of current techniques, and so far
the development of this thermodynamic formalism has focused principally on the
simplest nontrivial context, namely the equilibrium states of locally constant linear
cocycles over full symbolic shifts. This is precisely the thermodynamic formalism
needed to understand the (candidate) invariant measures of maximum dimension
for self-affine sets, a class of fractal objects of independent interest which (under
certain assumptions) correspond to the case of Conjecture 1 in which M = Rd
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and in which Dxf ∈ GLd(R) takes only finitely many values when x belongs to
the invariant set K. In the present work we completely describe the qualitative
mixing properties of equilibrium states of linear cocycles of this type: we will show
that every ergodic generalised matrix equilibrium state has the property that its
natural extension is measurably isomorphic to the product of a Bernoulli process
and a rotation of a finite set. In particular the natural extension of every totally
ergodic generalised matrix equilibrium state is measurably isomorphic to a Bernoulli
process. This completely resolves that part of Conjecture 1 which is concerned with
mixing and the Bernoulli property in the special case where K is a self-affine set
which is already known to support an invariant measure whose dimension is equal to
a theoretical maximum value defined by Falconer in [20]. This property is known
to hold for self-affine sets which are “typical” in certain precise senses (see [34,
Theorem 4] and [23, Theorem 1.9]).

This motivates us to ask the following question, which is essentially a modifica-
tion of Conjecture 1 in view of subsequent developments:

Question 1. Let f : M → M be a C2 expanding map and K ⊆ M a compact
invariant set which satisfies specification and supports a unique ergodic f -invariant
measure with the same Hausdorff dimension as K. Is the natural extension of
this measure measurably isomorphic to the product of a Bernoulli measure with a
rotation on a finite set?

For self-affine repelling sets which support a measure of dimension equal to the
theoretical maximum defined by Falconer, the results in this article suffice to answer
Question 1 affirmatively. However, the full range of possible behaviours outside
this class of repellers is far from being completely understood even in the self-affine
case. Beyond the self-affine class we anticipate that it might not be difficult to
extend our methods and results to the case of typical repellers which satisfy a
fibre-bunching condition on the derivative cocycle (x, n) 7→ Dxf

n as in [15, 21, 47],
particularly if a strong additional assumption is used such as the “pinching and
twisting” conditions introduced by Bonatti and Viana in [11]. The removal of the
fibre-bunching condition may be a more substantial obstacle to further development
of these ideas.

2. Generalised matrix equilibrium states

2.1. Fundamental definitions and notation. The class of measures which we
investigate in this article, which we call generalised matrix equilibrium states, are
defined on abstract symbolic spaces and can be related to self-affine sets via a
coding procedure which is described later in this section. In order to describe these
objects we require some fundamental definitions. For each N ≥ 2 let us define
ΣN := {1, . . . , N}N and equip this set with the infinite product topology with
respect to which it is compact and metrisable. We define the shift transformation
σ : ΣN → ΣN by σ[(xk)∞k=1] := (xk+1)∞k=1 and we denote the set of all σ-invariant
Borel probability measures on ΣN by Mσ(ΣN ). For convenience we will refer to
such measures simply as shift-invariant measures on ΣN . We equipMσ(ΣN ) with
the weak-* topology, which is compact and metrisable and has the property that
µ 7→

∫
f dµ defines a continuous function Mσ(ΣN )→ R for every f ∈ C(ΣN ). We

likewise define Σ̂N := {1, . . . , N}Z with the infinite product topology, σ̂ : Σ̂N →
Σ̂N by σ̂[(xk)k∈Z] := (xk+1)Z, and let Mσ̂(Σ̂N ) denote the set of all σ̂-invariant



4 IAN D. MORRIS

measures on Σ̂N equipped with its weak-* topology with respect to which it is
compact and metrisable.

If i = (ik)nk=1 ∈ {1, . . . , N}n is a finite sequence over the symbols 1, . . . , N then
we refer to i as a word over {1, . . . , N}; we call n the length of the word i and
denote it by |i|. If i = (ik)nk=1 and j = (jk)mk=1 are words then we let ij denote the
word of length n+m whose first n symbols are i1, . . . , in and whose next m symbols
are j1, . . . , jm, and call ij the concatenation of i with j. If i is a word then for
each n ≥ 1 we let in denote the concatenation of n successive copies of i and call
this word the nth power of i. We denote the set of all words over {1, . . . , N} by
Σ∗N and observe that the map (i, j) 7→ ij defines a semigroup operation on Σ∗N .
If x = (xk)∞k=1 ∈ ΣN and n ≥ 1 are given, we let x|n denote the word (xk)nk=1; if
i ∈ Σ∗N is given, we let [i] denote the set of all x ∈ ΣN such that x|n = i. We

will also write x|n := (xk)nk=1 when x ∈ Σ̂N and denote the set {x ∈ Σ̂N : x|n = i}
by [i] when the difference of context is clear. We refer to sets of the form [i] as
cylinder sets. Cylinder sets generate the topology of ΣN , and shifted cylinder sets
σ̂n[i] suffice to generate the topology of Σ̂N . We will usually denote words of length
1 simply by the symbol in {1, . . . , N} which appears in that word, and the cylinders
defined by words of length 1 are therefore denoted [1], . . . , [N ].

We define the natural projection π : Σ̂N → ΣN by π[(xk)k∈Z] := (xk)∞k=1 which
is clearly continuous and surjective. It is clear that µ̂ 7→ π∗µ̂ defines a continuous
function Mσ̂(Σ̂N ) → Mσ(ΣN ) and since shift-invariant measures on ΣN and on

Σ̂N are in both cases characterised by their values on cylinder sets this map is
bijective. Given µ ∈ Mσ(ΣN ) we will simply write µ̂ for the unique element of

Mσ̂(Σ̂N ) such that µ = π∗µ̂, and we call µ̂ the natural extension of the measure µ.
Since properties such as ergodicity, total ergodicity and mixing can be characterised
in terms of correlations between cylinder sets it is not difficult to see that each of
those properties holds for an invariant measure µ ∈ Mσ(ΣN ) if and only if the

corresponding property holds for µ̂ ∈Mσ̂(Σ̂N ). A measure µ̂ on Σ̂N will be called

a Bernoulli measure if it has the form µ̂ = (
∑N
i=1 piδi)

Z for some probability vector
(p1, . . . , pN ). We will say µ̂ has the Bernoulli property if there exist a Bernoulli

measure ν̂ on Σ̂N and a measure-space isomorphism φ : Σ̂N → Σ̂N such that φ◦ σ̂ =
σ̂ ◦ φ and φ∗µ̂ = ν̂. (This isomorphism must be understood with respect to the
completions of the relevant Borel σ-algebras: see §7 for details.) Clearly every
Bernoulli measure trivially has the Bernoulli property, but the reverse is in general
false.

2.2. Potentials and equilibrium states. For the remainder of this article a po-
tential will be any function Φ: Σ∗N → (0,+∞), where N ≥ 2 is arbitrary. We
call a potential submultiplicative if it satisfies the inequality Φ(ij) ≤ Φ(i)Φ(j)
for all i, j ∈ Σ∗N and quasimultiplicative if there exist δ > 0 and m ≥ 1 such
that max|k|≤m Φ(ikj) ≥ δΦ(i)Φ(j) for all i, j ∈ Σ∗N . If Φ: Σ∗N → (0,+∞) is a
submultiplicative potential then we define its pressure to be the limit

P (Φ) := lim
n→∞

1

n
log

∑
i∈Σ∗N
|i|=n

Φ(i)
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which exists by subadditivity. If additionally µ is a shift-invariant measure on ΣN
then we define the ergodic average of Φ to be the quantity

Λ(Φ, µ) := lim
n→∞

1

n

∫
ΣN

log Φ(x|n)dµ(x)

= lim
n→∞

1

n

∫
Σ̂N

log Φ(x|n)dµ̂(x) = lim
n→∞

1

n

∑
i∈Σ∗N
|i|=n

µ([i]) log Φ(i);

this limit likewise exists by subadditivity. When we wish to emphasise that we
are working on the two-sided shift space Σ̂N we may also denote this quantity by
Λ(Φ, µ̂). If Φ is a submultiplicative potential defined on Σ∗N then the pressure of Φ
admits the characterisation

P (Φ) = sup
µ∈Mσ(ΣN )

[h(µ) + Λ(Φ, µ)] = sup
µ̂∈Mσ̂(Σ̂N )

[h(µ̂) + Λ(Φ, µ̂)]

a fact which follows from more general results obtained in [16]. We will prefer to
say that an equilibrium state of Φ is a measure µ ∈ Mσ(ΣN ) such that P (Φ) =
h(µ) + Λ(Φ, µ), and in this case we call the measure µ̂ the natural extension of an
equilibrium state. However, this choice of terminology is somewhat arbitrary and
is chosen solely in order to have distinct names for µ and for µ̂. Since Mσ(ΣN )
is a compact metrisable topological space with respect to its weak-* topology and
the quantities h(µ) and Λ(φ, µ) depend upper semi-continuously on µ ∈ Mσ(ΣN ),
the existence of at least one equilibrium state for an arbitrary submultiplicative
potential follows by elementary topological considerations. Since both h(µ) and
Λ(Φ, µ) are also affine as functions of the measure µ, the set of equilibrium states of
a submultiplicative potential is moreover convex and its extreme points are ergodic
measures with respect to σ.

We may now define generalised matrix equilibrium states. If µ is a shift-invariant
measure on ΣN , whereN ≥ 2, and (A1, . . . , AN ) ∈ GL(V )N is a tuple of linear maps
defined on a real finite-dimensional vector space V , we write Ai := Ai1Ai2 · · ·Ain
for every i = (ik)nj=1 ∈ Σ∗N and define

λ1(A,µ) := lim
n→∞

1

n

∫
ΣN

log ‖Ax|n‖dµ(x)

= lim
n→∞

1

n

∫
Σ̂N

log ‖Ax|n‖dµ̂(x) = lim
n→∞

1

n

∑
|i|=n

µ([i]) log ‖Ai‖

which we call the top Lyapunov exponent of (A1, . . . , AN ) with respect to µ. We
say that a shift-invariant measure µ on ΣN , where N ≥ 2, is a generalised matrix
equilibrium state if for some integer k ≥ 1 there exist for each j = 1, . . . , k a finite-

dimensional real vector space Vj , a tuple (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N of invertible
linear maps, and a real number βj > 0, such that µ is an equilibrium state of the
potential Φ: ΣN∗ → (0,+∞) defined by

(1) Φ(i) :=

k∏
j=1

∥∥∥A(j)
i

∥∥∥βj .
It is easy to check that µ is an equilibrium state of Φ if and only if it maximises the

quantity h(ν) +
∑k
j=1 βjλ1(A(j), ν) over all ν ∈ Mσ(ΣN ). The relation between



6 IAN D. MORRIS

tuples of linear maps A
(j)
i and constants βj on the one hand, and generalised matrix

equilibrium states on the other hand, is not bijective: a potential of the above form
may have multiple equilibrium states (see for example [6, 10, 24, 46]) and a single
measure may be the equilibrium state of more than one such potential. Indeed,
when proving theorems concerning generalised matrix equilibrium states it is often

advantageous to look for spaces Vj and tuples (A
(j)
1 , . . . , A

(j)
N ) which yield the same

equilibrium state but have additional properties to those strictly required by the
definition.

In the case k = 1 generalised matrix equilibrium states as defined above have
been previously referred to simply as matrix equilibrium states or matrix Gibbs
states, which motivates our choice of terminology: see for example [42, 43, 50]. Ma-
trix equilibrium states are sufficient to study the (candidate) measures of maximal
dimension for self-affine subsets of the plane, but for self-affine subsets of Rd with
d > 2 it seems to be unavoidably necessary to consider the case k = 2: specifically,
one must consider potentials of the form

(2) Φs(i) :=
∥∥∥A∧bsci

∥∥∥1+bsc−s ∥∥∥A∧dsei

∥∥∥s−bsc
for an appropriate tuple (A1, . . . , AN ) ∈ GLd(R)N and real number s ∈ (0, d),
see §2.4 below for details. Matrix equilibrium states (i.e. the case k = 1) are
substantially easier to handle and results in the general case have typically been
preceded in the literature by results in the case k = 1; the reason for this difference
in difficulty can be attributed to the fact that the case k = 1 can be understood using
linear-algebraic techniques by embedding the linear maps A1, . . . , AN ∈ GL(V ) in
the subalgebra of End(V ) which they generate, whereas for general k substantial

progress has only been made by embedding the tuples (A
(j)
1 , . . . , A

(j)
N ) in a linear

algebraic group and applying ideas from algebraic geometry (see for example [10,
45]). While the definition of a generalised matrix equilibrium state also makes

sense in some cases in which the linear maps A
(j)
i are not assumed to be invertible,

this is more difficult to handle mathematically when k > 1 and in the present

work we will always assume the invertibility of the linear maps A
(j)
i . We will

also find the following terminology helpful: if V is a finite-dimensional real vector
space then (A1, . . . , AN ) ∈ GL(V )N will be called irreducible if there does not
exist a nonzero proper linear subspace U of V which is preserved by every Ai, and
strongly irreducible if there does not exist a finite collection {U1, . . . , Um} of nonzero
proper linear subspaces of V such that every Ai induces a permutation of the set
{U1, . . . , Um}.

2.3. Main results and previous literature. The early literature on matrix equi-
librium states focused on studying the associated pressure function, proving the
existence of equilibrium states, characterising their uniqueness (or otherwise) and
describing their supports (see for example [22, 25, 24, 42]) with results on potentials
of the form Φs as in (2) available only in special cases [19, 28, 33, 35]. The broader
concept of a generalised matrix equilibrium state was introduced in [10] where an
upper bound was given for the number of ergodic generalised matrix equilibrium
states that can correspond to a single potential, and where it was also shown that
all generalised matrix equilibrium states as defined above are fully supported on
the relevant symbolic space ΣN ; these results in particular apply to potentials of
the form (2) and subsumed many prior results on that topic. In parallel with this
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work the author investigated several aspects of the ergodic properties of matrix
equilibrium states in [42, 44], showing in particular that matrix equilibrium states
are mixing if and only if they are totally ergodic and giving necessary and suffi-
cient conditions for mixing. This left open the question of whether mixing matrix
equilibrium states admit stronger properties such as being exact endomorphisms or
having the Bernoulli property, and also left open the question of whether similar
results hold for generalised matrix equilibrium states. The former question was
partially addressed by M. Piraino in [50] in the case of matrix equilibrium states,
where a sufficient condition was given for a matrix equilibrium state to have the
Bernoulli property. This nonetheless left unresolved the question of whether every
matrix equilibrium state which is mixing also has the Bernoulli property and did not
address the corresponding questions for generalised matrix equilibrium states. In
the present work we give complete answers to all of these questions in the following
result:

Theorem 1. Let N ≥ 2 and let µ be a totally ergodic generalised matrix equilibrium
state on ΣN . Then µ is ψ-mixing:

lim
n→∞

sup
i,j∈Σ∗N

∣∣∣∣µ([i] ∩ σ−n−|i|[j])

µ([i])µ([j])
− 1

∣∣∣∣ = 0,

and its natural extension µ̂ has the Bernoulli property.

It is interesting to ask whether the rate of convergence in the above limit is
exponential as is the case in the classical thermodynamic formalism of additive
potentials (see for example [2, 13, 48]); this may have implications for the statistical
properties of typical trajectories with respect to µ as in, for example, [49, §7]. A
sufficient condition for this exponential rate of convergence in the case of matrix
equilibrium states was given by M. Piraino in [50], but to answer this question in
the generality of Theorem 1 seems likely to require additional developments in the
transfer operator theory of linear cocycles.

It is not difficult to extend Theorem 1 to the case where µ is ergodic but not
totally ergodic, although the fundamental result in this direction is cumbersome to
state:

Theorem 2. Let k ≥ 1 and N ≥ 2. For each j = 1, . . . , k let Vj be a finite-

dimensional real vector space and let (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N and βj > 0. For
all i ∈ Σ∗N define

Φ(i) :=

k∏
j=1

∥∥∥A(j)
i

∥∥∥βj
and let µ be an ergodic equilibrium state of Φ. If µ is not totally ergodic then there

exists an integer n satisfying 1 < n ≤
∏k
j=1 dimVj with the following properties.

Let η : {i ∈ Σ∗N : |i| = n} → {1, . . . , Nn} be the map which takes each word i ∈ Σ∗N
of length n to the integer representing its position in the lexicographical ordering on
{i ∈ Σ∗N : |i| = n} and define a homeomorphism ι : ΣN → ΣNn satisfying σ ◦ ι =
ι ◦ σn by ι[(x`)

∞
`=1] := (η(x(q−1)n+1 · · ·xqn))∞q=1 for every (x`)

∞
`=1 ∈ ΣN . For each

j = 1, . . . , k define an Nn-tuple (B
(j)
1 , . . . , B

(j)
Nn) ∈ GL(Vj)

Nn by B
(j)
i := A

(j)
η−1(i) for
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every i = 1, . . . , Nn and j = 1, . . . , k, and define a potential Ψ: Σ∗Nn → (0,+∞) by

Ψ(j) =

k∏
j=1

∥∥∥B(j)
j

∥∥∥βj
for all j ∈ Σ∗Nn . Then we may write µ = 1

n

∑n−1
i=0 σ

i
∗ν where ν is a σn-invariant

measure on ΣN and where for every i = 0, . . . , n − 1 the measure (ι ◦ σi)∗ν ∈
Mσ(ΣNn) is a distinct totally ergodic equilibrium state of Ψ.

The proof of Theorem 2 is technically straightforward but involves a substantial
volume of checking and is given in §7 below. Since each measure (ι◦σi)∗ν is a totally
ergodic equilibrium state of Ψ, by Theorem 1 its natural extension is measurably
isomorphic to a Bernoulli process. It is not difficult to deduce:

Corollary 2.1. Let k ≥ 1 and N ≥ 2. For each j = 1, . . . , k let Vj be a finite-

dimensional real vector space and let (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N and βj > 0. For
all i ∈ Σ∗N define

Φ(i) =

k∏
j=1

∥∥∥A(j)
i

∥∥∥βj
and let µ be an ergodic equilibrium state of Φ. Then there exists an integer n

satisfying 1 ≤ n ≤
∏k
j=1 dimVj such that the natural extension of µ is measurably

isomorphic to the product of a Bernoulli process with the rotation map m 7→ m+ 1
mod n on Zn.

The proof of this corollary is likewise presented in §7. We also note the following:

Corollary 2.2. Let k ≥ 1 and N ≥ 2. For each j = 1, . . . , k let Vj be a finite-

dimensional real vector space and let (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N and βj > 0. For
all i ∈ Σ∗N define

Φ(i) =

k∏
j=1

∥∥∥A(j)
i

∥∥∥βj .
If every (A

(j)
1 , . . . , A

(j)
N ) is strongly irreducible then there is a unique equilibrium

state for Φ and that equilibrium state is ψ-mixing and has the Bernoulli property.

Proof. By [10, Corollary 2.2] if every (A
(j)
1 , . . . , A

(j)
N ) is strongly irreducible then Φ

must have a unique equilibrium state µ. If µ is not totally ergodic, let n > 1, Ψ

and (B
(j)
1 , . . . , B

(j)
Nn) be as given by Theorem 2. It is easy to see that the tuples

(B
(j)
1 , . . . , B

(j)
Nn) must also be strongly irreducible by construction, so by the same

reasoning Ψ has a unique equilibrium state. But Theorem 2 implies that Ψ has at
least n distinct ergodic equilibrium states, which is a contradiction. We conclude
that µ must be totally ergodic, so Theorem 1 applies and µ is ψ-mixing and has
the Bernoulli property. �

In the case of matrix equilibrium states total ergodicity has already been fully
characterised in the following sense. If V is a finite-dimensional real vector space
and (A1, . . . , AN ) ∈ GL(V )N is irreducible then for each β > 0 there exists a
unique matrix equilibrium state for the potential Φ(i) := ‖Ai‖β , see for example
[24]. (Moreover, every ergodic matrix equilibrium state is the unique equilibrium
state of such a potential.) In this situation it was shown in [44] that if this matrix
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equilibrium state is not totally ergodic then there necessarily exists a cyclic splitting
for V : we may write V =

⊕m
j=1 Uj where each Uj is a linear subspace of V and where

AiUj = Uj+1 mod m for all i = 1, . . . , N and j = 1, . . . ,m. (Examples in which
total ergodicity of a matrix equilibrium state fails had already been constructed
in [42].) It is natural to ask whether this result extends to generalised matrix
equilibrium states: if a generalised matrix equilibrium state as in Theorem 1 is

not totally ergodic, is it the case that one of the tuples (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N

preserves a cyclic splitting for the associated vector space Vj? For generalised
matrix equilibrium states the situation seems to be more complicated than this,
and we are able to show that this result does not hold. We give the following
example in which total ergodicity fails but the matrix tuples do not admit cyclic
splittings:

Proposition 2.3. Define two irreducible pairs of linear maps (A1, A2), (B1, B2) ∈
GL2(R)2 by

A1 :=

(
2 0
0 1

)
A2 :=

(
0 1
1 0

)
,

B1 :=

(
0 1
1 0

)
B2 :=

(
1 0
0 2

)
and let β1, β2 > 0 be arbitrary. Define a potential Φ: Σ∗2 → (0,+∞) by Φ(i) :=
‖Ai‖β1‖Bi‖β2 . Then Φ has a unique equilibrium state and this equilibrium state is
not totally ergodic.

The proof of Proposition 2.3 is also given in §7.

2.4. Connections with self-affine sets. We now describe in more detail the
connections between Theorem 1 and self-affine sets. If T1, . . . , TN : Rd → Rd are
invertible affine contractions (with respect to some fixed norm on Rd which need not
be the Euclidean norm) then there exists a unique nonempty compact set X ⊂ Rd

satisfying X =
⋃N
i=1 TiX. Such sets X are referred to as self-affine sets. In the

situation where the images T1X, . . . , TNX are pairwise disjoint it is not difficult
to define an expanding map f : Rd → Rd such that X is a repelling set for f and
such that Dxf = T−1

i whenever x ∈ TiX, so self-affine sets with this disjointness
property (which is called the strong separation condition in the fractal geometry
literature) are a particular case of the expanding repellers discussed in §1. Besides
their connection with questions such as Conjecture 1 self-affine sets are the subject
of a deep and substantial literature in their own right, beginning in the 1980s
with such works as [8, 20, 40] and flowering into a highly active contemporary
research topic (see for example [3, 4, 7, 10, 18, 23, 26, 27, 34]). As well as in
its connection to Conjecture 1 the construction of high-dimensional measures on
self-affine sets is important to the problem of obtaining sharp lower bounds on the
Hausdorff dimension of the set itself. Theorem 1 in particular has implications
for the structure of certain high-dimensional measures on self-affine sets, called
Käenmäki measures, which we now describe.

If V is a d-dimensional vector space equipped with an inner product, we recall
that the singular values of A ∈ GL(V ) are defined to be the positive square roots
of the eigenvalues of the positive definite linear map A>A. We write the singular
values as σ1(A), . . . , σd(A) in decreasing order with repetition in the case of multiple
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eigenvalues. For each s ≥ 0 and A ∈ GLd(R) the singular value function, introduced
by Falconer in [20], is the function ϕs : GLd(R)→ R defined by

ϕs(A) :=

{
σ1(A) · · ·σbsc(A)σdse(A)s−bsc if 0 ≤ s ≤ d,

|detA|
s
d if s ≥ d,

where ϕ0(A) is understood to equal 1. The singular value function satisfies ϕs(AB) ≤
ϕs(A)ϕs(B) for all A,B ∈ GLd(R). If T1, . . . , TN : Rd → Rd are invertible affine
contractions with respect to some fixed norm on Rd, let us write each Ti in the
form Ti(u) := Aiu + vi for all u ∈ Rd, where Ai ∈ GL(Rd) and vi ∈ Rd for each
i = 1, . . . , N .

For each s ≥ 0 we say that a ϕs-equilibrium state for (T1, . . . , TN ) is an equilib-
rium state of the submultiplicative potential Φs(i) := ϕs(Ai). It is not particularly
difficult to show that the function s 7→ P (Φs) is continuous and strictly decreas-
ing with P (Φ0) > 0 and lims→∞ P (Φs) = −∞, so in particular there exists a
unique s > 0 such that P (Φs) = 0, called the affinity dimension of (T1, . . . , TN ).
By definition a Käenmäki measure for (T1, . . . , TN ) is a ϕs-equilibrium state for
(T1, . . . , TN ) where s is the affinity dimension. Crucially every Käenmäki measure
is a generalised matrix equilibrium state, since we have

Φs(i) =


∥∥∥A∧bsci

∥∥∥1+bsc−s ∥∥∥A∧dsei

∥∥∥s−bsc if 0 ≤ s ≤ d,

|detAi|
s
d if s ≥ d,

where A∧k denotes the kth exterior power of the linear map A; for details see the
following section. (Here A∧0 is always understood to equal the identity linear map
on R.) It is not difficult to show that there exists a well-defined continuous function
Π: ΣN → Rd which satisfies

Π [(xk)∞k=1] = lim
n→∞

Tx1Tx2 · · ·Txnv

for all v ∈ Rd, and indeed the image Π(ΣN ) is precisely the attractor of (T1, . . . , TN ).
(It is for this reason that in this article we multiply matrices on the right – we define
Ai := Ai1 · · ·Ain and not Ai := Ain · · ·Ai1 – and not on the left as is more natural
in many other contexts.) It follows from a result of Jordan, Pollicott and Simon
([34], see also [36]) that if a shift-invariant measure µ on ΣN has the property that
Π∗µ has Hausdorff dimension equal to the affinity dimension then it is necessarily a
Käenmäki measure for (T1, . . . , TN ), and in this sense Käenmäki measures are the
natural candidates for the measures of maximal dimension on self-affine sets.

Theorem 1 and Corollary 2.2 together yield the following result for Käenmäki
measures:

Corollary 2.4. Let T1, . . . , TN : Rd → Rd be invertible affine maps which are all
contracting with respect to some fixed norm on Rd and let s > 0 denote the affin-
ity dimension of (T1, . . . , TN ). If µ is a totally ergodic Käenmäki measure for
(T1, . . . , TN ) then

lim
n→∞

sup
i,j∈Σ∗N

∣∣∣∣µ([i] ∩ σ−n−|i|[j])

µ([i])µ([j])
− 1

∣∣∣∣ = 0

and the natural extension of µ is measurably isomorphic to a Bernoulli measure.

This holds in particular if the tuples (A
∧bsc
1 , . . . , A

∧bsc
N ) and (A

∧dse
1 , . . . , A

∧dse
N ) are

both strongly irreducible.
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In several works on the dimension theory of Käenmäki measures it has been
possible to obtain stronger results if an additional assumption is made, called the
quasi-Bernoulli property. A measure µ on ΣN is called quasi-Bernoulli if there
exists a constant C > 0 such that C−1µ([i])µ([j]) ≤ µ([ij]) ≤ Cµ([i])µ([j]) for
all i, j ∈ Σ∗N . (In other literatures this property is sometimes called local product
structure: see for example [11]). It follows from the results of [10] that every
ergodic generalised matrix equilibrium state satisfies the upper bound µ([ij]) ≤
Cµ([i])µ([j]), but the lower bound does not hold in general (see for example [5]).
If T1, . . . , TN are affine contractions of Rd with respect to some fixed norm, let
us say that the n-step recoding of (T1, . . . , TN ) is the Nn-tuple (T̂1, . . . , T̂Nn) :=
(Tn1 , T

n−1
1 T2, T

n−1
1 T3, . . . , T

n−1
N TN−1, T

n
N ) which lists all compositions of the form

Ti1 · · ·Tin in lexicographical order. It is easy to see that if X =
⋃N
i=1 TiX then

X =
⋃Nn
i=1 T̂iX, so the tuples (T1, . . . , TN ) and (T̂1, . . . , T̂Nn) describe the same

self-affine set. Moreover one may show that the affinity dimensions of (T1, . . . , TN )

and (T̂1, . . . , T̂Nn) are equal. By recoding (T1, . . . , TN ) by the integer n0 given by
Theorem 2 we may recode any (T1, . . . , TN ) into a new tuple all of whose ergodic
Käenmäki measures are totally ergodic and therefore are ψ-mixing. By recoding
a second time we may for any prescribed ε > 0 guarantee that for every ergodic
Käenmäki measure µ of the twice-recoded system (T̂1, . . . , T̂Nn) we have

sup
i,j∈ΣNn∗

∣∣∣∣ν([i] ∩ σ−1−|i|[j])

ν([i])ν([j])
− 1

∣∣∣∣ < ε

which is to say

(1− ε)µ([i])µ([j]) ≤
Nn∑
`=1

µ([i`j]) ≤ (1 + ε)µ([i])µ([j])

for all i, j ∈ Σ∗Nn . It is interesting to ask whether this property may have dimension-
theoretic applications similar to those of the quasi-Bernoulli property.

2.5. Strategy of proof and structure of the paper. The fundamental objective
in the proof of Theorem 1 is to establish, given a totally ergodic generalised matrix
equilibrium state µ on ΣN , the following property which we refer to as the pre-
condition for ψ-mixing : there exist an integer m ≥ 1 and a real number δ > 0
depending only on µ such that

(3) max
k∈Σ∗N
|k|=m

µ([ikj]) ≥ δµ([i])µ([j])

for all i, j ∈ Σ∗N . By combining this result with a theorem of R.C. Bradley [14] it
can easily be deduced that the natural extension µ̂ is ψ-mixing, which implies the
same result for µ. A celebrated theorem of N.A. Friedman and D.S. Ornstein [29]
on isomorphism with Bernoulli processes then allows us to pass directly from the
ψ-mixing property for µ̂ to the Bernoulli property. This basic strategy for proving
ψ-mixing and deducing the Bernoulli property follows that used by M. Piraino in
[50].

The route to the condition (3) divides naturally into three principal stages. In
the first stage, which is relatively elementary, we show that every ergodic gener-
alised matrix equilibrium state µ can be represented by a potential Φ defined in

terms of tuples (A
(j)
1 , . . . , A

(j)
N ) all of which are irreducible and all of which have
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simple top Lyapunov exponent with respect to µ. This to some extent reprises
arguments already used in [10] but with the additional detail of the top Lyapunov
exponent to be considered. In the second stage we use analytic arguments to
further show that µ is the unique equilibrium state of a potential of the form

ΦW(i) := max(Wj)kj=1∈W
∏k
j=1 ‖A

(j)
i |Wj

‖βj where W is a finite invariant set of tu-

ples (Wj)
k
j=1 of subspaces Wj of the respective vector space Vj , and such thatW has

an additional combinatorial property called primitivity : this is the stage at which
total ergodicity is used. In the third stage, which is more algebraic, these ingredients
are combined to obtain the inequality (3). We may then deduce Theorem 1 from
(3) in a fairly straightforward manner. This division into parts is reflected in simi-
lar divisions in the proofs of other major results on generalised matrix equilibrium
states given in [10, 45]: in the first stage of the argument we obtain irreducibility, in
the second stage we treat complications arising from the possibility of irreducibility
without strong irreducibility, and in the last stage we deal with a reduced case in
which the arguments applicable to the strongly irreducible case are available. To
illustrate this we remark that in the strongly irreducible case, the arguments in
the second stage mostly collapse to trivialities; and in the case where for each j

there exists a one-dimensional space with finite orbit under (A
(j)
1 , . . . , A

(j)
N ), the

arguments in the second stage become of fundamental importance whereas those
in the third stage become trivial instead.

The remainder of the paper is therefore structured as follows. In the following
section we recall various foundational results in linear algebra, ergodic theory and
algebraic geometry which will be used in various parts of the proof of Theorem 1.
The three stages in the proof of (3) just described are given successively in sections
4 through 6. In §7 we combine these results to obtain Theorem 1 and also prove
the various minor additional results described in this section.

3. Preliminaries

3.1. Linear algebra. We first recall some concepts and identities from linear and
multilinear algebra which will be used in various sections of this article. Here and
throughout the article End(V ) denotes the vector space of linear endomorphisms
of the vector space V , and ρ(A) denotes the largest of the absolute values of the
eigenvalues of the linear map A ∈ End(V ). Proofs of the following statements
concerning exterior powers and tensor products may be found in, for example, [39,
§XVI]; the material on singular values is more commonly found in texts on matrix
analysis such as [31].

3.1.1. Exterior powers. If V is a finite-dimensional real (or complex) vector space of
dimension d then for every k = 1, . . . , d there exists a vector space ∧kV of dimension(
d
k

)
, called the kth exterior power of V , which is spanned by all expressions of the

form v1 ∧ v2 ∧ · · · ∧ vk such that v1, . . . , vk ∈ V . These objects are subject to the
identities

(λv1 + u1) ∧ v2 ∧ · · · ∧ vk = λ(v1 ∧ v2 ∧+ · · ·+ ∧vk) + u1 ∧ v2 ∧+ · · ·+ ∧vk,

v1 ∧ · · · ∧ vi ∧ vi+1 ∧ · · · ∧ vk = −v1 ∧ · · · ∧ vi+1 ∧ vi ∧ · · · ∧ vk
for all v1, . . . , vk, u1 ∈ V , all i ∈ {1, . . . , k− 1} and all λ in R (or C). If e1, . . . , ed is
a basis for V then the vectors ei1 ∧ · · · ∧ eik such that 1 ≤ i1 < · · · < ik ≤ d form
a basis for ∧kV . If A ∈ End(V ) then the kth exterior power of A is the unique
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linear map A∧k ∈ End(∧kV ) characterised by the property A∧k(v1 ∧ · · · ∧ vk) =
Av1 ∧ · · · ∧ Avk for every v1, . . . , vk ∈ V . The identity (AB)∧k = A∧kB∧k for all
A,B ∈ End(V ) is clear. By considering appropriate bases it is not difficult to see
that if the eigenvalues of A are λ1, . . . , λd then the eigenvalues of A∧k are precisely
the products λi1 · · ·λik such that 1 ≤ i1 < · · · < ik ≤ d. If V is additionally
equipped with an inner product 〈·, ·〉 then it induces an inner product on ∧kV by
〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉 := det([〈ui, vj〉]ki,j=1), and with respect to these inner

products it is clear that (A>)∧k ≡ (A∧k)>.

3.1.2. Tensor products. If V1, . . . , Vk are finite-dimensional real (or complex) vector

spaces then their tensor product
⊗k

i=1 Vi is a vector space of dimension
∏k
i=1 dimVi

spanned by all expressions of the form v1 ⊗ · · · ⊗ vk such that vi ∈ Vi for every
i = 1, . . . , k, subject to the identity

v1 ⊗ · · · ⊗ (λvi + u)⊗ · · · ⊗ vk = λ(v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk) + v1 ⊗ · · · ⊗ u⊗ · · · ⊗ vk
for all v1 ∈ V1, v2 ∈ V2,. . . ,vk ∈ Vk, all λ in R (or C) and u ∈ Vi, for all i = 1, . . . , k.

If for each i = 1, . . . , k we are given a basis e1,i, . . . , edi,i for Vi then the
∏k
i=1 di

vectors of the form ej1,1 ⊗ ej2,2 ⊗ · · · ⊗ ejk,k with 1 ≤ ji ≤ di for each i = 1, . . . , k

form a basis for
⊗k

i=1 Vi. If linear maps A1 ∈ End(V1), . . . , Ak ∈ End(Vk) are given

then they induce a linear map
⊗k

i=1Ai on
⊗k

i=1 Vi by (
⊗k

i=1Ai)(u1⊗ · · ·⊗uk) :=
A1u1 ⊗ · · · ⊗ Akuk. By considering appropriate bases it is not difficult to show

that the
∏k
i=1 dimVi eigenvalues of

⊗k
i=1Ai are precisely the products of the form∏k

i=1 λi where for each i the number λi is an eigenvalue of Ai. In particular we

have ρ(
⊗k

i=1Ai) =
∏k
i=1 ρ(Ai) whenever Ai ∈ End(Ai) for every i = 1, . . . , k. If

for each i we are given an inner product 〈·, ·〉Vi on Vi then we may define an inner

product on
⊗k

i=1 Vi by defining 〈u1 ⊗ · · · ⊗ uk, v1 ⊗ · · · ⊗ vk〉 :=
∏k
i=1〈ui, vi〉Vi for

all v1 ∈ V1,. . . ,vk ∈ Vk and extending linearly. It is not difficult to see that with

respect to this inner product we have (
⊗k

i=1Ai)
> ≡

⊗k
i=1(A>i ) and the identity

‖
⊗k

i=1Ai‖ =
∏k
i=1 ‖Ai‖ follows.

3.1.3. Singular values. If V is a d-dimensional real or complex vector space equipped
with an inner product, the singular values of a linear map A ∈ End(V ) are defined
to be the non-negative square roots of the eigenvalues of the positive semidefinite
linear map A>A listed in decreasing order with repetition in the case of multiple
eigenvalues. All vector spaces in this article will be assumed to be equipped with in-
ner products. If dimV = d we denote the singular values of A by σ1(A), . . . , σd(A).
The singular values are well known to satisfy the alternative characterisation

σi(A) = min{‖A− F‖ : rankF < i}

for all A ∈ End(V ) and i = 1, . . . , d. It may be easily demonstrated using these

two descriptions that the singular values satisfy the identities
∏d
i=1 σi(A) = |detA|

and ‖A‖ = σ1(A) and also satisfy the inequality σi(X1AX2) ≤ ‖X1‖ · σi(A) ·
‖X2‖ for all A,X1, X2 ∈ End(V ) and i = 1, . . . , d. For every k = 1, . . . , d and
A ∈ End(V ) the singular values of A∧k (relative to the inner product on ∧kV
induced by the inner product on V ) are the square roots of the eigenvalues of
(A∧k)>A∧k = (A>A)∧k and hence are precisely the products σi1(A) · · ·σik(A) such
that 1 ≤ i1 < · · · < ik ≤ d. In particular the largest singular value of A∧k

is σ1(A) · · ·σk(A), so we have ‖A∧k‖ = σ1(A) · · ·σk(A) for all A ∈ End(V ) and
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k = 1, . . . , d. The inequality
∏k
i=1 σi(AB) ≤ (

∏k
i=1 σi(A))(

∏k
i=1 σi(B)) for all

A,B ∈ End(V ) and all k = 1, . . . , d follows.
In general the singular values of A are defined only relative to a specified inner

product on V and may change if a different inner product is used. If 〈·, ·〉1 and
〈·, ·〉2 are distinct inner products on V , X ∈ GL(V ) is an isometry from (V, 〈·, ·〉1)
to (V, 〈·, ·〉2), and σ1(A), . . . , σd(A) denote the singular values of A ∈ GL(V ) as
calculated with respect to 〈·, ·〉1 then the singular values of A as calculated with
respect to 〈·, ·〉2 are precisely σ1(XAX−1), . . . , σd(XAX

−1). In particular the ratio
between the two values of σi(A) as calculated according to the two distinct inner
products is bounded above by ‖X‖ · ‖X−1‖ and below by ‖X‖−1‖X−1‖−1 for all
A ∈ GL(V ). This will be significant in §3.3 below, and in general implies that
when we are interested in limits of sequences of the form 1

n log σi(An) for some
sequence (An)∞n=1 of elements of End(V ), the value of the limit will be independent
of the choice of inner product on V with respect to which the sequence of terms is
calculated.

3.1.4. Proximality. Let V be a finite-dimensional real vector space equipped with
an inner product. We will call a linear endomorphism A ∈ End(V ) proximal if
it has a unique eigenvalue of maximum modulus and that eigenvalue is simple.
(Note that every linear endomorphism of a one-dimensional space is proximal.) We
denote the set of all proximal endomorphisms of V by Prox(V ). If A ∈ Prox(V )
then we write V +(A) for the leading eigenspace of A and V −(A) for the unique
A-invariant hyperplane which is complementary to V +(A). Using the perturbation
theory of finite-dimensional linear maps it is not difficult to show that Prox(V )
is an open subset of End(V ) and that the functions V + and V − are continuous
on it. We also note that A ∈ Prox(V ) if and only if λA ∈ Prox(V ) for every
nonzero λ ∈ R, if and only if An ∈ Prox(V ) for every n ≥ 1, and that the identities
V +(A) = V +(λA) = V +(An) and V −(A) = V −(λA) = V −(An) are valid for all
A ∈ Prox(V ), all nonzero λ ∈ R and all positive integers n. By considering the
Jordan form of A it is not difficult to see that A ∈ Prox(V ) if and only if the limit
P := limn→∞ ‖An‖−1An exists, is not nilpotent, and has rank one. Under these
conditions the limit P is clearly also proximal and satisfies V +(P ) = V +(A) and
V −(P ) = V −(A). We observe that if A ∈ End(V ) has rank one then A ∈ Prox(V )
if and only if A2 6= 0, if and only if A is not nilpotent. We lastly remark that if
A ∈ End(V ) and ρ(A)2 > σ1(A)σ2(A) then A is necessarily proximal, since in this
case by Gelfand’s formula

ρ(A∧2) = lim
n→∞

∥∥∥(A∧2
)n∥∥∥ 1

n

= inf
n≥1

∥∥∥(A∧2
)n∥∥∥ 1

n ≤
∥∥A∧2

∥∥ = σ1(A)σ2(A) < ρ(A)2,

and since ρ(A∧2) is the product of the absolute values of the two largest eigenvalues
of A this implies that A has a unique, simple eigenvalue with absolute value ρ(A)
as required for A to be proximal.

3.2. Linear algebraic groups. In §6 we will need to consider the Zariski topol-
ogy on the general linear group GL(V ) of invertible linear transformations of a
finite-dimensional real vector space V . We briefly summarise here, without proofs,
the definition and important features of this topology which will be needed later.
Proofs of the statements described in this section may be found in standard text-
books on linear algebraic groups such as [12, 32]; the introductory treatment of this
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subject in [9] may be particularly helpful for readers approaching the subject from
a background in ergodic theory.

If V1 and V2 are finite-dimensional real vector spaces then a function p : V1 → V2

is called a polynomial if for some (then for every) choice of basis on V1 and V2, the
coefficients of the vector p(v) ∈ V2 with respect to the basis on V2 are consistent
polynomial functions of the coefficients of v with respect to the basis on V1. A
subset Z of a finite-dimensional real vector space V is called an affine variety if
it is the common zero locus of some family of polynomial functions V → R. In
particular V itself is an affine variety. When a (proper) subset of an affine variety
is also an affine variety we call it a (proper) subvariety. If Z1 and Z2 are affine
varieties which are subvarieties of real vector spaces V1 and V2 then we define a
polynomial Z1 → Z2 to be a function from Z1 to Z2 which can be realised as the
restriction to Z1 of a polynomial V1 → V2.

The Zariski topology on an affine variety Z is defined to be the topology gener-
ated by declaring the affine subvarieties of Z to be the closed sets for the topology.
The Zariski topology is much coarser than the standard (Euclidean) topology which
Z inherits as a subset of its ambient vector space V , having far fewer open sets; in
particular, it is not a Hausdorff topology. An affine variety is called an irreducible
variety if it cannot be written as the union of a finite collection of proper subvari-
eties. In an irreducible variety, every Zariski open set is dense. One may show that
every affine variety is equal to the union of finitely many irreducible subvarieties.

Importantly for our arguments, if V is a finite-dimensional real vector space then
GL(V ) may be given the structure of an affine variety by identifying it with the set
of all linear operators on V ⊕R which have the form A⊕x for some A ∈ End(V ) and
x ∈ R such that x · (detA) = 1. This condition is clearly polynomial and therefore
defines an affine subvariety of End(V ⊕ R). This gives GL(V ) the structure of an
affine variety; in this structure a function p : GL(V ) → R is a polynomial if p(A)
is a polynomial function of the matrix entries of A in some basis together with the
additional variable 1/ detA. We note that for every B ∈ GL(V ) the maps A 7→ AB
and A 7→ BA are homeomorphisms in the Zariski topology on GL(V ), as is the
map A 7→ A−1.

For the purposes of this article a linear algebraic group will be any Zariski-closed
subgroup of GL(V ), where V is a finite-dimensional real vector space. Importantly,
the Zariski closure of a subsemigroup of GL(V ) is always a linear algebraic group.
Every linear algebraic group G ≤ GL(V ) has only finitely many connected com-
ponents in the Zariski topology. These components are disjoint and there exists a
unique component of G containing the identity, which we denote by G0 and call
the identity component of G. We note that since every A ∈ G induces a Zariski
homeomorphism of G by left (or right) multiplication, left or right multiplication
by A induces a permutation of the connected components of G. It is not difficult to
show that the identity component of G is a normal subgroup of G. If G1 ≤ GL(V1)
and G2 ≤ GL(V2) are linear algebraic groups, a regular representation φ : G1 → G2

will be any group homomorphism which is also a polynomial. We call φ an irre-
ducible representation if there is no proper nonzero linear subspace of V2 which is
preserved by every element of φ(G1).

We finish this section by highlighting for the reader some important instances of
Zariski closed sets which will be used in our arguments. If G ≤ GL(V ) is a linear
algebraic group and U1, U2 ⊆ V are linear subspaces then the set {A ∈ G : AU1 =
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U2} is Zariski closed, because if u1, . . . , uk is a basis for U1 and v1, . . . , v` a basis
for U⊥2 then this set is equal to the intersection of the sets {A ∈ G : 〈Aui, vj〉 = 0}
over all i = 1, . . . , k and j = 1, . . . , `, which is clearly a subvariety of G. Similarly if
v ∈ V is arbitrary then the set {A ∈ G : Av ∈ U2} is Zariski closed since A belongs
to this set if and only if 〈Av, vj〉 = 0 for every j = 1, . . . , `. We also note that if
B ∈ End(V ) is arbitrary then the set {A ∈ G : (AB)2 = 0} is Zariski closed since
each of the finitely many entries of the matrix (AB)2 is a polynomial function of
the entries of A.

3.3. Lyapunov exponents. In all sections of this article except §6 we will have
frequent need to refer to Lyapunov exponents. Let V be a finite-dimensional real
vector space, let (A1, . . . , AN ) ∈ GL(V )N and let µ ∈Mσ(ΣN ). If 〈·, ·〉 is any inner
product on V then we define the Lyapunov exponents of (A1, . . . , AN ) to be the
quantities

λi(A,µ) := lim
n→∞

1

n

∫
log σi(Ax|n) dµ(x)

for i = 1, . . . ,dimV . For every k = 1, . . . ,dimV the limit

(4)

k∑
i=1

λi(A,µ) = lim
n→∞

1

n

∫
log

k∏
i=1

σi(Ax|n) dµ(x)

exists by subadditivity as a consequence of the inequality

k∏
i=1

σi(AB) ≤

(
k∏
i=1

σi(A)

)(
k∏
i=1

σi(B)

)
noted in §3.1.3, and it follows that the limit in the definition of λi(A,µ) is well-
defined for every i = 1, . . . , k since it is a difference of two limits of the form (4).
It is clear that λ1(A,µ) ≥ λ2(A,µ) ≥ · · · ≥ λdimV (A,µ) as a consequence of the
corresponding inequality for singular values. We say that (A1, . . . , AN ) ∈ GL(V )N

has simple top Lyapunov exponent with respect to µ if λ1(A,µ) > λ2(A,µ).
The Lyapunov exponents are independent of the choice of inner product on V

which is used to define the singular values: if σi(A) and σ̂i(A) denote the ith singular
value of A calculated using two different inner products on V then as remarked in
§3.1.3 there is a constant C > 0 such that | log σi(A) − log σ̂i(A)| ≤ C for all
A ∈ GL(V ), and consequently

lim
n→∞

1

n

∫
log σi(Ax|n) dµ(x) = lim

n→∞

1

n

∫
log σ̂i(Ax|n) dµ(x).

In particular we are at liberty to change the inner product on V without affecting
the Lyapunov exponents, if there is advantage in doing so. We will take advantage
of this principle in §5 below.

We lastly note the following useful result which will be applied in §4 and §5:

Proposition 3.1 ([41]). Let N ≥ 2, let V be a finite-dimensional real vector space,
let (B1, . . . , BN ) ∈ GL(V )N and let µ ∈Mσ(ΣN ) be ergodic. Then

lim sup
n→∞

1

n
log ρ

(
Bx|n

)
= λ1(B,µ)

for µ-a.e. x ∈ ΣN .
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Proof. The result follows by applying the subadditive ergodic theorem and [41, The-
orem 1.5] to the cocycle A : ΣN ×N→ GL(V ) defined by A(x, n) := B>xn · · ·B

>
x1

=

B>x|n . �

3.4. Prior results on generalised matrix equilibrium states. Throughout
this article we will require various facts on the structure of generalised matrix
equilibrium states which were established in [10] and which we collect here for the
reader’s convenience.

3.4.1. Subspace classes. Ergodic generalised matrix equilibrium states were char-
acterised in [10] via an algebraic object which we now describe. If V is a finite-
dimensional real vector space then for the purposes of this article the Grassmannian
of V , denoted Gr(V ), is defined to be the set of all nonzero linear subspaces of V .
Note that Gr(V ) thus defined includes the space V itself. If 1 ≤ ` ≤ dimV then
we let Gr`(V ) denote the set of all `-dimensional linear subspaces of Gr(V ).

Let k ≥ 1, let V1, . . . , Vk be finite-dimensional real vector spaces and let (A
(j)
1 , . . . , A

(j)
N ) ∈

GL(Vj)
N for every j = 1, . . . , k. We define a subspace class to be any finite

nonempty subset of
∏k
j=1 Gr(Vj). We will say that a subspace classW ⊆

∏k
j=1 Gr(Vj)

is equivariant if for every (Wj)
k
j=1 ∈ W we have{

(A
(j)
i Wj)

k
j=1 : i ∈ Σ∗N

}
⊆ W,

transitive if for every (Wj)
k
j=1 ∈ W{
(A

(j)
i Wj)

k
j=1 : i ∈ Σ∗N

}
=W,

and primitive if for some integer p ≥ 1 we have for every (Wj)
k
j=1 ∈ W{

(A
(j)
i Wj)

k
j=1 : i ∈ Σ∗N and |i| = p

}
=W.

In other words W is equivariant if and only if for every i ∈ Σ∗N and (Wj)
k
j=1 ∈ W

the tuple (A
(j)
i Wj)

k
j=1 also belongs to W; is transitive if and only if for every

(Wj)
k
j=1, (W

′
j)
k
j=1 ∈ W there exists i ∈ Σ∗N such that (A

(j)
i Wj)

k
j=1 = (W ′j)

k
j=1; and

is primitive if and only if the word i in this definition of transitivity can be chosen
so as to have the same length for all choices of (Wj)

k
j=1 and (W ′j)

k
j=1. A third

description in terms of Perron-Frobenius theory may also be helpful. Suppose that
we were to define a non-negative integer matrix M , whose rows and columns are
indexed by the elements of W, by placing 1 at the intersection of the row (Wj)

k
j=1

and the column (W ′j)
k
j=1 if there exists i ∈ {1, . . . , N} such that (A

(j)
i Wj)

k
j=1 =

(W ′j)
k
j=1, and 0 otherwise. Equivariance of W ensures that this definition makes

sense and implies that every row of M has at least one nonzero entry; transitivity
asserts precisely that M is an irreducible matrix in the standard sense of Perron-
Frobenius theory; and primitivity asserts that M is a primitive matrix in the sense
of Perron-Frobenius theory.

3.4.2. Properties of generalised matrix equilibrium states. The following result from
[10] characterises ergodic generalised matrix equilibrium states in terms of subspace

classes in the case where every (A
(j)
1 , . . . , A

(j)
N ) is irreducible:



18 IAN D. MORRIS

Theorem 3 ([10]). Let k ≥ 1 and N ≥ 2 and for each j = 1, . . . , k let Vj be a finite-

dimensional real vector space, (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N an irreducible N -tuple of
linear maps and βj > 0 a real number. For each j = 1, . . . , k let `j ∈ {1, . . . ,dimVj}
be the smallest integer such that there exists a nonzero linear subspace Uj ⊆ Vj which

has finite orbit under the action of the semigroup {A(j)
i : i ∈ Σ∗N}. Then:

(i) IfW ⊆
∏k
j=1 Gr`j (V ) is a transitive subspace class, define a potential ΦW : Σ∗N →

(0,+∞) by

ΦW(i) := max
(Wj)kj=1∈W

k∏
j=1

∥∥∥A(j)
i |Wj

∥∥∥βj .
Then ΦW is submultiplicative and quasimultiplicative and has a unique equi-
librium state µ ∈Mσ(ΣN ). There exists C > 1 such that

C−1ΦW(i) ≤ e|i|P (ΦW)µ([i]) ≤ CΦW(i)

for all i ∈ Σ∗N , and in particular µ is fully supported on ΣN .
(ii) If we define a potential Φ: Σ∗N → (0,+∞) by

Φ(i) :=

k∏
j=1

∥∥∥A(j)
i

∥∥∥βj
for all i ∈ Σ∗N , then for every ergodic equilibrium state µ of Φ there ex-

ists a transitive subspace class W ⊆
∏k
j=1 Gr`j (V ) such that µ is the unique

equilibrium state of the potential ΦW defined as in (i). In particular every
equilibrium state of Φ is fully supported on ΣN .

In general a potential of the form Φ(i) :=
∏k
j=1 ‖A

(j)
i ‖βj may admit multiple

ergodic equilibrium states corresponding to different choices of transitive subspace
classW: the number of ergodic equilibrium states is bounded above by the quantity
(
∏

1≤j≤k dimVj)/(max1≤j≤k dimVj) and in at least some situations this bound can

be attained, see [10]. Moreover, in general there may be infinitely many choices
of subspace class W which generate the same equilibrium state. One of the major
components of the proof of Theorem 1 will be an extension of Theorem 3(ii) in §5.

In this result we will show that if additionally every (A
(j)
1 , . . . , A

(j)
N ) has simple top

Lyapunov exponent with respect to µ then the choice of transitive subspace class
W is unique, and if µ is totally ergodic then moreover W must be primitive.

Outside the irreducible case, the following additional result of [10] implies that
every ergodic generalised matrix equilibrium state can be expressed as the equi-
librium state of a potential satisfying the hypotheses of Theorem 3, and will also
be applied in the following section. In order to prove Theorem 1 we will likewise
need to extend the below result to include a statement on simple top Lyapunov
exponents.

Theorem 4 ([10]). Let k ≥ 1 and N ≥ 2 and for each j = 1, . . . , k let Vj be

a finite-dimensional real vector space, (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N an N -tuple of
linear maps and βj > 0 a real number. Then for each j = 1, . . . , k there exist an
integer rj ≥ 1, integers dj,1, . . . , dj,rj ≥ 1 satisfying

∑rj
t=1 dj,t = dimVj and a basis
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for Vj in which we may write

A
(j)
i =


A

(j,1)
i ∗ · · · ∗ ∗
0 A

(j,2)
i · · · ∗ ∗

...
...

. . .
...

...

0 0 · · · A
(j,rj−1)
i ∗

0 0 · · · 0 A
(j,rj)
i


for every i = 1, . . . , N , where (A

(j,t)
1 , . . . , A

(j,t)
N ) ∈ GLdj,t(R)N is irreducible for

every t = 1, . . . , rj. If µ is an ergodic equilibrium state of the potential Φ: Σ∗N →
(0,+∞) defined by

Φ(i) :=

k∏
j=1

∥∥∥A(j)
i

∥∥∥βj ,
then there exist t1, . . . , tk such that 1 ≤ tj ≤ rj for every j = 1, . . . , k and such that

µ is an equilibrium state of the potential Φ̂ : Σ∗N → (0,+∞) defined by

Φ̂(i) :=

k∏
j=1

∥∥∥A(j,tj)
i

∥∥∥βj
and satisfies P (Φ) = P (Φ̂). Furthermore, the number of distinct ergodic equilibrium

states of Φ is not greater than
∏k
j=1 dimVj.

Remark. Theorem 4 follows from the statement of [10, Theorem 5] except for

the fact that P (Φ) = P (Φ̂), which is not made explicit in the statement of that
theorem but appears in the theorem’s proof. Similarly, in Theorem 3 the fact that

every potential of the form ΦW where W ⊆
∏k
j=1 Gr`j (Vj) is a transitive subspace

class is quasimultiplicative and satisfies a Gibbs inequality was not made explicit
in the statement of [10, Theorem 4] but features prominently in the proof.

4. Reduction to the case of simple top Lyapunov exponents

As was described in the introduction the first, and by far the simplest, step in
the proof of Theorem 1 is to reduce the problem to the case where the generalised

matrix equilibrium state µ is defined by tuples (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N which
are all irreducible and all have simple top Lyapunov exponent with respect to µ.
In this section we prove:

Theorem 5. Let N ≥ 2 and let µ ∈Mσ(ΣN ) be an ergodic generalised matrix equi-
librium state. Then there exist finite-dimensional real vector spaces Vj, irreducible

tuples (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N each having simple top Lyapunov exponent with
respect to µ, and real numbers βj > 0 for each j = 1, . . . , k such that µ is an ergodic
equilibrium state of the potential

Φ(i) :=

k∏
j=1

∥∥∥A(j)
i

∥∥∥βj .
By definition µ admits at least one representation in the above form but without

each (B
(j)
1 , . . . , B

(j)
N ) necessarily being irreducible or having simple top Lyapunov

exponent. The result is proved by starting with such a representation, passing to
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an appropriate exterior power for each j and then finding a block upper triangu-
larisation of each tuple such that for each j one of the tuples of diagonal blocks
yields the desired new tuple. We separate the first part of this argument into a
proposition as follows:

Proposition 4.1. Let N ≥ 2 and let µ ∈ Mσ(ΣN ) be a generalised matrix equi-
librium state. Then there exist finite-dimensional real vector spaces Uj, tuples of

linear maps (B
(j)
1 , . . . , B

(j)
N ) ∈ GL(Uj)

N each having simple top Lyapunov exponent
with respect to µ, and real numbers γj > 0 for each j = 1, . . . , k such that µ is an
ergodic equilibrium state of the potential

Ψ(i) :=

k∏
j=1

∥∥∥B(j)
i

∥∥∥γj .
Proof. Since µ is a generalised matrix equilibrium state, by definition there exist

k ≥ 1, finite-dimensional real vector spaces Vj , tuples (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N

and real numbers βj > 0 for each j = 1, . . . , k such that µ is an equilibrium state
for the potential Φ: ΣN → (0,+∞) defined by

Φ(i) :=

k∏
j=1

∥∥∥A(j)
i

∥∥∥βj .
Choose for each j = 1, . . . , k the largest integer `j ∈ {1, . . . ,dimVj} such that

λ1(A(j), µ) = · · · = λ`j (A
(j), µ). Define Uj := V

∧`j
j for each j = 1, . . . , k and

B
(j)
i := (A

(j)
i )∧`j for each i = 1, . . . , N and j = 1, . . . , k. For every A ∈ GL(Vj)

the singular values of A∧`j are precisely the numbers σi1(A) · · ·σi`j (A) such that

1 ≤ i1 < · · · < i`j ≤ dimVj , listed in decreasing order, so in particular the
largest singular value is σ1(A) · · ·σ`j (A) and the second-largest singular value is
σ1(A) · · ·σ`j−1(A)σ`j+1(A) if `j < dimVj and zero otherwise. It follows directly
that

λ1(B(j), µ) =

`j∑
i=1

λi(A
(j), µ),

λ2(B(j), µ) =

`j−1∑
i=1

λi(A
(j), µ)

+ λ`j+1(A(j), µ)

for each j = 1, . . . , k, where λ1+dimVj (A
(j), µ) is interpreted as being equal to

−∞. By the maximality of each `j we have λ`j+1(A(j), µ) < λ`j (A
(j), µ) for each

j = 1, . . . , k and consequently λ1(B(j), µ) > λ2(B(j), µ) for every j = 1, . . . , k so

that every (B
(j)
1 , . . . , B

(j)
N ) has simple top Lyapunov exponent with respect to µ.

Define γj := βj/`j for each j = 1, . . . , k. We claim that µ is an equilibrium state
for the potential Ψ: Σ∗N → (0,+∞) defined by

Ψ(i) :=

k∏
j=1

∥∥∥B(j)
i

∥∥∥γj .
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We have

Ψ(i) :=

k∏
j=1

∥∥∥B(j)
i

∥∥∥γj =

k∏
j=1

σ1

(
B

(j)
i

)γj
=

k∏
j=1

(
σ1

(
A

(j)
i

)
· · ·σ`j

(
A

(j)
i

)) βj
`j ≤

k∏
j=1

σ1

(
A

(j)
i

)βj
= Φ(i)

for every i ∈ Σ∗N so in particular P (Ψ) ≤ P (Φ). Thus

P (Ψ) ≥ h(µ) + Λ(Ψ, µ) = h(µ) +

k∑
j=1

γjλ1(B(j), µ)

= h(µ) +

k∑
j=1

βj
`j

`j∑
i=1

λi(A
(j), µ)

= h(µ) +

k∑
j=1

βjλ1(A(j), µ)

= h(µ) + Λ(Φ, µ) = P (Φ) ≥ P (Ψ)

where we have used the definition of `j in the third equation, and µ is an equilibrium
state of Ψ as claimed. �

Proof of Theorem 5. By Proposition 4.1 we may assume without loss of general-
ity that there exist finite-dimensional real vector spaces Uj , tuples of linear maps

(B
(j)
1 , . . . , B

(j)
N ) ∈ GL(Uj)

N each having simple top Lyapunov exponent with re-
spect to µ, and real numbers γj > 0 for each j = 1, . . . , k such that µ is an ergodic
equilibrium state of the potential

Ψ(i) :=

k∏
j=1

∥∥∥B(j)
i

∥∥∥γj .
By Theorem 4 there exist integers r1, . . . , rk ≥ 1 such that in a suitable basis for
each Uj we may write

B
(j)
i =


B

(j,1)
i ∗ · · · ∗ ∗
0 B

(j,2)
i · · · ∗ ∗

...
...

. . .
...

...

0 0 · · · B
(j,rj−1)
i ∗

0 0 · · · 0 B
(j,rj)
i


for every i = 1, . . . , N , where each B

(j,t)
i is a real square matrix whose dimension

dt,j ≥ 1 depends on t and j but not on i, where (B
(j,t)
1 , . . . , B

(j,t)
N ) ∈ GLdj,t(R)N is

irreducible for every t = 1, . . . , rj , and where for some choice of integers t1, . . . , tk
satisfying 1 ≤ tj ≤ rj for every j = 1, . . . , k the measure µ is an equilibrium state
for the potential

Φ(i) :=

k∏
j=1

∥∥∥B(j,tj)
i

∥∥∥γj
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and addtionally P (Φ) = P (Ψ). Define Vj := Rdj,tj , βj := γj and (A
(j)
1 , . . . , A

(j)
N ) :=

(B
(j,tj)
1 , . . . , B

(j,tj)
N ) ∈ GL(Vj)

N for every j = 1, . . . , k. To complete the proof of the

theorem we must verify that every (B
(j,tj)
1 , . . . , B

(j,tj)
N ) has simple top Lyapunov

exponent with respect to µ. We will show that (B
(j,tj)
1 , . . . , B

(j,tj)
N ) inherits this

property from (B
(j)
1 , . . . , B

(j)
N ).

To this end we first claim that λ1(B(j,tj), µ) = λ1(B(j), µ) for every j = 1, . . . , k.
On the one hand we have by definition

λ1(B(j,tj), µ) = lim
n→∞

1

n

∫
ΣN

log
∥∥∥B(j,tj)

x|n

∥∥∥ dµ(x)

≤ lim
n→∞

1

n

∫
ΣN

log
∥∥∥B(j)

x|n

∥∥∥ dµ(x) = λ1(B(j), µ)

so that λ1(B(j,tj), µ) ≤ λ1(B(j), µ) for every j = 1, . . . , k. On the other hand we
may apply this estimate to obtain

P (Ψ) = P (Φ) = h(µ) + Λ(Φ, µ)

= h(µ) +

k∑
j=1

γjλ1(B(j,tj), µ)

≤ h(µ) +

k∑
j=1

γjλ1(B(j), µ) = h(µ) + Λ(Ψ, µ) = P (Ψ)

and therefore
∑k
j=1 γjλ1(B(j,tj), µ) =

∑k
j=1 γjλ1(B(j), µ). It follows that

k∑
j=1

γj

(
λ1(B(j), µ)− λ1(B(j,tj), µ)

)
is a sum of non-negative terms which is equal to zero, so all of the summands must
be zero and therefore λ1(B(j,tj), µ) = λ1(B(j), µ) for every j = 1, . . . , k as claimed.

We secondly claim that

λ1(B(j,tj), µ) + λ2(B(j,tj), µ) ≤ λ1(B(j), µ) + λ2(B(j), µ)

for every j = 1, . . . , k. Indeed, for fixed j we have for µ-a.e. x ∈ ΣN

λ1(B(j,tj), µ)+λ2(B(j,tj), µ) = λ1

((
B(j,tj)

)∧2

, µ

)
= lim sup

n→∞

1

n
log ρ

((
B

(j,tj)

x|n

)∧2
)

and

λ1(B(j), µ) + λ2(B(j), µ) = λ1

((
B(j)

)∧2

, µ

)
= lim sup

n→∞

1

n
log ρ

((
B

(j)
x|n

)∧2
)

by Proposition 3.1. For every x and n the quantity ρ((B
(j,tj)

x|n )∧2) is the product of

the absolute values of the two largest eigenvalues of B
(j,tj)

x|n and similarly ρ((B
(j)
x|n)∧2)

is the product of the absolute values of the two largest eigenvalues of B
(j)
x|n . But the

set of eigenvalues of B
(j,tj)

x|n is a subset of the set of eigenvalues of B
(j)
x|n so we have

lim sup
n→∞

1

n
log ρ

((
B

(j,tj)

x|n

)∧2
)
≤ lim sup

n→∞

1

n
log ρ

((
B

(j)
x|n

)∧2
)

for all x ∈ ΣN . The claim follows.
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We may now show that every (B
(j,tj)
1 , . . . , B

(j,tj)
N ) has simple top Lyapunov ex-

ponent with respect to µ. Combining the two claims we deduce that

λ2(B(j,tj), µ) ≤ λ2(B(j), µ)

and consequently

λ2(B(j,tj), µ) ≤ λ2(B(j), µ) < λ1(B(j), µ) = λ1(B(j,tj), µ)

for every j = 1, . . . , k so that every (B
(j,tj)
1 , . . . , B

(j,tj)
N ) has simple top Lyapunov

exponent with respect to µ as required. The proof of the theorem is complete. �

5. Generalised matrix equilibrium states in the case of simple top
Lyapunov exponents

The result of the previous section shows that every ergodic generalised matrix
equilibrium state µ can be assumed without loss of generality to be generated by

a potential Φ(i) :=
∏k
j=1 ‖A

(j)
i ‖βj defined in terms of tuples (A

(j)
1 , . . . , A

(j)
N ) ∈

GL(Vj) which are all irreducible and have simple top Lyapunov exponent with
respect to µ. By Theorem 3 irreducibility and ergodicity together imply that µ is the

equilibrium state of a potential ΦW(i) := max(Wj)kj=1∈W
∏k
j=1 ‖A

(j)
i |Wj

‖βj for some

transitive subspace classW ⊆
∏k
j=1 Gr(Vj). In this section we extend Theorem 3 by

showing that if µ is totally ergodic then irreducibility and the simplicity of Lyapunov
exponents allow us to choose W so as to additionally be primitive. The same
arguments which yield this result incidentally provide a pivotal technical lemma on
simultaneously proximal words which recalls some results of Abels, Margulis and
Soifer ([1], for related results see also [9, §6]), although in those works an algebraic
rather than analytic method is used. In this section we prove:

Theorem 6. Let k ≥ 1 and N ≥ 2. For each j = 1, . . . , k let Vj be a finite-

dimensional real vector space, (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N an irreducible N -tuple
and βj > 0 a real number. For each j = 1, . . . , k let `j ∈ {1, . . . ,dimVj} be the
smallest dimension of any nonzero linear subspace of Vj which has finite orbit under

the action of (A
(j)
1 , . . . , A

(j)
N ). Suppose that µ ∈Mσ(ΣN ) is an ergodic equilibrium

state of the potential Φ: Σ∗N → (0,+∞) defined by

Φ(i) :=

k∏
j=1

∥∥∥A(j)
i

∥∥∥βj
such that for every j = 1, . . . , k the tuple (A

(j)
1 , . . . , A

(j)
N ) has a simple top Lyapunov

exponent with respect to µ. Then:

(i) There exists a unique transitive subspace class W ⊆
∏k
j=1 Gr`j (Vj) such that

µ is an equilibrium state of the potential ΦW : Σ∗N → (0,+∞) defined by

ΦW(i) := max
(Wj)kj=1∈W

k∏
j=1

∥∥∥A(j)
i |Wj

∥∥∥βj .
(ii) The transitive subspace class W defined in (i) has the following additional

property: there exist k ∈ Σ∗N and (W 0
j )kj=1 ∈ W such that for every j =

1, . . . , k we have A
(j)
k W 0

j = W 0
j and A

(j)
k |W 0

j
∈ Prox(W 0

j ).
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(iii) If µ is totally ergodic then the transitive subspace class W defined in (i) is
primitive.

Theorem 6(i) is not used in this article, but is provided for interest. This result
contrasts strongly with the situation in which simple top Lyapunov exponents are
not assumed, where it can be the case that uncountably many choices of W exist
which all have the same equilibrium state: a simple example of this, as mentioned in
[10], is the case in which k = 1, V = R2 and every Ai is a rational rotation matrix,
in which case W can be taken to be the orbit of any one-dimensional subspace
whatsoever. Theorem 6(ii) and (iii) both contribute to the proof of Theorem 1;
while the former has more of the character of a lemma than of a main result, we
include it in Theorem 6 since it emerges directly from the proof of the other clauses
of the theorem.

The proof of Theorem 6 is heavily inclined towards ergodic theory, unlike the
results of the following section which are essentially algebraic. The essential idea
of the proof is as follows. The separation of Lyapunov exponents allows us fairly

easily to construct words j ∈ Σ∗N such that A
(j)
j ∈ Prox(Vj) for all j = 1, . . . , k,

and the existence of these words implies that each Vj can be written as a splitting
Vj =

⊕rj
i=1 U

i
j into `j-dimensional spaces in such a way that for each j the spaces

U1
j , . . . , U

rj
j are permuted by the linear maps A

(j)
i . By replacing the inner product

on each Vi if necessary this splitting can without loss of generality be taken to

be orthogonal and it follows that the norm of the restriction of each product A
(j)
i

to each of the various spaces U ij is a singular value of A
(j)
i . Together with the

separation of Lyapunov exponents this implies that for each j = 1, . . . , k the growth

of ‖A(j)
x|n‖ for almost every x is concentrated on a single one of the subspaces U ij ,

which in general will depend on both x and n. Using this observation we construct
measurable functions Uj : Σ̂N → {U1

j , . . . , U
rj
j } which are equivariant with respect

to the action of A
(j)
x|n and capture the maximal growth of each ‖A(j)

x|n‖ in the sense

that

lim
n→∞

1

n
log
∥∥∥A(j)

x|n |Uj(σ̂nx)

∥∥∥ = λ1(A(j), µ),

lim
n→∞

1

n
log
∥∥∥A(j)

x|n |Uj(σ̂nx)⊥

∥∥∥ ≤ λ2(A(j), µ)

for µ̂-a.e. x ∈ Σ̂N . (These functions may be thought of as resembling Oseledets
spaces, although they do not always correspond precisely to Oseledets spaces and
it is not clear whether they are necessarily given by direct sums of Oseledets spaces
either.) The ergodicity of µ̂ implies that the tuple (Uj(x))kj=1 belongs almost ev-
erywhere to a single transitive subspace class W; if µ̂ is also totally ergodic, this
can be applied to show that for every integer n ≥ 1, every two values taken by the
tuple (Uj(x))kj=1 on sets of positive measure can be linked by a word i with length
divisible by n. This allows us to show that{

(A
(j)
i Wj)

k
j=1 : i ∈ Σ∗N and n divides |i|

}
=W

for every (Wj)
k
j=1 ∈ W and n ≥ 1, and this is sufficient to deduce that W is

primitive in the totally ergodic case.
Before beginning the proof we require three lemmas, one of which is primar-

ily ergodic-theoretic in character, one primarily algebraic and one somewhat more
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combinatorial; these respectively treat the existence of proximal elements, the al-
gebraic consequences of their existence for splittings of each Vj , and the criterion
for primitivity just mentioned.

Lemma 5.1. Let k ≥ 1 and N ≥ 2 and let µ ∈Mσ(ΣN ) be ergodic. For each j =

1, . . . , k let Vj be a finite-dimensional real inner product space and (A
(j)
1 , . . . , A

(j)
N ) ∈

GL(Vj)
N a tuple which has simple top Lyapunov exponent with respect to µ. Then

for µ̂-a.e. x ∈ Σ̂N we have

(5) lim sup
n→∞

min
1≤j≤k

(
1

n
log ρ

(
A

(j)
x|n

)
− 1

2n
log σ1

(
A

(j)
x|n

)
σ2

(
A

(j)
x|n

))
> 0.

Furthermore there exists k ∈ Σ∗N such that for every j = 1, . . . , k we have A
(j)
k ∈

Prox(Vj).

Proof. The inequality (5) implies that we may find k := x|n ∈ Σ∗N such that

ρ(A
(j)
k )2 > σ1(A

(j)
k )σ2(A

(j)
k ) for all j = 1, . . . , k and as noted in §3.1.4 this yields

A
(j)
k ∈ Prox(Vj) for every j = 1, . . . , k. To prove the lemma it is thus sufficient to

show that (5) holds for µ̂-a.e. x ∈ Σ̂N and this clearly follows if the same result is
shown for µ-a.e. x ∈ ΣN . We therefore proceed to prove the latter statement.

We first claim that for µ-a.e. x ∈ ΣN

(6) lim sup
n→∞

k∑
j=1

(
1

n
log ρ

(
A

(j)
x|n

)
− 1

n
log
∥∥∥A(j)

x|n

∥∥∥) = 0.

To prove this let V :=
⊗k

j=1 Vj be the tensor product of the vector spaces Vj and

define a tuple (B1, . . . , BN ) ∈ GL(V )N by Bi :=
⊗k

j=1A
(j)
i for each i = 1, . . . , N .

We equip V with the inner product induced by the inner products on the spaces Vj .

As noted in §3.1 we have ‖Bi‖ =
∏k
j=1 ‖A

(j)
i ‖ for all i ∈ Σ∗N with respect to the

corresponding inner product norms and also ρ(Bi) =
∏k
j=1 ρ(A

(j)
i ) for all i ∈ Σ∗N .

It follows from the first statement in particular that λ1(B,µ) =
∑k
j=1 λ1(A(j), µ).

Since by the subadditive ergodic theorem

lim
n→∞

k∑
j=1

1

n
log
∥∥∥A(j)

x|n

∥∥∥ = lim
n→∞

1

n
log
∥∥Bx|n∥∥ = λ1(B,µ)

for µ-a.e. x ∈ ΣN , and by Proposition 3.1

lim sup
n→∞

k∑
j=1

1

n
log ρ

(
A

(j)
x|n

)
= lim sup

n→∞

1

n
log ρ

(
Bx|n

)
= λ1(B,µ)

for µ-a.e. x ∈ ΣN , the claimed result (6) follows. Now, each of the summands
1
n log ρ

(
A

(j)
x|n

)
− 1

n log
∥∥∥A(j)

x|n

∥∥∥ in (6) is non-positive since clearly ρ(A
(j)
i ) ≤ ‖A(j)

i ‖
for every i ∈ Σ∗N , and it follows from this observation that for µ-a.e. x ∈ ΣN

(7) lim sup
n→∞

min
1≤j≤k

(
1

n
log ρ

(
A

(j)
x|n

)
− 1

n
log
∥∥∥A(j)

x|n

∥∥∥) = 0
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since this sequence is bounded below by the sequence in (6) and is bounded above
by 0. But for µ-a.e. x ∈ ΣN we have

lim
n→∞

min
1≤j≤k

(
1

n
log
∥∥∥A(j)

x|n

∥∥∥− 1

2n
log σ1(A

(j)
x|n)σ2(A

(j)
x|n)

)
(8)

= min
1≤j≤k

(
1

2
λ1(A(j), µ)− 1

2
λ2(A(j), µ)

)
> 0

because by the subadditive ergodic theorem

lim
n→∞

1

n
log ‖A(j)

x|n‖ = λ1(A(j), µ)

and

lim
n→∞

1

n
log σ1

(
A

(j)
x|n

)
σ2

(
A

(j)
x|n

)
= λ1

(
A(j), µ

)
+ λ2

(
A(j), µ

)
for every j = 1, . . . , k, and each of the differences λ1(A(j), µ)−λ2(A(j), µ) is positive
by the hypothesis of simplicity of the top Lyapunov exponent. Adding the sequences
in (7) and (8) gives a sequence which is a lower bound for the left-hand side of (5)
and has positive limit superior almost everywhere. This yields (5) for µ-a.e. x ∈ ΣN
as required and the result follows. �

The following algebraic consequence of proximality is perhaps already known
but we have been unable to find a reference:

Lemma 5.2. Let V be a finite-dimensional real vector space, let (B1, . . . , BN ) ∈
GL(V )N be irreducible and let ` ∈ {1, . . . ,dimV } be the smallest integer such that
there exists an `-dimensional linear subspace U ⊆ V with finite orbit under the
action of (B1, . . . , BN ). Suppose that there exists k ∈ Σ∗N such that Bk ∈ Prox(V ).
Then dimV = `r for some integer r ≥ 1, there are exactly r subspaces U1, . . . , Ur ∈
Gr`(V ) which have finite orbit under the action of (B1, . . . , BN ), and these sub-
spaces form a direct sum

⊕r
t=1 Ut which is equal to V .

Proof. Let U ⊆ V be an `-dimensional subspace with finite orbit under (B1, . . . , BN )
and let U := {BiU : i ∈ Σ∗N} denote its orbit. We claim that (B1, . . . , BN ) acts
transitively on U in the following sense: for every U1, U2 ∈ U there exists i ∈ Σ∗N
such that BiU1 = U2.

To see this we argue as follows. For every i ∈ Σ∗N the map Gr`(V ) → Gr`(V )
defined by W 7→ BiW is clearly bijective, so in particular each Bi induces an
injective map from {U}∪U to U . Since U is finite this is only possible if {U}∪U = U
and thus necessarily U ∈ U . If i ∈ Σ∗N is arbitrary then the map Bi : U → U is
a bijection of a finite set, so in particular some power of that map is the identity
permutation. In particular if i ∈ Σ∗N is arbitrary then BpiU = U for some integer
p ≥ 1 and hence also Bnpi U = U for every n ≥ 1. It follows that if U1 ∈ U is
arbitrary then since by definition U1 = BjU for some j ∈ Σ∗N , the set {BiU1 : i ∈
Σ∗N} contains Bnj U for every n ≥ 2 and therefore contains U and hence contains

{BiU : i ∈ Σ∗N}. But the reverse inclusion is obvious, so {BiU1 : i ∈ Σ∗N} is equal
to U for every U1 ∈ U and this proves the result claimed.

We next claim that there exist r ≥ 1 and subspaces U1, . . . , Ur ∈ U such that
V =

⊕r
t=1 Ut. To see this we observe that there exists at least one list of elements

U1, . . . , Um ∈ U which forms a direct sum, namely the list of length 1 consisting of
the single space U . There therefore exists a maximal list of elements U1, . . . , Ur ∈ U
which forms a direct sum. If U ′ ∈ U is arbitrary then the subspace (U1⊕· · ·⊕Ur)∩U ′
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cannot have dimension zero since then U1, . . . , Ur, U
′ would form a direct sum,

contradicting maximality. It also cannot have dimension nonzero but strictly less
than `, since it clearly has finite orbit under the action of (B1, . . . , BN ) and such a
space must have dimension at least `. It cannot have dimension strictly greater than
` since it is a subset of U ′, so by elimination its dimension is precisely ` and therefore
it is equal to the subspace U ′. Since U ′ ∈ U was arbitrary this shows that every
element of U is a subspace of U1 ⊕ · · · ⊕Ur. Hence U1 ⊕ · · · ⊕Ur = span

⋃
W∈U W .

The latter space is clearly preserved by every Bi and has nonzero dimension, hence
equals V by irreducibility. The claim is proved. We deduce in particular that
r` = dimV . We have proved every part of the lemma except for the claim that
U1, . . . , Ur are the only subspaces of V with dimension ` and with finite orbit under
the action of (B1, . . . , BN ).

In pursuit of this result we now claim that for every t = 1, . . . , r there exists
a linear map At ∈ Prox(V ) which belongs to the group generated by the maps
B1, . . . , BN , fixes every U1, . . . , Ur and whose leading eigenvalue has an eigenvector
in Ut. By hypothesis there exists k ∈ Σ∗N such that Bk is proximal. Since Bk

induces a permutation of U it has a power which induces the identity permutation
of U and hence fixes all of the subspaces U1, . . . , Ut. Without loss of generality we
replace Bk with this power, so we have BkUt = Ut for every t = 1, . . . , r and also
Bk ∈ Prox(V ). The determinant of (Bk − λI) on V is equal to the product of the
determinants of the linear maps (Bk − λI)|Ut , so if λ is the leading eigenvalue of
Bk then one of the restrictions (Bk − λI)|Ut must have zero determinant, which is
to say there exists an eigenvalue for this eigenvector in the space Ut. Consequently
there exists an integer t0 ∈ {1, . . . , r} such that we may take At0 := Bk. By the
transitivity property demonstrated earlier, for any other t ∈ {1, . . . , r} we may
choose i ∈ Σ∗N such that BiUt = Ut0 and it is clear that the map At := B−1

i BkBi

has the desired properties.
It remains to show that U1, . . . , Ur are the only subspaces of V with finite or-

bit under the action of (B1, . . . , BN ) and with dimension `. To this end suppose

that Û is an arbitrary `-dimensional subspace of V with finite orbit under the ac-
tion of (B1, . . . , BN ). As with the space U we see easily that every element of

the semigroup generated by B1, . . . , BN induces a permutation on the orbit of Û ,
which is finite. It follows directly that every element of the group generated by
B1, . . . , BN also induces a permutation on the orbit of Û . We now claim that Û
must be one of the spaces U1, . . . , Ur. To see this it is clearly sufficient to show
that Û has nontrivial intersection with one of the spaces Ut, since then Û ∩ Ut
is a nonzero subspace of V with dimension at most ` and with finite orbit under
the action of (B1, . . . , BN ); hence it is necessarily `-dimensional and this yields

Ut = Û as required. Let us therefore show that Û intersects one of the spaces Ut.
Since V =

⊕r
t=1 Ut there exists a subcollection of U1, . . . , Ur whose span inter-

sects Û nontrivially, namely the whole collection. There therefore exists a minimal
subcollection whose span intersects Û nontrivially; by relabelling if necessary, call
this subcollection U1, . . . , Um, say. Since Û ∩ (U1 ⊕ · · · ⊕ Um) is a nonzero sub-
space of V with finite orbit under (B1, . . . , BN ) it has dimension at least ` and

therefore equals Û , and we deduce that Û ⊆ U1 ⊕ · · · ⊕ Um. By minimality the
span of the smaller subcollection U1, . . . , Um−1 must intersect Û trivially. There-

fore U1, . . . , Um−1, Û forms a direct sum which is contained in U1 ⊕ · · · ⊕ Um and
so by dimension considerations must be equal to U1 ⊕ · · · ⊕ Um. We deduce that
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V = U1 ⊕ · · · ⊕ Um−1 ⊕ Û ⊕ Um+1 ⊕ · · · ⊕ Ur = U1 ⊕ · · · ⊕ Ur. Now, the lin-

ear map Am constructed earlier induces a permutation on the orbit of Û under
(B1, . . . , BN ) and therefore has a power which induces the identity permutation on
that set. Replacing Am with a power of itself if necessary we may therefore choose
Am ∈ Prox(V ) so as to fix every space U1, . . . , Ur and also so as to fix Û . Now
since the leading eigenspace of Am is one-dimensional and intersects Um, it does
not intersect any of U1, . . . , Um−1, Um+1, . . . , Ur. Since Am preserves every space

in the splitting V = U1⊕· · ·⊕Um−1⊕ Û ⊕Um+1⊕· · ·⊕Ur, by the same argument
used before its leading eigenspace must intersect one of those spaces; but this space
must be Û since none of the other spaces in the splitting intersects the leading
eigenspace. Therefore Û ∩ Um 6= {0} and we deduce that Û = Um. The proof is
complete. �

We lastly require the following simple combinatorial facts which will be used to
construct transitive and primitive subspace classes:

Lemma 5.3. Let k ≥ 1 and N ≥ 2. For each j = 1, . . . , k let Vj be a finite-

dimensional real vector space and (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N an irreducible N -
tuple. Then:

(i) If W ⊆
∏k
j=1 Gr(V ) is an equivariant subspace class then it is equal to the

disjoint union of finitely many transitive subspace classes.

(ii) Suppose that W ⊆
∏k
j=1 Gr(V ) is an equivariant subspace class with the fol-

lowing property: for every (Wj)
k
j=1 ∈ W and n ≥ 1 we have{

(A
(j)
i Wj)

k
j=1 : i ∈ Σ∗N and n divides |i|

}
=W.

Then W is primitive.

Proof. It is easy to see that if two transitive subspace classes intersect then they
must contain each other and hence be equal, so to establish (i) it is sufficient to
show that every (Wj)

k
j=1 ∈ W belongs to a transitive subspace class. Given an

arbitrary (W 0
j )kj=1 ∈ W define

Ŵ :=
{

(A
(j)
i W 0

j )kj=1 : i ∈ Σ∗N

}
⊆ W.

We will show that Ŵ is a transitive subspace class and contains (W 0
j )kj=1, which

by the arbitrariness of (W 0
j )kj=1 ∈ W clearly suffices to prove (i).

To show that Ŵ is transitive we must show that for every (Wj)
k
j=1 ∈ Ŵ we have

(9)
{

(A
(j)
i Wj)

k
j=1 : i ∈ Σ∗N

}
= Ŵ.

The left-hand side above is clearly a subset of the right-hand side, so we need only

prove the reverse inclusion. Fix an arbitrary (Wj)
k
j=1 = (A

(j)
j W 0

j )kj=1 ∈ Ŵ. The

map W →W defined by (W ′j)
k
j=1 7→ (A

(j)
j W ′j)

k
j=1 is clearly injective and acts on a

finite set, hence induces a permutation of W, hence there exists an integer p ≥ 1
such that the pth power of this map is the identity permutation ofW. We therefore



TOTALLY ERGODIC MATRIX EQUILIBRIUM STATES 29

have (W 0
j )kj=1 = (A

(j)
jp W

0
j )kj=1 = (A

(j)

j(p−1)Wj)
k
j=1 ∈ Ŵ. Hence

Ŵ =
{

(A
(j)
i W 0

j )kj=1 : i ∈ Σ∗N

}
=
{

(A
(j)
ijp−1Wj)

k
j=1 : i ∈ Σ∗N

}
⊆
{

(A
(j)
i Wj)

k
j=1 : i ∈ Σ∗N

}
⊆ Ŵ.

We have established (9) which proves the transitivity of Ŵ and the result (i) follows.
Let us now prove (ii). If i ∈ Σ∗N is arbitrary then it induces a permutation

of W via the map (Wj)
k
j=1 7→ (A

(j)
i Wj)

k
j=1 and in particular some power of i

induces the identity permutation. We may therefore choose j ∈ Σ∗N such that

(A
(j)
j Wj)

k
j=1 = (Wj)

k
j=1 for all (Wj)

k
j=1 ∈ W. Let ` := |j|. By hypothesis for every

(Wj)
k
j=1, (W

′
j)
k
j=1 ∈ W there exists i ∈ Σ∗N such that (Wj)

k
j=1 = (A

(j)
i W ′j)

k
j=1 and

` divides |i|. Since W is finite it follows directly that there exists an integer t such
that for every (Wj)

k
j=1, (W

′
j)
k
j=1 ∈ W we may choose i ∈ Σ∗N satisfying (Wj)

k
j=1 =

(A
(j)
i W ′j)

k
j=1, such that ` divides |i|, and such that |i| = s` for some integer s such

that 1 ≤ s < t; we then have (Wj)
k
j=1 = (A

(j)
jt−si

W ′j)
k
j=1 and |jt−si| = t`. Since the

length of the word jt−si is independent of the choice of (Wj)
k
j=1, (W

′
j)
k
j=1 ∈ W we

have proved that W is primitive. �

Proof of Theorem 6. By Lemma 5.1 there exists k ∈ Σ∗N such that for every j =

1, . . . , k we have A
(j)
k ∈ Prox(Vj), so the hypotheses of Lemma 5.2 are met by

(A
(j)
1 , . . . , A

(j)
N ) and Vj for every j = 1, . . . , k. Hence for each j = 1, . . . , k there exist

an integer rj ≥ 1 and a splitting Vj =
⊕rj

i=1 U
i
j such that A

(j)
i U ij ∈ {U1

j , . . . , U
rj
j }

for every i ∈ Σ∗N and i ∈ {1, . . . , rj}. Without loss of generality we adopt an inner
product structure on each Vj such that the splitting Vj =

⊕rj
i=1 U

i
j is orthogonal.

Fix i ∈ Σ∗N and j = 1, . . . , k. The linear map A
(j)
i induces a permutation of

the set {U1
j , . . . , U

rj
j }. We assert that (A

(j)
i )> also permutes this set and moreover

induces the inverse permutation on it. Indeed, if A
(j)
i U i1j = U i2j then we have

(10) A
(j)
i

((
U i1j
)⊥)

= A
(j)
i

 ⊕
1≤i≤rj
i 6=i1

U ij

 =
⊕

1≤i≤rj
i6=i2

U ij =
(
U i2j
)⊥
.

A standard and easy calculation shows that if B ∈ GL(V ) and U,U ′ ∈ Gr(V )

then BU = U ′ if and only if B>(U ′)⊥ = U⊥, so (10) yields (A
(j)
i )>U i2j = U i1j .

This demonstrates that (A
(j)
i )> induces the inverse permutation on {U1

j , . . . , U
rj
j }

to that induced by A
(j)
i . It follows that (A

(j)
i )>A

(j)
i preserves U ij for every i =

1, . . . , rj . Since Vj =
⊕rj

i=1 U
i
j it follows that every eigenvalue of (A

(j)
i )>A

(j)
i is

realised as an eigenvalue of its restriction to some U ij . In particular the numbers

‖A(j)
i |Uij‖ = ρ((A

(j)
i )>A

(j)
i |Uij )

1/2 for i = 1, . . . , rj form a subset of the singular

values of A
(j)
i . We conclude that for every i ∈ Σ∗N and j = 1, . . . , k we have

(11)
∥∥∥A(j)

i

∥∥∥ = max
1≤i≤rj

∥∥∥A(j)
i |Uij

∥∥∥
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and moreover for each i = 1, . . . , rj

(12) max

{∥∥∥A(j)
i |Uij

∥∥∥ ,∥∥∥∥A(j)
i |(Uij)⊥

∥∥∥∥} =
∥∥∥A(j)

i

∥∥∥ ,
(13) min

{∥∥∥A(j)
i |Uij

∥∥∥ ,∥∥∥∥A(j)
i |(Uij)⊥

∥∥∥∥} ≤ σ2

(
A

(j)
i

)
.

For the remainder of the proof let µ ∈Mσ(ΣN ) be an ergodic equilibrium state

of Φ and let µ̂ ∈Mσ̂(Σ̂N ) be its natural extension. A large initial part of the proof
will be taken up by the following construction: we claim that for every j = 1, . . . , k
there exists a Borel measurable function Uj : Σ̂N → {U1

j , . . . , U
rj
j } such that for

µ̂-a.e x ∈ Σ̂N and every m ≥ 1,

lim
n→∞

1

n
log
∥∥∥A(j)

(σ̂−nx)|n |Uj(x)

∥∥∥ = λ1(A(j), µ),(14)

lim sup
n→∞

1

n
log
∥∥∥A(j)

(σ̂−nx)|n |Uj(x)⊥

∥∥∥ ≤ λ2(A(j), µ)(15)

and

(16) A
(j)
(σ̂−mx)|mUj(x) = Uj(σ̂

−mx).

To begin this construction fix j ∈ {1, . . . , k}, define Z to be the set

dimVj⋂
`=1

{
x ∈ Σ̂N : lim

n→∞

1

n
log σ`

(
A

(j)
(σ̂−nx)|n

)
= λ`(A

(j), µ)

}
and for each i = 1, . . . , rj define

Xi :=

{
x ∈ Σ̂N : lim

n→∞

1

n
log
∥∥∥A(j)

(σ̂−nx)|n |Uij
∥∥∥ = λ1(A(j), µ)

}
.

Clearly all of these sets are Borel sets. For each ` = 1, . . . ,dimVj the functions

f `n : Σ̂N → R defined by

f `n(x) := log
∏̀
i=1

σi

(
A

(j)
(σ̂−nx)|n

)
satisfy f `n+m(x) ≤ f `n(σ̂−mx)+f `m(x) for all x ∈ Σ̂N and n,m ≥ 1, and since clearly

Z =

dimVj⋂
`=1

{
x ∈ Σ̂N : lim

n→∞

1

n
log
∏̀
i=1

σ`

(
A

(j)
(σ̂−nx)|n

)
=
∑̀
i=1

λi(A
(j), µ)

}
it follows by the subadditive ergodic theorem applied to the functions f `n and the
transformation σ̂−1 that µ(Z) = 1.

We claim that the sets Z∩Xi are pairwise disjoint for distinct values of i. Indeed,
if x ∈ Z ∩Xi1 ∩Xi2 with i1 6= i2 then since U i2j ⊆ (U i1j )⊥,

λ1(A(j), µ) = lim
n→∞

1

n
log min

{∥∥∥A(j)
(σ̂−nx)|n |Ui1j

∥∥∥ ,∥∥∥A(j)
(σ̂−nx)|n |Ui2j

∥∥∥}
≤ lim sup

n→∞

1

n
log min

{∥∥∥A(j)
(σ̂−nx)|n |Ui1j

∥∥∥ ,∥∥∥A(j)
(σ̂−nx)|n |(Ui1j )⊥

∥∥∥}
≤ lim
n→∞

1

n
log σ2

(
A

(j)
(σ̂−nx)|n

)
= λ2(A(j), µ) < λ1(A(j), µ)
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where in the first line we have used the definition of Xi1 and Xi2 , and in the third
line we have used (13), the definition of Z and the hypothesis that the top Lyapunov

exponent of each (A
(j)
1 , . . . , A

(j)
N ) is simple. But the above chain of inequalities ends

in a contradiction, and we conclude that Z ∩Xi1 ∩Xi2 must be empty. The sets
Z ∩Xi are thus pairwise disjoint for distinct values of i as claimed.

We now claim that Z ∩ (X1 ∪ · · · ∪Xrj ) has full measure. Define

C := max
1≤i≤N

max

{∥∥∥∥(A(j)
i

)−1
∥∥∥∥ ,∥∥∥A(j)

i

∥∥∥} ≥ 1.

If x ∈ Z then there exists n0 such that for all n ≥ n0∥∥∥A(j)
(σ̂−nx)|n

∥∥∥ = σ1

(
A

(j)
(σ̂−nx)|n

)
> C2σ2

(
A

(j)
(σ̂−nx)|n

)
by the definition of Z and the hypothesis that the top Lyapunov exponent of each

(A
(j)
1 , . . . , A

(j)
n ) is simple. If x ∈ Z is fixed then for all n ≥ n0 we in particular have

σ1(A
(j)
(σ̂−nx)|n) > σ2(A

(j)
(σ̂−nx)|n) and in view of (12) and (13) there exists a unique

i(x, n) such that ‖A(j)
(σ̂−nx)|n‖ = ‖A(j)

(σ̂−nx)|n |Ui(x,n)
j

‖. We assert that i(x, n) does not

depend on the value of n ≥ n0. Given arbitrary n ≥ n0 we have∥∥∥A(j)
(σ̂−n−1x)|n+1

|
U
i(x,n)
j

∥∥∥ =
∥∥∥A(j)

x−nA
(j)
(σ̂−nx)|n |Ui(x,n)

j

∥∥∥
≥ C−1

∥∥∥A(j)
(σ̂−nx)|n |Ui(x,n)

j

∥∥∥
= C−1σ1

(
A

(j)
(σ̂−nx)|n

)
> Cσ2

(
A

(j)
(σ̂−nx)|n

)
≥ C

∥∥∥A(j)
(σ̂−nx)|n |(Ui(x,n)

j )⊥

∥∥∥
= C max

i 6=i(x,n)

∥∥∥A(j)
(σ̂−nx)|n |Uij

∥∥∥
≥ max
i 6=i(x,n)

∥∥∥A(j)
x−nA

(j)
(σ̂−nx)|n |Uij

∥∥∥ = max
i 6=i(x,n)

∥∥∥A(j)
(σ̂−n−1x)|n+1

|Uij
∥∥∥

and in view of (11) it follows that i(x, n) satisfies the definition of i(x, n+ 1). We
conclude that i(x, n+ 1) = i(x, n) for all n ≥ n0 and therefore i(x, n) in fact takes
a constant value i(x) for all n ≥ n0. We then have

λ1(A(j), µ) = lim
n→∞

1

n
log σ1

(
A

(j)
(σ̂−nx)|n

)
(17)

= lim
n→∞

1

n
log
∥∥∥A(j)

(σ̂−nx)|n

∥∥∥ = lim
n→∞

1

n
log
∥∥∥A(j)

(σ̂−nx)|n |Ui(x)j

∥∥∥
so that x ∈ Xi(x). Combining this with the preceding result we have shown that
every element of Z belongs to a unique Xi. Since Z has full measure and the sets
Xi are Borel measurable we conclude that the sets X1, . . . , Xrj partition Σ̂N up to

µ̂-measure zero. If we define a function Uj : Σ̂N → {U1
j , . . . , U

rj
j } by Uj(x) := U ij

if x ∈ Z ∩ Xi and Uj(x) := U1
j otherwise, it is obvious that Uj is a measurable

function. The equation (17) precisely asserts the truth of (14) and combining this
with (12), (13) and the definition of Z yields (15). In particular (14) and (15) hold
for all x ∈ Z ∩ (X1 ∪ · · · ∪Xrj ).
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It remains to prove (16). Suppose that x belongs to the set
⋂
`∈Z σ̂

`(Z ∩ (X1 ∪
· · · ∪ Xrj )), which clearly has full measure. It is easy to see that for every fixed
m ≥ 1 we have

lim
n→∞

1

n
log

∥∥∥∥A(j)
(σ̂−n−mx)|n |A(j)

(σ̂−mx)|m
Uj(x)

∥∥∥∥
= lim
n→∞

1

n
log
∥∥∥A(j)

(σ̂−n−mx)|nA
(j)
(σ̂−mx)|m |Uj(x)

∥∥∥
= lim
n→∞

1

n
log
∥∥∥A(j)

(σ̂−n−mx)|n+m
|Uj(x)

∥∥∥ = λ1(A(j), µ)

and

lim sup
n→∞

1

n
log

∥∥∥∥A(j)
(σ̂−n−mx)|n |(A(j)

(σ̂−mx)|m
Uj(x)

)⊥
∥∥∥∥

= lim sup
n→∞

1

n
log

∥∥∥∥A(j)
(σ̂−n−mx)|n |A(j)

(σ̂−mx)|m
(Uj(x)⊥)

∥∥∥∥
= lim sup

n→∞

1

n
log
∥∥∥A(j)

(σ̂−n−mx)|nA
(j)
(σ̂−mx)|m |Uj(x)⊥

∥∥∥
= lim sup

n→∞

1

n
log
∥∥∥A(j)

(σ̂−n−mx)|n+m
|Uj(x)⊥

∥∥∥ ≤ λ2(A(j), µ).

Since σ̂−mx ∈ Z ∩ (X1 ∪ · · · ∪Xrj ) both (14) and (15) apply with σ̂−mx in place of

x and in view of the above we can only have A
(j)
(σ̂−mx)|mUj(x) = Uj(σ̂

−mx), which

is (16). This completes the construction of the measurable functions Uj : Σ̂N →
{U1

j , . . . , U
rj
j }.

We next claim that for fixed j ∈ {1, . . . , k}, for µ̂-a.e. x ∈ Σ̂N we have

lim
n→∞

1

n
log
∥∥∥A(j)

x|n |Uj(σ̂nx)

∥∥∥ = λ1(A(j), µ),(18)

lim
n→∞

1

n
log
∥∥∥A(j)

x|n |Uj(σ̂nx)⊥

∥∥∥ ≤ λ2(A(j), µ).(19)

Define two sequences of bounded measurable functions fn, gn : Σ̂N → R by fn(x) :=

log ‖A(j)
x|n |Uj(σ̂nx)‖ and gn(x) := log ‖A(j)

x|n |Uj(σ̂nx)⊥‖. For all n,m ≥ 1 we have

fn+m(x) ≤ fn(σ̂mx) + fm(x) and gn+m(x) ≤ gn(σ̂mx) + gm(x) for µ̂-a.e. x ∈ Σ̂N ,
where we have used (16). It follows by the subadditive ergodic theorem that the
limits in (18) and (19) exist µ̂-a.e. and are constant µ̂-a.e, so we need only show
that these almost sure values are equal to λ1(A(j), µ) and bounded by λ2(A(j), µ)
respectively. But from (14) and (15) we have

lim
n→∞

µ̂

({
x ∈ Σ̂N :

∣∣∣∣ 1n log
∥∥∥A(j)

x|n |Uj(σ̂nx)

∥∥∥− λ1(A(j), µ)

∣∣∣∣ < ε

})
= 1

and

lim
n→∞

µ̂

({
x ∈ Σ̂N :

1

n
log
∥∥∥A(j)

x|n |Uj(σ̂nx)⊥

∥∥∥ ≤ λ2(A(j), µ) + ε

})
= 1

for all ε > 0 since convergence almost everywhere implies convergence in measure
and since µ̂ is invariant with respect to σ̂. This is only possible if the almost sure
limit in (18) is equal to λ1(A(j), µ) and the almost sure limit in (19) is bounded by
λ2(A(j), µ). We have proved the claim.
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Let U denote the set of all k-tuples of the form (U
ij
j )kj=1 where 1 ≤ ij ≤ rj for

every j = 1, . . . , k. It is clear that U ⊆
∏k
j=1 Gr`j (Vj) is an equivariant subspace

class, so by Lemma 5.3(i) it is equal to the disjoint union of finitely many transitive

subspace classes W1, . . . ,Wr, say. Consider the sets Yt := {x ∈ Σ̂N : (Uj(x))kj=1 ∈
Wt} for t = 1, . . . , r, which clearly form a measurable partition of Σ̂N . For µ̂-a.e.

x ∈ Σ̂N we have (Uj(x))kj=1 ∈ Wt if and only if (Uj(σ̂x))kj=1 ∈ Wt as a consequence
of (16), so each Yt is invariant under σ̂ up to µ̂-measure zero. By the ergodicity of
µ̂ it follows that there exists t0 ∈ {1, . . . , r} such that µ̂(Yt0) = 1 and µ̂(Yt) = 0 for
all other t.

We may now prove (i). If W ⊆
∏k
j=1 Gr`j (Vj) is any transitive subspace class

then we define a potential ΦW : Σ∗N → (0,+∞) by

ΦW(i) := max
(Wj)kj=1∈W

k∏
j=1

‖A(j)
i |Wj‖βj .

Since µ is an equilibrium state of Φ we have

P (Φ) = h(µ) + Λ(Φ, µ) = h(µ) +

k∑
j=1

βjλ1(A(j), µ).

Since clearly ΦW ≤ Φ for every transitive subspace class W ⊆
∏k
j=1 Gr`j (Vj) we

have P (ΦW) ≤ P (Φ) for all such classes, so if W ⊆
∏k
j=1 Gr`j (Vj) is a transitive

subspace class then µ is an equilibrium state of ΦW if and only if Λ(ΦW , µ) =
Λ(Φ, µ). To prove (i) we will show that this is the case precisely when W =Wt0 .

Let us first show that µ is an equilibrium state for ΦWt0
. We clearly have

k∑
j=1

βjλ1(A(j), µ) = lim
n→∞

1

n

k∑
j=1

βj log
∥∥∥A(j)

x|n |Uj(σ̂nx)

∥∥∥
= lim
n→∞

1

n
log

k∏
j=1

∥∥∥A(j)
x|n |Uj(σ̂nx)

∥∥∥βj
≤ lim
n→∞

1

n
log max

(Wj)kj=1∈Wt0

k∏
j=1

∥∥∥A(j)
x|n |Wj

∥∥∥βj
= lim
n→∞

1

n
log ΦWt0

(x|n)

= Λ(ΦWt0
, µ) ≤ Λ(Φ, µ) =

k∑
j=1

βjλ1(A(j), µ)

for µ̂-a.e. x ∈ Σ̂N , where we have used (18) together with the subadditive ergodic
theorem applied to ΦWt0

and Φ. It follows that Λ(ΦWt0
, µ) = Λ(Φ, µ) as required

for µ to be an equilibrium state of ΦWt0
. This proves the existence part of (i).

Now suppose instead that W ⊆
∏k
j=1 Gr`j (Vj) is a transitive subspace class

such that µ is an equilibrium state of the potential ΦW . If (Wj)
k
j=1 ∈ W then by

definition each Wj has finite orbit under the action of (A
(j)
1 , . . . , A

(j)
N ) and therefore

must be one of the spaces U1
j , . . . , U

rj
j , since Lemma 5.2 implies that those are the

only `j-dimensional subspaces of Vj with finite orbit. Thus necessarily W ⊆ U . It
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follows that W intersects at least one Wt and since both are transitive we must
have W = Wt. To complete the uniqueness part of the proof of (i) we will show
that if t 6= t0 then a contradiction occurs.

Fix an arbitrary t 6= t0. For almost every x ∈ Σ̂N we have (Uj(σ̂
nx))kj=1 ∈ Wt0

for all n ≥ 1. For such x and n, if (Wj)
k
j=1 ∈ Wt is arbitrary then (Wj)

k
j=1 /∈ Wt0

and in particular (Wj)
k
j=1 6= (Uj(σ̂

nx))kj=1, so there exists j0 depending on x, n and

(Wj)
k
j=1 such that Wj0 6= Uj0(σ̂nx) and therefore Wj0 ⊆ Uj0(σ̂nx)⊥. Consequently

k∏
j=1

∥∥∥A(j)
x|n |Wj

∥∥∥βj ≤
 ∏

1≤j≤k
j 6=j0

∥∥∥A(j)
x|n

∥∥∥βj
∥∥∥A(j0)

x|n |Uj0 (σ̂nx)⊥

∥∥∥βj0
for this particular x, n and (Wj)

k
j=1, and therefore

max
(Wj)kj=1∈Wt

k∏
j=1

∥∥∥A(j)
x|n |Wj

∥∥∥βj ≤ max
1≤`≤k


 ∏

1≤j≤k
j 6=`

∥∥∥A(j)
x|n

∥∥∥βj
∥∥∥A(`)

x|n |U`(σ̂nx)⊥

∥∥∥β`


for this particular x and n. Thus for µ̂-a.e. x ∈ Σ̂N we have

ΦWt
(x|n) ≤ max

1≤`≤k


 ∏

1≤j≤k
j 6=`

∥∥∥A(j)
x|n

∥∥∥βj
∥∥∥A(`)

x|n |U`(σ̂nx)⊥

∥∥∥β`


for all n ≥ 1. But for all j = 1, . . . , k by the subadditive ergodic theorem we have
for µ̂-a.e. x ∈ Σ̂N

lim
n→∞

1

n
log

(∥∥∥A(j)
x|n

∥∥∥βj) = βjλ1(A(j), µ)

and by (19)

lim
n→∞

1

n
log

(∥∥∥A(j)
x|n |Uj(σ̂nx)⊥

∥∥∥βj) ≤ βjλ2(A(j), µ)

from which it follows that for µ̂-a.e. x ∈ Σ̂N

Λ(ΦWt
, µ) = lim

n→∞

1

n
log ΦWt

(x|n)

≤ max
1≤`≤k


 ∑

1≤j≤k
j 6=`

βjλ1(A(j), µ)

+ β`λ2(A(`), µ)


<

k∑
j=1

βjλ1(A(j), µ) = Λ(Φ, µ).

Thus if t 6= t0 we have Λ(ΦWt
, µ) < Λ(Φ, µ) and we have completed the proof of

(i).
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The proof of (ii) is now straightforward. By Lemma 5.1, for µ̂-a.e. x ∈ Σ̂N we
have

lim sup
n→∞

min
1≤j≤k

(
1

n
log ρ

(
A

(j)
x|n

)
− 1

2n
log σ1

(
A

(j)
x|n

)
σ2

(
A

(j)
x|n

))
> 0,

and for all j = 1, . . . , k and µ̂-a.e. x ∈ Σ̂N we have by (19)

lim
n→∞

1

n
log
∥∥∥A(j)

x|n |Uj(σ̂nx)⊥

∥∥∥ ≤ λ2(A(j), µ)

and by the subadditive ergodic theorem

lim
n→∞

1

2n
log σ1

(
A

(j)
x|n

)
σ2

(
A

(j)
x|n

)
=

1

2
λ1(A(j), µ) +

1

2
λ2(A(j), µ) > λ2(A(j), µ).

It follows that there exist x ∈ Σ̂N and n ≥ 1 such that (Uj(σ̂
nx))kj=1 ∈ Wt0 and

such that for all j = 1, . . . , k

(20) ρ
(
A

(j)
x|n

)
> σ1

(
A

(j)
x|n

) 1
2

σ2

(
A

(j)
x|n

) 1
2

>
∥∥∥A(j)

x|n |Uj(σ̂nx)⊥

∥∥∥ .
Let j := x|n and (W 0

j )kj=1 := (Uj(σ̂
nx))kj=1 ∈ Wt0 . Since ρ(A

(j)
j )2 > σ1(A

(j)
j )σ2(A

(j)
j )

for every j = 1, . . . , k we have A
(j)
j ∈ Prox(Vj) for every j = 1, . . . , k. The map

(Wj)
k
j=1 7→ (A

(j)
j Wj)

k
j=1 induces a permutation of Wt0 and therefore some power

of this map induces the identity permutation, so let k := jp be a power of p such

that A
(j)
k W 0

j = W 0
j for every j = 1, . . . , k. For every j = 1, . . . , k we clearly have

A
(j)
k ∈ Prox(Vj), and since A

(j)
k preserves the splitting Vj = U1

j ⊕ · · · ⊕ U
rj
j its

leading eigenvector belongs to one of these spaces. In particular this eigenvector
belongs either to W 0

j or to (W 0
j )⊥. If it belongs to the latter then the leading

eigenvector of A
(j)
j , being the same vector, belongs to (W 0

j )⊥ and therefore we have

ρ(A
(j)
j ) ≤ ‖A(j)

j |(W 0
j )⊥‖, but this contradicts (20). Hence the leading eigenvector of

A
(j)
k belongs to W 0

j for every j = 1, . . . , k. For each j = 1, . . . , k the linear map A
(j)
k

fixes W 0
j and its eigenvalues when restricted to W 0

j are a subset of its eigenvalues

on Vj which includes the largest eigenvalue. Thus A
(j)
k |W 0

j
∈ Prox(W 0

j ) for every

j = 1, . . . , k and we have proved (ii).
It remains to prove (iii). We first claim that for every (Wj)

k
j=1 ∈ Wt0 we have

µ̂
(
{x ∈ Σ̂N : (Uj(x))kj=1 = (Wj)

k
j=1}

)
> 0.

To see this we argue as follows. Each i ∈ Σ∗N induces a permutation of Wt0 via

the map (Wj)
k
j=1 7→ (A

(j)
i Wj)

k
j=1, and some power of the same word consequently

induces the inverse permutation. The set of all permutations of Wt0 which can
be realised in this way thus forms a finite group. We may therefore find a finite
list of words i1, . . . , ip ∈ Σ∗N such that every permutation of Wt0 of the form

(Wj)
k
j=1 7→ (A

(j)
i Wj)

k
j=1 is realised by (Wj)

k
j=1 7→ (A

(j)
i1i2···iqWj)

k
j=1 for some q ∈

{1, . . . , p}. (For example, we could take p to be an even number such that the
words i1, i3, i5, . . . , ip−1 induce all of the various permutations and such that iq+1

induces the inverse of the permutation induced by iq for each odd number q.) The
list i1, . . . , ip ∈ Σ∗N has the property that if (Wj)

k
j=1 ∈ Wt0 is arbitrary, then

(21)
{

((A
(j)
i1···iq )

−1Wj)
k
j=1 : 1 ≤ q ≤ p

}
=Wt0 .
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Now by Theorem 3 the measure µ is fully supported on ΣN , so µ̂([i]) > 0 for every

i ∈ Σ∗N and in particular µ̂([i1 · · · ip]) > 0. Since the set of all x ∈ Σ̂N such that
(Uj(x))kj=1 ∈ Wt0 has full measure, we may choose (Wj)

k
j=1 ∈ Wt0 such that

µ̂
({
x ∈ Σ̂N : (Uj(x))kj=1 = (Wj)

k
j=1 and x ∈ [i1 · · · ip]

})
> 0.

For every q = 1, . . . , p we have

µ̂
({
x ∈ Σ̂N : (Uj(σ̂

−|i1···iq|x))kj=1 = (Wj)
k
j=1 and σ̂−|i1···iq|x ∈ [i1 · · · ip]

})
> 0

by the σ̂-invariance of µ̂. Now using (16) we have(
Uj(σ̂

−|i1···iq|x)
)k
j=1

=

(
A

(j)

(σ̂−|i1···iq|x)||i1···iq|
Uj(x)

)k
j=1

=
(
A

(j)
i1···iqU(x)

)k
j=1

for µ̂-a.e. x ∈ σ̂|i1···iq|[i1 · · · ip], so

µ̂
({
x ∈ Σ̂N : (A

(j)
i1···iqU(x))kj=1 = (Wj)

k
j=1

})
> 0

and therefore

µ̂
({
x ∈ Σ̂N : (U(x))kj=1 = ((A

(j)
i1···iq )

−1Wj)
k
j=1

})
> 0

for every q = 1, . . . , p. In view of (21) this proves the claim.
We may now prove (iii). We will show that the hypothesis of Lemma 5.3(ii) is

satisfied by Wt0 . Fix arbitrary n ≥ 1 and suppose that µ, and hence µ̂, is totally
ergodic. Let (Wj)

k
j=1, (W

′
j)
k
j=1 ∈ Wt0 be arbitrary. Since µ̂ is ergodic with respect

to σ̂n, for every two sets Z1, Z2 ⊆ Σ̂N such that µ̂(Z1), µ̂(Z2) > 0 we may find ` ≥ 1
such that µ̂(Z1 ∩ σ̂n`Z2) > 0. In particular using the claim just proved it follows
that there exists ` ≥ 1 such that

µ̂
(
{x ∈ Σ̂N : (Uj(x))kj=1 = (Wj)

k
j=1 and (Uj(σ̂

−n`x))kj=1 = (W ′j)
k
j=1}

)
> 0.

Hence for a positive-measure set of x ∈ Σ̂N we have

(W ′j)
k
j=1 = (Uj(σ̂

−n`x))kj=1 = (A
(j)

(σ̂−n`x)|n`Uj(x))kj=1 = (A
(j)

(σ̂−n`x)|n`Wj)
k
j=1

using (16). In particular (W ′j)
k
j=1 = (A

(j)
i Wj)

k
j=1 for some i ∈ Σ∗N such that n

divides |i|. Since (W ′j)
k
j=1 ∈ Wt0 was arbitrary, we have shown that for every

(Wj)
k
j=1 ∈ Wt0 we have{

(A
(j)
i Wj)

k
j=1 : i ∈ Σ∗N and n divides |i|

}
=Wt0 .

Since n and (Wj)
k
j=1 ∈ Wt0 were also arbitrary this shows that the hypothesis of

Lemma 5.3(ii) is satisfied by Wt0 . Hence Wt0 is primitive as required to prove (iii)
and complete the proof of the theorem. �

6. Towards the precondition for ψ-mixing in the primitive proximal
case

In this section we prove the following final major component of Theorem 1:
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Theorem 7. Let N ≥ 2 and k ≥ 1 and for each j = 1, . . . , k let Vj be a finite-

dimensional real vector space, let (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N be irreducible and
let βj > 0. For each j = 1, . . . , k let `j ≥ 1 be the least possible dimension of a

nonzero subspace of Vj which has finite orbit under the action of (A
(j)
1 , . . . , A

(j)
N ).

Let W ⊆
∏k
j=1 Gr`j (Vj) be a primitive subspace class, and for every i ∈ Σ∗N define

ΦW(i) := max
(Wj)kj=1∈W

k∏
j=1

∥∥∥A(j)
i |Wj

∥∥∥βj .
Suppose that there exist k ∈ Σ∗N and (W 0

j )kj=1 ∈ W such that A
(j)
k |W 0

j
∈ Prox(W 0

j )

for all j = 1, . . . , k. (In particular we suppose that A
(j)
k W 0

j = W 0
j for all j =

1, . . . , k.) Then there exist m ≥ 1 and δ > 0 such that

(22) max
|k|=m

ΦW(ikj) ≥ δΦW(i)ΦW(j)

for all i, j ∈ Σ∗N .

The inequality (22) refines the statement

(23) max
|k|≤m

ΦW(ikj) ≥ δΦW(i)ΦW(j)

which was the core result required in the proof of Theorem 3 above in the earlier
article [10]. To some extent, therefore, Theorem 7 above adapts the ideas used in
[10] in such a manner as to obtain a stronger conclusion under stronger hypotheses.
In particular this argument makes heavy use of the properties of the Zariski topology
described for the reader in §3.2. We will briefly compare these two results and their
proofs.

The earlier result [10, Theorem 6] began by defining V :=
⊕k

j=1 Vj and gi :=⊕k
j=1A

(j)
i ∈ GL(V ) for each i = 1, . . . , N , defining gi := gi1 · · · gin for every

i = (i`)
n
`=1 ∈ Σ∗N , defining Γ ⊂ GL(V ) to be the semigroup generated by the

linear maps g1, . . . , gN , taking G ≤ GL(V ) to be the Zariski closure of Γ, defining

homomorphisms φj : Γ → GL(Vj) by φj(gi1 · · · gin) := A
(j)
i1
· · ·A(j)

in
for each j =

1, . . . , k and observing that these extend to regular representations φj : G→ GL(Vj)
for each j. The key objective was then to show that there exist an integer m ≥ 1 and
real number κ > 0 such that for every i, j ∈ Σ∗N there exists k ∈ Σ∗N such that |k| ≤
m and ‖φj(gigkgj)‖ ≥ κ‖φj(gi)‖·‖φj(gj)‖ simultaneously for j = 1, . . . , k; the main
result (23) then followed directly. In order to find k satisfying these simultaneous
conditions it is useful to be able to pass to the identity component G0 of G, which
has the advantageous property of being an irreducible variety: in an irreducible
variety every nonempty open set is dense, and so to find a word solving k algebraic
conditions simultaneously it is sufficient to show that each condition separately is
satisfied on a nonempty open subset of G0, since the intersection of these dense open
sets must be nonempty. The analytic result ‖φj(gigkgj)‖ ≥ κ‖φj(gi)‖ · ‖φj(gj)‖
is proved by applying the previous reasoning to an algebraic property of gk and
combining this with a compactness argument. In order to reduce this task to
that of studying elements of G0 only, the proof of [10, Theorem 6] exploited the
transitivity of W: by appending a small word to i and prepending a small word
to j if necessary, we could assume that ‖φj(gi)‖ and ‖φj(gj)‖ could be understood
using the behaviour of φj(gi) and φj(gj) restricted to Wj ⊆ Vj for a consistent
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choice of (Wj)
k
j=1 ∈ W not depending on i or j. This allowed us the freedom

to specialise to considering only those gk such that φj(gk)Wj = Wj , in particular
allowing us to work only in G0 and not in the whole of G, making arguments based
on the irreducibility of the variety G0 available. Crucially, since only transitivity
of W was assumed, the lengths of the appended and prepended words could be
bounded a priori via the finiteness and transitivity of W but their precise length
could not be specified in advance.

In order to prove Theorem 7 we improve this argument in two respects so as to
make the length of the word k interposed between i and j consistent across all i
and j. Firstly, by assuming primitivity of W instead of transitivity we can control
the length of the small word appended to i and the small word prepended to j so
as to make their lengths equal to some a priori constant p which is independent of
the choice of i and j. This reduces the problem to that of controlling the length
of the word k which is chosen so as to satisfy ‖φj(gigkgj)‖ ≥ κ‖φj(gi)‖ · ‖φj(gj)‖
simultaneously for j = 1, . . . , k. To solve the latter problem we use the following
intuition: if we knew that k could be chosen with length less than or equal to some
number m0 but also with the property that each φj(gk) was of rank one and non-
nilpotent, then we would know that every power of φj(gk) is just a scalar multiple
of φj(gk) and satisfies a relation similar to ‖φj(gigkgj)‖ ≥ κ‖φj(gi)‖ · ‖φj(gj)‖ but
with an additional scalar constant. Thus if we took m to be the least common
multiple of the lengths of the finitely many different words k needed to connect the
full range of possible pairs of words i, j ∈ Σ∗N , and replaced each k with a power of
itself having length m, we could obtain the desired inequality (22) with the word
in the middle having length m + 2p. But it is obvious that φj(gk) actually has
full rank, so this idea must be modified. The key modification is to choose each
k so that each φj(gk) is proximal, and hence is close in norm to a scalar multiple
of its powers. This explains the additional hypothesis of Theorem 7 regarding the
existence of a simultaneously proximal word.

Proof of Theorem 7. Define V :=
⊕k

j=1 Vj and for each i = 1, . . . , N define gi :=⊕k
j=1A

(j)
i ∈ GL(V ). Define gi := gi1 · · · gin for every i = (i`)

n
`=1 ∈ Σ∗N in the

obvious fashion. Let Γ := {gi : i ∈ Σ∗N}, which is a semigroup. Let G ≤ GL(V )
denote the Zariski closure of Γ, which is a group. For each j = 1, . . . , k we may

define a regular representation φj : Γ→ GL(Vj) by φj(gi) := A
(j)
i and this extends

to a regular representation φj : G → GL(Vj) which is irreducible since its image

contains the linear maps A
(j)
1 , . . . , A

(j)
N .

Let (W 0
j )kj=1 ∈ W be as in the statement of the theorem. For each j = 1, . . . , k

the subspace W 0
j has finite orbit under the action of φj(G). Denote this orbit by

{U1
j , . . . , U

rj
j }. If i0 ∈ {1, . . . , rj} is fixed then each of the sets {g ∈ G : φj(g)U i0j =

U ij} is closed in the Zariski topology, and since these sets are disjoint and their union
over i = 1, . . . , rj is equal to G, these sets are also open. It follows that they are
unions of connected components of G and in particular every connected component
of G is contained in a unique set of the form {g ∈ G : φj(g)U i0j = U ij} for some

i ∈ {1, . . . , rj}. Since the identity is in G0 we must have G0 ⊆ {g ∈ G : φj(g)U i0j =

U i0j }, and it follows that every U ij is stabilised by φj(G
0). In particular we have

φj(g)W 0
j = W 0

j for every j = 1, . . . , k for every g ∈ G0. For each j = 1, . . . , k let

us define a regular representation φ̂j : G0 → GL(W 0
j ) by φ̂j(g) := φj(g)|W 0

j
. By
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hypothesis there exists k ∈ Σ∗N such that φ̂j(gk) ∈ Prox(W 0
j ) for every j = 1, . . . , k.

The map g 7→ gkg is a Zariski homeomorphism of G and induces a permutation of
the connected components of G; in particular there exists an iterate of this map
which induces the identity permutation. By replacing k with a suitable power of k if
necessary we may therefore assume without loss of generality that gk ∈ G0. Define

qk,j := limn→∞ ‖φ̂j(gnk )‖−1φ̂j(g
n
k ) ∈ End(W 0

j ) for each j = 1, . . . , k; by proximality
each qk,j is well-defined, of rank one, and not nilpotent.

We make the following first claim: if nonzero elements b1,j , b2,j of End(W 0
j ) are

given for each j = 1, . . . , k then there exists i ∈ Σ∗N such that gi ∈ G0, such that

φ̂j(gi) ∈ Prox(W 0
j ) for each j = 1, . . . , k and such that for each j = 1, . . . , k the

linear map pi,j := limn→∞ ‖φ̂j(gni )‖−1φ̂j(g
n
i ) ∈ End(W 0

j ) satisfies b1,jpi,jb2,j 6= 0.

Clearly it will be sufficient to choose a nonzero vector vj ∈ b2,jW
0
j for each j =

1, . . . , k and find i ∈ Σ∗N such that gi ∈ G0, such that φ̂j(gi) is proximal for all
j = 1, . . . , k and such that pi,jvj /∈ ker b1,j for all j = 1, . . . , k. We therefore fix
nonzero linear maps b1,j and b2,j and nonzero vectors vj for each j = 1, . . . , k and
prove the claim in this form.

We assert that there exists j2 ∈ Σ∗N such that gj2 ∈ G0 and such that for all

j = 1, . . . , k we have qk,j φ̂j(gj2)vj 6= 0. To see this it suffices to show that

k⋂
j=1

{
g ∈ G0 : qk,j φ̂j(g)vj 6= 0

}
is nonempty and Zariski open, since by the Zariski density of Γ in G it must then
contain some gi ∈ Γ. This set is the intersection of the sets

(24)
{
g ∈ G0 : qk,j φ̂j(g)vj 6= 0

}
over j = 1, . . . , k and each of these sets is clearly Zariski open. Since G0 is an
irreducible variety, all of its nonempty open subsets are also dense, so the inter-
section of the sets (24) will be nonempty and open as long as each individual set
is nonempty. The assertion will therefore be proved if each of the sets in (24) is
shown to be nonempty. But if this set is empty for some j then the vector space

U := span{φ̂j(g)vj : g ∈ G0} is a subspace of W 0
j (and hence of Vj) which is in-

variant under φj(G
0) and has smaller dimension than W 0

j , since it is contained in

the proper subspace ker qk,j of W 0
j . If h1, h2 ∈ G belong to the same connected

component Gi of G then h−1
1 Gi is a connected component of G which contains

the identity, so h−1
1 h2 ∈ h−1

1 Gi = G0, hence φj(h1)−1φj(h2)U = φj(h
−1
1 h2)U = U

by the φj(G
0)-invariance of U . Thus g 7→ φj(g)U is constant on each connected

component of G and therefore {φj(g)U : g ∈ G} is finite. But then U has finite

orbit under φj(G) and in particular has finite orbit under φj(Γ) = {A(j)
i : i ∈ Σ∗N}

whilst having dimension smaller than `j = dimW 0
j ; this contradicts the definition

of `j . We conclude that such a subspace U cannot exist, so the set (24) must be
nonempty for every j = 1, . . . , k and we deduce the existence of the claimed element
j2 ∈ Σ∗N .

We next assert that there exists j1 ∈ Σ∗N such that gj1 ∈ G0 and such that

for all j = 1, . . . , k the endomorphism φ̂j(gj1)qk,j φ̂j(gj2) is proximal and satisfies

φ̂j(gj1)qk,j φ̂j(gj2)vj /∈ ker b1,j . Clearly φ̂j(g)qk,j φ̂j(gj2) ∈ End(W 0
j ) has rank one

for every g ∈ G0 since qk,j is of rank one and φ̂j(g) and φ̂j(gj2) are invertible, so for
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φ̂j(g)qk,j φ̂j(gj2) to be proximal it is necessary and sufficient that it be non-nilpotent,

which by rank considerations is equivalent to the condition (φ̂j(g)qk,j φ̂j(gj2))2 6= 0.
Thus to obtain the existence of j1 it suffices to show that
(25)

k⋂
j=1

{
g ∈ G0 : φ̂j(g)qk,j φ̂j(gj2)vj /∈ ker b1,j

}
∩
{
g ∈ G0 : φ̂j(g)qk,j φ̂j(gj2))2 6= 0

}

is nonempty and Zariski open. We must therefore likewise show that each set{
g ∈ G0 : φ̂j(g)qk,j φ̂j(gj2)vj /∈ ker b1,j

}
is nonempty and Zariski open, and that each set{

g ∈ G0 : (φ̂j(g)qk,j φ̂j(gj2))2 6= 0
}

is also nonempty and Zariski open. A vector belongs to ker b1,j if and only if it
orthogonal to every element of a basis for the orthogonal complement of ker b1,j ,
and the latter is obviously a Zariski closed condition, so the first of the two sets is
Zariski open. The Zariski openness of the second set is obvious.

If the first set is empty for some j, then by the same arguments as were used

previously the vector space span{φ̂j(g)qk,j φ̂j(gj2)vj : g ∈ G0} would be a φj(G
0)-

invariant proper subspace of W 0
j , the existence of which would contradict the def-

inition of `j . We conclude that the first set is nonempty for each j = 1, . . . , k. If

(φ̂j(g)qk,j φ̂j(gj2)2 = 0 for some g ∈ G0 then since qk,j has rank one and φ̂j(g) and

φ̂j(gj2) are invertible, it must be the case that the one-dimensional image subspace

qk,jW
0
j is mapped into the kernel of qk,j φ̂j(gj2) by φ̂j(g). If this holds for every

g ∈ G0 then we deduce that span
⋃
g∈G0 φ̂j(g)qk,jW

0
j ⊆ ker qk,j φ̂j(gj2) 6= W 0

j is a

φj(G
0)-invariant proper subspace of W 0

j , which is again impossible. We deduce the
nonemptiness and Zariski openness of the set (25) and the existence of j1 follows.

We have shown that there exist j1, j2 ∈ Σ∗N such that gj1 , gj2 ∈ G0 and such

that for every j = 1, . . . , k, φ̂j(gj1)qk,j φ̂j(gj2) ∈ End(W 0
j ) is proximal and of

rank one and satisfies φ̂j(gj1)qk,j φ̂j(gj2)vj /∈ ker b1,j . In particular we necessar-

ily have V +(φ̂j(gj1)qk,j φ̂j(gj2)) ∩ ker b1,j = {0} and vj /∈ V −(φ̂j(gj1)qk,j φ̂j(gj2)).
By the openness of the set of proximal endomorphisms in the analytic topology on
End(W 0

j ) together with the continuity of V + and V − on that set, it follows that for

all sufficiently large n the element ‖φ̂j(gnk )‖−1φ̂j(gj1g
n
k gj2) is proximal and satisfies

V +(‖φ̂j(gnk )‖−1φ̂j(gj1g
n
k gj2))∩ker b1,j = {0} and vj /∈ V −(‖φ̂j(gnk )‖−1φ̂j(gj1g

n
k gj2))

for all j = 1, . . . , k. Fix n large enough that these properties hold and define

i := j1k
nj2. We then have φ̂j(gj1g

n
k gj2) ∈ Prox(W 0

j ) for all j = 1, . . . , k, and

for every j = 1, . . . , k we also have V +(φ̂j(gj1g
n
k gj2)) ∩ ker b1,j = {0} and vj /∈

V −(φ̂j(gj1g
n
k gj2)). The limit pi,j := limn→∞ ‖φ̂j(gni )‖−1φ̂j(g

n
i ) ∈ Prox(W 0

j ) has

image V +(φ̂j(gi)) and kernel V −(φ̂j(gi)) for each j = 1, . . . , k, so in particular
pi,jvj /∈ ker b1,j and it follows that b1,jpi,jb2,j 6= 0. The proof of the first claim is
complete.
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We secondly claim that there exist κ > 0 and m ≥ 1 with the following property:
if for each j = 1, . . . , k we are given b1,j , b2,j ∈ End(W 0

j ), then

max
|k|=m
gk∈G0

∥∥∥b1,j φ̂j(gk)b2,j∥∥∥ ≥ κ‖b1,j‖ · ‖b2,j‖
for every j = 1, . . . , k. By homogeneity it is clearly sufficient to consider only the
case where ‖b1,j‖ = ‖b2,j‖ = 1 for every j = 1, . . . , k, and we will prove the claim
in this form.

For each j = 1, . . . , k let SEnd(W 0
j ) denote the unit sphere of End(W 0

j ). If

((b1,j , b2,j))
k
j=1 ∈

∏k
j=1 SEnd(W 0

j ) × SEnd(W 0
j ) is given, then by the preceding step

there exists i ∈ Σ∗N such that gi ∈ G0 and such that for each j = 1, . . . , k the

element pi,j := limn→∞ ‖φ̂j(gni )‖−1φ̂j(g
n
i ) ∈ End(W 0

j ) is well-defined and sat-

isfies b1,jpi,jb2,j 6= 0. If ((b′1,j , b
′
2,j))

k
j=1 ∈

∏k
j=1 SEnd(W 0

j ) × SEnd(W 0
j ) is chosen

in a sufficiently small open neighbourhood of ((b1,j , b2,j))
k
j=1 then we clearly also

have b′1,jpi,jb
′
2,j 6= 0 for every j = 1, . . . , k for the same word i. By the com-

pactness of
∏k
j=1 SEnd(W 0

j ) × SEnd(W 0
j ) it follows that there exist finitely many

words i1, . . . , ir ∈ Σ∗N such that git ∈ G0 for every t = 1, . . . , r, such that

pit,j := limn→∞ ‖φ̂j(gnit)‖
−nφ̂j(g

n
it

) ∈ End(W 0
j ) is well-defined for each j = 1, . . . , k

and t = 1, . . . , r and such that for every ((b1,j , b2,j))
k
j=1 ∈ SEnd(W 0

j ) there exists

t ∈ {1, . . . , r} such that b1,jpit,jb2,j 6= 0 for all j = 1, . . . , k. By compactness and

continuity the function
∏k
j=1 SEnd(W 0

j ) × SEnd(W 0
j ) → R defined by

((b1,j , b2,j))
k
j=1 7→ min

1≤j≤k
max

1≤t≤r
‖b1,jpit,jb2,j‖

therefore has a nonzero minimum value τ > 0, say.
Let m ≥ 1 be a natural number divisible by each of |i1|, . . . , |it| and choose

natural numbers n1, . . . , nr such that m = n1|i1| = n2|i2| = · · · = nr|ir|. By
choosing a large integer ` ≥ 1 and replacing m with `m and each nt with `nt if
required, we may without loss of generality suppose that n1, . . . , nr are large enough
that

max
1≤j≤k

max
1≤t≤r

∥∥∥pit,j − ‖φ̂j(gntit )‖−1φ̂j(g
nt
it

)
∥∥∥ < τ

2
.

Define kt := intt ∈ Σ∗N for each t and observe that each kt has the same length m
and satisfies gkt = gntit ∈ G

0. We easily see that

min
1≤j≤k

max
1≤t≤r

‖φ̂j(gkt)‖−1‖b1,j φ̂j(gkt)b2,j‖ >
τ

2

for all ((b1,j , b2,j))
k
j=1 ∈

∏k
j=1 SEnd(W 0

j ) × SEnd(W 0
j ), j = 1, . . . , k and t = 1, . . . , r,

so if we define

κ :=
τ

2
min

1≤j≤k
min

1≤t≤r
‖φ̂j(gkt)‖

then we have proved our second claim.
We may now prove the theorem. Let i, j ∈ Σ∗N be arbitrary. There exist

(Wj)
k
j=1, (W

′
j)
k
j=1 ∈ W such that

ΦW(i) =

k∏
j=1

∥∥φj(gi)|Wj

∥∥βj , ΦW(j) =

k∏
j=1

∥∥∥φj(gj)|W ′j∥∥∥βj .
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By the hypothesis that W is primitive there exists p ≥ 1 not depending on i, j,
(Wj)

k
j=1 or (W ′j)

k
j=1 such that we may choose i1, i2, j1, j2 ∈ Σ∗N with |i1| = |i2| =

|j1| = |j2| = p satisfying

(φj(gj2)W 0
j )kj=1 = (W ′j)

k
j=1,

(φj(gj1)φj(gj)W
′
j)
k
j=1 = (W 0

j )kj=1,

(φj(gi2)W 0
j )kj=1 = (Wj)

k
j=1,

(φj(gi1)φj(gi)Wj))
k
j=1 = (W 0

j )kj=1.

In particular φj(gi1gigi2)|W 0
j

and φj(gj1gjgj2)|W 0
j

are endomorphisms of W 0
j for

each j = 1, . . . , k, and

k∏
j=1

‖φj(gi1gigi2)|W 0
j
‖βj ≥

min
|l|=p

k∏
j=1

‖φj(gl)−1‖−βj
2

k∏
j=1

∥∥φj(gi)|Wj

∥∥βj = εΦW(i)

and

k∏
j=1

‖φj(gj1gjgj2)|W 0
j
‖βj ≥

min
|l|=p

k∏
j=1

‖φj(gl)−1‖−βj
2

k∏
j=1

∥∥∥φj(gj)|W ′j∥∥∥βj = εΦW(j),

say, where

ε :=

min
|l|=p

k∏
j=1

‖φj(gl)−1‖−βj
2

.

Now by the previous step there exists k ∈ Σ∗N with |k| = m such that gk ∈ G0 (and
hence φj(gk)W

0
j = W 0

j for every j = 1, . . . , k) and such that

k∏
j=1

∥∥∥(φj(gi1gigi2)|W 0
j

)(
φj(gk)|W 0

j

)(
φj(gj1gjgj2)|W 0

j

)∥∥∥βj

≥ κ
∑k
j=1 βj

 k∏
j=1

∥∥∥φj(gi1gigi2)|W 0
j

∥∥∥βj
 k∏

j=1

∥∥∥φj(gj1gjgj2)|W 0
j

∥∥∥βj


≥ κ
∑k
j=1 βjε2ΦW(i)ΦW(j).

Defining K := max|l|=p ΦW(l) <∞ we have

k∏
j=1

∥∥∥(φj(gi1gigi2)|W 0
j

)(
φj(gk)|W 0

j

)(
φj(gj1gjgj2)|W 0

j

)∥∥∥βj
=

k∏
j=1

∥∥∥φj(gi1gigi2gkgj1gjgj2)|W 0
j

∥∥∥βj
≤ max

(Wj)kj=1∈W

k∏
j=1

∥∥φj(gi1gigi2gkgj1gjgj2)|Wj

∥∥βj
= ΦW(i1ii2kj1jj2) ≤ ΦW(i1)ΦW(j2)ΦW(ii2kj1j) ≤ K2ΦW(ii2kj1j),
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and since |i2kj1| = m+ 2p, we have obtained

max
|l|=m+2p

ΦW(ilj) ≥ ΦW(ii2kj1j) ≥ K−2ε2κ
∑k
j=1 βjΦW(i)ΦW(j)

where m, p, K, κ and ε do not depend on i, j ∈ Σ∗N . The theorem is proved. �

7. Proofs of main results

7.1. Proof of Theorem 1. Let the integers k and N , vector spaces Vj , tuples

(A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N , real numbers βj > 0, potential Φ: Σ∗N → (0,+∞)
and totally ergodic equilibrium state µ ∈ Mσ(ΣN ) be as in the statement of
Theorem 1. By Theorem 5 we may without loss of generality assume that every

(A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N is irreducible and has simple top Lyapunov exponent
with respect to µ. By Theorem 6(i) we find that µ is the equilibrium state of a

unique potential ΦW such that W ⊆
∏k
j=1 Gr`j (Vj) is a transitive subspace class,

where for each j = 1, . . . , k the integer `j is the dimension of the smallest nonzero

subspace of Vj with finite orbit under the action of (A
(j)
1 , . . . , A

(j)
N ). It follows by

Theorem 3(i) that there exists C > 0 such that

C−1ΦW(i) ≤ e|i|P (ΦW)µ([i]) ≤ CΦW(i)

for every i ∈ Σ∗N . By Theorem 6(ii)–(iii) the potential ΦW satisfies the hypotheses
of Theorem 7, so there exist an integer m and constant δ > 0 such that

max
|k|=m

ΦW(ikj) ≥ δΦW(i)ΦW(j)

for all i, j ∈ Σ∗N . Hence for every i, j ∈ Σ∗N we have

δµ([i])µ([j]) ≤ C2δe−(|i|+|j|)P (ΦW)ΦW(i)ΦW(j)

≤ C2e−(|i|+|j|)P (ΦW) max
|k|=m

ΦW(ikj)

≤ C3e|k|P (ΦW) max
|k|=m

µ([ikj])

≤ C3emP (ΦW)
∑
|k|=m

µ([ikj])

= C3emP (ΦW)µ([i] ∩ σ−m−|i|[j])

so that

(26) µ([i] ∩ σ−m−|i|[j]) ≥ κµ([i])µ([j])
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where κ := C−3δe−mP (ΦW), and also

µ([i] ∩ σ−m−|i|[j]) =
∑
|k|=m

µ([ikj])

≤ C
∑
|k|=m

e−(|i|+|k|+|j|)P (ΦW)ΦW(ikj)

≤ Ce−(|i|+|j|)P (ΦW)ΦW(i)ΦW(j)

 ∑
|k|=m

e−|k|P (ΦW)ΦW(k)


≤ C4µ([i])µ([j])

 ∑
|k|=m

µ([k])


= C4µ([i])µ([j])

so that

(27) µ([i] ∩ σ−m−|i|[j]) ≤ Kµ([i])µ([j])

where K := C4. To prove the theorem we will combine inequalities (26) and (27)
with theorems of R.C. Bradley, N.A. Friedman and D.S. Ornstein in a manner
similar to earlier works such as [50, 52].

For every integer n ≥ 1 let B1,n be the finite σ-algebra on Σ̂N generated by the
set {

[i] ⊂ Σ̂N : |i| = n
}
.

For every pair of integers n,m ∈ Z such that n ≤ m define Bn,m := σ̂n−1B1,m+1−n.
Thus Bn,m is precisely the σ-algebra generated by cylinders of the form

{(x`)`∈Z : xi = yi for all i = n, . . . ,m}

where the finite sequence (yi)
m
i=n varies over {1, . . . , N}m−n+1. For every n ∈ Z

define also

B−∞,n :=

n∨
m=−∞

Bm,n, Bn,+∞ :=

∞∨
m=n

Bn,m.

The following is a special case of a theorem of R.C. Bradley ([14, Theorem 4.1(2)]):

Theorem 8. Let µ̂ be a σ̂-invariant measure on Σ̂N such that for some integer
m ≥ 1 the conditions

inf
A∈B0

−∞,B∈B
∞
m

µ̂(A),µ̂(B) 6=0

µ̂(A ∩B)

µ̂(A)µ̂(B)
> 0, sup

A∈B0
−∞,B∈B

∞
m

µ̂(A),µ̂(B)6=0

µ̂(A ∩B)

µ̂(A)µ̂(B)
<∞

are both satisfied. Then

lim
n→∞

sup
A∈B0

−∞,B∈B
∞
n

µ̂(A),µ̂(B)6=0

∣∣∣∣ µ̂(A ∩B)

µ̂(A)µ̂(B)
− 1

∣∣∣∣ = 0.
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Now, the natural extension µ̂ ∈Mσ̂(Σ̂N ) of the equilibrium state µ satisfies

inf
A∈B0

−∞,B∈B
∞
m+1

µ̂(A),µ̂(B)6=0

µ̂(A ∩B)

µ̂(A)µ̂(B)
= inf
n1,n2≥1

inf
A∈B1−n1,0

B∈Bm+1,m+n2

µ̂(A ∩B)

µ̂(A)µ̂(B)

= inf
n1,n2≥1

inf
A∈B1,n1

B∈Bm+n1+1,m+n1+n2

µ̂(A ∩B)

µ̂(A)µ̂(B)

= inf
n1,n2≥1

inf
|i|=n1

|j|=n2

µ̂([i] ∩ σ−m−|i|[j])

µ̂([i])µ̂([j])
≥ κ > 0

by (26), and likewise

sup
A∈B0

−∞,B∈B
∞
m+1

µ̂(A),µ̂(B)6=0

µ̂(A ∩B)

µ̂(A)µ̂(B)
= sup
n1,n2≥1

sup
|i|=n1

|j|=n2

µ̂([i] ∩ σ−m−|i|[j])

µ̂([i])µ̂([j])
≤ K <∞

by (27). Theorem 8 therefore applies and yields

lim
n→∞

sup
A∈B0

−∞,B∈B
∞
n

µ̂(A),µ̂(B) 6=0

∣∣∣∣ µ̂(A ∩B)

µ̂(A)µ̂(B)
− 1

∣∣∣∣ = 0

which clearly implies the result

lim
n→∞

sup
i,j∈Σ∗N

∣∣∣∣µ([i] ∩ σ−n−|i|[j])

µ([i])µ([j])
− 1

∣∣∣∣ = 0

which is the first assertion of Theorem 1.
To deduce the Bernoulli property of µ̂ we will apply a theorem of N.A. Friedman

and D.S. Ornstein. We recall that a measure space (X,F ,m) is called a Lebesgue
space if there exists a measure space isomorphism between (X,F ,m) and Lebesgue
measure on a bounded interval equipped with the σ-algebra of Lebesgue measurable
sets. If (X,F ,m) is a Lebesgue space, Z ⊆ X has nonzero measure, FZ := {A ∩
Z : A ∈ F} and mZ is the measure on (X,FZ) defined by mZ(A) := m(Z∩A) then
(Z,FZ ,mZ) is also a Lebesgue space.

If T is an invertible measure-preserving transformation of a Lebesgue proba-
bility space (X,F ,m) then a partition P of X is defined to be any finite set
P = {P1, . . . , Pn} ⊂ F such that, up to measure zero, X is the disjoint union
of the sets P1, . . . , Pn. Given a partition P, for each k ∈ Z we may define a new
partition T kP := {T kP1, . . . , T

kPn} of X in the obvious fashion. If P1, . . . ,Pk are

partitions then we let
∨k
j=1 Pj denote the partition {A1 ∩A2 ∩ · · · ∩Ak : Aj ∈ Pj}.

We will say that a partition P of X is ε-independent of a partition Q of X if there
exists a subset Qε of Q such that

m

 ⋃
Q∈Qε

Q

 > 1− ε

and

max
P∈P

max
Q∈Qε

∣∣∣∣m(P ∩Q)

m(Q)
−m(P )

∣∣∣∣ < ε.

A partition P is called a weak Bernoulli partition if for every ε > 0 there exists an

integer kε ≥ 0 such that for all n ≥ 1 the partition
∨kε+n
j=kε+1 T

jP is ε-independent of
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j=1−n T

jP, or equivalently if
∨0
j=1−n T

jP is ε-independent of
∨−n−kε
j=−2n−kε+1 T

jP.
The following theorem paraphrases a celebrated result of N.A. Friedman and D.S.
Ornstein [29]:

Theorem 9. Let P = (
∑n
i=1 piδi)

Z be a Bernoulli measure on Σ̂N for some N ≥
2 and some nondegenerate probability vector (p1, . . . , pN ) and let BP denote the

completion of the Borel σ-algebra on Σ̂N with respect to P. Let T be an invertible
measure-preserving transformation of a Lebesgue probability space (X,F ,m) which
admits a weak Bernoulli partition. Then there exists a measure space isomorphism
φ : X → Σ̂N such that φ ◦ T = σ̂ ◦ φ.

If µ is a totally ergodic generalised matrix equilibrium state on ΣN for some
N ≥ 2, let µ̂ denote its natural extension to Σ̂N and let Bµ̂ denote the completion

of the Borel σ-algebra on Σ̂N with respect to µ̂. Since µ is fully supported on ΣN
it is not a Dirac measure, and since it is additionally totally ergodic, it has no
atoms. This implies the corresponding properties for µ̂ on Σ̂N and it follows that
(Σ̂N ,Bµ̂, µ̂), being the completion of an atomless Borel probability measure on a
complete metric space, is a Lebesgue probability space. Let P denote the partition
of Σ̂N into the N sets [i] := {(x`)`∈Z : x1 = i} for i = 1, . . . , N . Since

lim
n→∞

sup
i,j∈Σ∗N

∣∣∣∣ µ̂([i] ∩ σ̂−n−|i|[j])

µ̂([i])µ̂([j])
− 1

∣∣∣∣ = 0,

for every ε > 0 we may choose kε ≥ 1 such that

sup
i,j∈Σ∗N

∣∣∣∣ µ̂([i] ∩ σ̂−kε−|i|[j])

µ̂([i])µ̂([j])
− 1

∣∣∣∣ < ε.

For each n ≥ 1 the partitions
∨0
j=1−n σ̂

jP and
∨−n−kε
j=−2n−kε+1 σ̂

jP are simply the

partitions into sets of the form [i] and into sets of the form σ−kε−|i|[i] respectively,
where |i| = n. The ε-independence of the first partition from the second is immedi-
ate and we conclude that P is a weak Bernoulli partition for the transformation σ̂
of (Σ̂N ,Bµ̂, µ̂). Applying the theorem of Friedman and Ornstein proves the second
assertion of Theorem 1.

7.2. Proof of Theorem 2. Before starting the proof we require the following
simple lemma:

Lemma 7.1. Let T : X → X be an ergodic measure-preserving transformation
of a probability space (X,F , µ) which is not totally ergodic, and let n > 1 be the
smallest integer such that Tn is not ergodic. Then there exists a measurable set
Z ⊂ X such that Z, T−1Z, . . . , T−(n−1)Z partitions X up to measure zero and
satisfies T−nZ = Z up to measure zero.

Proof. Since Tn is not ergodic there by definition exists a measurable set Y ⊂ X
such that 0 < µ(Y ) < 1 and T−nY = Y up to µ-measure zero. Consider a set
R ⊆ {0, . . . , n − 1} with the properties 0 ∈ R and µ(

⋂
i∈R T

−iY ) > 0 and which
has maximum cardinality of all such sets. (Clearly at least one set with those two
properties exists, namely {0}, so R is well-defined.) Define Z :=

⋂
i∈R T

−iY and
note that clearly T−nZ = Z up to µ-measure zero. For each i ∈ {1, . . . , n− 1} we
must have either µ(Z∩T−iZ) = 0 orR = R+i mod n, since if neither of these holds
then R∪(R+i mod n) would have larger cardinality than R while having the same
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characteristic properties, contradicting maximality. But if R = R + i mod n then
T−iZ = Z up to measure zero which implies that T i is not ergodic, contradicting
the definition of n. It follows that µ(Z∩T−iZ) = 0 for all i = 1, . . . , n−1 and hence
by the T -invariance of µ we deduce that T−iZ and T−jZ are pairwise disjoint up
to measure zero whenever 0 ≤ i < j < n. We also have

⋃n−1
i=0 T

−iZ = X up to
measure zero since this set is T -invariant and has positive measure and T is ergodic
with respect to µ, and this completes the proof. �

The core of the proof of Theorem 2 is contained in the following result, which
will be used twice in the proof.

Proposition 7.2. Let k ≥ 1 and N ≥ 2. For each j = 1, . . . , k let Vj be a finite-

dimensional real vector space and let (A
(j)
1 , . . . , A

(j)
N ) ∈ GL(Vj)

N and βj > 0. For
all i ∈ Σ∗N define

Φ(i) :=

k∏
j=1

∥∥∥A(j)
i

∥∥∥βj
and let µ be an ergodic equilibrium state of Φ.

Suppose that there exist an integer n > 1 and Borel set Z ⊂ ΣN such that
T−nZ = Z and Z, T−1Z, . . . , T−(n−1)Z is a partition of ΣN , both up to µ-measure
zero. Define a measure ν on ΣN by ν(A) := µ(A ∩ Z)/µ(Z) for all Borel sets
A ⊆ ΣN . Let η : {i ∈ Σ∗N : |i| = n} → {1, . . . , Nn} be the map which takes each
word i ∈ Σ∗N of length n to the integer representing its position in the lexicographical
ordering on {i ∈ Σ∗N : |i| = n}, and define a homeomorphism ι : ΣN → ΣNn

by ι[(x`)
∞
`=1] := (η(x(q−1)n+1 · · ·xqn))∞q=1. For each j = 1, . . . , k define an Nn-

tuple (B
(j)
1 , . . . , B

(j)
Nn) ∈ GL(Vj)

Nn by B
(j)
i := A

(j)
η−1(i) for every i = 1, . . . , Nn and

j = 1, . . . , k, and define a potential Ψ: Σ∗Nn → (0,+∞) by

Ψ(j) =

k∏
j=1

∥∥∥B(j)
j

∥∥∥βj
for all j ∈ Σ∗Nn .

Then µ = 1
n

∑n−1
i=0 σ

i
∗ν, each measure σi∗ν is σn-invariant, the measures (ι ◦

σi)∗ν ∈ Mσ(ΣNn) are pairwise mutually singular equilibrium states of Ψ, and

n ≤
∏k
j=1 dimVj.

Proof. Clearly the properties of Z imply µ(Z) = 1/n. For every Borel set A ⊆ ΣN
we have

1

n

n−1∑
i=0

(σi∗ν)(A) =
1

n

n−1∑
i=0

µ(σ−iA ∩ Z)

µ(Z)
=

n−1∑
i=0

µ(σ−iA ∩ Z)

=

n−1∑
i=0

µ(A ∩ σ−(n−i)Z) = µ(A)

so that µ = 1
n

∑n−1
i=0 σ

i
∗ν, and similarly

(σi∗ν)(σ−nA) =
µ(σ−i−nA ∩ Z)

µ(Z)
=
µ(σ−i−nA ∩ σ−nZ)

µ(Z)
=
µ(σ−iA ∩ Z)

µ(Z)
= (σi∗ν)(A)

so that each σi∗ν is σn-invariant. The equation ι ◦ σn = σ ◦ ι is obvious from the
definition of ι. It follows directly that each (ι ◦ σi)∗ν is a σ-invariant measure
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on ΣNn . It is easy to check from the construction of ν that the sets which have
nonzero measure with respect to σi∗ν are precisely those which intersect σ−(n−i)Z
in a set of nonzero µ-measure, and since the sets Z, σ−1Z, . . . , σ−(n−1)Z are pair-
wise disjoint up to µ-measure zero this implies that the measures σi∗ν are pairwise
mutually singular for distinct i ∈ {0, . . . , n − 1}. Since ι is a homeomorphism
this implies that the measures (ι ◦ σi)∗ν are pairwise mutually singular for dis-

tinct i ∈ {0, . . . , n− 1}. By Theorem 4 there can be at most
∏k
j=1 dimVj distinct

ergodic equilibrium states for Ψ, which are necessarily pairwise mutually singular
since they are distinct ergodic measures. By standard ergodic decomposition argu-
ments every equilibrium state of Ψ arises as a convex combination of these ergodic
equilibrium states. It follows from this that the cardinality of a set of pairwise
mutually singular equilibrium states of Ψ cannot be larger than the cardinality of

the set of ergodic equilibrium states of Ψ, which is bounded by
∏k
j=1 dimVj . Thus

if we can show that every (ι ◦ σi)∗ν is an equilibrium state of Ψ then the bound

n ≤
∏k
j=1 dimVj follows and we will have proved the proposition. But it follows

easily from the definition of equilibrium state and the fact that h(·) and Λ(Ψ, ·)
are affine functions that if a finite convex combination of invariant measures is an
equilibrium state of Ψ, then so must be the measures which are the summands
in the convex combination. So to complete the proof we need only show that the
invariant measure ι∗µ = 1

n

∑n−1
i=0 (ι ◦ σi)∗ν ∈ Mσ(ΣNn) is an equilibrium state of

Ψ. But this is a straightforward calculation: the equation ι◦σn = σ ◦ ι and the fact
that ι is a homeomorphism together imply that h(ι∗µ) = nh(µ) by basic ergodic
theory, and we have

P (Ψ) = lim
m→∞

1

m
log

∑
j∈Σ∗

Nn
: |j|=m

Ψ(i) = lim
m→∞

1

m
log

∑
j∈Σ∗N : |j|=nm

Φ(i) = nP (Φ)

and Λ(Ψ, ι∗µ) = nΛ(Φ, µ) by an almost identical calculation. The result follows. �

We may now prove Theorem 2. Let k, N , Vj , (A
(j)
1 , . . . , A

(j)
N ), βj and µ be as in

the statement of the theorem. Since µ is not totally ergodic, it follows from Lemma
7.1 that there exists an integer n > 1 with the property that there exists a measur-
able set Z ⊂ X such that Z, T−1Z, . . . , T−(n−1)Z partitions X up to µ-measure zero
and such that T−nZ = Z up to measure zero. Proposition 7.2 implies that every

integer n with this property is less than or equal to
∏k
j=1 dimVj , so we may choose

a largest such integer. Let n be the largest integer with the aforementioned prop-

erty, which clearly satisfies 1 < n ≤
∏k
j=1 dimVj . Let Z ⊂ ΣN be a Borel set with

the property that Z, T−1Z, . . . , T−(n−1)Z partitions ΣN up to µ-measure zero and
define a Borel probability measure ν on ΣN by ν(A) := µ(A∩Z)/µ(Z) for all Borel

sets A ⊆ ΣN . By Proposition 7.2 there exist tuples (B
(j)
1 , . . . , B

(j)
Nn) ∈ GL(Vj)

Nn

and a potential Ψ: Σ∗Nn → (0,+∞) as in the statement of Theorem 2 such that
each of the measures (ι ◦ σi)∗ν ∈ Mσ(ΣNn) is a distinct equilibrium state of Ψ,

and we have µ = 1
n

∑n−1
i=0 σ

i
∗ν.

To complete the proof of Theorem 2 we must show that for every i ∈ {0, . . . , n−1}
the measure (ι ◦ σi)∗ν is totally ergodic. Fix such an i. We will first show that
(ι◦σi)∗ν is ergodic. If this is not the case then there exists a Borel set A ⊂ ΣNn such
that σ−1A = A up to (ι◦σi)∗ν-measure zero and such that 0 < ((ι◦σi)∗ν)(A) < 1.
Define B := ι−1A ⊂ ΣN so that B = ι−1A = ι−1σ−1A = σ−nι−1A = σ−nB
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up to σi∗ν-measure zero, and 0 < (σi∗ν)(B) < 1. We have 0 < µ(σ−iB ∩ Z) <
µ(Z) = 1

n and σ−n(σ−iB ∩ Z) = σ−iB ∩ Z up to µ-measure zero. But then⋃n−1
j=0 σ

−j(σ−iB ∩ Z) is σ-invariant up to µ-measure zero but has measure strictly
between 0 and 1, contradicting the ergodicity of µ.

We may now show that (ι ◦ σi)∗ν is totally ergodic. If it is not then by
Lemma 7.1 there exist an integer m > 1 and a Borel subset A of ΣNn such that
σ−mA = A up to (ι ◦ σi)∗ν-measure zero and such that A, σ−1A, . . . , σ−(m−1)A
forms a partition of ΣNn up to (ι ◦ σi)∗ν-measure zero. Define B := ι−1A ⊂
ΣN ; then B, σ−nB, σ−2nB . . . , σ−(m−1)nB forms a partition of ΣN up to σi∗ν-
measure zero, and B = σ−mnB up to σi∗ν-measure zero. This implies that the sets
σ−iB, σ−n−iB, σ−2n−iB . . . , σ−(m−1)n−iB form a partition of Z up to µ-measure
zero and are all σ−mn-invariant up to µ-measure zero. But then

mn−1⋃
`=0

σ−`B =

n−1⋃
j=0

σ−j

(
m−1⋃
r=0

σ−i−rnB

)
=

n−1⋃
j=0

σ−jZ = ΣN

up to µ-measure zero, and all of these unions are disjoint up to µ-measure zero,
which contradicts the maximality of n. This completes the proof that each (ι◦σi)∗ν
is totally ergodic and completes the proof of the theorem.

7.3. Proof of Corollary 2.1. Let µ be an ergodic generalised matrix equilibrium
state on ΣN . If µ is totally ergodic then the conclusion follows by Theorem 1,
so suppose that µ is not totally ergodic. By Theorem 2 there exist n > 1 and a
σn-invariant measure ν on ΣN , which is totally ergodic with respect to σn and is
measurably isomorphic via a homeomorphism ι : ΣN → ΣNn satisfying ι◦σn = σ◦ι
to a generalised matrix equilibrium state on ΣNn , such that µ = 1

n

∑n−1
i=0 σ

i
∗ν. In

particular we may write µ̂ = 1
n

∑n−1
i=0 σ̂

i
∗ν̂ where each σ̂i∗ν̂ is a distinct ergodic

measure with respect to the transformation σ̂n and where ν̂ has the Bernoulli
property with respect to the transformation σ̂n as a consequence of Theorem 1.
Since the measures σ̂i∗ν̂ are distinct ergodic measures they are pairwise mutually

singular, so there exists Z ⊂ Σ̂N such that ν̂(Z) = 1 and ν̂(σ̂iZ) = 0 for all
i ∈ {1, . . . , n − 1}, and this set satisfies σ̂nZ = Z up to µ̂-measure zero by the

σ̂n-invariance of the measure ν̂. It follows that Σ̂N = Z ∪ σ̂iZ ∪ · · · ∪ σ̂n−1Z up
to µ̂-measure zero and that these sets are pairwise disjoint up to µ̂-measure zero.
By virtue of the equation µ̂ = 1

n

∑n−1
i=0 σ̂

i
∗ν̂, the measure ν̂ must be precisely the

measure µ̂Z on Z defined by µ̂Z(A) := µ̂(A ∩ Z)/µ̂(Z) for all Borel sets A ⊆ Σ̂N .

Let P be a Bernoulli measure on Σ̂N which has the same entropy as µ̂. Let B̂ν̂
and B̂P denote the completion of the Borel σ-algebra on Σ̂N with respect to the
measures ν̂ and P respectively. Since ν̂ and P both have the Bernoulli property
with respect to σ̂n, and both have the same entropy as µ̂ with respect to σ̂n, they
are measurably isomorphic, so there exists a measure space isomorphism φ from

(Σ̂N , B̂ν̂ , ν̂) to (Σ̂N , B̂P,P) such that φ ◦ σ̂n = σ̂n ◦ φ and φ∗ν̂ = P.
Let Zn denote the set {0, . . . , n−1} equipped with addition modulo n and define

a transformation T : Σ̂N × Zn → Σ̂N × Zn by T (x, i) := (σ̂x, i + 1 mod n). To

prove the corollary we must construct a measure space isomorphism ψ from Σ̂N
to Σ̂N × Zn which satisfies ψ ◦ σ̂ = T ◦ ψ and ψ∗µ̂ = P × ( 1

n

∑n−1
i=0 δi). To this

end define ψ : Σ̂N → Σ̂N × Zn by ψ(x) = (σ̂iφ(σ̂−ix), i) whenever x ∈ σ̂iZ for

some i ∈ Zn, and define ψ(x) to be an arbitrary constant value in Σ̂N × Zn for all
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x ∈ Σ̂N \
⋃n−1
i=0 σ̂

iZ. When x ∈ σ̂iZ for i ∈ {0, . . . , n− 2} we have

T (ψ(x)) = (σ̂i+1φ(σ̂−ix), i+ 1) = ψ(σ̂x)

and when x ∈ σ̂n−1 we have

T (ψ(x)) = (σ̂nφ(σ̂−(n−1)x), 0) = (φ(σ̂x), 0) = ψ(σ̂x)

so that T ◦ ψ = ψ ◦ σ̂ almost everywhere with respect to µ̂. By construction we
have φ∗µ̂Z = P and consequently ψ∗ν̂ = P× δ0. It follows directly that

ψ∗µ = ψ∗

(
1

n

n−1∑
i=0

σ̂i∗µZ

)
=

1

n

n−1∑
i=0

T i∗(P× δ0) = P×

(
1

n

n−1∑
i=0

δi

)
as required. This completes the construction of the isomorphism ψ and proves the
corollary.

7.4. Proof of Proposition 2.3. Fix α, β > 0 throughout the proof. It is obvious
that (A1, A2) and (B1, B2) are irreducible since every nonzero proper subspace of R2

is one-dimensional but neither A2 nor B1 preserves any one-dimensional subspace
of R2. On the other hand it is obvious that the horizontal and vertical axes in
R2 both have finite orbit under the action of (A1, A2) and similarly for (B1, B2).
If µ ∈ Mσ(Σ2) is an ergodic equilibrium state of the potential Φ: Σ∗2 → (0,+∞)
defined by

Φ(i) := ‖Ai‖α ‖Bi‖β

then it follows by Theorem 3 and the preceding observations that there exists
a transitive subspace class W ⊂ Gr1(R2) × Gr1(R2) such that µ is the unique
equilibrium state of the potential

ΦW(i) := max
(W1,W2)∈W

‖Ai|W1
‖α ‖Bi|W2

‖β .

We claim that there exists a unique transitive subspace class preserved by these
pairs of matrices, which is the set

W0 := {(e1, e1), (e1, e2), (e2, e1), (e2, e2)}.
(Here e1, e2 denotes the standard basis for R2 and u the one-dimensional subspace
spanned by the nonzero vector u.) Indeed, if u ⊂ R2 is a one-dimensional space
with finite orbit under (A1, A2) then the set {An1u : n ≥ 1} must be finite, but

this is the case only when u ∈ {e1, e2}; similarly {Bn2 u : n ≥ 1} is finite only when
u ∈ {e1, e2}; we conclude that every equivariant subspace class must be a subset of
W0. On the other hand it is easy to see that W0 is transitive: we may apply the
symbol 1 to pass from (e1, e1) to (e1, e2) and vice versa, or from (e2, e1) to (e2, e2)
and vice versa, and we may apply the symbol 2 to pass from (e1, e1) to (e2, e1) and
vice versa, or from (e1, e2) to (e2, e2) and vice versa. Thus every element ofW0 can
be reached from any other element via a word of length 1 or 2. We conclude that it
contains a unique transitive subspace class, which is W0 itself. It follows that the
potential Φ above has a unique equilibrium state, namely the unique equilibrium
state of the potential ΦW0

as defined above. Let us denote this unique equilibrium
state by µ. We wish to show that µ is not totally ergodic.

Define tuples

(Â1, Â2, Â3, Â4) := (A1A1, A1A2, A2A1, A2A2),

(B̂1, B̂2, B̂3, B̂4) := (B1B1, B1B2, B2B1, B2B2)
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so that

Â1 =

(
4 0
0 1

)
, Â2 =

(
0 2
1 0

)
, Â3 =

(
0 1
2 0

)
, Â4 =

(
1 0
0 1

)
,

B̂1 =

(
1 0
0 1

)
, B̂2 =

(
0 2
1 0

)
, B̂3 =

(
0 1
2 0

)
, B̂4 =

(
1 0
0 4

)
and define a potential Φ̂ : Σ∗4 → (0,+∞) by

Φ̂(i) :=
∥∥∥Âi

∥∥∥α ∥∥∥B̂i

∥∥∥β .
By arguments similar to that used in Theorem 2 we may define a recoding homeo-
morphism ι : Σ2 → Σ4 such that ι◦σ2 = σ ◦ ι and such that Φ̂(ι(x)|n) = Φ(x|2n) for
every x ∈ Σ2. Easy calculations similar to those occurring in the proof of Proposi-
tion 7.2 show directly that P (Φ̂) = 2P (Φ) and that ι∗µ is an equilibrium state of

Φ̂. To prove that µ is not totally ergodic we will show that ι∗µ is not ergodic with
respect to σ : Σ4 → Σ4, which combined with the identity ι ◦ σ2 = σ ◦ ι implies
immediately that µ is not ergodic with respect to σ2 : Σ2 → Σ2. Since ι∗µ is an
equilibrium state of Φ̂ it will suffice for us to identify the ergodic equilibrium states
of Φ̂ and show that ι∗µ cannot be equal to any of them.

Define
W1 := {(e1, e1), (e2, e2)},
W2 := {(e1, e2), (e2, e1)}.

We observe that bothW1 andW2 are transitive subspace classes for (Â1, Â2, Â3, Â4)

and (B̂1, B̂2, B̂3, B̂4): the symbols 1 and 4 fix every pair (ei, ej) and the symbols
2 and 3 swap (e1, e1) with (e2, e2) and swap (e1, e2) with (e2, e1). Similarly to
our analysis of Φ, since the co-ordinate axes are the only one-dimensional sub-
spaces which have finite orbit under Â1 and B̂4, every transitive subspace class for
(Â1, Â2, Â3, Â4) and (B̂1, B̂2, B̂3, B̂4) must be a subset of W0. It follows that there
exist exactly two transitive subspace classes for these tuples, W1 and W2. Define
potentials Φ̂1, Φ̂2 : Σ∗4 → (0,+∞) by

Φ̂i(i) := max
(W1,W2)∈Wi

∥∥∥Âi|W1

∥∥∥α ∥∥∥B̂i|W2

∥∥∥β .
for i = 1, 2. By Theorem 3 each of Φ̂1 and Φ̂2 has a unique equilibrium state which
we denote respectively µ1 and µ2, and furthermore every ergodic equilibrium state
of Φ̂ must be equal to one of these two measures. In particular at least one of the
two measures is an equilibrium state for Φ̂. Straightforward checking of definitions
demonstrates that for i = 1, 2 the measure µi is an equilibrium state of Φ̂ if and
only if P (Φ̂i) = P (Φ̂).

Suppose for a contradiction that µ is totally ergodic. In particular µ is ergodic
with respect to σ2 : Σ2 → Σ2 and therefore ι∗µ is ergodic with respect to σ : Σ4 →
Σ4. Hence ι∗µ is an ergodic equilibrium state of P (Φ̂) and there exists i ∈ {1, 2}
such that ι∗µ = µi and P (Φ̂i) = P (Φ̂). It follows from Theorem 3 that there exists
C1 > 0 such that

C−1
1 e−nP (Φ)Φ(x|n) ≤ µ([x|n]) ≤ C1e

−nP (Φ)Φ(x|n)

for every n ≥ 1 and x ∈ Σ2, and also that there exists C2 > 0 such that

C−1
2 e−nP (Φ̂i)Φ̂i(z|n) ≤ µi([z|n]) ≤ C2e

−nP (Φ̂i)Φ̂i(z|n)
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for every z ∈ Σ4. Recoding via ι, the former inequalities imply

C−1
1 e−nP (Φ̂)Φ̂(z|n) ≤ (ι∗µ) ([z|n]) ≤ C1e

−nP (Φ̂)Φ̂(z|n)

for every z ∈ Σ4 and n ≥ 1, and since ι∗µ = µi and P (Φ̂i) = P (Φ̂) by hypothesis
we conclude that necessarily

(28) C−1
1 C−1

2 ≤ Φ̂(i)

Φ̂i(i)
≤ C1C2

for every i ∈ Σ∗4. But if i = 1n4n then

Âi = Ân1 Â
n
4 = A2n

1 A2n
2 =

(
4n 0
0 1

)
,

B̂i = B̂n1 B̂
n
4 = B2n

1 B2n
2 =

(
1 0
0 4n

)
and Φ̂1(i) = max{4nα, 4nβ} whereas Φ̂(i) = 4n(α+β), so (28) cannot hold for i = 1;
and if j = 31n−124n−1 for some n ≥ 1 then

Âj = Â3Â
n−1
1 Â2Â

n−1
4 = (A2A1)(A1A1)n−1(A1A2)(A2A2)n−1

= A2A
2n
1 A2n−1

2 =

(
1 0
0 4n

)
and

B̂j = B̂3B̂
n−1
1 B̂2B̂

n−1
4 = (B2B1)(B1B1)n−1(B1B2)(B2B2)n−1

= B2B
2n
1 B2n−1

2 =

(
1 0
0 4n

)
so that Φ̂2(j) = max{4nα, 4nβ}, but clearly we have Φ̂(j) = 4n(α+β). It follows that
(28) also cannot hold for i = 2. We conclude that neither µ1 nor µ2 can be equal

to ι∗µ, and since this exhausts the ergodic equilibrium states of Φ̂ the equilibrium
state ι∗µ cannot be ergodic, so µ cannot be ergodic with respect to σ2 and hence
is not totally ergodic as required. This completes the proof.

Remark. If Φ̂ had a unique ergodic equilibrium state then it would have to be
equal to either µ1 or µ2 and also to ι∗µ, which has been shown to be impossible,
so Φ̂ cannot have a unique ergodic equilibrium state. By elimination the only
possibility is that both of µ1 and µ2 are equilibrium states and that ι∗µ is equal to
a strict linear combination of these two mutually singular measures. On the other
hand Theorem 2 implies that µ must be equal to a balanced linear combination
of two mutually singular σ2-invariant measures, and we conclude that necessarily
ι∗µ = 1

2µ1 + 1
2µ2.
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[4] Bárány, B., Hochman, M., and Rapaport, A. Hausdorff dimension of planar self-affine
sets and measures. Invent. Math. 216, 3 (2019), 601–659.
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[33] Järvenpää, E., Järvenpää, M., Li, B., and Stenflo, O. Random affine code tree fractals

and Falconer-Sloan condition. Ergodic Theory Dynam. Systems 36, 5 (2016), 1516–1533.
[34] Jordan, T., Pollicott, M., and Simon, K. Hausdorff dimension for randomly perturbed

self affine attractors. Comm. Math. Phys. 270, 2 (2007), 519–544.
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