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Abstract. Every tropical ideal in the sense of Maclagan-Rincón has an associ-
ated tropical variety, a finite polyhedral complex equipped with positive integral
weights on its maximal cells. This leads to the realisability question, ubiquitous in
tropical geometry, of which weighted polyhedral complexes arise in this manner.
Using work of Las Vergnas on the non-existence of tensor products of matroids,
we prove that there is no tropical ideal whose variety is the Bergman fan of the
direct sum of the Vámos matroid and the uniform matroid of rank two on three
elements, and in which all maximal cones have weight one.

1. Introduction

An ideal in a polynomial ring over a field with a non-Archimedean valuation gives
rise to a tropical variety, either by taking all weight vectors whose initial ideals
do not contain a monomial or, equivalently if the field and the value group are
large enough [Dra08, Theorem 4.2], by applying the coordinate-wise valuation to
all points in the zero set of the ideal. In the middle of this construction sits a
tropical ideal, obtained by applying the valuation to all polynomials in the ideal.
This ideal is a purely tropical object, in that it does not know about the field or
the valuation, and it contains more information than the tropical variety itself. For
these reasons, tropical ideals, axiomatised in [MR18], were proposed as the correct
algebraic structures on which to build a theory of tropical schemes. We review the
relevant definitions below.

It was proved in [MR18] that tropical ideals, while not finitely generated as
ideals—nor in any sense that we know of!—have a rational Hilbert series, satisfy the
ascending chain condition, and define a tropical variety: a finite weighted polyhe-
dral complex. Later in [MR], it was shown that the top-dimensional parts of these
varieties are always balanced polyhedral complexes. This leads to the following
realisability question.

Question 1.1. Which pure-dimensional balanced polyhedral complexes are the va-
riety of some tropical ideal?

If the tropical ideal is the tropicalisation of a prime classical ideal, then the tropical
variety is pure-dimensional and balanced [MS15, Theorem 3.3.5]. The question of
which balanced polyhedral complexes are realised by classical ideals has received
much attention, especially in the case of curves (see, e.g., [Spe14, BS15, BGS17]).
But for general tropical ideals, very little is known about Question 1.1: for instance,
no natural algebraic criterion that ensures that the variety is pure-dimensional is
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known. In fact, until recently we had no intuition as to whether tropical ideals are
flexible enough that they can realise basically any balanced polyhedral complex, or
rather more rigid, like algebraic varieties. In view of the following theorem, we now
lean towards the latter intuition.

Theorem 5.2. Let M and N be loopless matroids of ranks a and b that do not
have a quasi-product of rank a · b. Then there exists no tropical ideal whose tropical
variety is the Bergman fan of the direct sum of M and N , with all maximal cones
having weight 1.

In particular, there exists no tropical ideal whose tropical variety is the Bergman
fan of the direct sum of the Vámos matroid V8 and the uniform matroid U2,3 of rank
two on three elements, with all maximal cones having weight 1.

In this theorem, a quasi-product of two loopless matroids is a matroid analogue of
tensor products; see Section 4. The fact that the Vámos matroid V8 and the uniform
matroid U2,3 have no quasi-product of rank 8 was proved by Las Vergnas in [LV81].

We believe that this theorem marks the beginning of an interesting research pro-
gramme, which, in addition to the pureness and balancing questions mentioned
above, asks which tropical ideals define matroids on the set of variables, and which
matroids are, in this sense, tropically algebraic—See Problem 3.5 and Question 3.6.

Acknowledgements. Both authors would like to thank the Mittag-Leffler Institute
for their hospitality during the Spring 2018 program, when this paper was conceived.
In addition, FR would like to thank the Discrete Mathematics/Geometry Group at
TU Berlin for their support while this paper was written.

2. Definitions and basic results on tropical ideals

Consider the tropical semifield (R := R ∪ {∞},⊕, ◦· ) with ⊕ := min and ◦· := +.
Let R be a sub-semifield of R. The example most relevant to us is the Boolean
semifield B := {0,∞}, which is not only a sub-semifield but also a quotient of R.

Definition 2.1. Let N be a finite set. A set L ⊆ RN is a tropical linear space
if it is an R-submodule (i.e., (∞, . . . ,∞) ∈ L and f, g ∈ L, c ∈ R ⇒ (c◦· f)⊕ g ∈ L)
and if, moreover, L satisfies the following elimination axiom: for i ∈ N and f, g ∈ L
with fi = gi ̸= ∞, there exists an h ∈ L with hi = ∞ and hj ≥ fj ⊕ gj for all j ∈ N ,

with equality whenever fj ̸= gj. The R-submodule LR of RN
generated by L is a

tropical linear space in RN
, and has the structure of a finite polyhedral complex; we

denote its dimension as such by dimL.

If K is a field equipped with a non-Archimedean valuation onto R and if V ⊆ KN

is a linear subspace, then the image of V under the coordinate-wise valuation is a
tropical linear space in RN , but not all tropical linear spaces arise in this manner.
Tropical linear spaces are well-studied objects in tropical geometry and matroid
theory: the definition above is equivalent to that of [Spe08], except that we allow
some coordinates to be ∞. A tropical linear space L gives rise to a matroid M(L) in
which the independent sets are those subsets A ⊆ N for which L∩(RA×{∞}N\A) =
{∞}N , and L is the set of vectors (R-linear combinations of valuated circuits) of
a valuated matroid on M(L) [MT01]. With this setup, dimL = |N | − rk(M(L)).
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We will freely alternate between these different characterisations of tropical linear
spaces.

Set N := {0, 1, 2, . . .}, and let n ∈ N. Denote by R[x1, . . . , xn] the semiring of
polynomials in the variables x1, . . . , xn with coefficients in R. We write Mond and
Mon≤d for the set of monomials in x1, . . . , xn of degree equal to d and at most d,
respectively, and we identify a polynomial in R[x1, . . . , xn] of degree at most d with
its coefficient vector in RMon≤d .

Definition 2.2. A subset I ⊆ R[x1, . . . , xn] is a tropical ideal if xi◦· I ⊆ I for all
i = 1, . . . , n and if for each d ∈ N the set I≤d := {f ∈ I : deg(f) ≤ d} is a tropical
linear space in RMon≤d .

This definition is equivalent to [MR18, Definition 1.1]. Indeed, there, in addition
to the requirement that I≤d be a tropical linear space, it is required that I is an
ideal in the semiring R[x1, . . . , xn]. This is equivalent to the statement that I is
closed under tropical multiplication by each xi and closed under tropical addition.
However, as tropical linear spaces are already closed under tropical addition, this
does not need to be included as an explicit axiom.

If I is homogeneous, then the latter condition is equivalent to the condition that
for each d the set Id of homogeneous polynomials in I of degree d is a tropical
linear space in RMond . There is a natural notion of tropical ideals in the Laurent
polynomial ring R[x±1

1 , . . . , x±1
n ] that we will also use, and if I is a tropical ideal

in R[x1, . . . , xn] then the set I ′ := {f/xu | f ∈ I,u ∈ Nn} is a tropical ideal in
R[x±1

1 , . . . , x±1
n ].

Tropical ideals were introduced by Maclagan and Rincón in [MR18] as a framework
for developing algebraic foundations for tropical geometry. Tropical ideals are much
better behaved than general ideals of the polynomial semiring R[x1, . . . , xn], as we
explain below.

Definition 2.3. For w ∈ Rn and f =
⊕

u cu◦· xu ∈ R[x1, . . . , xn], define the initial
part of f relative to w as

inw(f) :=
⊕

u : cu+u·w=f(w)

xu ∈ B[x1, . . . , xn].

For a tropical ideal I define its initial ideal relative to w as

inw I := ⟨inw f | f ∈ I⟩B.

Note that in this paper we only consider weights w in Rn, not in Rn
as in [MR18].

In other words, we do geometry only inside the tropical torus.

Definition 2.4. The Hilbert function of a tropical ideal I ⊆ R[x1, . . . , xn] is the
map HI : N → N given by d 7→

(
n+d
d

)
− dim I≤d.

Note that, as usual in commutative algebra, the Hilbert function measures the
codimension of I≤d in its ambient space RMon≤d . A homogeneous variant of this
Hilbert function applies only to homogeneous ideals and measures the codimension
of Id in RMond . The Hilbert function of a not necessarily homogeneous ideal I
in R[x1, . . . , xn] equals the homogeneous Hilbert function of its homogenisation in
R[x0, . . . , xn].

The following is a special case of [MR18, Corollary 3.6].
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Theorem 2.5. For a homogeneous tropical ideal I ⊆ R[x1, . . . , xn] and any w ∈ Rn,
inw I ⊆ B[x1, . . . , xn] is a homogeneous tropical ideal, and Hinw I = HI .

Theorem 2.5 allows one to pass to monomial initial ideals and show that the
Hilbert function HI(d) of a homogeneous tropical ideal I becomes a polynomial
in d for sufficiently large d, and also that homogeneous tropical ideals satisfy the
ascending chain condition. Via homogenisation, one sees that both statements also
hold for non-homogeneous tropical ideals (but, as in the classical setting, the theorem
does not apply directly, since for instance, when n = 1, in(1)(0⊕x1) = 0 generates an
ideal—the entire semiring—with a smaller Hilbert function than any tropical ideal
containing 0⊕ x1 but not 0).

Furthermore, Maclagan and Rincón prove that tropical ideals have tropical vari-
eties that are finite polyhedral complexes [MR18, Theorem 5.11].

Theorem 2.6. If I ⊆ R[x1, . . . , xn] is a tropical ideal then its (tropical) variety

V (I) := {w ∈ Rn : inw I contains no monomial}
is the support of a finite polyhedral complex.

Indeed, if I is homogeneous, they show that the sets of w where inw I is constant
form the relatively open polyhedra of a polyhedral complex with support Rn called
the Gröbner complex of I, and that the cells where inw I contains no monomial
form a subcomplex with support V (I). By homogeneity, all cells then contain in
their lineality space the linear span of the all-ones vector 1. In the case where
I ⊆ R[x1, . . . , xn] is not necessarily homogeneous, let Ih be its homogenisation in
R[x0, x1, . . . , xn]. Then w 7→ (0,w) is a bijection between V (I) and the intersection
of V (Ih) with the zeroeth coordinate hyperplane, and we give V (I) the corresponding
polyhedral complex structure.

The variety of a tropical ideal comes equipped with positive integral weights on
its maximal polyhedra; this is inspired by [MS15, Lemma 3.4.7] and studied more
in depth in [MR].

Definition 2.7. Let I ⊆ R[x1, . . . , xn] be a tropical ideal, let σ be a maximal
polyhedron of V (I), and let w be in the relative interior of σ. The multiplicity of σ
in V (I) is defined as follows. First, let I ′ ⊆ R[x±1

1 , . . . , x±1
n ] be the (tropical) ideal in

the Laurent polynomial ring generated by I. After an automorphism of the Laurent
polynomial ring given by xu 7→ xAu with A ∈ GLn(Z), we can assume that the affine
span of σ is a translate of span(e1, . . . , ed) for some d. In this case, by [MR, Lemma
6.2], the tropical ideal J := inw(I

′) ∩ B[xd+1, . . . , xn] is zero-dimensional, i.e., HJ(e)
is a constant for e ≫ 0. The multiplicity of σ is defined to be equal to this constant,
called the degree of J .

Remark 2.8. A more coordinate-free version of Definition 2.7 is the following.
Consider the linear span of σ, defined as

span(σ) := R≥0{v − v′ | v,v′ ∈ σ}.

Let S ⊆ B[x±1
1 , . . . , x±1

n ] be the sub-semiring spanned by monomials xu of w-weight
w · u equal to zero for all w ∈ span(σ). Then S itself is isomorphic to a Laurent
polynomial semiring in n − d variables. The multiplicity of σ is the degree of the
zero-dimensional tropical ideal inw(I

′) ∩ S.
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We will need the following results.

Lemma 2.9. Let I be a tropical ideal in R[x1, . . . , xn]. Denote by I ′ the ideal
generated by I in R[x±1

1 , . . . , x±n
n ], and set Isat := I ′ ∩ R[x1, . . . , xn]. Then Isat ⊇ I

is a tropical ideal, and V (Isat) = V (I) as weighted polyhedral complexes.

We call Isat the saturation of I with respect to m := x1 · · ·xn, and we call I
saturated with respect to m if Isat = I.

Proof. That Isat is a tropical ideal containing I is straightforward from the definition.
Since Isat ⊇ I we have V (Isat) ⊆ V (I). Conversely, let w ∈ V (I) and f ∈ Isat.
Then xu◦· f ∈ I for some u ∈ Nn, hence inw(x

u◦· f) is not a monomial, and therefore
neither is inw f . This shows that V (I) = V (Isat). That the multiplicities are the
same follows from the fact that the multiplicities in V (I) are defined using I ′. □

If Σ is a polyhedral complex in Rn and σ is a polyhedron in Σ, the star starσ Σ
of Σ at σ is a weighted polyhedral fan, whose cones are indexed by the cones τ of Σ
containing σ. The cone indexed by such τ is

τ := R≥0{v −w | v ∈ τ and w ∈ σ},
with weight equal to the weight of τ in Σ.

The following can be found in [MR, Corollary 2.11 and Proposition 6.4].

Proposition 2.10. Let I be a tropical ideal in R[x1, . . . , xn], σ be a polyhedron
in V (I), and w be in the relative interior of σ. Then inw I ⊆ B[x1, . . . , xn] is
homogeneous with respect to every vector v ∈ span(σ), and V (inw I) = starw V (I)
as weighted polyhedral complexes.

3. The independence complex of a tropical ideal

Definition 3.1. Let I ⊆ R[x1, . . . , xn] be a tropical ideal. The independence
complex of I is the simplicial complex

(3.1) I(I) := {A ⊆ {1, . . . , n} : I ∩R[xi : i ∈ A] = {∞}}.
When I(I) is the collection of independent sets of a matroid M , we will say that I
is a matroidal tropical ideal, and that M is its associated algebraic matroid.

The independence complex of a tropical ideal I can be recovered from its variety
V (I), at least if R = R.

Proposition 3.2. If I ⊆ R[x1, . . . , xn] is a tropical ideal then

(3.2) I(I) = {A ⊆ {1, . . . , n} : πA(V (I)) = RA},
where πA : Rn → RA is the coordinate projection onto the coordinates indexed by A.
In particular, the independence complex I(I) depends only on the variety V (I).

Proof. Let A ⊆ {1, . . . , n}. If A /∈ I(I) then there exists f ∈ I ∩ R[xi : i ∈ A] such
that f ̸= ∞, and V (I) ⊆ V (f). We then have πA(V (I)) ⊆ πA(V (f)) ⊊ RA, as
claimed. For the reverse inclusion, suppose that πA(V (I)) ⊊ RA, and let w ∈ RA \
πA(V (I)). For any polynomial f ∈ R[x1, . . . , xn], denote by f |w the polynomial in
R[xi : i /∈ A] obtained by specializing each variable xi with i ∈ A to wi ∈ R. Consider
the ideal I|w ⊆ R[xi : i /∈ A] defined as I|w := {f |w : f ∈ I}. By [MR, Theorem 3.6],
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the ideal I|w is a tropical ideal. Moreover, we must have V (I|w) = ∅, as any point
v ∈ V (I|w) would lift to the point (v,w) ∈ V (I), contradicting that w /∈ πA(V (I)).
By the weak Nullstellensatz [MR18, Corollary 5.17], the tropical ideal I|w must
contain the constant polynomial 0. But then 0 = f |w for some f ∈ I, which in
particular implies that f ∈ I ∩ R[xi : i ∈ A] and f ̸= ∞. □

Proposition 3.2 also follows from the fact that a coordinate projection of the
variety of a tropical ideal is the variety of the corresponding elimination ideal [MR,
Theorem 4.7].

Recall that the Hilbert function HI(e) of a tropical ideal I ⊆ R[x1, . . . , xn]
eventually agrees with a polynomial in e, called the Hilbert polynomial of I
[MR18, Proposition 3.8]. The dimension dim(I) of I is defined as the degree of its
Hilbert polynomial.

Corollary 3.3. For any tropical ideal I we have

dim I(I) + 1 = dimV (I) = dim I.

Proof. From (3.2) it is clear that dimV (I) ≥ dim I(I) + 1. Now, if V (I) contains a
polyhedron σ of dimension d then there is some coordinate projection πA(σ) that is
d-dimensional, and thus from (3.1) we see that A ∈ I(I) and thus dim I(I)+1 ≥ d.
This shows that dim I(I) + 1 = dimV (I). The equality dimV (I) = dim I is proved
in [MR, Theorem 4.3]. □

In the classical setting, primality of an ideal implies matroidality. We do not know
about a similarly appealing sufficient condition for matroidality of general tropical
ideals.

Example 3.4. If J ⊆ K[x1, . . . , xn] is a prime ideal, where K is a field with a non-
Archimedean valuation, then trop(J) is a matroidal tropical ideal. Its associated
algebraic matroid is the matroid that captures algebraic independence among the
coordinate functions x1, . . . , xn in the field of fractions of K[x1, . . . , xn]/J . ♢
Problem 3.5. Find algebraic conditions on a tropical ideal that imply matroidality.

As shown in Example 3.4, any (classically) algebraic matroid is the algebraic
matroid of a tropical ideal. However, in principle, it is possible that the class of
matroids that are “tropically algebraic” is strictly larger than the usual class of
algebraic matroids.

Question 3.6. Which matroids arise as the algebraic matroid of a tropical ideal?

4. Quasi-products of matroids

To motivate the definition of quasi-products, let v1, . . . , vm be nonzero vectors
in a vector space V and let w1, . . . , wn be nonzero vectors in a vector space W
over the same field. The vi define a matroid M with ground set [m] in which
S ⊆ [m] is dependent if and only if the set {vi : i ∈ S} is linearly dependent.
Similarly, the wj define a matroid N with ground set [n]. Now consider the vectors
vi ⊗ vj ∈ V ⊗ W, i ∈ [m], j ∈ [n]. In the same manner, these define a matroid P
with ground set [m]× [n]. One can check that P is in general not determined by M
and N , i.e., the linear dependencies among the vi⊗wj cannot be read off from those
among the vi and those among the wj. However, some features of P are predicted
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by M and N : for each fixed i ∈ [m], the linear dependencies among the vectors
vi ⊗ wj, j ∈ [n] are precisely those recorded by N ; here we use that vi is nonzero.
Similarly, for each j ∈ [n], the restriction of P to [m] × {j} is isomorphic to M .
Furthermore, if B is a basis of M and C is a basis of N , then B×C is a basis of P .
In particular, the rank of P is the product of the ranks of M and N . Following Las
Vergnas, we use these observations to define quasi-products of general matroids, as
follows.

Definition 4.1 ([LV81]). Let M,N be loopless matroids with ground sets [m], [n],
respectively. A quasi-product of M and N is a matroid P with ground set [m]× [n]
with the property that for each i ∈ [m] the map [n] → [m] × [n], j 7→ (i, j) is an
isomorphism from M to the restriction of P to {i} × [n] and for each j ∈ [n] the
map [m] → [m]× [n], i 7→ (i, j) is an isomorphism from M to the restriction of P to
[m]× {j}.

The properties of a quasi-product P of M and N imply that if B ⊆ [m] is a basis
of M and C ⊆ [n] is a basis of N , then B ×C is a spanning set of P , so the rank of
P is at most the product of the ranks of M and N . By the discussion above, two
matroids that are representable over the same field always admit a quasi-product
whose rank is the product of their ranks. In general, however, a quasi-product with
this property need not exist.

Theorem 4.2 ([LV81]). Any quasi-product of the rank-4 Vámos matroid V8 and the
rank-2 uniform matroid U2,3 has rank at most 7 < 4 · 2.

5. Not every Bergman fan is the variety of a tropical ideal

We now prove that not every balanced polyhedral complex can be obtained as
the variety of a tropical ideal. Our counterexample will be the Bergman fan of a
matroid; see [AK06] for details.

Definition 5.1. Let M be a loopless matroid of rank d on the ground set {1, . . . , n}.
The Bergman fan B(M) of M is the pure d-dimensional polyhedral fan in Rn

consisting of the cones of the form

σF := cone(eF1 , eF2 , . . . , eFk
) + R·e{1,...,n}

where F = {∅ ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fk ⊊ {1, . . . , n}} is a chain of flats in the lattice
of flats L(M) of M , and where eS stands for the sum of the standard basis vectors
ei with i running through S. The Bergman fan of any matroid is given the structure
of a balanced polyhedral complex by defining the multiplicity of each maximal cone
to be equal to 1.

Bergman fans of matroids are the tropical linear spaces (more specifically, their
part inside the torus Rn) that correspond to valuated matroids where the basis
valuations all take values in B.
The following is our main result.

Theorem 5.2. Let M be a loopless matroid of rank a with ground set [m] and let
N be a loopless matroid of rank b with ground set [n]. Suppose that every quasi-
product of M and N has rank strictly less than a · b. Then there exists no tropical
ideal I ⊆ R[x1, . . . , xm, y1, . . . , yn] such that V (I) is equal to B(M ⊕N) as weighted
polyhedral complexes, even up to common refinement.
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In particular, there is no tropical ideal I ⊆ R[x1, . . . , x3, y1, . . . , y8] such that V (I)
is equal to B(U2,3 ⊕ V8) as weighted polyhedral complexes, even up to common re-
finement.

Note that we do not require the polyhedral structure on V (I) coming from the
Gröbner complex of the homogenisation of I to be equal to the fan structure on the
Bergman fan described above.

To prove the theorem, in addition to the fundamental results from Section 2, we
will need results relating V (I) to HI for any tropical ideal I.

Lemma 5.3. Let L,L′ ⊆ RN be tropical linear spaces. If dimL + dimL′ > |N |,
then L ∩ L′ ̸= {(∞, . . . ,∞)}.

Proof. The notion of stable intersection for tropical linear spaces was studied by
Speyer in [Spe08] when the underlying matroids of both tropical linear spaces were
uniform matroids, and later generalized by Mundinger [Mun] for arbitrary tropical
linear spaces in RN . The stable intersection L ∩st L

′ is a tropical linear space
contained in both L and L′, and it has dimension a least dimL+ dimL′ − |N | > 0,
which implies the desired result. □

Proposition 5.4. Let I ⊆ R[x1, . . . , xn] be a tropical ideal. If the independence
complex I(I) contains a subset A of size r, then HI(d) ≥

(
r+d
d

)
for all d ∈ N.

Proof. The space R[xi : i ∈ A]≤d is a tropical linear space in RMon≤d of dimension(
r+d
d

)
and, by assumption, it does not intersect I≤d. Hence by Lemma 5.3, dim I≤d ≤(

n+d
d

)
−

(
r+d
d

)
, and therefore HI(d) ≥

(
r+d
d

)
. □

Proposition 5.5. Let I ⊊ R[x1, . . . , xn] be a tropical ideal, and set r := HI(1)− 1.
Then HI(d) ≤

(
r+d
d

)
for all d ∈ N.

Proof. Let Ih ⊆ R[x0, . . . , xn] be the homogenisation of I. Then dim(Ih)d = dim I≤d

for all d ∈ N, and in particular dim(Ih)1 = dim I≤1 = n + 1 − HI(1) = n − r.
Moreover, by applying Theorem 2.5 with a sufficiently general weight vector w, the
Hilbert function of Ih is also that of some monomial ideal J . We find that J contains
precisely n − r of the n + 1 variables x0, . . . , xn, and therefore all their multiples.
This implies that dim Jd ≥

(
n+d
d

)
−

(
r+d
d

)
, where the last term counts monomials in

the remaining r + 1 variables of degree d. We then have

HI(d) =
(
n+d
d

)
− dim I≤d =

(
n+d
d

)
− dim Jd ≤

(
n+d
d

)
−
(
n+d
d

)
+
(
r+d
d

)
,

as desired. □

The following proposition shows that the algebraic matroid of a Bergman fan
B(M) (as in Proposition 3.2) is equal to the matroid M .

Proposition 5.6 ([Yu17, Lemma 3]). The independence complex of the Bergman
fan B(M) of a loopless matroid M is the same as the independence complex of M .

We now present a key step towards proving our main result.

Proposition 5.7. Let M be a loopless matroid on the ground set {1, . . . , n}. Suppose
J ⊆ B[x1, . . . , xn] is a homogeneous tropical ideal, saturated with respect to x1 · · ·xn,
whose variety V (J) has a common refinement, as weighted polyhedral complexes,
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with the Bergman fan B(M) (with weight 1 in all its maximal cones). Then the
matroid M(J1) is equal to M , under the identification xi ↔ i of ground sets.

Proof. Let B = {b1, . . . , bd} be a basis of M . For 0 ≤ i ≤ d, consider the flat Fi

of M obtained as the closure of the set {b1, . . . , bi}, and let σ be the maximal cone
of B(M) corresponding to the chain of flats ∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fd−1 ⊊ Fd =
{1, . . . , n}. Let τ ⊆ σ be a maximal cone in a common refinement of both V (J)
and B(M). The linear span span(τ) = span(σ) consists of all vectors w ∈ Rn for
which wi = wj whenever {i, j} ⊆ Fk \ Fk−1 for some k = 1, . . . , d. A monomial
xu in B[x±1

1 , . . . , x±1
n ] has w-weight equal to zero for all such w if and only if for

every k we have
∑

i∈Fk\Fk−1
ui = 0. As in Remark 2.8, let S be the subsemiring of

B[x±1
1 , . . . , x±1

n ] consisting of all polynomials involving only such monomials, and let
J ′ be the (tropical) ideal in B[x±1

1 , . . . , x±1
n ] generated by J .

Take v to be a vector in the relative interior of τ . Since τ has multiplicity 1 in
V (J), inv(J

′)∩S is zero-dimensional of degree 1, and contains no monomials. Hence
for any pair of distinct monomials xu,xu′

in S, inv(J
′) ∩ S contains the binomial

xu⊕xu′
. In particular, if {i ̸= j} ⊆ Fk\Fk−1 for some k then 0⊕x−1

i xj ∈ inv(J
′)∩S,

and thus xi ⊕ xj ∈ inv(J
′). As J is homogeneous and saturated with respect to

x1 · · ·xn, this implies that there is a polynomial of the form xi ⊕ xj ⊕ f in J1
where f is a sum of variables all contained in Fk−1. It follows that xi is in the
closure of Fk−1 ∪ {xj} in the matroid M(J1). We conclude that {b1, . . . , bd} is a
generating set in the matroid M(J1), and thus rank(M(J1)) ≤ rank(M). Now, the
tropical prevariety cut out by the linear polynomials in J is equal to B(M(J1)),
so we have B(M(J1)) ⊇ V (J) = B(M). It follows from [Rin12, Lemma 7.4] that
B(M(J1)) = B(M), and thus M(J1) = M , completing the proof. □

We conclude with the proof of the main theorem.

Proof of Theorem 5.2. Suppose that such an I exists, and denote O := M ⊕ N .
We first argue that we may replace I by an ideal J that is homogeneous as well as
saturated. To this end, let σ be a polyhedron in V (I) whose affine span is R·1 (which
is contained in the lineality space of B(O)), and let w be in the relative interior of
σ. Set J ′ := inw I ⊆ B[x1, . . . , xm, y1, . . . , yn]. By Proposition 2.10, the tropical
ideal J ′ is homogeneous (with respect to 1) and has variety V (J ′) = starw V (I),
which is equal to B(O) up to common refinement. Consider the homogeneous ideal
J := (J ′)sat. By Lemma 2.9, we have that V (J) is also equal to B(O) up to common
refinement.

Now, by Proposition 5.7, M(J1) is equal to O. Since rkO = a + b, we find that
HJ(1) = 1 + a + b and thus, by Proposition 5.5, HJ(d) ≤

(
a+b+d

d

)
for all d. On the

other hand, since V (J) = B(O), by Propositions 5.6 and 3.2 the tropical ideal J is
matroidal, with associated algebraic matroid O = M ⊕ N . Hence, by Proposition
5.4 we have HJ(d) ≥

(
a+b+d

d

)
. We conclude that HJ(d) =

(
a+b+d

d

)
.

Denote Q := M(J2). The matroid Q has rank HJ(2) − HJ(1) =
(
a+b+1

2

)
on the

ground set S1 ⊔ S2 ⊔ S3, where S1 := {xixj | 1 ≤ i ≤ j ≤ m}, S2 := {yiyj | 1 ≤ i ≤
j ≤ n}, and S3 := {xiyj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The restriction Q|S1 is spanned
by all products of two elements in a basis of M(J1)|{x1, x2, . . . , xm}, hence has rank
at most

(
a+1
2

)
. Similarly, the restriction Q|S2 has rank at most

(
b+1
2

)
. Hence Q|S3

has rank at least
(
a+b+1

2

)
−

(
a+1
2

)
−

(
b+1
2

)
= ab.
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Since J is saturated, for each 1 ≤ i ≤ m, multiplication by xi yields an iso-
morphism between the matroid M(J1)|{y1, . . . , yn} ∼= N and the restriction of Q
to xi · {y1, . . . , yn} ⊆ S3. Similarly, for each 1 ≤ j ≤ n, the restriction of Q to
yj · {x1, . . . , xm} is isomorphic to M . Hence Q|S3 is a quasi-product of M and N
in the sense of Definition 4.1. But the assumption in the theorem is that such a
quasi-product has rank strictly less than a · b, a contradiction. Hence no such ideal
I exists.

The second part of the main theorem is a direct consequence of the first part and
Theorem 4.2 by Las Vergnas. □

6. Concluding remarks

Using the result by Las Vergnas that U2,3 and V8 do not have a quasi-product of
rank 8, we have showed that the Bergman fan of their direct sum is not the tropical
variety of any tropical ideal, with weight 1 on all the maximal cones.

We do not know whether there exists a tropical ideal whose tropical variety is the
Bergman fan of U2,3 ⊕ V8 as a set, without the condition that all weights be 1.

We also do not know whether B(V8) itself is the tropical variety of any tropical
ideal with weight one on the maximal cones. To study this question for a matroid
M , one needs to develop the theory of symmetric squares of matroids, in a fashion
similar to Las Vergnas’s quasi-products from Section 4. But already for V8 this
seems considerably harder than quasi-products of U2,3 with V8.

Finally, we’d like to point out that for anym ≥ 3, the matroids U2,m and V8 do not
admit a quasi-product of rank 8. Indeed, if P were such a quasi-product on [m]× [8],
then for any basis C ⊆ [8] of V8 the set [2]× C, which spans P , would have to be a
basis. But then the restriction of P to [3]× [8] would be a quasi-product of U2,3 and
V8 of rank 8, a contradiction to Las Vergnas’s Theorem 4.2. This simple observation
yields infinitely many matroids to which our Theorem 5.2 applies. However, it would
be interesting to find more intricate families of pairs of matroids that do not admit
quasi-products of the correct rank.
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