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ABSTRACT 

Precise and objective segmentation of atrial scarring (SAS) is a 

prerequisite for quantitative assessment of atrial fibrillation using 

non-invasive late gadolinium-enhanced (LGE) MRI. This also 

requires accurate delineation of the left atrium (LA) and pulmonary 

veins (PVs) geometry. Most previous studies have relied on manual 

segmentation of LA wall and PVs, which is a tedious and 

error-prone procedure with limited reproducibility. There are many 

attempts on automatic SAS using simple thresholding, histogram 

analysis, clustering and graph-cut based approaches; however, in 

general, these methods are considered as unsupervised learning thus 

subject to limited segmentation accuracy. In this study, we present a 

fully-automated multi-atlas based whole heart segmentation method 

to derive the LA and PVs geometry objectively that is followed by a 

fully automatic deep learning method for SAS. Our deep learning 

method consists of a feature extraction step via super-pixel 

over-segmentation and a supervised classification step via stacked 

sparse auto-encoders. We demonstrate the efficacy of our method on 

20 clinical LGE MRI scans acquired from a longstanding persistent 

atrial fibrillation cohort. Both quantitative and qualitative results 

show that our fully automatic method obtained accurate 

segmentation results compared to the manual segmentation based 

ground truths. 

1. INTRODUCTION 
Atrial fibrillation (AF) is the most common sustained heart 

rhythm disturbance encountered in adult cardiology. Several studies 

have shown that AF is correlated with electrical, contractile, and 

structural remodeling in the left atrium (LA) [1]. Moreover, LA 

fibrosis may be arrhythmogenic that causes more aggressive 

symptoms and makes difficulties in the management of AF [1]. 

Minimally invasive catheter ablation (CA) using radio-frequency 

energy has become one of the most common treatments for AF 

patients refractory to drug treatment [2]. CA aims to electrically 

isolate the pulmonary veins (PVs) from the left atrial (LA) body 

because previous studies show that ectopic beats from the PVs can 

frequently trigger the AF [3]. In this context, techniques have been 

developed to evaluate the LA wall composition and assess the 

circumferential PVs scarring that results from CA in order to 

understand the AF with proper management and prognosis. At 

present, electro-anatomical mapping (EAM) system, which is 

performed during the electrophysiological study, is considered to be 

a clinical reference standard technique for the assessment of the LA 

substrate and ablation-induced scarring. However, EAM is invasive 

and suffers from ionizing radiation and its suboptimal accuracy, 

which has reported errors of up to 10 mm in the localization of scar 

tissue [4]. 
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Noninvasive late gadolinium-enhanced (LGE) MRI is an 

established method for visualizing and assessing myocardial 

infarction or fibrosis [5]. This is ascribed to the altered wash-in and 

wash-out contrast agent kinetics, and the hyper-enhancement 

reflects the increased interstitial space of the myocardium with 

fibrosis while healthy myocardium is ‘nulled’. In addition, the 

successful imaging of atrial scarring has been demonstrated using 

LGE MRI [6]. However, clinical interpretation of these tomographic 

LGE MRI scans for AF patients is difficult because: (1) residual 

respiratory motion, heart rate variability, low signal-to-noise ratio 

(SNR), and contrast agent wash-out during the long acquisition 

(current scanning time 10mins) frequently result in image quality 

being poor and (2) the thin LA wall with surrounding structures such 

as blood, aorta, spine, and esophagus may limit the correct selection 

of the LA myocardium on LGE MRI images and subsequently result 

in a large number of false positives for the atrial scarring delineation. 

Essentially, precise and objective assessment of atrial scarring 

requires two segmentations: (1) the delineation of LA and PVs 

geometry and (2) the segmentation of atrial scarring (SAS).   

For the LA and PVs geometry, most previous studies have relied 

on manual delineation [2], [7]–[10]. Knowles et al. [11] used a 

semi-automatic thresholding and region growing method to extract 

the LA and PVs anatomy. More recently, Karim et al. [12] utilized a 

statistical shape model to solve the LA and PVs geometry but subject 

to manual corrections. In [13], an automatic atlas based method has 

been applied; however, local level set based refinement is required 

using co-registered MR angiography (MRA) data. MRA data are 

generally acquired in an inspiratory breath-hold and without cardiac 

gating; therefore, the anatomy extracted from MRA can be highly 

deformed compared to that acquired by LGE MRI and this may 

cause difficulties in the co-registration step and subsequently 

mistake the SAS.   

Several strategies have been proposed for visualization of the 

atrial scarring, e.g., maximum intensity projection (MIP) [6], [11], 

[13], [14]. MIP based methods can provide more intuitive 

visualization and may have a potential role for guiding CA 

procedures.  However, the major drawback of this technique is that it 

is only a visualization of the hyper-enhancement, but not a 

segmentation method that can result in volumetric quantification 

[12]. Oakes et al. [7] segmented the enhanced atrial scarring by 

analyzing the intensity histogram of the manually delineated LA 

wall. Perry et al. [8] applied k-means clustering to quantitatively 

assess normal and scarred tissue from manual defined LA and PVs 

geometry. Karim et al. [12] investigated a graph-cut based 

segmentation method to differentiate atrial scarring from healthy 

myocardium. A grand challenge was carried out that attracted 8 

research groups who submitted their atrial segmentation algorithms 

including histogram analysis, simple and advanced thresholding, 
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k-means clustering, and graph-cuts methods to establish a 

benchmarking work [9]. The benchmarking work was tested on data 

acquired from multiple institutions, and the LA endocardium and 

cavity for each scan was also provided to all the participants. The 

best performing algorithms in the benchmarking work have shown 

promising results, but there are large variances in the performance 

especially for the pre-ablation datasets where image quality is 

generally worse and native scarring is more diffuse. Due to the 

aforementioned limitations, i.e., poor image quality and thinner LA 

wall with confounded adjacent structures, the precise and objective 

assessment of atrial scarring is still a very challenging problem. And 

the subjective and inaccurate segmentation could be one of the major 

reasons that the correlation between atrial scarring identified by 

LGE MRI (enhanced regions) and EAM (low voltage regions) has 

been questioned [15]. 

In this study, we present a fully automatic framework that yields 

an efficient and objective atrial scarring assessment including: (1) a 

fully-automated multi-atlas based whole heart segmentation 

(MA-WHS) method to solve the LA and PVs anatomy and (2) a fully 

automatic deep learning method for SAS. Our deep learning method 

consists of a feature extraction step via super-pixel 

over-segmentation and a supervised classification step via stacked 

sparse auto-encoders (SSAE). Compared with the ground truth 

formed by manual delineation, our fully automatic method obtains 

promising segmentation results, which are also comparable to the 

state-of-the-art SAS methods. 
 

2. METHODS 

The overall workflow of our method is summarized in Figure 1, and 

details of each step are described below. 

 
Figure 1: Flowchart of our fully automatic framework. 

2.1. Patients and Data Acquisition 

In agreement with the local regional ethics committee, cardiac 

MRI was performed in longstanding persistent AF patients between 

2011–2013. The image quality of each dataset was scored by a 

senior cardiac MRI physicist on a Likert-type scale—0 

(non-diagnostic), 1 (poor), 2 (fair), 3 (good) and 4 (very 

good)—depending on the level of SNR, appropriate inversion time, 

and the existence of navigator beam and ghost artifacts. Ten 

pre-ablation scans with image quality greater or equal to 2 have been 

retrospectively entered into this study (~60% of all the scanned 

pre-ablation cases). To make a balanced dataset, we randomly 

selected 10 post-ablation cases from all the 26 post-ablation scans 

with image quality greater or equal to 2 (~92% of all the scanned 

post-ablation cases). 

Cardiac MR data were acquired on a Siemens Magnetom Avanto 

1.5T scanner. Transverse navigator-gated 3D LGE MRI [6], [7], [16] 

was performed using an inversion prepared segmented gradient echo 

sequence (TE/TR 2.2ms/5.2ms) 15 minutes after gadolinium (Gd) 

administration when a transient steady-state of Gd wash-in and 

wash-out of normal myocardium had been reached [17]. LGE MRI 

images were scanned with a field-of-view 380×380mm2 and 

reconstructed to 60–68 slices at 0.75×0.75×2mm3.  

The LA and PVs geometry would ideally be segmented directly 

using 3D LGE MRI dataset. However, this is difficult because 

healthy myocardium is ‘nulled’ and only scar tissue is seen with high 

signal. In this study, instead of using un-gated MRA, a respiratory 

and cardiac gated 3D Roadmap image, i.e., using a balanced steady 

state free precession sequence (TE/TR 1ms/2.3ms), has been 

acquired for each patient to resolve the cardiac anatomy. The 

Roadmap data were acquired with a field-of-view 380×380mm2 and 

reconstructed to 160 slices at 0.8×0.8×1.6mm3. Both 3D LGE MRI 

and Roadmap data were acquired during free-breathing using a 

crossed-pairs navigator positioned over the dome of the right 

hemi-diaphragm with navigator acceptance window size of 5mm 

and CLAWS respiratory motion control [18].    

2.2. Multi-Atlas Based Whole Heart Segmentation 

A MA-WHS method was developed to derive the LA and PVs 

(LA+PVs) geometry [19], [20]. It was applied on the Roadmap 

images and then mapped to LGE MRI (dashed box region in Figure 

1). This segmentation consists of two major steps: (1) atlas 

propagation based on image registration algorithms and (2) label 

fusion from multi-atlas propagated segmentation results. 

The whole heart atlases were constructed using 30 MRI Roadmap 

studies retrieved from the Left Atrium Segmentation Grand 

Challenge organized by King’s College London [21]. For each atlas 

dataset, we have manual labels of the right and left ventricles, the 

right and left atria, the aorta, the pulmonary artery, the pulmonary 

veins and the appendages. MA-WHS executes an atlas-to-target 

registration in order to maximizing the similarity between the target 

image ( ) and each atlas dataset (             ), where    and 

   are the intensity image and the corresponding segmentation label 

image of the  -th atlas (    ). Then a set of warped atlases can be 

derived                  , where    and    are the warped 

atlas intensity image and corresponding segmentation result. In this 

study, a hierarchical registration scheme was applied for 

segmentation propagation [22]. 

In order to generate one final segmentation for the LA+PVs 

geometry from the 30 propagated results, a label fusion algorithm is 

required. This can be achieved using local weighted label fusion, 

which evaluates local similarity between patches from the atlases 

and the target image, that is 

            
           

∑                       

 

 

where     and     are the labels of the background and LA+PVs, 

respectively, and the local weight            is determined by the 

local similarity      between the target image and the atlas.        

is the Kronecker delta function which returns 1 when     and 

returns 0 otherwise. In this study, we extended this to a multi-scale 

patch based label fusion (MSP-LF) [23], and the patches computed 

from different scale spaces can represent the different levels of 

structural information, with low scale capturing local fine structure 

and high scale suppressing fine structure but providing global 

structural information of the image. In addition, we adopted the 

multi-resolution implementation and couple it with the MSP where 

the high-scale patches can be efficiently computed using a 



  

low-resolution image space. The local similarity between two 

images using the MSP measure is computed as   

             ∑ (       
     ) 

 

 

in which                       is the target image from   

scale-space that is computed from the convolution of the target 

image with Gaussian kernel function with scale  . Here, we 

computed the local similarity in multi-scale image using the 

conditional probability of the images, that is 

 (       
     )           

        

     
 

where            and      
   

    and the conditional image 

probability is obtained from the joint and marginal image probability 

which can be calculated using the Parzen window estimation [24]. 

For each patient case, the Roadmap dataset was then registered to 

the LGE MRI dataset using the DICOM header data, and then 

refined by affine and nonrigid registration steps [25]. The resulting 

transformation was applied to the MA-WHS derived cardiac 

anatomy to define the LA+PVs geometry on the LGE MRI dataset. 

2.3. Feature Extraction—Super-Pixel Based Over-segmentation 

    Simple Linear Iterative Clustering (SLIC) [26] was used to 

separate potential enhanced atrial scarring regions from other 

healthy myocardium regions after the LA+PVs geometry was 

determined. Based on local k-means clustering, the SLIC method 

iteratively groups pixels into perceptually meaningful patches, i.e., 

super-pixels. In this study, SLIC is initialized by sampling the target 

slice of the LGE MRI image into a regular grid space with grid 

interval of 4 pixels (i.e., 3×3mm2) considering the LA wall thickness 

is approximately 3mm, and also take into account that the 

super-pixel size is still large enough to extract statistics of the 

grouped pixel intensities. 

The super-pixel over-segmentation has two uses in this study: (1) 

it has been used as a by-product tool, which can help cardiologists to 

construct a manual ground-truth segmentation of the atrial scarring 

easily and (2) the labeled super-pixels with their intensity features 

will be used to train a classifier that yields a fully automatic SAS 

(Figure 1). The workflow can be summarized in the following steps: 

(1) We asked experienced cardiologists specialized in cardiac 

MRI to perform manual mouse clicks on the LGE MRI images to 

label the enhanced atrial scarring regions. The manual mouse clicks 

were done on the original LGE MRI images without the super-pixel 

grid overlaid, which may reduce the visibility of the enhancement on 

LGE MRI images. The coordinates of the mouse clicks were used to 

select the enhanced super-pixels. Only one mouse click will be taken 

into account if multiple clicks dwell in the same super-pixel. 

(2) The LA+PVs geometry was determined by our MA-WHS 

method. We then applied a morphological dilation (assuming LA 

wall thickness is 3mm) to extract the LA wall and PVs. The blood 

pool regions were extracted by a morphological erosion (5mm) from 

the endocardial LA boundary and the pixel intensities were 

normalized according to the blood pool intensities [9].  

(3) We masked the selected enhanced super-pixels using the LA 

wall and PVs segmentation. Only the super-pixels having a defined 

overlap (≥20%) with the LA wall and PVs segmentation were 

selected as enhancement. Other super-pixels were discarded as they 

were considered to be enhancement from other confounded tissues. 

The other super-pixels overlapped with the LA wall and PVs but not 

selected as enhancement were considered as non-enhancement. For 

each super-pixel, eight intensity features were extracted including 

minimum, maximum, mean, median, standard deviation, kurtosis, 

mode, and entropy. Together with the super-pixel labels, the training 

dataset was formed. 

(4)  Once we extracted the enhanced super-pixels, they were 

combined to create a binary image for each slice, i.e., 1 for enhanced 

super-pixels and 0 for unenhanced. The binary image was overlaid 

on the original LGE MRI images and our cardiologists performed 

manual corrections to create the final boundaries (ground truths) of 

the enhanced atrial scarring. 

2.4. Supervised Classification—Stacked Sparse Auto-Encoders 

After the training dataset was established, Stacked Sparse 

Auto-encoders (SSAE) based classification was applied to classify 

the labeled super-pixels and subsequently derive the final SAS 

(Figure 1). SSAE is a type of deep learning architecture, which is 

built by stacking multiple layers of basic Sparse Auto-encoder 

(SAE), in which the outputs of each layer is wired to the inputs of the 

successive layer, and connecting a Softmax classifier as the final 

layer of the network for accomplishing the classification task (Figure 

2). In addition, each SAE is a multilayer feed-forward neural 

network trained to represent the input with backpropagation. First, 

the unsupervised pre-training of such architecture is performed one 

layer at a time by minimizing the error in reconstructing its input and 

learning an encoder and a decoder, which yields a set of weights   

and biases  . Second, the Softmax layer is trained in a supervised 

fashion. Third, supervised fine-tuning is used to improve the deep 

neural network performance using backpropagation on the whole 

multilayer network. More details of the SSAE can be found 

elsewhere [27]–[29].  

 
Figure 2: The architecture of SSAE and Softmax classifier for super-pixel 
classification (8 is the number of intensity features, n is the number of 

super-pixels used for training, 50 and 25 are the sizes of the hidden layers).   

2.5. Experimental Settings and Performance Measure 

In this study, we validated the LA+PVs segmentation and the 

SAS respectively against established ground truths from manual 

segmentations by experienced expert cardiologists. For the LA+PVs 

segmentation, Dice score [30], Hausdorff distance (HD) [31] and 

Average Surface Distance (ASD) [30] were used as evaluation 

metrics. For the SAS, we employed leave-one-patient-out 

cross-validation (LOO CV) and reported the cross-validated 

accuracy, sensitivity, specificity, area under the receiver operating 

characteristic (ROC) curve (AUC), and the Dice score [32]–[34].   
 

3. RESULTS 
Figure 3 shows the training data construction procedure (refer to 

the subsection 2.3 and Figure 1). We can observe that the labeled 

super-pixels (enhanced or non-enhanced) are not restricted by the 

LA wall thickness (i.e., LA wall and PVs regions between the green 

and magenta curves as shown in Figure 3 (i-j)). Table 1 tabulates the 

quantitative results of our MA-WHS and final SAS. For MA-WHS, 

we obtained a mean Dice score of 0.9, mean ASD of 1.5mm, and 

mean HD of 9.5mm. Most of the main LA volumes were segmented 

accurately with the majority of errors appearing at distal PVs 

regions. For SAS, we achieved classification with accuracy of 0.89 

and AUC of 0.94. The final Dice score of SAS is 0.78±0.08 (Table 

1). Compared with standard implementations of other methods, our 

technique obtained superior SAS (Figure 4). Figure 5 shows the final 

qualitative comparison results of SAS between the ground truth and 

our fully-automated super-pixel classification based framework in 

an example pre-ablation and an example post-ablation study. 
 

4. DISCUSSION AND CONCLUSION 

In this work, we presented a fully automatic framework to 



  

differentiate enhanced atrial scarring from LGE MRI images. The 

framework consists of two major components, i.e., MA-WHS and 

SAS, which is achieved by SSAE based deep learning for 

super-pixel classification. Experiments on 20 clinical studies have 

shown promising results compared to the established ground truth. 
 

 
Figure 3: Training data construction for an example pre-ablation (left 

column) and an example post-ablation (right column) case. (a-b): original 

images; (c-d): SLIC super-pixels on ROIs of LA+PVs derived from 
MA-WHS; (e-f): manual mouse clicks; (g-h) MA-WHS results with 3D MIP; 

(i-j): labeled training dataset for further classification (yellow: labeled 

enhanced atrial scarring; blue: labeled non-enhanced super-pixels).  
 

Table 1: Quantitative results of MA-WHS and final SAS. 
  Accuracy Sensitivity Specificity AUC Dice Score HD (mm) ASD (mm) 

MA-WHS ― ― ― ― 0.90±0.12 9.53±6.01 1.47±0.89 

SAS 0.89 0.95 0.71 0.94 0.78±0.08 ― ― 
 

Compared to existing methods with manually delineated 

LA+PVs, our method obtained significantly higher Dice scores 

(Figure 4). The four methods we compared in this study were 

described in the benchmarking work [9]; however, we only 

implemented standard versions of these algorithms and did not 

perform further optimization. Moreover, the datasets for which those 

algorithms were tuned are different from those used in our study; 

therefore, a totally fair comparison may not be possible although 

similar performance can be observed between our implementation 

and those reported in [9] especially for the pre-ablation cases. For 

post-ablation cases, our SAS results showed similar results to the 

best performed method reported in [9] but with smaller variance, 

which may be due to the fact that the datasets used in the 

benchmarking work were acquired from multiple institutions.   

 
Figure 4: Comparison results with other atrial scarring segmentation 

methods using DICE. Thr: simple thresholding; SD4: conventional standard 

deviation (4 SDs were tested); KM: k-means clustering; FCM+GC: fuzzy 
c-means clustering with graph-cuts; +M: with manual delineated LA+PVs. 

 

SSAE has been successfully applied for various classification 

tasks, and it has also proved to be a powerful feature extractor. A 

possible limitation of our study is that we still used handcrafted 

intensity features derived from our super-pixels. In the future work, 

we will investigate the features directly derived from the SSAE. 
     

 
Figure 5: Final SAS results (cyan regions in (c) and (d)) for an example 
pre-ablation (left column) and an example post-ablation (right column) case 

compared to the ground truth (yellow regions in (a) and (b)). 
 

As far as we know, this is the first study that applied a deep 

learning based classifier for fully automatic atrial scarring 

segmentation. The proposed framework has demonstrated a robust 

and efficient way to segment the atrial scarring from LGE MRI 

images. Based on the results on 20 longstanding persistent AF cases 

that contain both pre- and post-ablation LGE MRI scans, we believe 

that it is straightforward to deploy our method in the clinical 

environment. By using our framework, a patient-specific LA+PVs 

geometry model and an objective SAS can be achieved rapidly for 

individual AF patient without manual intervention. 
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