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Maximal-entropy random walks in complex networks with limited information
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Maximization of the entropy rate is an important issue to design diffusion processes aiming at a well-mixed
state. We demonstrate that it is possible to construct maximal-entropy random walks with only local information
on the graph structure. In particular, we show that an almost maximal-entropy random walk is obtained when the
step probabilities are proportional to a power of the degree of the target node, with an exponent α that depends
on the degree-degree correlations and is equal to 1 in uncorrelated graphs.
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In the last decade increasing attention has been devoted
to the study of random walks on complex topologies [1,2].
Various features of random walks on networks, such as
passage times [3–5] and spectral properties [6,7], have been
investigated, and random walks have also been used to
detect communities [8,9], to evaluate centrality of nodes
[3,10,11], and to obtain coarse-grained graphs [6]. Another
quantity recently considered is the entropy rate, a measure to
characterize the mixing properties of a stochastic process [12].
In particular, attention has been focused on designing random
walks with maximal entropy rate on a given graph [13–17],
that is, choosing the transition probabilities of the random
walk in such a way that the random walkers are maximally
dispersing in the graph, exploring every possible walk with
equal probability. Practical examples where the maximization
of entropy rate is important are diffusion processes which
aim at well mixing, such as spreading information about a
node’s state (its healthy or infected condition, its availability
or congestion, etc.) [17], mixing in metapopulations models
[18], or global synchronization of moving agents by local
entrainment [19].

In principle, the optimization of entropy rate could require
the definition of transition probabilities relying on the history
of the walker’s positions. However, it has been proven that
allowing a long-term memory of the past is not needed in order
to construct maximal-entropy random walks, since it turns out
that there always exists an optimal set of transition probabilities
that is Markovian [13–16]. Namely, the maximum entropy
rate is obtained with a Markov random walk in which the
probability to step from node i to node j is equal to aij uj

λui
,

where λ is the largest eigenvalue of the adjacency matrix
A = {aij } of the graph and u is the associated eigenvector [16].
The corresponding value of the maximum entropy rate is
equal to ln λ. This random walk process has the interesting
property to be biased, in the sense that a walker follows a
link (i,j ) with a probability proportional to the importance of
its end j , as measured by its eigenvector centrality uj [20].
However, the main problem with a real implementation is
that, at each time step, the walker needs to have a global
knowledge of the network: It needs to know the adjacency
matrix of the entire graph. Such global information is very

often unavailable. A walker at a node i usually has only local
information, in the sense that it knows the first neighbors
of node i and possibly some of their topological properties,
such as their degree [17]. In this paper, we prove that almost
maximal-entropy random walks can indeed be obtained with a
limited and local knowledge of the network. We show how to
construct them by solely using the degrees of first and second
neighbors of the current node.

Let us consider a Markov random walker moving from node
to node on a connected, undirected, and unweighted graph with
N nodes and K links. At each time step, the walker moves
from the current node to one of its neighbors. If we indicate
as π (j |i) the probability of jumping from i to j [with the
normalization condition

∑
j π (j |i) = 1 ∀i], then π (j |i) �= 0

if and only if (iff) aij = 1, that is, if and only if j belongs
to the neighborhood of i, Ni . We assume that the walker has
the freedom to select the first neighbors of i with different
probabilities, so that not all nodes in Ni are equally selected
and some of them are preferred to the others. The simplest case
to consider is that of a regular graph, that is, a graph in which
all nodes have the same degree. The graph can be a random
regular graph, or a regular lattice. In such a case, since all the
first neighbors of a node are equivalent, the best choice is to
set π (j |i) = aij /

∑
j aij , that is, to select one of the nodes in

Ni at random with uniform probability. Things are different
in graphs where the nodes have different degrees, especially
in graphs with highly heterogeneous degree distributions. As
we show below, in these cases, maximally random walks on
a graph can be also obtained with only a limited and local
knowledge of the topology of the graph.

The optimal random walk on a given graph can be rig-
orously determined on mathematical grounds by considering
the entropy rate h of the stochastic processes associated to
different random walks [12]. A trajectory of t steps generated
by a random walk starting at a fixed node i is described by the
sequence of occupied nodes i,i1,i2, . . . ,it , where i1,..., it are
all indices that can take integer values between 1 and N . This
means that the walker first moves from i to node i1, then it
jumps to node i2, and so on. In practice, there is a maximum of
M(t) different allowed sequences of length t , corresponding
to all possible walks of length t (and starting at node i) on
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the graph under study. Depending on the rules of the random
walk, not all possible sequences will appear, while some of
them will occur with a probability higher than the others. If
we denote as joint probability p(i,i1,i2, . . . ,it ) the probability
that the sequence i,i1,i2, . . . ,it is generated by a given
random walk, then the entropy rate of the random walk, h, is
defined as

h = lim
t→∞

St

t
, (1)

where St is the Shannon entropy of the set of
trajectories of length t starting at node i: St =
−∑

i1,i2,...,it
p(i,i1, . . . ,it ) ln p(i,i1, . . . ,it ). The minimum

possible value of the entropy rate, hmin = 0, is obtained when,
for large time t , only one trajectory dominates. On the other
hand, the maximum possible value is obtained when, for large
time t , all the M(t) allowed trajectories have equal probability
to occur, that is, p(i,i1, . . . ,it ) = 1/M(t) if i,i1, . . . ,it is a
walk on the graph originating in i, and p(i,i1, . . . ,it ) = 0
otherwise. The maximum value of the entropy is equal to
hmax = limt→∞ M(t)

t
. Now, in the most general case, the

probability of having a sequence of t nodes originating at
a given node i can be written (for any t > 1) in terms of
conditional probabilities as

p(i,i1, . . . ,it ) = p(i1|i)p(i2|i,i1) . . . p(it |i,i1, . . . ,it−1).

Summing both ends over i2,i3, . . . ,it , and using the normal-
ization conditions

∑
it

p(it |i,i1,i2, . . . ,it−1) = 1 for t � 2, we
get an expression for the conditional probability at the first
step as a function of the t times joint probabilities:

p(i1|i) =
∑

i2,i3,...,it

p(i,i1, . . . ,it ). (2)

This means that, no matter how long the memory in the
random walker is, we can always describe it as a Markov
random walker, provided that we define the transition matrix
of the Markov chain π (i1|i) in terms of the joint probabilities
p(i,i1, . . . ,it ) as in Eq. (2). In particular, if we want to
construct a maximal-entropy random walk, we have to set
p(i,i1,i2, . . . ,it ) = 1/M(t) iff i,i1,i2, . . . ,it is a walk on the
graph and p(i,i1,i2, . . . ,it ) = 0 otherwise. The number of
walks of length t originating in i can be written in terms
of the adjacency matrix as M(t) = ∑

i1,i2,...,it
aii1ai1i2 . . . ait−1it .

Hence, the joint probability of a trajectory i,i1,i2, . . . ,it reads

p(i,i1, . . . ,it ) = aii1ai1i2 . . . ait−1it∑
i1,i2,...,it

aii1ai1i2 . . . ait−1it

, (3)

and the transition matrix of the Markov random walker with
the maximal entropy is finally given by

π (i1|i) = lim
t→∞

aii1

∑
i2

ai1i2 . . .
∑

it
ait−1it∑

i1
aii1

∑
i2

ai1i2 . . .
∑

it
ait−1it

. (4)

The value of the entropy rate in Eq. (1) can then be calculated
directly from matrix π , as for any ergodic Markov chain,
from [12]

h = −
∑

i,j

π (j |i) · w∗(i) ln[π (j |i)], (5)

where w∗(i) is the ith component of the stationary distribution.
From Eq. (4) it is clear that, in the most general case, in order

for a walker at a node i to select one of its first neighbors to
step on, the walker needs to know not only which node is inNi ,
but also the neighborhood of first neighbors, the neighborhood
of second neighbors, and so on. In practice, the local choice
of moving from i to one particular neighbor i1, depends on
the whole adjacency matrix of the graph. However, as we
demonstrate below, this global information is not necessary in
most of the cases.

Uncorrelated networks. Uncorrelated graphs can
be described by the degree sequence of the nodes
{k(1),k(2), . . . ,k(N )}, corresponding to a degree distribution
Pk , since the degree of a node does not depend on the degree
of its first neighbors. In mathematical terms, this means
that the conditional probability Pk′|k does not depend on k

and can be written in terms of the degree distribution as
P unc

k′|k = k′Pk′/〈k〉, where the right-hand side is the probability
to end up in a node of degree k′ by choosing an edge at random
with uniform probability. Consequently, the average degree
of the neighbors of node j , knn(j ) = 1/k(j )

∑
l ajlk(l), does

not depend on the degree of j , knn(j ) = knn∀j , and the last
two summations in the numerator and in the denominator
of Eq. (4), namely,

∑
it−2

ait−3it−2

∑
it−1

ait−2it−1k(it−1) =∑
it−2

ait−3it−2k(it−2)knn(it−2) can be written as knn

∑
it−2

ait−3it−2

k(it−2). The constant knn at the numerator and at the
denominator cancels out so that the same argument can be
repeated again and again. Finally, the formula factorizes into

π1(i1|i) = aii1k(i1)∑
i1

aii1k(i1)
, (6)

where, by the symbol π1 we mean the first order approximation
to the transition matrix π in Eq. (4). This formula tells us that
the best diffusion process on a uncorrelated graph is a random
walk whose motion is linearly biased on node degrees. Thus,
a walker at a given node, only needs to have information on its
first neighbors and their degree. Since the degrees of different
nodes are not correlated, a local information of the degree
of first neighbors is, in this case, sufficient to construct the
diffusion process with maximal entropy. Such information is
“locally available” to the walkers, meaning that a walker at
node i has complete information on the degree of each node
in its neighborhood Ni . Now, it is intuitive that a random
walk choosing a node j proportionally to k(j ), so that all
the trajectories of length 2 starting in i will occur with the
same probability, will be more random than a walker selecting
uniformly the first neighbors of i.

Formula (6) gives theoretical grounds to the results of
Ref. [17], where random walks with power law dependence
π (i1|i) ∝ kα(i1) were explored as a function of α (α > 0
indicates a bias toward high-k neighbors, while α < 0 means
preferring low-k nodes), and it was numerically found that
α = 1 is the best value if the graph is uncorrelated. Of course,
if all nodes have the same degree, as in a regular graph, the
transition matrix reduces to that of an unbiased walker:

π0(i1|i) = aii1∑
i1

aii1

. (7)

This is the lowest possible approximation for π in Eq. (4):
In the case of no available information, each neighbor has
the same probability to be selected. The values of h obtained
numerically with transition matrices π0 and π1 in different
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TABLE I. The entropies of random walks with no information, h(π0), and with local information, respectively, on nearest, h(π1), and
next-nearest neighbors, h(π 2), are compared to the maximal possible entropy hmax = h(π ) = ln λ on different graph models with N = 500 and
average degree 〈k〉 = 6, on N = 40 × 40 regular square lattices with defects (see Ref. [21]), and on various real networks.

h(π0)
h(π )

h(π1)
h(π )

h(π2)
h(π ) hmax = h(π )

Regular lattice 1.000 1.000 1.000 1.79
Random regular graph 1.000 1.000 1.000 1.79
ER random graph 0.954 0.993 0.998 1.98
Uncorrelated scale-free γ = 1.5 0.886 0.992 0.996 2.36
BA model 0.825 0.976 0.996 2.52
Assortative scale-free γ = 1.5 0.876 0.991 0.999 2.44
Disassortative scale-free γ = 1.5 0.937 0.990 0.997 2.18

Regular lattice (1% defects) 0.996 0.997 0.998 1.38
Regular lattice (10% defects) 0.967 0.978 0.981 1.34
Regular lattice (20% defects) 0.931 0.955 0.963 1.29

Internet autonomous system [22] 0.744 0.900 0.980 4.10
U.S. Airports [18] 0.879 0.990 0.997 3.88
E-mail [23] 0.881 0.983 0.997 3.03
SCN (cond-mat) [24] 0.694 0.867 0.946 3.17
SCN (astro-ph) [24] 0.784 0.941 0.973 4.41
PGP [25] 0.597 0.920 0.976 3.75

models of uncorrelated networks are reported in Table I. In
agreement with our predictions, in regular lattices and in
random regular graphs, h(π0) is equal to the maximal possible
entropy hmax = ln λ. In Erdős-Rényi (ER) random graphs not
all nodes have the same degree, so that a random walk linearly
biased on degree has an entropy h(π1) that is much closer to
the maximum than h(π0). This effect is even more evident in
scale-free graphs, that is, in graphs with a very heterogeneous
degree distribution.

Networks with degree-degree correlations. Graphs with
degree-degree correlations are described in terms of their
degree distribution Pk and of a nontrivial Pk′|k . This is because
the probability that a link from a node of degree k arrives
at a node of degree k′ does not simply factorize in terms of
the degree distribution. In such graphs the average degree of
the first neighbors of a node j , knn(j ), does depend on k(j ).
Therefore, in analogy with Eq. (6) we can define a second
order approximation of Eq. (4),

π2(i1|i) = aii1

∑
i2

ai1i2k(i2)
∑

i1
aii1

∑
i2

ai1i2k(i2)
(8)

= aii1k(i1)knn(i1)∑
i1

aii1k(i1)knn(i1)
,

describing a Markov walker that, at each time step, selects
a first neighbor, i1, of the current node, with a probability
proportional to the sum of the degrees of the first neighbors
of i1. This is equivalent to make equiprobale all the walks
of length 3 originating in i. In conclusion, to construct high-
entropy random walks on correlated graphs, a walker at a given
node needs to know the degree of first and second neighbors
of the current node, which is still local information.

In Table I we report h(π2) for various models and for
real networks. In models of uncorrelated graphs h(π2) is
not very different from h(π1), while in models of correlated
graphs, in lattices with defects and in most of the networks

from the real world h(π2) is a much better approximation of
h(π ) than h(π1). In most real-world networks, degree-degree
correlations are such that the average degree of the first
neighbors of a node exhibits a clear power-law dependence
on degree: knn(j ) ∼ [k(j )]−ν , with ν > 0 (ν < 0) for disas-
sortative (assortative) networks [2]. For instance, as shown in
the inset of Fig. 1, ν � 0.4 for the Internet at the autonomous
systems (AS) level [22]. Plugging this dependence into Eq. (8),
we get an approximate form for the maximal-entropy random
walk in a correlated random graph in terms of degree-biased
random walks:

π2(i1|i) � aii1 [k(i1)]1−ν

∑
i1

aii1 [k(i1)]1−ν
. (9)
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FIG. 1. (Color online) Entropy rate of power-law biased random
walks as a function of the degree exponent α for Internet AS.
Horizontal lines correspond to, from bottom to top, h(π0), h(π 1),
h(π 2), and hmax = h(π ). (Inset) Average degree knnof the first
neighbors of nodes of degree k, as a function of k, with fit k−0.4.
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In practice, on a correlated network, an approximation for the
maximal-entropy random walk can be obtained by considering
a random walk whose motion is biased as a power of the
target node degree, with an exponent α = 1 − ν. Hence, the
optimal bias αopt is larger (smaller) than 1 for assortative
(disassortative) networks, meaning that we have to prefer a
superlinear (sublinear) bias on the node degree. As an example,
in Fig. 1 we report the entropy rate of a biased random
walk as a function of the exponent α on a disassortative
real-world network. We found αopt = 0.6 for Internet AS,
which is perfectly in agreement with the value ν = 0.4 in the
inset, through the relation αopt = 1 − ν. We have also checked
that this relation holds for the other real networks in Table I.

Networks with higher-order degree correlations. Similar
arguments can be repeated for networks with higher-order
correlations. This procedure generates a class of biased random
walks defined by the transition matrices π0, π1, π2, etc.,
incorporating more and more information about the system
structure. In the supplemental material [21] we studied how
this sequence of transition matrices converges to π in different
networks. In the limit case in which a graph has correlations
at all orders, we have to rely on the full transition matrix
of Eq. (4), which can be also expressed by means of the
eigenvalues and eigenvectors of the adjacency matrix of
the graph. In fact, the numerator and the denominator of
(4) can be rewritten in terms of powers of the adjacency
matrix, respectively, as aii1

∑
it
(At−1)i1it = aii1 (At−1 · 1)i1 and∑

it
(At )iit = (At · 1)i , where (At )ij indicate the entry i,j of

matrix At , and 1 is a vector of ones. By making use of the

power method for t → ∞, we finally get

π (i1|i) = aii1ui1

λui

= aii1ui1∑
j aijuj

, (10)

where λ and vector u are, respectively, the largest eigenvalue
and its associated eigenvector of the adjacency matrix [26].
Equation (10) represents a Markov walk whose transition
probability is linearly biased by the components of eigenvector
u, also known as the eigenvector centrality of the node [20], and
it is indeed the same transition matrix proposed in [16] as the
process with the maximum possible entropy rate hmax = ln λ

[13–16].
In order to perform a maximal-entropy Markov walk on a

graph, at each time step, a walker needs a global knowledge of
the whole network and has to compute u, which has O(K)
computational complexity. However, global information is
in practice always unavailable in real systems. As we have
shown in this paper, this global knowledge is not necessary
since in many real-world networks long-range interactions
are weak and can be neglected. It is therefore possible to
construct almost maximal-entropy random walks with only
local information on the graph structure. This can be done with
O(〈k〉) complexity, a dramatic improvement which opens up to
practical applications in social, biological, and technological
systems.
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