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Abstract. In this paper we consider a fractional wave equation for hypoelliptic
operators with a singular mass term depending on the spacial variable and prove
that it has a very weak solution. Such analysis can be conveniently realised in the
setting of graded Lie groups. The uniqueness of the very weak solution, and the
consistency with the classical solution are also proved, under suitable considerations.
This extends and improves the results obtained in the first part [ARST21a] which
was devoted to the classical Euclidean Klein-Gordon equation.
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1. Introduction

The aim of this paper is to contribute to the study of the Klein-Gordon equation
for positive (left) Rockland operator R (left-invariant hypoelliptic partial differential
operator which is homogeneous of positive degree ν) on a general graded Lie group G,
with a possibly singular mass term depending on the spacial variable; that is for T > 0,
and for s > 0 we consider the Cauchy problem{

utt(t, x) +Rsu(t, x) +m(x)u(t, x) = 0 , (t, x) ∈ [0, T ]×G ,

u(0, x) = u0(x) , ut(0, x) = u1(x), x ∈ G ,
(1.1)

where m is a non-negative and possibly singular function/distribution.
The setting of Rockland operators on graded Lie groups allows one to consider both

elliptic and subelliptic settings in (1.1). The simplest example is that of the standard
Klein-Gordon equation, when we take G = Rd to be the Euclidean space, and R = −∆
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to be the Laplacian on Rd. However, already on Rd, the setting of (1.1) allows one to
consider more general evolutions, for example, taking

R = (−1)m
d∑
j=1

∂2m

∂x2mj
,

for any integer m. Such operators are also Rockland operators on Rd, as we explain
in the next section. However, the general setting of (1.1) allows one to also consider
hypoelliptic operators. The simplest example would be G being the Heisenberg group,
and R the positive sub-Laplacian on it. More generally, if G is any stratified group (or
a homogeneous Carnot group), and X1, . . . , XN are the generators of its Lie algebra
(satisfying the Hörmander condition), we can consider

R = (−1)m
N∑
j=1

X2m
j ,

for any integer m, where we understand Xj also as the derivative with respect to the
vector field Xj .

The main feature of (1.1) is that we will not assume any regularity on the mass coef-
ficient m. Especially, we are interested in irregular m, for example being δ-distribution,
or even δ2, if understood appropriately in the sense of multiplication of distributions.
We note that in this situation the usual notion of weak solutions is not applicable
to (1.1) in view of the Schwartz impossibility result [Sch54] on the multiplication of
distributions.

Thus, in this paper we work with the concept of very weak solutions. More specifi-
cally, we will show its applicability to the Cauchy problem (1.1) for the Klein-Gordon
equation for the Rockland operator R on the graded Lie group G with a singular mass
depending on the spacial variable. This concept was introduced in [GR15] to deal with
the Schwartz impossibility result about multiplication of distributions [Sch54], in the
context of wave type equations with singular coefficients. Later, this analysis was ap-
plied to other hyperbolic type equations with singular coefficients [RT17a], [RT17b],
[ART19], and [MRT19]. The wave type equations with time-dependent coefficients on
graded Lie groups were analysed in [RT21] for Hölder coefficients, and in [RY20] for
distributional time-dependent coefficients, using the notion of very weak solutions. All
these works deal with the time-dependent equations and in the recent papers [Gar20],
[ARST21a], [ARST21b], and [ARST21c], the authors start to develop the notion of
very weak solutions for equations with (irregular) space-depending coefficients.

The present paper is the extension and improvement of the results obtained in the
first part [ARST21a] which was devoted to the classical Klein-Gordon equation. In fact,
the setting of [ARST21a] was the equation (1.1) for G = Rd and R = −∆ being the
positive Laplacian on the Euclidean space. Consequently, the results here contain the
results of [ARST21a] as a special case, and we also use this chance to slightly correct
the consistency statement given in that paper, see Remark 5.3, as well as a clarifying
Remark 4.7.

2. Preliminaries

Let us briefly recall some basic concepts, terminology and notation on graded Lie
groups that will be useful for the ideas we develop throughout this paper. For a more
detailed exposition we refer to Folland and Stein [Chapter 1 in [FS82]], or, to the more
recent open access book, by Fischer and the second author [Chapter 3 in [FR16]].
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Let G be a nilpotent Lie group, and let g be its Lie algebra. Its lower series is the
descending sequence {gi} of ideals defined inductively by g1 = g, gi = [g, gi−1], for
i > 1. If g admits a gradation of vector spaces as g =

⊕∞
i=1 gi, where all, but finitely

many gi’s are equal to {0}, and is such that [gi, gj ] ⊂ gi+j , for all i, j, then G is a
graded Lie group. Graded Lie groups are naturally homogeneous Lie groups; that is g
is equipped with a one-parameter family {Dr}r>0 of automorphisms of g of the form
Dr = exp(A logr), with A being a diagonalisable linear operator on g with positive
eigenvalues. Such automorphisms shall be called dilations.

We have the following nested subclasses of Lie groups:

nilpotent ⊃ homogeneous ⊃ graded ⊃ stratified ⊃ {Heisenberg, Engel, Cartan} .
The cases of the Heisenberg, Engel and Cartan groups, are examples of graded Lie
groups whose associated representation theory is well-understood in the sense that there
exists a complete and explicit classification of the unitary, irreducible representations on
them; see e.g. [Tay84], [Dix57], as well as the analysis in [Cha20], [Cha21]. For graded
Lie algebras g of dimension n, the canonical family of dilations, is the one dictated by
the gradation of g, and is given by

X
(j)
i ◦Dr = rviDr ◦X(j)

i , (2.1)

where X
(j)
i ∈ gj , i = 1, . . . , n, and vi’s are the same for all vectors X

(j)
i ∈ gj . These

vi’s are called the dilations’ weights.
In the case of graded Lie groups, or more generally in the case of nilpotent Lie

groups, the exponential map (on the group) is a diffeomorphism from g onto G, un-
der the group law that has been defined accordingly to the structure of g due to the
Baker–Campbell–Hausdorff formula; see, e.g. [CG90]. More generally, this identifica-
tion allows for the transmission of ideas from the infinitesimal level of the Lie algebra
g to the level of the group G. Additionally, when g is homogeneous, then, the dila-
tions can be transported to the group side, while the Lebesgue measure dx on g is the
bi-invariant Haar measure on G, and the number Q that satisfies d(Dr(x)) = rQ dx,
that is the sum of the eigenvalues of the matrix A, shall be called the homogeneous
dimension of G.

On the other hand, any element π ∈ Ĝ of the unitary dual of G, with π acting on
some separable Hilbert space Hπ, gives rise to the representation dπ on the space of
smooth vectors H∞π on the infinitesimal level; that is we can define

dπ(X)v := lim
t→0

1

t
(π(exp(tX))v − v) , X ∈ g , v ∈ H∞π .

The above definition, due to the Poincaré-Birkhoff-Witt Theorem (see, e.g. [Bir37], see
also a discussion in [FR16]), that identifies that space of left-invariant operators in g
with the universal enveloping Lie algebra U(g), can be extended to any T ∈ U(g), i.e.,
we can write dπ(T ); or, with an abuse of notation, π(T ).

A remarkable class among left-invariant operators, that generalises the notion of the
sub-Laplacian on the bigger class of graded groups, is that of Rockland operators, which
are usually denoted by R. The latter is a class of operators that are hypoelliptic on G
[HN79], and homogeneous of a certain positive degree. So, by Rockland operators we
understand the homogeneous left-invariant hypoelliptic differential operators on G. For
additional characterisations of the Rockland operators, we refer to [Roc78], [Bea77],
[TR97], as well as to a presentation in [FR16].

We recall that R and π(R), are densely defined on their domains D(G) ⊂ L2(G),
and H∞π ⊂ Hπ, respectively (cf. [Proposition 4.1.15 in [FR16]]. The latter implies that
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the positivity of R, as required for our purposes, amounts to the condition

(Rf, f)L2(G) ≥ 0 , f ∈ D(G) .

We remark that, for a positive Rockland operator R, the spectrum of the operator

π(R), with π ∈ Ĝ \ {1}, is discrete [HJL85], which allows us to choose an orthonormal
basis for Hπ such that the self-adjoint operator π(R) can be identified with the infinite
dimensional matrix with diagonal elements π2k,k ≡ π2k, with πk ∈ R+.

Let us now recall that the group Fourier transform of a function f ∈ L1(G) at π ∈ Ĝ
is the bounded operator f̂(π) (often denoted by π(f)) on Hπ given by

(f̂(π)v1, v2)Hπ :=

∫
G
f(x)(π∗(x)v1, v2)Hπ dx , v1, v2 ∈ Hπ .

If f ∈ L2(G) ∩ L1(G), then f̂(π) is a Hilbert-Schmidt operator, and we have the
following isometry, known as the Plancherel formula∫

G
|f(x)|2 dx =

∫
Ĝ
‖π(f)‖2HS dµ(π) , (2.2)

where µ stands for the Plancherel measure on G. For a detailed exposition of the
Plancherel Theorem and the relevant theory, we refer to [Dix77; Kir07; CG90], or to
[Section 1.8, Appendix B.2 in [FR16]].

Finally, since the action of a Rockland operator R is involved in our analysis, let us
make a brief overview of some related properties.

Definition 2.1 (Homogeneous Sobolev spaces). For s > 0, p > 1, and R a positive
homogeneous Rockland operator of degree ν, we define the R-Sobolev spaces as the
space of tempered distributions S ′(G) obtained by the completion of S(G)∩Dom(R

s
ν )

for the norm

‖f‖L̇ps(G) := ‖R
s
ν
p f‖Lp(G) , f ∈ S(G) ∩Dom(R

s
ν
p ) ,

where Rp is the maximal restriction of R to Lp(G).1

Let us mention that, the aboveR-Sobolev spaces do not depend on the specific choice
of R, in the sense that, different choices of the latter produce equivalent norms, see
[Proposition 4.4.20 in [FR16]].

In the scale of these Sobolev spaces, we recall the next proposition as in [Proposition
4.4.13 in [FR16]].

Proposition 2.2 (Sobolev embeddings). For 1 < q̃0 < q0 <∞ and for a, b ∈ R such that

b− a = Q

(
1

q̃0
− 1

q0

)
,

we have the continuous inclusions

L̇q̃0b (G) ⊂ L̇q0a (G) ,

that is, for every f ∈ L̇q̃0b (G), we have f ∈ L̇q0a (G), and there exists some positive
constant C = C(q̃0, q0, a, b) (independent of f) such that

‖f‖L̇q0a (G) ≤ C‖f‖L̇q̃0b (G)
. (2.3)

In the sequel we will make use of the following notation:

1When p = 2, we will write R2 = R for the self-adjoint extension of R on L2(G).
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Notation 2.3. • When we write a . b, we will mean that there exists some con-
stant c > 0 (independent of any involved parameter) such that a ≤ cb;
• if α = (α1, · · · , αn) ∈ Nn is some multi-index, then we denote by

[α] =

n∑
i=1

viαi ,

its homogeneous length, where the vi’s stand for the dilations’ weights as in
(2.1), and by

|α| =
n∑
i=1

αi ,

the length of it;
• for suitable f ∈ S ′(G) we have introduced the following norm

‖f‖Hs(G) := ‖f‖L̇2
s(G) + ‖f‖L2(G) ;

• when regulisations of functions/distributions on G are considered, they must
be regarded as arising via convolution with Friedrichs-mollifiers; that is, ψ
is a Friedrichs-mollifier, if it is a compactly supported smooth function with∫
G ψ dx = 1. Then the regularising net is defined as

ψε(x) = ε−Qψ(Dε−1(x)) , ε ∈ (0, 1] , (2.4)

where Q is the homogeneous dimension of G.

3. Estimates for the classical solution

Here and thereafter, we consider a fixed power s > 0 of a fixed, positive (in the
operator sense) Rockland operator R that is assumed to be of homogeneous degree ν.
Moreover, the coefficient m in (1.1) will be regarded to be non-negative on G.

The next two propositions prove the existence and uniqueness of the classical solution
to the Cauchy problem (1.1), in the cases where the coefficient m is such that m ∈
L∞(G) or m ∈ L

2Q
νs (G), where, in the second case, we must additionally require Q > νs.

Proposition 3.1. Let m ∈ L∞(G), m ≥ 0, and suppose that (u0, u1) ∈ H
sν
2 (G)×L2(G).

Then, there exists a unique solution u ∈ C([0, T ];H
sν
2 (G)) ∩ C1([0, T ];L2(G)) to the

Cauchy problem (1.1), that satisfies the estimate

‖u(t, ·)‖
H
sν
2 (G)

+ ‖∂tu(t, ·)‖L2(G) . (1 + ‖m‖L∞(G)) · {‖u1‖L2(G) + ‖u0‖H sν
2 (G)
} , (3.1)

uniformly in t ∈ [0, T ].

Proof. Multiplying the equation (1.1) by ut and integrating over G, we get

<(〈utt(t, ·), ut(t, ·)〉L2(G) + 〈Rsu(t, ·), ut(t, ·)〉L2(G) + 〈m(·)u(t, ·), ut(t, ·)〉L2(G)) = 0 ,
(3.2)

for all t ∈ [0, T ]. It is easy to check that

<(〈utt(t, ·), ut(t, ·)〉L2(G)) =
1

2
∂t〈ut(t, ·), ut(t, ·)〉L2(G) ,

<(〈Rsu(t, ·), ut(t, ·)〉L2(G)) =
1

2
∂t〈R

s
2u(t, ·),R

s
2u(t, ·)〉L2(G) ,

and

<(〈m(·)u(t, ·), ut(t, ·)〉L2(G)) =
1

2
∂t〈
√
m(·)u(t, ·),

√
m(·), u(t, ·)〉L2(G) .
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Denoting by

E(t) := ‖ut(t, ·)‖2L2(G) + ‖R
s
2u(t, ·)‖2L2(G) + ‖

√
m(·)u(t, ·)‖2L2(G),

the energy functional estimate of the system (1.1), the equation (3.2) implies that
∂tE(t) = 0, and consequently also that E(t) = E(0), for all t ∈ [0, T ]. By taking into
consideration the estimate

‖
√
m(·)u0‖2L2(G) ≤ ‖m‖L∞(G)‖u0‖2L2(G) , (3.3)

by the above, it follows that each positive term that E(t) consists of, is bounded itself.
That is, we have that

‖
√
m(·)u(t, ·)‖2L2(G) . ‖u1‖

2
L2(G) + ‖R

s
2u0‖2L2(G) + ‖m‖L∞(G)‖u0‖2L2(G), (3.4)

while also that

‖ut(t, ·)‖2L2(G) , ‖R
s
2u(t, ·)‖2L2(G) . ‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

+ ‖m‖L∞(G)‖u0‖2L2(G)

. (1 + ‖m‖L∞(G)){‖u1‖2L2(G) + ‖u0‖2
H
sν
2 (G)
}, (3.5)

uniformly in t ∈ [0, T ], where we use

‖R
s
2u0‖L2(G) , ‖u0‖L2(G) ≤ ‖u0‖H sν

2 (G)
.

Observe that, to prove (3.1), it remains to show the desired estimate for the norm
‖u(t, ·)‖L2(G). To this end, we first apply the group Fourier transform to (1.1) with

respect to x ∈ G and for all π ∈ Ĝ, and we get{
ûtt(t, π) + π(R)s û(t, π) = f̂(t, π) ,

û(0, π) = û0(π) , ût(0, π) = û1(π) ,
(3.6)

where f̂(t, π) denotes the group Fourier transform of the function f(t, x) := −m(x)u(t, x).
Taking into account the matrix representation of π(R), we rewrite the matrix equation
(3.6) componentwise as the infinite system of equations of the form

ûtt(t, π)k,l + π2sk · û(t, π)k,l = f̂(t, π)k,l , (3.7)

with initial conditions û(0, π)k,l = û0(π)k,l and ût(0, π)k,l = û1(π)k,l, for all π ∈ Ĝ and

for any k, l ∈ N, where now f̂(t, π)k,l can be regarded as the source term of the second
order differential equation as in (3.7).

Now, let us decouple the matrix equation in (3.7) by fixing π ∈ Ĝ, and treat each of
the equations represented in (3.7) individually. If we denote by

v(t) := û(t, π)k,l , β
2s := π2sk , f(t) := f̂(t, π)k,l ,

and
v0 := û0(π)k,l , v1 := û1(π)k,l ,

then (3.7) becomes {
v
′′
(t) + β2s · v(t) = f(t) ,

v(0) = v0 , v
′
(0) = v1 ,

(3.8)

with β > 0. By solving first the homogeneous version of (3.8), and then by apply-
ing Duhamel’s principle (see e.g. [Eva98]), we get the following representation of the
solution of (3.8)

v(t) = cos(tβs)v0 +
sin(tβs)

βs
v1 +

∫ t

0

sin((t− s)βs)
βs

f(s) ds.
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(3.9)

Assuming without loss of generality that T ≥ 1, and using the estimates

| cos(tβs)| ≤ 1 , ∀t ∈ [0, T ] ,

and

| sin(tβs)| ≤ 1 ,

for large values of the quantities tβs, while for small values of them, the estimates

| sin(tβs)| ≤ tβs ≤ Tβs ,

inequality (3.9) yields

|v(t)| ≤ |v0|+ T |v1|+ ‖t− s‖L2[0,T ]‖f(t)‖L2[0,T ] . |v0|+ |v1|+ ‖f(t)‖L2[0,T ] ,

where we have applied the Cauchy-Schwarz inequality. Now the last estimate, if sub-
stituting back our initial functions in t, gives

|û(t, π)k,l|2 . |û0(π)k,l|2 + |û1(π)k,l|2 + ‖f̂(t, π)k,l‖2L2[0,T ] ,

where the latter holds uniformly in π ∈ Ĝ and for each k, l ∈ N. Recall that for any
Hilbert-Schmidt operator A, one has

‖A‖2HS =
∑
k,l

|〈Aϕk, ϕl〉|2 ,

for any orthonormal basis {ϕ1, ϕ2, · · · }, summing the above over k, l we get

‖û(t, π)k,l‖2HS . ‖û0(π)k,l‖2HS + ‖û1(π)k,l‖2HS +
∑
k,l

∫ T

0
|f̂(t, π)k,l|2 dt .

Next we integrate the last inequality with respect to the Plancherel measure µ on Ĝ,
so that using the Plancherel identity (2.2), we obtain

‖u(t, ·)‖2L2(G) . ‖u0‖
2
L2(G) + ‖u1‖2L2(G) +

∫
G

∑
k,l

∫ T

0
|f̂(t, π)k,l|2 dt dµ(π) , (3.10)

and if we use Lebesgue’s dominated convergence theorem, Fubini’s theorem and the
Plancherel formula we have∫

G

∑
k,l

∫ T

0
|f̂(t, π)k,l|2 dt dµ =

∫ T

0

∫
G

∑
k,l

|f̂(t, π)k,l|2 dµ dt =

∫ T

0
‖f(t, ·)‖2L2(G) dt .

(3.11)
Now, by (3.4), and the formula of f we have

‖f(t, ·)‖2L2(G) = ‖m(·)u(t, ·)‖2L2(G)

≤ ‖m‖L∞(G)‖
√
m(·)u(t, ·)‖2L2(G)

. (1 + ‖m‖L∞(G))
2{‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)
} . (3.12)

Combining the inequalities (3.10), (3.11) and (3.12) we get

‖u(t, ·)‖2L2(G) . (1 + ‖m‖L∞(G))
2{‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)
} , (3.13)

uniformly in t ∈ [0, T ]. The claim (3.1) now follows by (3.5) and (3.13). Finally, the
uniqueness of u is an immediate consequence of (3.1), and the proof is complete. �
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Proposition 3.2. Assume that Q > νs, and let m ∈ L
2Q
νs (G) ∩ L

Q
νs (G), m ≥ 0. If

we suppose that (u0, u1) ∈ H
sν
2 (G) × L2(G), then there exists a unique solution u ∈

C([0, T ];H
sν
2 (G))∩C1([0, T ];L2(G)) to the Cauchy problem (1.1) satisfying the estimate

‖u(t, ·)‖
H
sν
2 (G)

+ ‖∂tu(t, ·)‖L2(G)

.

(
1 + ‖m‖

L
2Q
νs (G)

)(
1 + ‖m‖

L
Q
νs (G)

) 1
2 {
‖u1‖L2(G) + ‖u0‖H sν

2 (G)

}
, (3.14)

uniformly in t ∈ [0, T ].

Proof. Proceeding as in the proof of Proposition 3.1, we have

E(t) = E(0) , ∀t ∈ [0, T ] , (3.15)

where the energy estimate E is given by

E(t) = ‖ut(t, ·)‖2L2(G) + ‖R
s
2u(t, ·)‖2L2(G) + ‖

√
m(·)u(t, ·)‖2L2(G) .

Now, applying Hölder’s inequality, we get

‖
√
mu0‖2L2(G) ≤ ‖m‖Lq′ (G)

‖u0‖2L2q(G), (3.16)

where 1 < q, q
′
<∞, and (q, q

′
) conjugate exponents, to be chosen later. Observe that

if we apply (2.3) for u0 ∈ H
sν
2 (G), b = sν

2 , a = 0, and q0 = 2Q
Q−νs , then q̃0 = 2, and we

have

‖u0‖Lq0 (G) . ‖R
s
2u0‖L2(G) <∞ . (3.17)

Choosing 2q = q0 in (3.16) so that q = Q
Q−νs , we get q

′
= Q

νs , so that

‖
√
mu0‖2L2(G) . ‖m‖L Q

νs (G)
‖R

s
2u0‖2L2(G) <∞ , (3.18)

and by (3.15) we can estimate

‖
√
m(·)u(t, ·)‖2L2(G) ≤ ‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

+ ‖
√
mu0‖2L2(G)

. ‖u1‖2L2(G) + ‖u0‖2
H
sν
2 (G)

+ ‖m‖
L
Q
νs (G)

‖u0‖2
H
sν
2 (G)

≤
(

1 + ‖m‖
L
Q
νs (G)

){
‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

}
, (3.19)

uniformly in t ∈ [0, T ]. Additionally, (3.15), under the estimate (3.19), implies

‖ut(t, ·)‖2L2(G) , ‖R
s
2u(t, ·)‖2L2(G) .

(
1 + ‖m‖

L
Q
νs (G)

){
‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

}
.

(3.20)
To show our claim (3.14), it suffices to show the desired estimate for the solution norm
‖u(t, ·)‖L2(G). First we observe that by the Sobolev embeddings (2.3) and Hölder’s

inequality, using (3.18) with m instead of
√
m, and ‖m2‖

L
Q
νs (G)

= ‖m‖2
L

2Q
νs (G)

, one

obtains

‖mu(t, ·)‖2L2(G) . ‖m‖
2

L
2Q
νs
‖R

s
2u(t, ·)‖2L2(G) ,

where the last combined with (3.20) yields

‖mu(t, ·)‖2L2(G) . ‖m‖
2
2Q
νs

(
1 + ‖m‖

L
Q
νs (G)

){
‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

}
. (3.21)
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Finally, using arguments similar to those we developed in Proposition 3.1, together
with the estimate (3.21) we get

‖u(t, ·)‖2L2(G) ≤ ‖u0‖2L2(G) + ‖u1‖2L2(G) + ‖m(·)u(t, ·)‖2L2(G)

.
{
‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

}{
1 + ‖m‖22Q

νs

(
1 + ‖m‖

L
Q
νs (G)

)}
,

uniformly in t ∈ [0, T ]. The uniqueness of u is immediate by the estimate (3.14), and
this finishes the proof of Proposition 3.2. �

4. Existence and uniqueness of the very weak solution

Here, we consider the case where the mass-term in (1.1) satisfies some moderateness
properties. The latter is satisfied in cases where, for instance, m has strong singular-
ities, namely when m = δ or δ2. This follows by Proposition 4.8 for δ, while we can
understand δ2 as an approximating family or in the Colombeau sense.

Definition 4.1 (Moderateness). (1) Let X be a normed space of functions on G. A
net of functions (fε)ε ∈ X is said to be X-moderate if there exists N ∈ N such
that

‖fε‖X . ε−N ,
uniformly in ε ∈ (0, 1].

(2) A net of functions (uε)ε in C([0, T ];H
sν
2 (G)) ∩ C1([0, T ];L2(G)) is said to be

C([0, T ];H
sν
2 (G)) ∩ C1([0, T ];L2(G))-moderate, or for brevity, C1-moderate, if

there exists N ∈ N such that

sup
t∈[0,T ]

{‖u(t, ·)‖
H
sν
2 (G)

+ ‖∂tu(t, ·)‖L2(G)} . ε−N ,

uniformly in ε ∈ (0, 1].

Definition 4.2 (Negligibility). Let Y be a normed space of functions on G. Let (fε)ε,

(f̃ε)ε be two nets. Then, the net (fε−f̃ε)ε is called Y -negligible, if the following condition
is satisfied

‖fε − f̃ε‖Y . εk , (4.1)

for all k ∈ N, ε ∈ (0, 1]. In the case where f = f(t, x) is a function also depending on
t ∈ [0, T ], then the negligibility condition (4.1) can be regarded as

‖fε(t, ·)− f̃ε(t, ·)‖Y . εk , ∀k ∈ N ,
uniformly in t ∈ [0, T ]. The constant in the inequality (4.1) can depend on k but not
on ε.

In Definitions 4.3 and 4.6, we introduce the notion of the unique very weak solution to
the Cauchy problem (1.1). Our definitions are similar to the one introduced in [GR15],
but here we measure moderateness and negligibility in terms of Lp(G) or C1-seminorms
rather than in terms of Gevrey-seminorms.

Definition 4.3 (Very weak solution). Let (u0, u1) ∈ H
sν
2 (G) × L2(G). Then, if there

exists a non-negative L∞(G)-moderate (or a L
2Q
νs (G) ∩ L

Q
νs (G)-moderate, if we addi-

tionally require Q > νs) approximating net (mε)ε, mε ≥ 0, to m, so that the family

(uε)ε ∈ C([0, T ];H
sν
2 (G)) ∩ C1([0, T ];L2(G)) which solves the ε-parametrised problem{

∂2t uε(t, x) +Rsuε(t, x) +mε(x)uε(t, x) = 0 , (t, x) ∈ [0, T ]×G,
uε(0, x) = u0(x), ∂tuε(0, x) = u1(x), x ∈ G ,

(4.2)
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for all ε ∈ (0, 1], is C1-moderate, then net (uε)ε is said to be a very weak solution to
the Cauchy problem (1.1).

We will also use a modification of this notion for data in the space E ′(G) of compactly

supported distributions. Thus, let u0, u1 ∈ E
′
(G) or as in Remark 4.9. Then, if

there exists a non-negative L∞(G)-moderate (or a L
2Q
νs (G) ∩ L

Q
νs (G)-moderate, if we

additionally require Q > νs) approximating net (mε)ε, mε ≥ 0, to m, and moderate

regularisations (u0,ε, u1,ε) ∈ H
sν
2 (G) × L2(G) of (u0, u1), so that the family (uε)ε ∈

C([0, T ];H
sν
2 (G)) ∩ C1([0, T ];L2(G)) which solves the ε-parametrised problem{

∂2t uε(t, x) +Rsuε(t, x) +mε(x)uε(t, x) = 0 , (t, x) ∈ [0, T ]×G,
uε(0, x) = u0,ε(x), ∂tuε(0, x) = u1,ε(x), x ∈ G ,

(4.3)

for all ε ∈ (0, 1], is C1-moderate, then net (uε)ε is said to be a very weak solution to
the Cauchy problem (1.1).

We note that we can also combine both cases into one, since for (u0, u1) ∈ H
sν
2 (G)×

L2(G) we can take the trivial regularisations u0,ε = u0 and u1,ε = u1 for all ε > 0.

Consequently, we can also adapt this definition for the data (u0, u1) ∈ H
sν
2 (G)×E ′(G)

or for (u0, u1) ∈ E
′
(G)× L2(G).

Remark 4.4. In Definition 4.3 above we ask for mε to approximate m, to allow for more
flexibility. This should be understood as follows. If m ∈ D′(G) is a distribution, we can
understand it as a regularisation, namely, the assumption in Definition 4.3 is that there
is a Friedrichs mollifier ψ ≥ 0 such that mε = m∗ψε. However, the word approximation
allows for more flexibility, for example, we can in principle generate an approximating
family with a net m̃ε such that the one we will discuss in (4.6). Moreover, this context
allows us to start with m being more singular than a distribution: for example, if
m = δ2 we can think of an approximating family mε = ψ2

ε . See also Remark 4.7 for a
continuation of this discussion.

We now formulate the very weak existence result, corresponding to two possibilities of
regularising with families (mε)ε with different properties, corresponding to the existence
results in Proposition 3.1 and Proposition 3.2.

Theorem 4.5. Let (u0, u1) ∈ H
sν
2 (G) × L2(G). Then, the Cauchy problem (1.1) has a

very weak solution.

Proof. Let u0, u1 be as in the hypothesis. If (mε)ε is L∞(G)-moderate (or L
2Q
νs (G) ∩

L
Q
νs (G)-moderate), then, since mε ≥ 0, by using (3.1) (or (3.14), respectively) we get

‖uε(t, ·)‖H sν
2 (G)

+ ‖∂tuε(t, ·)‖L2(G) . ε
−N , N ∈ N ,

for all t ∈ [0, T ] and for any ε ∈ (0, 1]. This means that the family of solutions (uε)ε is
C1-moderate, and completes the proof of Theorem 4.5. �

The uniqueness of the very weak solution to the Cauchy problem (1.1) can be under-
stood as if a negligible change of the net (mε)ε does not affect the asymptotic behaviour
of the family of the very weak solutions. In other words, negligible changes of the ap-
proximation mε of m lead to negligible changes in the solution family uε, with an
appropriate choices of norms to understand the negligibility. Formally, we have the
following definition.
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Definition 4.6. Let X and Y be normed spaces of functions on G. We say that the
Cauchy problem (1.1) has an (X,Y )-unique very weak solution, if for all X-moderate
nets mε ≥ 0, m̃ε ≥ 0, such that (mε − m̃ε)ε is Y -negligible, it follows that

‖uε(t, ·)− ũε(t, ·)‖L2(G) ≤ CN εN , ∀N ∈ N ,

uniformly in t ∈ [0, T ], and for all ε ∈ (0, 1], where (uε)ε and (ũε)ε are the families of
solutions corresponding to the ε-parametrised problems{

∂2t uε(t, x) +Rsuε(t, x) +mε(x)uε(t, x) = 0 , (t, x) ∈ [0, T ]×G,
uε(0, x) = u0,ε(x), ∂tuε(0, x) = u1,ε(x), x ∈ G ,

(4.4)

and {
∂2t ũε(t, x) +Rsũε(t, x) + m̃ε(x)ũε(t, x) = 0 , (t, x) ∈ [0, T ]×G,
ũε(0, x) = ũ0,ε(x), ∂tũε(0, x) = ũ1,ε(x), x ∈ G ,

(4.5)

respectively.

Remark 4.7. We note that in Definition 3 in the previous paper [ARST21a], the word
‘regularisation’ needs to be understood, in general, as an approximation not necessarily
depending on the classical convolution and specific mollifiers. In this case, our definition
of the uniqueness of the very weak solutions here includes also the version in Definition
3 in [ARST21a], but Definition 4.6 makes it more rigorous. To clarify this further,
we can take, for example, mε to be a regularisation of m by a convolution (if m is a
distribution), and take

m̃ε = mε + e−1/ε. (4.6)

Then the net (mε− m̃ε)ε is L∞-negligible, and so it is suitable to be used in Definition
4.6. If m = δ2, we can take mε = ψ2

ε for a Friedrichs mollifier ψ, and still, for example,
m̃ε as in (4.6). We also note that Definition 4.6 can be also interpreted as stability.
In fact, in Definition 4.6 we do not assume mε to approximate m since we can prove
the required property without this assumption (as in Theorem 4.10 and Theorem 4.11).
This allows for our results to be applicable to cases like m = δ2, since with this approach
we do not need to explain in which sense mε = ψ2

ε approximates m = δ2.

We now give some clarification of the moderateness assumption of the regularisations
(or approximations). Let us underline that, the global structure of E ′-distributions,
implies that the assumption on the Lp-moderateness, for p ∈ [1,∞], is natural for nets

that arise as regularisations of a compactly supported distribution in E ′ via convolutions
with a mollifier as in (2.4).

Proposition 4.8. Let v ∈ E ′(G), and let vε = v ∗ ψε be obtained as the convolution of v
with a mollifier ψε as in (2.4). Then the regularising net (vε)ε is Lp(G)-moderate for
any p ∈ [1,∞].

Proof. Recall, that for v ∈ E ′(G) we can find m ∈ N and compactly supported contin-
uous functions fβ ∈ C(G) such that

v =
∑
|β|≤m

∂βfβ ,
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where |β| denoted the length of the multi-index β. Considering the convolution of v
with a mollifier ψε as in (2.4) yields

vε = v ∗ ψε =

 ∑
|β|≤m

∂βfβ

 ∗ ψε =
∑
|β|≤m

(
∂βfβ ∗ ψε

)
,

where each term in the above sum can be rewritten as

∂βfβ ∗ ψε = 〈∂βfβ(yx−1), ψε(x)〉 = (−1)|β|〈fβ(yx−1), ∂βψε(x)〉
= (−1)|β|ε−Q〈fβ, ∂βψ(Dε−1(x)〉
= (−1)|β|ε−Q−[β]〈fβ, (∂βψ)(Dε−1(x)〉 ,

where [β] stands for the homogeneous length of β.
Finally, since fβ, ψ are compactly supported, we get fβ, (∂

βψ)(Dε−1 ·) ∈ Lp(G), for
all p, and this finishes the proof of Proposition 4.8. �

Remark 4.9. It is straightforward to extend Proposition 4.8 to its Sobolev spaces ver-
sion. Consequently, in view of this, the assumptions of Theorem 4.5 can be partially
relaxed to u0, u1 ∈ E

′
(G), or to (u0, u1) ∈ H

sν
2 (G)×E ′(G) or to (u0, u1) ∈ E

′
(G)×L2(G),

so that Theorem 4.5 also holds true for (u0, u1) ∈ {H
sν
2 (G)∪E ′(G)}×{L2(G)∪E ′(G)}.

Similar assumptions can also be made in Theorems 4.10 and 4.11 below, that show the
uniqueness of the very weak solution to the Cauchy problem (1.1).

Theorem 4.10. Suppose that (u0, u1) ∈ {H
sν
2 (G) ∪ E ′(G)} × {L2(G) ∪ E ′(G)}. Then,

the very weak solution to the Cauchy problem (1.1) is (L∞(G), L∞(G))-unique.

Proof. Let (uε)ε and (ũε)ε be the families of solutions corresponding to the Cauchy
problems (4.4) and (4.5), respectively. If we denote by Uε(t, ·) := uε(t, ·)− ũε(t, ·), then
Uε satisfies{

∂2t Uε(t, x) +RsUε(t, x) +mε(x)Uε(t, x) = fε(t, x) , (t, x) ∈ [0, T ]×G,
Uε(0, x) = 0 , ∂tUε(0, x) = 0 , x ∈ G ,

(4.7)

where fε(t, x) := (m̃ε(x)−mε(x))ũε(t, x).

The solution of the Cauchy problem (4.7) can be expressed in terms of the solution
to the corresponding homogeneous Cauchy problem using Duhamel’s principle. Indeed,
if for a fixed σ, Vε(t, x;σ) is the solution of the homogeneous problem{

∂2t Vε(t, x;σ) +RsVε(t, x;σ) +mεVε(t, x;σ) = 0 , in (σ, T ]×G,
Vε(t, x;σ) = 0 , ∂tVε(t, x;σ) = fε(σ, x), on {t = σ} ×G ,

(4.8)

then Uε is given by Uε(t, x) =
∫ t
0 Vε(t, x;σ) dσ.

Since by Minkowski’s integral inequality we know

‖
∫ t

0
Vε(t, ·;σ) dσ‖L2(G) ≤

∫ t

0
‖Vε(t, ·;σ)‖L2(G) dσ ,

using the energy estimate (3.1) to control L2(G)-norm of the solution Vε to the homo-
geneous problem (4.8), and subsequently of Uε, we get

‖Uε(t, ·)‖L2(G) ≤
∫ T

0
‖Vε(t, ·;σ)‖L2(G) dσ
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. (1 + ‖mε‖L∞(G))

∫ T

0
‖fε(σ, ·)‖L2(G) dσ

. (1 + ‖mε‖L∞(G))‖m̃ε −mε‖L∞(G)

∫ T

0
‖ũε(σ, ·)‖L2(G) dσ ,

where we use the estimate

‖fε(σ, ·)‖L2(G) = ‖(m̃ε −mε)(·)ũε(σ, ·)‖L2(G) ≤ ‖m̃ε −mε‖L∞(G)‖ũε(σ, ·)‖L2(G) .

Now, using the fact that (mε)ε is L∞(G)-moderate, while also that the net (ũε)ε, as
being a very weak solution to the Cauchy problem (4.4), is C1-moderate and that
(mε − m̃ε)ε is L∞-negligible, we get that

‖Uε(t, ·)‖L2(G) . ε
−N1+N

∫ T

0
ε−N2 dσ = T ε−N1−N2+N ,

for some N1, N2 ∈ N, and for all N ∈ N, ε ∈ (0, 1]. That is, we have

‖Uε(t, ·)‖L2(G) . ε
k ,

for all k ∈ N, and the last shows that the net (uε)ε is the unique very weak solution to
the Cauchy problem (1.1). �

Alternative to Theorem 4.10 conditions on the nets (mε)ε, (m̃ε)ε that guarantee the
very weakly well-posedness of (1.1) are given in the following theorem.

Theorem 4.11. Let Q > νs, and suppose that (u0, u1) ∈ {H
sν
2 (G) ∪ E ′(G)} × {L2(G) ∪

E ′(G)}. Then, the very weak solution to the Cauchy problem (1.1) is (L∞(G), L
2Q
νs (G))-

unique. Moreover, the very weak solution to the Cauchy problem (1.1) is also (L
2Q
νs (G)∩

L
Q
νs (G), L

2Q
νs (G))-unique and (L

2Q
νs (G) ∩ L

Q
νs (G), L∞(G))-unique.

Proof. We will only prove the (L∞(G), L
2Q
νs (G))-uniqueness as the other two uniqueness

statements are similar. Proceeding as we did in the proof of Theorem 4.10, we arrive
at

‖Uε(t, ·)‖L2(G) . (1 + ‖mε‖L∞(G))

∫ T

0
‖fε(σ, ·)‖L2(G)dσ

= (1 + ‖mε‖L∞(G))

∫ T

0
‖(m̃ε −mε)(·)ũε(σ, ·)‖L2(G)dσ.

for all t ∈ [0, T ]. Additionally, by applying Hölder’s inequality, together with the
Sobolev embeddings (2.3), we have

‖(m̃ε −mε)(·)ũε(t, ·)‖L2(G) ≤ ‖m̃ε −mε‖
L

2Q
νs (G)

‖R
s
2 ũε(t, ·)‖L2(G) ,

where since (ũε), as being the very weak solution corresponding to the L∞(G)-moderate
net (m̃ε)ε, is C1-moderate, we have

‖R
s
2 ũε(t, ·)‖L2(G) . ε

−N1 , for someN1 ∈ N .
Summarising the above, and since

‖m̃ε −mε‖
L

2Q
νs (G)

. εN , ∀N ∈ N ,

we obtain
‖Uε(t, ·)‖L2(G) . ε

k , ∀k ∈ N ,
uniformly in t, and this finishes the proof of Theorem 4.11. �
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5. Consistency of the very weak solution with the classical one

The next theorems stress the conditions, on the coefficient m and on the initial
data u0, u1, under which, the classical solution to the Cauchy problem (1.1) can be
recaptured by its very weak solution. In the statements below, we understand the
classical solutions as those given by Proposition 3.1 or Proposition 3.2, depending
on the assumptions. By the ‘regularisations’ mε = m ∗ ψε below we understand the
convolution with non-negative Friedrichs mollifiers ψ ≥ 0.

Theorem 5.1. Let Q > νs. Consider the Cauchy problem (1.1), and let (u0, u1) ∈
H

sν
2 (G)×L2(G). Assume also that m ∈ L

2Q
νs (G)∩L

Q
νs (G), m ≥ 0, and that (mε)ε, is a

regularisation of the coefficient m. Then the regularised net (uε)ε converges, as ε→ 0,
in L2(G) to the classical solution u given by Proposition 3.2.

Proof. Let u be the classical solution of (1.1) given by Proposition 3.2, and let (uε) be
the very weak solution of the regularised analogue of it as in (4.2). Then, we get{

∂2t (u− uε)(t, x) +Rs(u− uε)(t, x) +mε(x)(u− uε)(t, x) = ηε(t, x),

(u− uε)(0, x) = 0 , ∂t(u− uε)(0, x) = 0 ,

where (t, x) ∈ [0, T ]×G, and ηε(t, x) := (mε(x)−m(x))u(t, x). If we denote by Uε the
difference Uε(t, x) := (u− uε)(t, x), the above can be rewritten equivalently as{

∂2t Uε(t, x) +RsUε(t, x) +mε(x)Uε(t, x) = ηε(t, x),

Uε(0, x) = 0 , ∂tUε(0, x) = 0 .
(5.1)

Therefore, if we denote by Wε(t, x;σ) the solution to the corresponding homogeneous
problem with the initial data at {t = σ} ×G

Wε(t, x;σ) = 0 , and ∂tWε(t, x;σ) = ηε(σ, x) ,

then by Proposition 3.2 we get

‖Wε(t, ·;σ)‖L2(G) . (1 + ‖mε‖
L

2Q
νs (G)

)

(
1 + ‖mε‖

L
Q
νs (G)

) 1
2

‖ηε(σ, ·)‖L2(G)

≤ (1 + ‖mε‖
L

2Q
νs (G)

)

(
1 + ‖mε‖

L
Q
νs (G)

) 1
2

‖mε −m‖
L

2Q
νs (G)

‖R
s
2u(σ, ·)‖L2(G) ,

uniformly in t ∈ [σ, T ] and σ ∈ [0, T ], where we apply Hölder’s inequality and the

Sobolev embeddings (2.3). Since m ∈ L
2Q
νs (G), we have ‖mε −m‖

L
2Q
νs (G)

→ 0, so that

taking the limit of the above as ε→ 0, we get

‖Wε(t, ·;σ)‖L2(G) → 0 , (5.2)

uniformly in t ∈ [σ, T ] and σ ∈ [0, T ]. Now, Duhamel’s principle allows us to express
the solution to the inhomogeneous problem with respect to the homogeneous one as

Uε(t, x) =

∫ t

0
Wε(t, x;σ) dσ , (5.3)

so that, by (5.2), (5.3), and Minkowski’s integral inequality

‖
∫ t

0
Wε(t, ·;σ) dσ‖L2(G) ≤

∫ t

0
‖Wε(t, ·;σ)‖L2(G) dσ ,
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we obtain

‖Uε(t, ·)‖L2(G) ≤ T sup
σ∈[0,T ]

‖Wε(t, ·;σ)‖L2(G) → 0 , as ε→ 0.

This means that uε → u with respect to L2(G)-norm, and this finishes the proof of
Theorem 5.1. �

In the following theorem we denote by C0(G) the space of continuous functions on
G vanishing at infinity, that is, such that for every ε > 0 there exists a compact set K
outside of which we have |f | < δ.

Theorem 5.2. Consider the Cauchy problem (1.1), and let (u0, u1) ∈ H
sν
2 (G)× L2(G).

Assume also that m ∈ C0(G), m ≥ 0, and that (mε)ε, mε ≥ 0, is a regularisation of
the coefficient m. Then the regularised net (uε)ε converges, as ε → 0, in L2(G) to the
classical solution u given by Proposition 3.1.

Before giving the proof of Theorem 5.2, let us make the following observation: If
m ∈ C0(G), then ‖mε‖L∞(G) ≤ C <∞, uniformly in ε ∈ (0, 1].

Proof of Theorem 5.2. First observe that for m, (mε)ε as in the hypothesis, we have
mε ∈ L∞(G) for each ε ∈ (0, 1]. Now, as in (5.1), if we denote by Wε the solution to
the problem{

∂2tWε(t, x;σ) +RsWε(t, x;σ) +mε(x)Wε(t, x;σ) = 0 ,

Wε(t, x;σ) = 0 , ∂tWε(t, x;σ) = ηε(σ, x) on {t = σ} ×G ,

where ηε(t, x) := (mε(x)−m(x))u(t, x), then by Proposition 3.1 we obtain

‖Wε(t, ·;σ)‖L2(G) . (1 + ‖mε‖L∞(G))‖ηε(σ, ·)‖L2(G)

≤ (1 + ‖mε‖L∞(G))‖mε −m‖L∞(G)‖u(σ, ·)‖L2(G) ,

uniformly in t ∈ [σ, T ] and σ ∈ [0, T ]. Now, by Lemma 3.1.58 in [FR16] we have

‖mε −m‖L∞(G) → 0 , as ε→ 0 ,

so that by the above we get

‖Wε(t, ·;σ)‖L2(G) → 0 , as ε→ 0 , (5.4)

uniformly in t ∈ [σ, T ] and σ ∈ [0, T ]. Finally, by Duhamel’s principle if Uε is the
solution to the non-homogeneous problem (5.1), then by (5.4) we get

‖Uε(t, ·)‖L2(G) → 0 ,

and this completes the proof of Theorem 5.2. �

Remark 5.3. We note that in Theorem 4 in the paper [ARST21a], one wrote the as-
sumption that m ∈ L∞(Rd) in the consistency result. This may be not sufficient in
general. Indeed, to be more accurate, it is better to ask m to be in the subspace
C0(Rd) of L∞(Rd). In this way we obtain a correction to the statement of Theorem 4
in [ARST21a] as a special case of Theorem 5.2 with G = Rd and R being the positive
Laplacian −∆.



16 M. CHATZAKOU, M. RUZHANSKY, AND N. TOKMAGAMBETOV

References

[ART19] A. Altybay, M. Ruzhansky, N. Tokmagambetov. Wave equation with distributional prop-
agation speed and mass term: Numerical simulations. Appl. Math. E-Notes, 19 (2019),
552–562.

[ARST21a] A. Altybay, M. Ruzhansky, M. E. Sebih, N. Tokmagambetov. Fractional Klein-Gordon
equation with singular mass. Chaos, Solitons and Fractals, 143 (2021), 110579.

[ARST21b] A. Altybay, M. Ruzhansky, M. E. Sebih, N. Tokmagambetov. Fractional Schrödinger
equations with singular potentials of higher-order. Rep. Math. Phys., 87 (2021), 129–
144.

[ARST21c] A. Altybay, M. Ruzhansky, M. E. Sebih, N. Tokmagambetov. The heat equation with
strongly singular potentials. Appl. Math. Comput., 399 (2021), 126006.
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