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We numerically investigate reheating after quadratic inflation with up to 65 fields, focusing on
the production of non-Gaussianity. We consider several sets of initial conditions, masses and decay
rates. As expected we find that the reheating phase can have a significant effect on the non-Gaussian
signal, but that for this number of fields a detectable level of non-Gaussianity requires the initial
conditions, mass range and decay rates to be ordered in a particular way. We speculate on whether
this might change in the N-flation limit.

I. INTRODUCTION

The theory of inflation has been extremely successful in
explaining the initial state of the Hot Big Bang, simulta-
neously providing a mechanism that generates the initial
seeds of structure [1–5]. Yet the underlying details of the
physics of inflation are still far from clear. While models
of inflation based on the dynamics of a single scalar field
slowly rolling on a concave potential are in full agreement
with all present constraints, the high energies at which
inflation occurs motivate models with many light degrees
of freedom [6, 7].

In addition to being well-motivated from the funda-
mental theory point of view, many-field inflation has a
rich phenomenology, the consequences of which are not
yet fully understood. For example, despite its increased
complexity, it has been argued that many-field inflation
typically gives simple predictions for observables at the
end of inflation that converge statistically towards values
in agreement with current experimental constraints [8–
13] (although dependence on the choice of prior remains
[14]). In many cases, however, there are still isocurva-
ture modes present at the end of inflation [9, 11], which
may lead to observables quantities subsequently evolving.
Of particular interest is local non-Gaussianity, which re-
mains a key target of upcoming cosmological surveys,
[15–19], and an observable level of which requires super-
horizon evolution [20–26].

After inflation, the energy stored in the scalar field(s)
is converted to other particles and fields during reheat-
ing [27–32]. In single-field scenarios, this process changes
only the time at which the observed scales exit the hori-
zon [33, 34] since the uniform density curvature perturba-
tion, ζ, remains conserved after horizon crossing [35–39].
In contrast, when multiple fields are active during in-
flation, isocurvature fluctuations may later be converted
into curvature fluctuations, thus triggering the super-
horizon evolution of ζ. As a consequence, all predictions
from multi-field models can be sensitive to the details of
reheating when isocurvature modes persist.

Reheating, and the propagation of perturbations
through reheating, is in general extremely challenging to
understand analytically [40–43] or numerically [44–55]

(see Ref. [56–58] for reviews). Progress can be made in
calculating the observational consequences of many-field
reheating, however, by assuming reheating can be mod-
elled as a perturbative process that obeys simple cou-
pled equations. Although a simplification, this approach
is self-contained and internally consistent, and has been
taken for small numbers of fields in the past [41, 59–61],
and recently for many fields by Hotinli et al. [62]. This
latter study however considered only two-point statis-
tics that can be mimicked by single field models. In the
present paper, we aim to revisit many-field reheating but
consider also local non-Gaussianity, which cannot.

II. THE MODEL

We consider Nφ canonical scalar fields, φI , with po-
tential V =

∑
I m

2
Iφ
IφI . This model is chosen both to

ensure that any observable non-Gaussian signal is purely
due to the effects of reheating, and to make contact with
earlier work [62]. Although in principle the different fields
could reheat into any number of fluids, we will assume
that after reheating all species are in thermal equilib-
rium1. This is equivalent to having only one effective
radiation fluid, ρr, into which all fields decay.

In the present study, we make some further simplifying
assumptions that we now discuss. Each scalar field falls
into the minimum of the potential when the Hubble rate
falls below that field’s effective mass. If a field reaches the
minimum shortly before inflation ends, or thereafter, it
begins to oscillate, and it is only during these oscillations
that the phenomenological description of perturbative re-
heating is expected to be accurate. This phase can last
for many e-folds during which the frequency of the oscil-
lations grows exponentially. Tracking these oscillations
numerically can therefore be extremely challenging. To
circumvent this issue, we will treat oscillating fields as
matter fluids. This is a good approximation for scalar
fields oscillating in a quadratic minimum [66]. To avoid

1 This implies that isocurvature fluctuations [63, 64] do not survive
after reheating, which is consistent with Planck constraints [65].
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having to impose a transition from oscillating field to
matter fluid by hand, we simply introduce as many dust
fluids, ρm(I), as there are fields, and introduce decay cou-
plings between each field and its corresponding fluid, ef-
fectively making the fields “decay” into dust, before these
dust fluids decay into radiation. We then remove fields
from the system when field’s energy density is negligi-
ble relative its corresponding dust fluid. These approx-
imations introduce negligible error in predictions while
accelerating numerical implementations substantially.

With these modifications, our final evolution equations
become

φ′′I = −
(
H ′

H
+ 3

)
φ′I −

∂IV

H2
− Γm(I)φ

′
I

H
, (1)

ρ′m(I) = −3ρm(I) +Hφ′ 2
I Γm(I) − 1

H
Γrm(I)ρm(I) , (2)

ρ′r = −4ρr +
1

H

∑
I

Γrm(I)ρm(I) , (3)

where for later convenience we have written the equations
using e-fold number N as the measure of time (N =
log(a/ai) where ai is the initial value of the scale factor
a) and a dash denotes a derivative with respect to N .
Here Γm(I) indicates the decay rate of the Ith field into its
corresponding dust fluid, and Γrm(I) the decay rate of this

fluid into radiation. H ≡ ȧ/a is the Hubble rate (where a
dot denotes a derivative with respect to cosmic time), and
we assume a flat Friedmann-Lemâıtre-Robertson-Walker
(FLRW) Universe such that

H2 =
V (φ) + ρr + ρm

3− 1
2φ
′ 2 ,

H ′ = −1

2
Hφ′ 2 − 3ρm + 4ρr

6H
, (4)

where we have used ρm to represent the sum of the den-
sities of all dust fluids, and φ′ 2 the sum of squares of all
field velocities.

Naturally, the effective dust species can only exist once
the fields begin oscillating, thus we only activate the de-
cay rates Γm(I) at that time. This makes Γm(I) a function
of the fields and fluids present. A sharp transition would
give rise to pathologies in the perturbation equations, as
we will see, and so we parametrise the transition using

Γm(I) =
1

2
Γ̄m(I)

(
1 + tanh

[
π

T

(
1− H

HI

)])
(5)

where T parametrises the width of the transition, HI is
the Hubble rate when the transition happens and Γ̄m(I)

are the final values of the decay rates after the transi-
tion. We choose HI = mI/

√
10, where mI is the mass of

field I, to ensure that the fields are starting to oscillate
and Γ̄m(I) = 5mI , to guarantee that the fields convert
quickly to the dust fluids, which is essential for a fast
numerical solution. The couplings between dust and ra-
diation, Γrm(I), are also activated in the same way and

using the same parametrisation, but with Γ̄rm(I) being

chosen according to the case under study.

III. PERTURBATIONS

We are interested in studying the evolution of per-
turbations through reheating, in particular the two and
three-point correlation functions of the curvature pertur-
bation, ζ, and the two-point correlations of tensor fluctu-
ations, hij . We evolve these correlations using the trans-
port approach [38, 67–74]. This approach takes equa-
tions for the evolution of perturbations, and uses them
to evolve the correlations directly. This can be done us-
ing the full wavelength-dependent equations from quan-
tum initial conditions on sub-horizon scales, and numer-
ical packages including PyTransport [75, 76] and Cpp-
Transport [77, 78] implement this approach for models
with many fields. Unfortunately neither yet supports re-
heating, and indeed we are updating PyTransport with
a more general version of a bespoke code developed for
this paper.

To evolve the correlations of interest through reheat-
ing, we need evolution equations for perturbations to
the fields and fluids up to second order in perturba-
tion theory. One approach would be to use full cos-
mological perturbation theory. However, given that all
observable wavelengths are larger than the cosmologi-
cal horizon at the time of reheating and become wave-
length independent, we can instead generate completely
equivalent perturbation equations using the separate uni-
verse approach. This assumes that, on the largest scales,
cosmological fluctuations can be modelled by different
background patches evolving under the same evolution
equations, but having slightly different initial conditions.
If different patches are always compared after the same
number of e-folds, differences in scalar quantities between
them (such as values of the field) correspond to pertur-
bations on flat hypersurfaces.

A. δN

At the end of our evolution the curvature perturbation
can be extracted by calculating the perturbative differ-
ence in expansion between neighbouring patches needed
to reach the same uniform density hypersurface. This
“δN” quantity gives the curvature fluctuation on uni-
form density hypersurfaces, ζ, and can be expanded in
terms of the field and fluid fluctuations at the end of our
evolution as

ζ = NaδX
a +

1

2
NabδX

aδXb , (6)

where δXa represents fluctuation in the fields, field ve-
locities (with respect to e-fold number) and fluids, and
where a sum over repeated indices is implicit. One form
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of the tensors Na, Nab is given by

Na =− ∂aH

H ′
, (7)

Nab =− ∂a∂bH
2

2HH ′
− ∂(a(HH ′)−1∂b)H

2

+
H

H ′
∂c(HH

′)−1Xc ′∂aH∂bH , (8)

in which ∂a denotes derivatives with respect to any vari-
able Xa = {φI , φI ′, ρm(I), ρr}. These expressions are to
be evaluated at the end of our evolution using the ex-
pressions for the H and H ′ in Eqs. (4). See Ref. [38] and
references therein for a detailed derivation of these co-
efficients using both the separate universe approach and
cosmological perturbation theory for the case of multiple
fluids, which can trivially be extended to include fluids.

B. Evolution on a flat slicing

Because Eqs. (1-3) are written using the time variable
N , together with Eqs. (4) they can be used to derive
evolution equations for the perturbations on flat (con-
stant N) hypersurfaces by simply perturbing them up to
second order in fluctuations. A general variable, δXa,
evolves according to

δX ′a = u b
a δXb + u bc

a

1

2
δXbδXc . (9)

with the coefficients given by

u b
a =

∂X ′a
∂Xb

(10)

u bc
a =

∂2X ′a
∂Xb∂Xc

, (11)

where X ′a is expression for the background evolution of
the quantity Xa given by Eqs. (1-3) (note the φ′′ equation
must be split into two first order equations).

In is extremely important to recognise that because the
decay rates are time-dependent, the evolution equations
involve fluctuations of the decay rates

δΓ ≡ ∂Γ

∂Xb
δXb +

1

2

∂2Γ

∂Xb∂Xc
δXbδXc , (12)

that must be present for self-consistency. The formalism
employed here shows that turning on the Γs instanta-
neously at some time in the perturbation equations (no
matter how they are derived) without altering the evolu-
tion equations, as has been done in the past, is inconsis-
tent.

C. Transport

We define correlations of our perturbations as

〈δXa(k1)δXb(k2)〉 =(2π)3δ(k1 + k2)Σab(k1) ,
(13)

〈δXa(k1)δXb(k2)δXc(k3)〉 =(2π)3δ(k1 + k2 + k3)

× αabc(k1, k2, k3) . (14)

where Σab is the power spectrum of the perturbations
and αabc the bispectrum. It is straightforward to show,
using Eq. (9), that these spectra evolve according to

Σ′ab = u c
a Σbc + u c

b Σac , (15)

α′abc = u d
a αbcd + u de

a ΣdbΣec + perms , (16)

The power spectrum, Pζ and bispectrum Bζ of the cur-
vature fluctuation are similarly defined as

〈ζ(k1)ζ(k2)〉 = (2π)3δ(k1 + k2)Pζ(k1) , (17)

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(k1 + k2 + k3)Bζ(k1, k2, k3) ,
(18)

and are given by

Pζ(k1) =Σab(k1)NaN b , (19)

Bζ(k1, k2, k3) =αabc(k1, k2, k3)NaN bN c

+Σad(k1)Σbc(k2)NabN cNd + perms ,
(20)

where Na and Nab are given in Eqs. (7-8).
Finally we note that tensor fluctuations are constant

on super-horizon scales.

D. Selecting the scale to evolve

If we wished to evolve correlations from quantum sub-
horizon scales until the end of reheating, the existing im-
plementation of the transport formalism within PyTrans-
port could be employed, stopping the evolution sometime
before or shortly after the end of inflation when all ob-
servational scales have left the horizon. We could then
restart the evolution using the output of PyTransport as
initial conditions for the super-horizon equations (9) that
include the reheating dynamics. Indeed this is our inten-
tion for the aforementioned updates to PyTransport. In
the present case, however, because the inflationary model
is so simple, it will suffice to use analytic initial condi-
tions for the correlations evaluated at horizon crossing
(which is the usual procedure in for example the stan-
dard δN formalism), and evolve the fluctuations from
horizon crossing onwards. Indicating quantities at hori-
zon crossing with a ∗, these are given by

Σ(k∗)IJ =
H2
∗

(2π)2
δIJ ,

α(k∗, k∗, k∗)abc ≈ 0 , (21)
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where all other elements of Σ are zero. The tensor spec-
trum is

PT =
4H2
∗

k3
. (22)

Following this procedure, the scale, k, under consider-
ation can be defined purely by the horizon crossing time
at which one chooses to set the initial conditions. In this
project we will be interested in evolving solely the pivot
scale used in standard CMB analysis, k∗ = 0.05 Mpc−1.
Therefore, we require the number of e-folds before the
end of inflation at which this scale leaves the horizon
(k∗ = a∗H∗). We use the following formula to relate the
pivot scale to the number of e-folds [62, 79]:

k∗

a0H0
=

a∗

areh

areh
aeq

aeq
a0

H∗

H0
(23)

where subscript 0 indicates quantities today, eq quanti-
ties at matter-radiation equality and reh quantities at
the end of reheating. One finds

a∗

areh
= e−N

∗−∆Nreh , (24)

where N∗ is the number of e-folds of inflation and ∆Nreh
is the duration of reheating. We employ the approxima-
tion that between reheating and matter-radiation equal-
ity (aeq) the universe is radiation dominated, such that
H ∝ a−2 during that stage. This allows us to write

areh
aeq

=

√
Heq

Hreh
. (25)

Additionally, the ratio aeq/a0 is simply given by the red-
shift at equality aeq/a0 = (1 + zeq)

−1, and H0 is the
measured Hubble constant. An iterative algorithm is
then used to determine the remaining factors in Eq. (23),
which are tuned to give the correct scale by varying the
number of e-folds of inflation and the energy scale of in-
flation, while also guaranteeing the scalar amplitude, As,
agrees with observations.

This algorithm works as follows: we start with an ini-
tial guess for the number of e-folds, N0 and evolve the
two-point function up to the end of reheating to compute
the scale being evolved, k0. If k0 ≈ k∗ = 0.05 Mpc−1 to
1% accuracy, we stop. Otherwise, we generate a new
guess for the number of e-folds, N1, via

N1 = N0 + log
k0

k̄∗
, (26)

which approximates the number of e-folds by assum-
ing the exponential factor, e−N

∗−∆Nreh is the dominant
source of variation in Eq. (23). Using this new guess,
we repeat the evolution of the two point function and
perform the same check again. While this is often suffi-
cient to achieve 1% precision, the algorithm repeats this
procedure up to 3 times until it converges. This guaran-
tees that we always evolve the fluctuations for the correct
scale, even in scenarios where a secondary stage of infla-
tion occurs.

IV. NUMERICAL RESULTS

We are now in a position to generate results. To solve
this system of many fields including reheating, we have
developed a python package to evolve Eqs. (1-4) for the
background and Eqs. (15) for the perturbations from ini-
tial conditions in Eq. (21). We solve the Σ equations for 2
length scales close to the pivot scale to estimate the spec-
tral index ns via ns = d log k3Pζ/d log k. At this scale the
spectral index is constrained to be ns = 0.965±0.004 [65].
Finally we solve for α for a single scale in order to esti-
mate the local fNL parameter via

fNL =
5

18

Bζ(k, k, k)

Pζ(k)2
, (27)

constrained by Planck to be fNL = −0.9 ± 5.1 [80]. We
are implicitly assuming that the bispectrum is well ap-
proximated by the local shape, as is expected in canonical
multi-field models [81–83]. In addition we compute the
tensor-to-scalar ratio r defined by

r =
PT
Pζ

, (28)

whose upper bound is r < 0.06 [84].

A. Curvaton-like set-up

We consider several different set-ups for our choices of
masses, decay rates and initial conditions.

First we follow Hotinli et al. [62] and consider masses
logarithmically sampled in the interval mI ∈ Λ[1, 103],
where Λ is an overall scale to be adjusted to fit the
measured amplitude of perturbations, choosing the de-
cay rates according to

Γ̄rm(I) = 10−4Hend

(
mI

mmax

)α
, (29)

where Hend is the value of the Hubble rate at the end
of inflation, mmax is the largest mass in the system and
α is a parameter controlling the relative hierarchy of the
different decay rates. For the background fields the initial
conditions are set in the same order as the masses in the
interval φI ∈ [10−3, 20], while field derivatives are set
using the slow-roll approximation φ′I = −∂IV/V .

These initial conditions select the trajectory in field
space followed by the fields, but the initialisation of field
perturbations are only set a number of e-folds before the
end of inflation, N∗. This number is determined by ap-
proximating the scale under evaluation, k∗ to be the pivot
scale using the method described in Section III D via a
search algorithm, with the overall scale of the potential,
Λ, selected to ensure Pζ is in agreement with observation.

The choice of aligning the hierarchy of masses with
that of decay rates allows the lightest fields to oscillate for
longer, thus resulting in a lengthy dust-dominated stage
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during reheating, and the choice of initial conditions en-
sures the long lived fields are close to the minimum ini-
tially. This enhances curvaton(s)-like behaviour [85–100],
such as the production of isocurvatures and later con-
version into curvature perturbations, as well as the con-
sequent generation of relatively large non-Gaussianity.
Hence we expect this set up to give the most dramatic ef-
fects, and it can be seen as a many-field curvaton model.

The results given in Fig. 1 show the dependence of ns,
r and fNL on the parameter α and the number of ac-
tive fields Nf . We qualitatively reproduce the results of
Ref. [62] in ns and r. In addition to this, we find that in
this set-up, the non-Gaussianity parameter, fNL, peaks
at certain values of α, decaying into negative values for
large α. This is similar to what occurs in the curvaton
scenarios with all fields becoming massive before they
decay (as in cases 4, 5 and 6 described by Ref. [100]).
The parameter α determines the constant temporal sep-
aration (in e-folds) between each decay. Thus, for very
small α all decays happen close together, such that most
of the contribution from the curvature perturbation is
from the inflaton(s). This results in observables that are
close to those obtained when reheating is neglected. As α
increases to ∼ 4, the decays happen sufficiently apart for
some of the isocurvature perturbations to contribute sub-
stantially to the curvature perturbation, while their cor-
responding energy densities are small when they decay,
generating large non-Gaussianity and increasing ns to-
wards scale invariance. Further increase of α induces the
initially sub-dominant fields to dominate the total energy
density upon their decay, which reduces non-Gaussianity
until it reaches the asymptotic value of fNL = −5/4.
In addition to fNL, both ns and r approach the same
curvaton limit, with r → 0 and ns → 1 − 2ε∗, with
ε∗ being the first slow-roll parameter at horizon cross-
ing. Those limits are approached slightly faster for a
smaller number of fields and give different values for ns
because of the dependence of ε∗ on the horizon crossing
time which changes depending on the number of fields.
As the number of fields increases, the different effects
arise from multiple fields, instead of having one “inflaton”
and one “curvaton”. With many fields, an approximate
continuum between inflaton-like fields and curvaton-like
fields exists, with those in an intermediate category not
contributing substantially to modify the single-field-like
behaviour. This makes it more difficult to generate large
non-Gaussianity. In addition, since the mass distribution
is the same for all numbers of fields, the time separation
between decays shortens as Nf increases, thus requiring
larger α to get similar effects, explaining the deviation of
the peak in fNL.

Regarding comparison with observations, our results
show that low values of α are not compatible with the
constraint on r, while low numbers of fields are in conflict
with the ns constraint, given the required large value of
α. Our non-Gaussianity results again imply that only
sufficiently large values of α or large Nf are in agreement
with current constraints on fNL.
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FIG. 1: Numerical results for ns (top), r (middle) and fNL

(bottom), as a function of the parameter α in the original
set-up, using Eq. (29). Different lines correspond to different
values of the number of fields, as labelled in the legend.

B. Modified set-ups

We now study modifications from the first set-up cho-
sen above with initial conditions given by φI ∈ [10−3, 20],
masses by mI/Λ ∈ [1, 103] and decay constants by
Eq. (29).

We began by modifying the pre-factor in Eq. (29) rang-
ing from 10−2 to 10−8, finding negligible variation of the
results with respect to those obtained with 10−4. This
is well explained by the interpretation outlined above
and shows again that the time separation between decay
times, parametrised by α, is the most relevant parameter
to explain the variation of observables.

We also explored scenarios in which the dependence
of the decay constants, Γ, on mass is motivated by the
type of particle into which the scalar fields decay. It
well known that decay into scalar particles results in
Γ ∝ m−1, while decay into fermions gives Γ ∝ m [32].
While the latter case is already contained in Eq. (29) by
choosing α = 1, the case Γ ∝ m−1 is not, so we explore
it separately by modifying that equation into

Γ̄rm(I) = 10−4βHend

(
mI

mmin

)−1

, (30)

where β is an additional parameter varied between 10−2
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FIG. 2: Numerical results for ns (top), r (middle) and fNL

(bottom), as a function of the dispersion, σ, around the orig-
inal initial conditions, for 15 fields and α = 4.5.

and 102 and the minimum mass is now used instead of the
maximum mass to guarantee that Γrm(I) < Hend. This in-

version implies that the order of decays is also inverted,
such that the lightest fields now decay first and essen-
tially do not contribute to the curvature perturbation.
This case then mimics the results obtained with low val-
ues of α in the first set-up shown above, with no specific
multi-field effects appearing. Similarly to the previous
set-up, varying the overall factor β does not change re-
sults substantially. Varying the exponent from the phys-
ically motivated value of −1 to more negative values also
does not change observables substantially, since broaden-
ing the distribution of decay times simply dilutes multi-
field effects further. The inversion of decay times was
also effectively investigated in Ref. [62], in which the au-
thors randomised the order of decay times and found that
nearly only the original ordering generated multi-field ef-
fects.

The final modifications we study involve modifying ini-
tial conditions away from φI ∈ [10−3, 20]. We begin by
varying the initial condition for each field independently
according to a uniform distribution in log10 φI with stan-

dard deviation σ, which we vary in the range [10−3,
√

3].
We plot the results in Fig. 2.

We find that deviations away from the original set-up

0 1 2 3 4 5 6

10 2

10 1

100

101

102

103

f n
l

i, lower = 10 3

i, lower = 10 4

i, lower = 10 5

FIG. 3: Numerical results for fNL, as a function of α, for 15
fields, varying the lower value of the range of initial conditions,
φlower.

progressively eliminate non-Gaussianity, with fNL reach-
ing, on average, values of the order of slow-roll param-
eters, thus making these scenarios extremely difficult to
detect or distinguish from single-field models. While the
results shown in Fig. 2 are for 15 fields, the trend pre-
sented there is also observed for different numbers of
fields, with the variance in observables decreasing as a
function of number of fields. For small Nf , it is thus
possible that one finds initial conditions that also give
enhanced multi-field effects, such as larger fNL than in
the original scenario. However, these cases are rare and
become rarer with number of fields, thus demonstrating
that multi-field effects are generally generated only in
fine-tuned situations, at least for the model under study.
This confirms some of the conclusions of Ref. [62] re-
garding the necessity of fine-tuning, extending them to
non-Gaussianity.

Next, we explore the effects of increasing the range of
initial conditions to include smaller values, i.e. we set
φI ∈ [φlower, 20]. In Fig. 3, we show the results for local
non-Gaussianity for different values of the lower limit of
the initial condition range, φlower. We see that the peak
value of fNL shifts towards larger α and increases propor-
tionally to φ−1

lower, to good approximation. These varia-
tions are explained by the fact that decreasing the initial
conditions of the lightest fields reduces their contribution
to the energy density initially. This implies that a larger
value of α is required to ensure that lighter fields give a
substantial contribution to ζ. However, at the point in
which this is attained, the effects on non-Gaussianity are
larger, exactly because the contribution of these fields to
the energy density is smaller. This is again in agreement
with the view that this model represents a many-field
curvaton, as this is precisely what occurs in the curvaton
case.
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V. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the effect of per-
turbative reheating after quadratic inflation with many
fields. Our focus has been on the non-Gaussian signal
generated by many-field reheating, which complements
earlier work at the level of the power spectrum by Hotinli
et al. [62]. In our work, we considered up to 65 fields and
we found that an observable non-Gaussian signal is con-
sistently found only in the case where long-lived fields,
which decay at the end of the evolution, are initially close
to their minimum (by this we mean a field displacement
much less that the Planck mass). We found that the en-
ergy density in these late decaying fields needed to grow
significantly with respect to the radiation produced by
other decays for them to contribute to ζ and produce a
non-Gaussian signal. In this sense the set-up is required
to be like a many-field curvaton model, and we found that
as we moved away from this set-up the non-single-field-
like behaviour disappeared in the majority of runs. We
also found that keeping the range of initial conditions the
same, but introducing more fields and hence more densely
populating the space of initial conditions decreased the
amount of non-Gaussianity produced. While extending
the initial condition range to include initial conditions
closer to the fields’ minima increases the amount of non-
Gaussianity produced.

A motivation for our work is the question of how com-
mon non-Gaussianity is in multi-field inflation. This is
important to address in the light of the hunt for local non-
Gaussianity in future surveys, and how any signal that
is observed, or not observed, should be interpreted. It is
well known that producing non-Gaussianity during infla-
tion in models with a small number of fields requires fea-
tures such as hill-tops and ridges to be present, and also
requires particular initial conditions close to such fea-
tures that could be considered finely-tuned [59, 101, 102].
Moreover, in many-field models where the potential is

randomly generated a non-Gaussian signal appears to be
rare [12, 103, 104]. On the other hand, in models like
axion inflation, although the initial conditions needed to
produce non-Gaussianity look finely tuned when only a
few fields are considered, in the N-flation limit where
very many fields all contribute to sustain inflation such
initial conditions become typical [105, 106]. Turning to
reheating, in quadratic potentials it would be interest-
ing to ask whether something similar happens when the
N-flation limit is reached; i.e. when inflation can be sus-
tained with all fields initially close to their minima, how
common is non-Gaussianity if a range of reheating times
is considered? To answer this would require simulations
with more than a thousand fields, which is computation-
ally prohibitively expensive with our current approach
and so beyond the scope of our paper. In our study,
however, we have already seen that non-Gaussianity de-
creases in this model when the initial condition space is
densely populated, and that fields closest to the mini-
mum also need to be the ones that decay latest. This
is suggestive that non-Gaussianity is not generic even in
the N-flation limit, but further study of this possibility
is needed to provide a definitive answer.
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