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Dedicated to Johannes Gaultherus van der Corput on the occasion of 100 years of his lemma

ABSTRACT. The paper is devoted to study analogues of the van der Corput lem-
mas involving Mittag-Lefler functions. The generalisation is that we replace the
exponential function with the Mittag-Leffler-type function, to study oscillatory inte-
grals appearing in the analysis of time-fractional partial differential equations. More
specifically, we study integral of the form I, g(A) = [; Ea g (i*A¢(x)) ¢(z)dx, for
the range 0 < a < 2, 8 > 0. This extends the variety of estimates obtained in the
first part, where integrals with functions E, g (iA¢(z)) have been studied. Several
generalisations of the van der Corput lemmas are proved. As an application of
the above results, the generalised Riemann-Lebesgue lemma, the Cauchy problem
for the time-fractional Klein-Gordon and time-fractional Schrodinger equations are

considered.
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1. INTRODUCTION

In this paper we continue the study of oscillatory-type integrals involving Mittag-
Leffler functions E, s initiated in [RT20a]. In the case of @ = f = 1, we have
E, 1(z) = e*, thus reducing the integral to the classical question of decay of oscillatory
integrals.
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Indeed, the estimate obtained by the Dutch mathematician Johannes Gaultherus
van der Corput [vd(C21] and named in his honour, following Stein [St93], can be
stated as follows:

e van der Corput lemma. Suppose ¢ is a real-valued and smooth function
in [a,b]. If 1 is a smooth function and |¢*)(x)| > 1, k > 1, for all = € (a,b),

then
b

/ Ay (z)dz| < CATVF N — oo, (1.1)
for k =1 and ¢’ is monotonic, or k > 2. Here C' does not depend on .
Various generalisations of the van der Corput lemmas have been investigated over
the years [Gr05, SW70, S5t93, PS92, PS94, Rog05, Par08, Xil7]. Multidimensional
analogues of the van der Corput lemmas were studied in [BG11, CCW99, CLTT05,
GPTO7, PSS01, KROT7], while in [Ruz12] the multi-dimensional van der Corput lemma
was obtained with constants independent of the phase and amplitude. Some estimates
(essentially one-dimensional) in multi-dimensions for Mittag-Leffler functions were
obtained in [RT20b].
The main goal of the present paper is to study van der Corput lemmas for the
oscillatory integral defined by

Ios()) = / Eop (i"A(z)) (2)d, (1.2)

where 0 < a < 2, f > 0, ¢ is a phase and 1) is an amplitude, and X is a positive real
number that can vary. Here E, s (z) is the Mittag-Leffler function defined as (see e.g.
[KST06, GKMR14))

R
ZFak A a>0, feR,

k=0
with the property that
E1,1 (Z) = e”. (13)
Since the function E, s (i1%2), z € R, has a set of real zeros [GIXMR14], the integral
(1.2) is oscillating,.
Here we can point out already one extension of (1.1) in view of (1.3), namely, an
extension (in Theorem 3.5) to the range 0 < o < 2 in the form

b
/ Eoo (i%M\p(x)) (x)dz| < CATV* X = oo, (1.4)

for kK =1 and ¢ is monotonic, or k > 2.
This present paper is a continuation of [RT20a], where a variety of van der Corput
type lemmas were obtained for the integral defined by

Tos()) = / Eo s (iA0(2)) b (x)de, (1.5)
R
where 0 < a <1, > 0.
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As we see above, the integral (1.5) is different from the integral (1.2), since in
(1.5) there is a purely imaginary number i before the phase function, and in (1.2) the
fractional power of the imaginary number, i.e. i*. Since the asymptotic behaviour of
Mittag-Leffler function in these cases is also different, yielding different decay rates,
in the integral (1.2) we will assume 0 < a < 2,5 > 1, while the integral (1.5) was
studied for 0 < a < 1,5 > 0. Another difference between the function E, g (i“2),
z € R, and the function E, s (iz), z € R, is that the function E, 5 (i*z) has a set of
real zeros, while the function E, s (iz) has no zeros and is just bounded.

Such integrals as in (1.2) arise in the study of decay estimates of solutions of the
time-fractional Schrédinger and the time-fractional wave equations (for example see
[DX08, Gr19, Nab04, 5720]). In Section 4 we will give several immediate applications
of the obtained estimates to time-fractional Klein-Gordon and Schrodinger equations.

As in the case of (1.5) studied in [RT20a], we find that the decay rates of (1.2) as
A — 0o depend not only on the assumptions on the phase but also on the ranges of
parameters a and 5. We also obtain more results in the case of bounded intervals.
For the convenience of the reader, let us briefly summarise the results of this paper,
distinguishing between different sets of assumptions:

van der Corput lemmas on R: consider I, g defined by (1.2).

e Let ¢ : R — R be a measurable function and let ¢ € L'(R). Suppose that
0<a<2 f>1,and m = essinf,eg |¢(x)| > 0, then
(i): for 0 < a <2 and 8> a+ 1 we have

M,
A>1
1+)\m”¢”L1(R)> -4

where M; does not depend on ¢, ¥ and A;
(ii): for0< o <2and 1 < < a+ 1 we have

M,
——— Ylew, A= 1
(1+ /\m)% HE
where M, does not depend on ¢, 1 and \;
(iii): for « =2 and > 1 we have

M.
—— ¥l A > 1,
(14 Am)
where M3 does not depend on ¢, ¥ and A.
e Let ¢ : R — R be an invertible and differentiable function, and let ¢ € L'(R).
Suppose that 0 < a« <2, =1, and m = inﬂf{ |¢/(x)] > 0, then
re

o s (M) <

[las(A)] <

[I2,5(A)] <

M
a1(N)] < mHl/JHLl(R), A>1,

where M does not depend on ¢, 1) and A.
van der Corput lemmas on I = [a,b] C R: consider

Lus()) = / Eup ("M (2) (),

1
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where I = [a,b] C R with —0co < a < b < +00.

o Let 0 < a <2, 3> 1, ¢be areal-valued function such that ¢ € C*(I), k > 1,
and let ¢ € CY(I). If |¢¥) ()| > 1 for all z € I, then
(i): for 0 < a <2 and 8 > a+ 1 we have

Loy (] < My | [o(0)] + / (@)l | A Flogh (L4 N), A 1,
I

where M), does not depend on A;
(ii): for 0<a<2and 1 < < o+ 1 we have

at+l—p

s ()] < My | [0(0)] + / @) | AR+ 0T A 1,
I

where M, does not depend on A.
e Let —0o <a<b< +ooand I =a,b] CR. Let 0 < a < 2 and let ¢ be a real-
valued function such that ¢ € C*(I), k > 1. Let ¢» € C*(I) and [¢®)(z)| > 1
for all z € I. Then

Lo ()] < My | [0(0)] + / W ()lde | AVE A1,
I

for kK =1 and ¢’ is monotonic, or k > 2. Here M}, does not depend on .
o Let —0o <a<b< +ooand I =[a,b] CR. Let 0 < a < 2 and let ¢ be a
real-valued function such that ¢ € C%(I). Let |¢'(z)] > 1 for all z € I. Then

Lo ()] < M | [6(5)] + / W (@)ldr| A, A1,
I

where M does not depend on .
We will often make use of the following estimate.

Proposition 1.1 ([Pod99)). If 0 < a < 2, B is an arbitrary real number, p is such
that ma /2 < p < min{rm, wa}, then there is Cy,Cy > 0, such that we have

C
|Eap(2)] < Ci(1+ |z|)(1_ﬂ)/°‘ exp(Re(zl/a)) + 1 +2|z|’ z€C, |arg(z)| < p. (1.6)

We are interested in particular in the behavior of I, s(\) when A is large, as for
small A the integral is just bounded.

2. VAN DER CORPUT LEMMA ON R
In this section we consider I, s defined by (1.2), that is,
o) = [ Bus ("36(0)) w(a)d

R
As for small X the integral (1.2) is just bounded, we consider the case A > 1.
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Theorem 2.1. Let ¢ : R — R be a measurable function and let ¢» € L*(R). Suppose
that 0 < o <2, B> 1, and m = essinf,cr |¢(z)| > 0, then
(i): for0<a <2 and B > a+ 1 we have

sVl <

1Vl my, A > 1, (2.1)

where My does not depend on ¢, ¥ and X,
(ii): for0<a <2 and 1l < f < a+ 1 we have

M,
[las(MN)| < WHwHL ;A>T (2.2)

where My does not depend on ¢, ¥ and .
Proof. Let ¢ : R — R be a measurable function and ¢ € L}(R). As |arg(i“\¢(z))| =
22 and Re(iA*(¢(x))"/*) = 0, then using estimate (1.6) we have that

L s(V)] < / |Eap (°20(2))]| [(2)] da

<y /(1 + Ao ()) P ()| da + O / %dm

R

As ¢ and ¢ do not depend on A, and m = essinf,cg |¢(z)| > 0, then for § > a+1
we have

o) < / B (°X0(0)) [(2)] do

< maX{Cl,C’g}/ >\|¢ dx

< Wl

In the case 1 < < a4+ 1 we have that

a5 (M)] S/IEa,a (i*A¢(x))] |¢(x)] d

x{C,,C d
= madch, }/ 1+A|¢ >|> =
M,
<— 1
T e

The cases (i) and (ii) for 0 < a < 2, § > 1 are proved.



6 M. RUZHANSKY, B. T. TOREBEK

Now we will prove the case (ii), when o = 2, > 1. Applying the asymptotic
estimate (see [[XST06, page 43])

1 . ‘
E2”3<Z) = 52(1—5)/2 (6\/5 + e_ﬁ—ﬂ'l(l—,@)szgn(argz))
N ka
k=

1
- R <
riar + 0 (o) [ ol <

1

we have the following estimate in the case 1 < § < 3

s (V)] < / |Eap (—A(@)] ()] de
< MO0 / 16(2)| 72 |y )] d

< Mym(—9)/2\1-5)/2 / ()| da

R
Mo ||| 1w
(14 mM)B-D/2
Similarly, when 8 > 3 we have
M| 1wy

I g(\)| < —————.

TN <
The proof is complete. O

It is easy to see from estimate (1.6) that, for § = 1, the function E, (-) does not
decrease, and it will be only bounded function. In this case, the method of proving
the Theorem 2.1 is not suitable. Below we give an estimate for the integral (1.2) in
the case g = 1.

Theorem 2.2. Let ¢ : R — R be an invertible and differentiable function, and let
Y € LY(R). Suppose that 0 < a <2, =1, and m = inﬂf{ |¢'(x)] > 0, then
Te

M
HaaWI < 9wy, A 2 1, (2.3)

where M does not depend on ¢, 1 and .

Proof. First, we prove the case 0 < a < 2 and = 1. Let ¢ : R — R be an invertible
and differentiable function, and let v € L'(R). Then replacing A¢(x) by y we get

_ %\ (x x x:l i - SR B
L (M) —/Ea,l( Ap(2)) ¥(z)d )\/Ea,1( y) (o (y/A)))¢,(¢_1(y/)\))'

R R
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Since x € R, then ¢~ '(y/A) € R. As | arg(i®A¢p(x))| = Z2 and Re(iAY*(¢(z))"*) = 0,
then using (1.6) and m = inf |¢'(x)| > 0 we have

I8 Eon ()] [0((¢7 ' (y/N))| dy

< “y/N)|dy = —H¢||Ll

<on)
mA

R

M/
mA

R

If « =2 and 8 = 1, we have Ey1(i?Ad(x)) = cos \/Ap(z). As |cos/Aé(z)| < 1,

then repeating above calculatlons we have

1
LERO e (V226
The proof is complete. O

3. VAN DER CORPUT LEMMA ON FINITE INTERVALS

In this section we consider integral (1.2) in the finite interval I = [a,b] C R, —o0 <
a<b< 400, ie.

o) = [ Bas (1X6(0)) ¥(a)do. 3.
I
Since I, g(A) is bounded for small A, further we can assume that A > 1.

Theorem 3.1. Let 0 < a < 2, 8 > 1, ¢ be a real-valued function such that ¢ €
CH(I), k> 1. If |¢p¥)(2)| > 1 for all x € I, then
(i): for0<a <2 and B> a+ 1 we have

/Eaﬁ (1“Ap(x)) dx| < Mk)\_% log%(l +A), A>1, (3.2)
T

where My does not depend on \;
(ii): for0<a <2 and 1 < f < a+ 1 we have

/ Eop (i*Ap(x)) de| < MATF(L+ )50, A1, (3.3)
I

where My, does not depend on \.
Proof. Proof of (i). First we will prove the case k& = 1. Since |¢/(z)| > 1 for all
x € I, then |¢| is monotonic, and it can have one zero at ¢ € [a,b]. Let c=aorc=b

and ¢(x) # 0 for all z € [a,b] \ {c}. If 0 < o < 2 and § > a + 1, then by (1.6) we
have

/|Eoc,,3 (ZQA¢<$))| dx S C/ mdfﬁ,
1 1

where C' is independent of ¢ and .
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Let ¢ = a. Since ¢ € C*(I) and |¢/(x)| > 1, then

A (x C 1+)\|¢
/'E‘*ﬁ Al ’d“_/cb' 1+A|¢ T/ 1+ No(w

<;bgr+Mwnw<%J%a+Ax

(3.4)

where M; is independent of .
Let ¢(c) =0, ¢ € (a,b). Then

s < /+/ Ba (i* ()] do.

Further, repeating the above calculations we have (3.2) for k = 1.

Let A > 1 and k = 2. We assume that (3.2) is true for kK = 1 and let |¢"(z)| > 1,
for all = € I, we prove the estimate (3.2) for k = 2. Let d € [a, b] be a unique point
where |¢/(d)| < |¢'(z)| for all x € I. If ¢/(d) = 0, then we obtain |¢'(z)| > € on [

b

outside (d — €,d + ¢€). Further, we will write f Eop (i%\¢(2)) dx as

b c—e cte

[ Eas x0@)d / [+ / Eup (("A0()) da
a c—e cte
As |¢'(z)| > € on I outside (d — €,d + €), then by the case k = 1, we have
A log(1 + A
/ Eos (°A0(x)) da| < Mg%,
and
/ log(1 + A)
. 0 +
/Eaﬁ (ZO‘/\QZ)(ZL')) dx S MQgEE—)\)
c+e
As
cte
/ 5 (1%Ap(x)) dx| < 2e,
we have

b

/ By (("A6(x)) da| < 201, 281

/ (€))

Taking € = A2 log%(l + A) we obtain the estimate (3.2) for & = 2, which proves the
result.

Let us prove the estimate (3.2) by the induction method for k£ > 2. We assume
that (3.2) is true for £ > 2. And assuming |V (z)| > 1, for all z € I, we prove the
estimate (3.2) for k + 1. Let d € [a,b] be a unique point where |¢®)(d)| < | ()]

+ 2e.
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for all z € I. If ¢*)(d) = 0, then we obtain [¢*)(x)| > € on I outside (d — ¢,d + ¢).
b
Further, we will write [ E, s (i*A\é(x)) dz as

b d—e d+e b
a/ o (iA(x)) dz — / +d / +d +/ oy (i"A(2)) da.

By inductive hypothesis

d—e
[ Beatitréla) ds| < Muer) Hlogh+ ),

and
b
/ Eop (i“A\p(x)) dx| < Mk(E/\)_% log%(l + ).
+e€
As
d+e
/ Eo.p(i%Ap(x)) dx| < 2,
we have

b
/Eoc,ﬁ (iXp(@)) dr| < 2Mp(eX) ¥ log# (1 + A) + 2e.

a

Taking € = A~ logk%l(l + ) we obtain the estimate (3.2) for k£ + 1, which proves
the result.

Proof of (ii). Let k = 1. Since |¢/(x)| > 1 for all x € I, then |¢| is monotonic, and it
can have one zero at ¢ € [a,b]. Let ¢ = a or ¢ = b and ¢(x) # 0 for all z € [a,b] \ {c}.
f0O<a<2and 1< f < a+1,then by (1.6) we have

[ Bas236(@)) ds| < [ 1Boy 3000 d

1

dx,

1
<C -
- / (1+ No()) "=
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where C' is independent of ¢ and \. Let ¢ = a, then by ¢ € C*(I) and |¢/(x)| > 1, we

have
C A (x)
N\ d
/ Alass A/¢’ V(1 Nl =

I

C +>\\¢ D
SXI/ (14 Mo(a)) =

%[1+/\|¢ 175—1}
§§[1+/\|¢ B]
SMT(HA)‘”“

where Ms is independent of A.
Let ¢(c) =0, ¢ € (a,b). Then

L s(V)] < / i / |Eap (°Ad(2)| da

Further, repeating the above calculations we have (3.3) for k = 1.
Let A\>1,0<a<2and 1< f <a+1, k=2 We assume that (3.3) holds for
k = 1. Assuming |¢"(z)| > 1, for all x € I, we prove the estimate (3.3) for k = 2. Let
d € [a,b] be a unique point where |¢/(d)| < |¢/(x)| for all x € I. If ¢'(d) = 0, then we
b

obtain |¢/(z)| > € on I outside (d—¢,d+¢€). Further, we will write [ E, 5 (i*\¢(z)) dx

as
b —€ d+e

[ Fus 200 d /// Eos (1"36(z)) de

a d—e d+e
As |¢'(z)| > € on I outside (d — €,d + €), by the case k = 1, we have

€

d—
o (1+N) "
/ B ("A0(w) do| < M 2
and
; (1+ )%
. +1)%a
[ Basie3(w)) ds| < 2 2
+e
As
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we have
b

/Ea,g (1“Np(x)) dx| < 2M,

Taking e = A2 (1 + )\)% we obtain the estimate (3.3) for k£ = 2, which proves the
result. The cases when ¢ = a or ¢ = b can be proved similarly.

Let us prove the estimate (3.3) by induction method on k& > 2. We assume that
(3.3) holds for k > 2. Assuming |¢*™)(z)| > 1, for all x € I, we prove the estimate
(3.3) for k+1. Let d € [a, b] be a unique point where [¢*)(d)| < [¢®)(z)| for all z € I.
If ¢¥)(d) = 0, then we obtain [¢*)(z)| > ¢ on I outside (d — ¢,d + €). Further, we

a+l—038

(I1+A) =

(N + 2e.

b
will write [ Eq, 5 (i“A\g(x)) dx as

b d—e d+e b
a/ oy (i"06()) da = / +d / +d / oy (i"A\(2)) da.

By inductive hypothesis

d—e

a+l—p3
ak

/ Eas (°A6(x)) da| < Mi(eN)F(1 + 2) =5,

a

and
b
. 1 at+1-p3
/ Eop (1"Ap()) dz| < My (eX)* (1 + A) o
H+e
As
d-+e
[ Fas 20t o] < 2
we have

b
a+l-—p3

/Eaﬁ (i%N\p(x)) dx| < 2My(eA)k (1 4+ A)“or + 2¢.

a

atl-p
Taking e = A1 (1+X) %G1 we obtain the estimate (3.3) for k + 1, which proves the
result. The cases when ¢ = a or ¢ = b can be proved similarly. U

Theorem 3.2. Let —oo <a<b< +oo and [ =[a,b] CR. Let 0 < <2, 5> 1, ¢
is a real-valued function such that ¢ € C*(I), k > 1 and letp € C'(I). If |o™ ()| > 1
for all x € I, then

(i): for0 <a <2 and B> a+ 1 we have
o 0] < Mo 0@+ [ 10/l A Flogh 0, Az 1L (39
T

where My, does not depend on X,
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(ii): for0<a <2 and 1 < f < a+ 1 we have

a+l—08

Ly (V)] < My wwn+/wm@mEAﬁu+w>M:7A2L (3.6)

where My, does not depend on .

Proof. We write (3.1) as

[ B,

where
X

Blz) = / oy (i"A6(s)) ds.

Let 0 < @ < 2 and 8 > a+ 1. Integrating by parts and applying the estimate of part
(i) of Theorem 3.1 we obtain

log(1+ A)

W) < MBS WO+ [ 1@l

The case (ii) can be proved similarly by applying results of part (ii) of Theorem
3.1. Il

Below we are interested in a particular case of the integral (3.1), when 0 < a <
2, B = «, that is, the integral I, ,()). For smoother ¢ and ¢ we get a better estimate
than (3.3) and (3.6).

Theorem 3.3. Let —0o < a <b< 400 and I =[a,b] CR. Let 0 < o < 2 and let ¢
be a real-valued function such that ¢ € C*(I), k > 1. Let |¢®)(x)| > 1 for all x € I,
then

/ B (i*A$(@)) dx| < MATF, A > 1, (3.7)
I

for k=1 and ¢' is monotonic, or k > 2. Here M), does not depend on \.

We note that the classical van der Corput lemma (1.1) is covered by (3.7) with
a=1.

Proof. First we will prove the case £k = 1. Let 0 < o < 2, A > 1 and let ¢ has one
zero ¢ € [a,b]. Let us consider the integral

/ Eoa (i°A6(2)) da.

1
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Then integrating by parts gives

d
[ B 3000 i = % T (Ena °36(0)) da
1
o / o (x Eo1 (i%A¢(2))) da
o - 1 o o 1
= m a,l (Z )\Qﬁ(b)) Qb,(b) - EEOZJ (Z )\gb(a)) gb’(a)
o o d 1
- I Eqq (i%\g(2)) . <¢/( )) dz,
thanks to property
d 1
e w1(2) = aEa,oc(Z)

and |¢'(z)| > 1, x € I. Then we have

dzx

iz (51)

L 1
[0
+ 5 1Ban (1*X6(0)] e

/ Eqo (i®X\p(2)) dz| < % / | Ea,1 (1% Ag(x))]

1
«

4 B (1360)

(3.8)

1
[¢'(a)]

As gb’ is monotonic and ¢'(x) > 1 for all = € [a, b], then é is also monotonic, and

d

o ¢,( 7 has a fixed sign. Hence estimate (1.6) and ¢(c) =0, ¢ € [a, b] implies

i%) :

A + C2 0 A

—a

T

[ Buatitnota sl < S [ ao@)'s

1

A A
|<i>(fr|>0 C’a d 2C’oz
= ox ) de (¢’ )
C’a d ( )
< 2= _
D dx
<%{2+ ! ]<%
A |¢’(b)| ®I] = A7

thanks to fixed sign of & P ¢, . Here M; does not depended on .
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We prove (3.7) for k = 2. Let for d € [a, b] satisfies |¢'(d)| < |¢/(x)]| for all = € [a,]].
Then |¢/(x)| > € on [a,b] \ (d — €,d + €). Hence

—e  d+te
o (iA(x B0 (iA\(7)) dx
[ ([ ]
Then |¢/(x)| > € on [a,b] \ (d — €,d + €), imples
d—e
/Eaa iAp(x < My (ed)™
and
b
/EOW (iN(x)) dx| < My(eX)™!
te
As
d+e
/Ea,a (1%Ap(x)) dx| < 2,
we have B

b

/ Fao (i"A6(2)) d| < 201 () + 2¢.

Taking € = A\~2 we obtain the estimate (3.7) for k = 2.
We prove the case k > 2 by induction method. Let (3.7) is true for k, and suppose
|p+ 1) (2)] > 1, for all z € [a, b], we prove (3.7) for k + 1.
Let for d € [a, b] satisfies [¢®)(d)| < | (z)] for all € [a,b]. Then |¢)(z)| > €
on [a,b] \ (¢ — € ¢+ €). Therefore
d—e d+e b
/Ea,a (1\o(z)) dx = / + / + / Eo o (1%\p(x)) dx
I a d—e d+e

By inductive hypothesis
d—e

x\»—‘

Eoo (1%Np(x)) dx| < My (e\)”

and

?r\'—‘

Eoo (1%Mp(x)) dx| < My (e\)™

—n"\_\@‘

As
d+e

/Ea,a (1%Ap(x)) dx| < 2,

—€
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we have
b

/ o (i"A6(2)) dz| < 2Me(eN)~F + 2¢.

Taking € = A\"#+1 we obtain the estimate (3.7) for kK + 1. O

Below we show that if ¢’ is not monotonic, then to obtain estimate (3.7) when
k =1, it is necessary to increase the smoothness of function ¢.

Theorem 3.4. Let —0o < a < b < 400 and I =[a,b] CR. Let 0 < a < 2 and let ¢
be a real-valued function such that ¢ € C*(I). Let |¢/'(x)| > 1 for all z € I, then

/ Fan (i"36(z)) dz| < MA, A> 1,

T

where M does not depend on .
Proof. Suppose that ¢ € C*(I) and |¢/(x)| > 1 for all z € I, then from (3.8) we have

% (w%@) !

X

/ Eqo (i2¢(x)) dz| < % / |Eo,1 (1%Ad(2))]

1
+ S B (i*X6(0))]

a o
+ S 1B (20(@)].

Since ¢ € C*(I) and |¢/(x)| > 1 for all 2 € I, then the function - (dﬂ%x)) will be

continuous and bounded, and therefore by (1.6) we have

I/ B ((A(2)) dz g% / d% (¢/(1z)) dz + 2

Ca M
< —(M;(b— 2) < —
<onp-a+9<
where M; = |4 <m> H o’ C > |E,1 (%) and M is a constant independent of
Lo (1
A. O

Theorem 3.5. Let 0 < a < 2 and let ¢ be a real-valued function such that ¢ €
CH(I), k> 1. Let ¥ € CY(I) and |¢™ (2)| > 1 for all x € I, then

Law V)] < M |[0(0)] + / ()| AR A > 1,
I

for k=1 and ¢' is monotonic, or k > 2. Here M, does not depend on \.

Theorem 3.5 can be proved similarly as Theorem 3.1.

The case of & = 1 corresponds to the classical van der Corput lemma (1.1).

Also, for k = 1, Theorem 3.5 holds if we replace the condition that ¢’ is monotonic
by ¢ € C*(I).
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4. APPLICATIONS

In this section we give some applications of van der Corput lemmas involving
Mittag-Leffler function.

4.1. Applications to the fractional evolution equations.

4.1.1. Decay estimates for the time-fractional Klein-Gordon equation. Consider the
time-fractional Klein-Gordon equation

D, ju(t, x) + iUy (t, x) — i%pu(t,z) =0, t >0, z € R, (4.1)
with initial data

1575u(0,2) =0, z € R, (4.2)
&JSJ:E‘U(O, ) =1¢(x), z € R,
where p > 0, and,
t

/ (t — ) " u(s, x)ds

0

o 1
Ig, qult, o) = T(a)

and
t

fe% 1 11—«
Dg, ju(t,z) = m@f / (t—s) “u(s,x)ds
0
is the Riemann-Liouville fractional integral and derivative of order 1 < av < 2.
If @ =2, then from (4.1) we obtain the classical Klein-Gordon equation.
Applying the Fourier transform F to problem (4.1)-(4.3) with respect to space
variable x yields

Dg, i (t,8) —i®( +p)a(t,6) =0, >0, £ €R, (4.4)

I5750(0,6) = 0, £ €R, (4.5)

O3y (0,€) = (), EER, (4.6)

due to F{um(t,z)} = —€%u(t,€). The general solution of equation (4.4) can be

represented as
i (t,§) = C1 (" B (i(6° + p)t*) + Co(t* *Eaamr (i7(€7 + wt7) ,

where C(§) and Cy(€) are unknown coefficients. Then by initial conditions (4.5)-(4.6)
we have

i (t,€) = P& B (1(6> + p)t) .

By applying the inverse Fourier transform F~! we have

u(t,x) = / e, (z‘a(§2+p)ta)@z3(§)d§, (4.7)

R
where (€)= L [ e84 (y)dy.
R
Suppose that ¢ € L'(R) and ¢ € L*(R). As
. 2 .
Inf (&% + ) = p >0,
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then using Theorem 2.1 (ii) we obtain the dispersive estimate
a— ay =27
lu(t, M@ < CHL+17) 5 9|1 m

< Ct 1+ ) p ey, t > 0.
4.1.2. Decay estimates for the time-fractional Schréodinger equation. Consider the
time-fractional Schrodinger equation

Dy, ult, ©) + 1%uge (t, ) — ipu(t,x) = t7P(x), t >0, 2 € R, (4.8)

with Cauchy data

u(0,z) =0, z € R, (4.9)
where 4 > 0, 0 < v < «, and,

¢

/ (t — )" " Oqu(s, z)ds

0

1

Do qult, z) = Ti—a)

is the Caputo fractional derivative of order 0 < o < 1.

When a = 1, we have the classical Schrodinger equation.

Applying the Fourier transform F to problem (4.8)-(4.9) with respect to space
variable x yields

Dg—i-,tﬂ (ta 5) - ia(€2 + ,Lb)ﬁ <t7 g) = t_’yqﬁ(g)v t > 07 5 € R7 (410)
u(0,) =0, £ eR. (4.11)
The solution of problem (4.10)-(4.11) can be represented as

t

00,6 = [(6 9" B (€ + 10(t — 91°) 5 0(0)ds.

Calculating the above integral we obtain
@ (t,6) = T(L = PP Baamyir (1%(6 + p)t) .
By applying the inverse Fourier transform F~! we have

ut,z) =T'(1—7) /emfta_an,a—wrl (ia(§2 + N)ta) Qﬁ(f)d& (4.12)

R
where ¢)(€) = L[ e We(y)dy.
R
Suppose that ¢ € L'(R) and ¢ € L'(R). As

. 2 o
Inf(&" +p) = p >0

and @ — v+ 1 < a+ 1, then using Theorem 2.1 (ii) we obtain the estimate
ult, M=y < CETL+ )5 [Pl
< Ot (1 + )| sy, t > 0.
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4.2. Generalised Riemann-Lebesgue lemma. The Riemann-Lebesgue lemma is
the classical result of harmonic and asymptotic analysis. The simplest form of the
Riemann-Lebesgue lemma states that for a function f € L'(R) we have

lim [ e* f(z)dx = 0. (4.13)
k—o0
R
If f € C*([a,b]), then
/ 1
/ e* f(x)dx = (E) , at k — oo. (4.14)

As a generalisation of Fourier integral we consider the following integral

/Ea7ﬁ (1%kx) f(z)dz, (4.15)

D

where 0 < a <2, >1,and D CR.
Suppose that D = R and f € L'(R), then Theorem 2.2 yields

lim [ Eyq (i%z) f(z)dx = 0.
k—o0
R

For a = 1 this reduces to (4.13).
If f € C'([a,b]), then from the van der Corput lemmas we obtain

o for 0 <@ <2and > a+1, by Theorem 3.2 (i) we have
b
log(1+ k
[ Fastivko) fla)in = 0 (PELEE).
e for0<a<2andl<f <a+1, by Theorem 3.2 (ii) we have
b
/ B (i%kz) f(2)dz = O (k:—l(1 + k;)i‘”i“*) :
e for 0 < a < 2 and 8 = «a, by Theorem 3.5 we have
b
/ECW (k=) f(z)dz = O (K7').

a

CONCLUSION

The main goal of the paper was to study van der Corput lemmas for the integral
defined by

b
/Eaﬁ a/\(b ¢( ) xz,

with0 < a <2, 8> 1.
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For I, 3(\), van der Corput type lemmas were obtained, for the following cases of
parameters o and f3:
el<a<2and f>a+1;
el<a<2andl<f<a+l;
e a=2and [ >1;
e 0<a<?2and f=a.

As an immediate application of the obtained results, time-estimates of the solu-
tions of time-fractional Klein-Gordon and time-fractional Schrodinger equations and
generalisations of the Riemann-Lebesgue lemma were considered.
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