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Abstract
Polyphonic vocal recordings are an inherently challenging
source separation task due to the melodic structure of the vo-
cal parts and unique timbre of its constituents. In this work we
utilise a time-domain neural network architecture re-purposed
from speech separation research and modify it to separate a
capella mixtures at a high sampling rate. We use four-part
(soprano, alto, tenor and bass) a capella recordings of Bach
Chorales and Barbershop Quartets for our experiments. Un-
like current deep learning based choral separation models where
the training objective is to separate constituent sources based on
their class, we train our model using a permutation invariant ob-
jective. Using this we achieve state-of-the-art results for choral
music separation. We introduce a novel method to estimate har-
monic overlap between sung musical notes as a measure of task
complexity. We also present an analysis of the impact of ran-
domised mixing, input lengths and filterbank lengths for our
task. Our results show a moderate negative correlation between
the harmonic overlap of the target sources and source separa-
tion performance. We report that training our models with ran-
domly mixed musically-incoherent mixtures drastically reduces
the performance of vocal harmony separation as it decreases the
average harmonic overlap presented during training.
Index Terms: source separation, polyphonic vocal music, end-
to-end, singing analysis.

1. Introduction
Choral music consists of a group of singers typically singing
the same lyrics but in different vocal styles and notes creating a
polyphonic harmony. These different vocalists are usually cat-
egorised into 4 parts by their singing style and vocal registers
[1]. These classes are often also used to identify parts of other
musical ensembles such as brass sections. Such musical ensem-
bles consisting of sources with similar timbres can be defined
as monotimbral ensembles. The task of separating sources in a
monotimbral ensemble is significantly different than the much
better researched problem of class-based Music Source Sepa-
ration [2] where there are distinct instrument types to be sepa-
rated. Unlike the vocal vs. accompaniment (drums/bass/others)
problem, the sources in a choral mixture are very similar to each
other and highly synchronised in both time and harmony. In
contrast, drums are highly percussive sources with distinctive
temporal structure and the bass occupies a completely different
frequency range as compared to the vocals. This makes vocal
harmony separation a significantly more challenging task than
the vocal vs. drums and bass separation problem.

Music source separation has been an actively researched
field in the last decade. Significant advances have been made
in this field since the advent of deep learning based models.
More recently the SiSEC challenge [3] has provided a common
baseline, a large publicly available dataset and an evaluation
framework for the most popular music separation task of de-

composing pop music mixtures into as many as 4 parts (vocals,
drums, bass and other remaining instruments). A reduced form
of the same problem is to separate the mixture into vocals and
accompaniment only, which enables commercial applications to
generate automatic karaoke [2]. This task has attracted a lot of
interest from the research community with vast improvements
in recent years [4, 5, 6, 7]. Very little research has been seen
in more specific and challenging music separation tasks like
monotimbral separation which can be a powerful music produc-
tion tool as ensemble recordings typically have some bleed1.

Popular approaches to perform music source separation
have typically relied on spectrogram masking based methods
[8, 9], where the spectrogram of the mixture is provided as
the input to the model which subsequently predicts a mask
which is applied on the mixture spectrogram to suppress all
non-target sources. Although spectrogram based methods have
consistently reported state-of-the-art results in music separation
[7], the lack of accurate phase estimation still proves to be the
Achilles heel of this task. Without accurate phase estimation,
the best achievable of performance for such models is limited
by the Ideal Ratio Mask performance [10].

Time-domain source separation models have surpassed this
threshold in the domain of speech separation, due to their abil-
ity to encapsulate phase information in the learnt filterbanks
which removes the requirement of phase reconstruction[11].
Since Conv-TasNet [10], further developments on time-domain
source separation [12, 13, 14] methods have pushed speech sep-
aration performance far beyond soft-masking based approaches
for single-channel 2 and 3 speaker separation tasks. Although
music separation has seen some success with time-domain ap-
proaches [6, 15], these approaches introduce time-domain pro-
cessing in a direct regression fashion to model musical sources,
whereas popular speech separation models work with a dif-
ferent encoder-masker-decoder philosophy with a significantly
smaller number of model parameters.

In this work, we adapt the encoder-masker-decoder type
TasNet [16] based architectures for vocal harmony separation.
We find the task of Vocal Harmony Separation to fit in a unique
space between music and speech separation, where we find
challenging aspects of both tasks to merge. Sources present in
choral mixtures are often very similar with weak distinction be-
tween them thus allowing the possibility of training them using
permutation invariant training [17] like speech separation mod-
els. Meanwhile, unlike speech separation, the sources present
in these mixtures are highly correlated and synchronised to each
other as they sing the same words with different harmonisations
in synchronisation. This poses a unique problem where there is
very little timbral distinction between the sources and high tem-
poral synchronisation and frequency overlap due to their musi-
cal structure. We explore the implications of these constraints
on training methods of these models. We present a new method

1Sound picked up by a microphone from a source other than that
which is intended.



to estimate the separation difficulty of a mixture with a music
theory based harmonic overlap score. We find that the mea-
sured harmonic overlap does present moderate negative corre-
lation with separation performance for vocal harmony mixtures.
This implies that the musical structure/complexity of a mixture
does impact the separation performance of a mixture, as com-
pared to a mixture of random speech with similar number of
sources. We also find that models trained on randomly mixed
(musically incoherent) data show higher variability in perfor-
mance for separation tasks with higher harmonic overlap.

The remaining of the paper is structured as follows: in Sec-
tion 2 we present other works in the literature that tackle the
problem of vocal harmony separation. In Section 3 and 3.1 we
present the details of the models we use for our task and the
modifications required to work at higher sampling rates. Sec-
tion 3.2 introduces the proposed metric to calculate the musical
complexity of a vocal harmony mixture. We present the details
of the data used in our experiments in Section 3.3 and training
methods in Section 3.4. We then compare our results with the
state-of-the-art in Section 4 and present our findings related to
random mixing and harmonic overlap. We discuss the implica-
tions of our findings and future work in Section 5.

2. Related Work
While music source separation is a well researched topic es-
pecially since the publication of the MUSDB dataset [3], the
majority of the work has been limited to the separation tasks en-
abled by the above dataset i.e. vocals, bass, drums and others.
A few papers have discussed separation tasks for other instru-
ment/mix types but they rely on either datasets with limited size
[18] or large synthesised datasets [19]. The topic of choral mu-
sic separation faces the same problem, where the datasets with
real recordings are limited in size and scope [20], and alterna-
tively there are large synthesised datasets [21].

Two recent works [22, 21] explore score-informed choral
separation utilising conditioned U-Net [5] and Wave-U-Net [6]
architectures. While both models show reasonable success, it
is difficult to compare the performance of the two since [22] is
trained and evaluated on real data with bleed, and [21] utilises
synthesised vocal choirs. While both these methods present
poor baseline scores for non-informed separation, in our work
we present a non-informed application of time-domain source
separation models that outperforms the non-informed separa-
tion baselines presented in [22, 21]. Our model performs com-
parably to the score-informed models presented in [22, 21].

3. Method
We used modified versions of the Conv-TasNet [10] and Dual-
path Transformer (DPTNet) [13] based time-domain separation
architectures from [23] for our experiments using permutation
invariant training (PIT) [17]. We modify the network parame-
ters2 to accommodate for the higher sampling rate data in our
usecase within the available GPU resources. Higher sampling
rates significantly impact the GPU memory consumption of
such time-domain models. TasNet based models [16, 10, 12, 13]
tend to have extremely short encoder filterbanks (2-20 samples)
as compared to spectrogram based models. This generates fea-
ture representations at a much higher time resolution requiring
significantly higher GPU memory for backpropagation. More-
over, [11] show that the performance gains observed in these

2Complete model parameters and audio examples for each model
can be found at: http://c4dm.eecs.qmul.ac.uk/ChoralSep/.

models can be strongly attributed to this high time resolution.
Given our GPU memory constraints, we have to find a balance
between the filter lengths, input segment length and batch size
to find optimal performance at higher sampling rates.

3.1. Accommodating higher sampling rates

Speech separation models typically operate at 8 kHz while
commercial music is consumed at much higher sampling rates
(44.1kHz and higher). In our dataset the original vocals were
bandlimited to 11kHz, thus we trained our models at 22.05 kHz.

For Conv-TasNet we increased the filter length to 20 sam-
ples and hop size to 10 samples and also increased the number
of dilated layers to 9 to achieve a similar receptive field of≈1.5
second at 22.05 kHz as the original implementation at 8 kHz.

For DPTNet, we could not accommodate 5 second input
segments with a filter length of 2 samples and 6 repeat units
on our GPU memory. Thus, we tried different combinations of
filter lengths, input durations and repeat units (R) in our exper-
iments to utilise all available memory and show the impact of
the different parameters. Depending on the input audio segment
duration and filter length, we had to modify the chunk size K as
per the eq. K =

√
2L as mentioned in [12]. L is the length of

the latent representation generated by the encoder determined
by eq. 1 where T is the duration of the training samples, Fs is
sampling rate and Lf is the length of the filters in the encoder.

L =
2× T × F s

Lf
(1)

3.2. Harmonic Overlap Score

We present a novel measure for calculating the harmonic over-
lap for any two given monophonic sources based on calculating
the number of coinciding partials observed in the first 16 over-
tones for a given pair of F0s being played by two sources. This
also correlates well to the perceived resonance for any given in-
terval (pair of notes), where the strongest resonances are seen
for octave intervals, followed by perfect fifths, perfect fourths,
major thirds and so on. This measure is particularly apt for
monophonic sources in an ensemble where such instruments
perform together with the intention of blending well with each
other to create a coherent sonic texture. We design our harmonic
overlap metric to give us a measure of coherence for such en-
sembles by calculating pair-wise harmonic overlaps normalised
by their duration of activity.

Given a set of N sources xi for i ∈ {1, 2, ..., N}, we utilise
the pYIN pitch detection algorithm [24] to estimate their pitches
F 0
i and convert them to a 20 cent log-frequency scale for each

of the sources resulting in P 0
i . We then compute the first 16

overtones P j
i for j ∈ {1, 2, ..., 16} as per eq. 2. We convert the

obtained set of harmonic pitches to a binary vector Bi,k as per
eq. 3 for k ∈ {1, 2, 3, ...}. We subsequently get the harmonic
overlap for a given time frame by counting the total number of
overlaps per frame for each pair of sources in a mixture as per
eq. 4. We then aggregate the pair-wise scores over the entire
input segment and normalise the score by dividing by the over-
all pair wise activity duration, i.e. for each pair we calculate
the total number of frames where both sources were active and
divide the aggregated score by that value.

P i
j =

⌈
60× log2(

j × F i
0

440
)

⌉
+ 345 (2)



Bi,k =

{
1, for k ∈ P i

j

0, for k /∈ P i
j j ∈ {1, 2, ..., 16} (3)

Harmonic Overlap :=

N∑
i 6=j

Bi,k ·Bj,k
T (4)

3.3. Dataset

There are very few clean datasets available for choral mu-
sic, where isolated ground truth for each source is present.
This is especially challenging as compared to other ensembles,
since choral singers typically perform together and are rarely
recorded in isolation [25]. It is known that choral singers tend to
perform much better when the entire choir performs together in
a physical space [26], i.e. each singer can monitor themselves
and the rest of the choir with every participant making minor
adjustments during performance [27]. This makes it very diffi-
cult to record each individual singer without any bleed from the
other sources. There is one publicly available dataset that con-
sists of 3 choral pieces performed by 16 singers [20], but the
recordings are not clean as all the sources are recorded simulta-
neously. This causes the non-target sources to bleed into each
of the recordings, resulting in a noisy ground truth.

In this work, we use two datasets of a capella recordings
without bleed from [28] for our experiments, 26 songs from
Bach Chorales (BC) and 22 songs from Barbershop Quartets
(BQ). This gives us a total of 104 minutes of 4 parts: Soprano,
Alto, Tenor and Bass (SATB) recordings, where BC contain 2
male (tenor and bass) and 2 female (Soprano and alto) vocalists,
and BQ contain all 4 male vocalists. We split the songs present
in the dataset into 3 groups for training, cross validation and
testing roughly in ratio 8:1:1 (since song lengths vary), making
sure that the test and cross-validation sets consist of songs (and
not just segments) that are unseen in the training set.

3.4. Training

We train both variants of models for 200 epochs with early
stopping given a patience of 30 epochs. We use the SI-SNR
[29] loss function as shown in eq. 5 where x̄ is the predicted
source and x is the target source. We use SI-SNR in a class-
agnostic/permutation invariant [17] fashion where we compute
the pair-wise SI-SNR for each predicted source w.r.t. each tar-
get source, and then consider the prediction-target assignments
for the lowest cumulative SI-SNR.

starget = 〈x̄,x〉x
‖x‖2

enoise = x̄− starget

SI − SNR := 10 log10
‖starget ‖2
‖enoise ‖2

(5)

For our Conv-TasNet based model, we initialise the learning
rate to 5e-3 with a scheduler that halves the learning rate if
the validation loss (cross-validation set of 2 unseen songs) does
not improve for 3 consecutive epochs. For the DPTNet based
model, we use the linear warmup followed by exponential decay
scheduler as presented in the original paper [13].

4. Results
We evaluate the performance of our models on 2 unseen songs
each from the Bach Chorales and Barbershop Quartet dataset (9
minutes in total). We find that although the training and test sets
are similar (due to similar singing style and limited variety of

Table 1: Results for 4-source Choral Music Separation w.r.t.
other works in literature. It must be noted that both [22, 21]
use different datasets to train and evaluate their models thus
are not directly comparable.

Model SIR SAR SDR

ConvTasNet +12.23 dB +9.27 dB +7.52 dB
DPTNet +14.42 dB +10.25 dB +8.61 dB

U-Net[22] +9.30 dB +5.69 dB -
Wave-U-Net[22] +7.07 dB +5.54 dB -
Wave-U-Net[21] - - +5.4 dB
C-U-Net[22] +12.08 dB +7.21 dB -
C-Wave-U-Net[21] - - +8.1 dB

Table 2: Performance comparison for DPTNet models trained
with various filter sizes, repeat units and input segment lengths.

Model Lf T R SDR

ConvTasNet 20 5 sec 6 +7.52 dB
DPTNet 16 5 sec 8 +8.61 dB
DPTNet 8 5 sec 4 +7.9 dB
DPTNet 4 2 sec 5 +7.56 dB
DPTNet 2 2 sec 3 +7.16 dB

vocalists), our models perform better than other non-informed
separation models based on U-Net and Wave-U-Net [22] which
were trained on a dataset of similar duration and diversity [20].
Our non-informed model performs at par with the state-of-the-
art score-informed separation models Conditioned U-Net [22]
and Conditioned Wave-U-Net [21]. It must be noted that results
from both [22, 21] were reported on different datasets than us,
thus it is difficult to make conclusive performance comparisons
on the reported results.

4.1. Model Variation

We compare the performance of Conv-TasNet and DPTNet for
our task at 22.05 kHz with our best performing Conv-TasNet
model and various filter lengths and repeat units for DPTNet.
While [11] concluded that a large part of the performance gains
observed in TasNet based solutions with respect to spectrogram
based separation architecture could be largely attributed to the
small filter lengths, we do not observe the same improvement in
our experiments. This is likely due to us having to use shorter
input segments of 2 seconds and reduced repeat units to accom-
modate models with shorter filter lengths of 2 and 4 samples
on DPTNet. We instead find that using larger filterbanks of 16
samples and increasing the repeat units to 8 gives us our best
performance with DPTNet.

4.2. Random Mixing

Random mixing is a commonly used data augmentation method
which was introduced for Music Source Separation in [4] and
subsequently also utilised in [14, 15] where they find that
mixing segments from different musical pieces to generate
new training examples for training improves separation perfor-
mance. Since finding clean multi-tracks for highly polyphonic
ensembles like choral music is difficult, random mixing would
enable us to generate data with any amount of polyphony by
mixing monophonic singing tracks from various songs.



0 20 40 60 80 100
Randomisation

1

0

1

2

3

4

5

6

7

Av
er

ag
e 

SI
-S

DR

Figure 1: Average output SI-SDR achieved by different Con-
vTasNet based models trained with varying balance of ran-
domised (musically incoherent) and synchronised mixtures.

We systematically study the impact on model performance
of randomly mixing vocal parts from different songs during
training. We randomly choose a number of data samples from
the training set and shuffle their constituent parts to generate
a training set with a desired percentage of randomisation. In
Figure 1 we see that the model performance monotonically de-
creases as the amount of randomised mixtures in the training
data is increased. We see a 4.32 dB decrease in average SI-
SDR improvement between a model trained on synchronised
mixtures vs. randomised mixtures. It is noteworthy that our
randomisation process preserves the SATB choral structure.

We also carry out experiments where we increase the over-
all dataset size by adding new mixtures of randomised samples
without replacement. We observe that increasing the dataset
size does not improve separation performance. Models trained
on expanded datasets with 10− 100% additional training sam-
ples of randomised mixtures show an average performance dif-
ference of +0.07±0.32 dB ∆SI-SDR w.r.t. our baseline model.

4.3. Harmonic Overlap Analysis

We use the Harmonic Overlap metric as introduced in section
3.2 and find a moderate negative correlation (Pearson corre-
lation coefficient: −0.334) between the harmonic complexity
of the audio mixture and the separation performance achieved,
as shown in Figure 2. This shows that mixtures with stronger
resonant intervals are more difficult to separate, thus musical
structure does impact separation negatively. This agrees with
our perceptual ability of distinguishing harmonies being sung
as the Harmonic Overlap score ranks resonant intervals much
higher than dissonant intervals. We observe that models trained
on randomised data show higher performance degradation for
mixtures with higher Harmonic Overlap score (Pearson corre-
lation coefficient: −0.215) and higher performance variance.
This may also explain why randomisation of mixtures during
training affects the overall model performance as randomising
mixtures significantly reduces the average harmonic overlap in
the mixtures presented during training. Hence, models need
to be presented with synchronised, musically coherent training
data to be able to separate monotimbral ensembles.

5. Conclusion
We show that TasNet based separation models with PIT are ef-
fective for separating vocal harmonies. The main challenges
to achieve a good level of performance and generalisability is
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Figure 2: Linear fit with 95% confidence interval of Har-
monic Overlap score for test audio mixtures vs. output SI-SDR
achieved with ConvTasNet model.

limited by two main factors: lack of sizeable clean multi-track
data, memory and resource consumption for training models at
high sample rates. While we present that adapting DPRNN and
DPTNet like architectures with larger filter lengths does allevi-
ate some of the memory limitations, the lack of sufficient data
does not allow us to make conclusive statements regarding the
impact of larger filter lengths on performance. Also, our TasNet
based models show good performance on similar datasets but
cross-dataset performance is really poor. In such scenarios, we
see a significant performance advantage of the score-informed
model presented in [22].

While training with randomised mixtures is a common ap-
proach in source separation, we report a significant negative im-
pact of randomisation of training mixtures for vocal harmony
separation. This behaviour is not seen in other music and speech
separation tasks and we suspect that this is due to the combina-
tion of musical structure and timbral similarity between sources
which is unique to our task. This is especially problematic as
available data for vocal harmonised mixtures with more than 2
sources is very limited, so while randomisation could be used
to generate higher polyphony training examples from isolated
vocal tracks from [18], models trained on such data did not suc-
ceed in our experiments.

A potential solution for this problem can be based on
recursive separation using one-and-rest permutation invariant
training (OR-PIT) [30]. Having shown that PIT based objec-
tive functions are successful at vocal harmony separation, OR-
PIT provides a unique opportunity to utilise data with varying
polyphony for training. While using such a method may not
provide significant performance improvement for the task of
speech separation, we believe that being able to utilise musi-
cal mixtures with varying degrees of polyphony may allow us
to create sizeable datasets for this task, without compromising
on musical structure and relevance of the training set. We intend
to explore such approaches in the future.
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