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Abstract 
 

Epidermal homeostasis is an essential process in the maintenance of healthy skin, and it is 

regulated by the fine tuning of the proliferation and terminal differentiation of keratinocytes.  

Various biochemical and biophysical cues regulate the balance between growth and 

differentiation within the epidermis, and limited adhesion to the extracellular matrix (ECM) is a 

key trigger for terminal differentiation. Previous studies in our laboratory have shown that 

keratinocyte adhesion and spreading also influence the size and shape of the nucleus, 

potentially impacting chromatin remodelling and epigenetic gene regulation. Here, we 

investigated the direct impact of simple mechanical stimuli on the nuclear architecture of human 

keratinocytes (HK) using micropatterned substrates to control the adherent surface and cell 

morphology.  When cultured on small micropatterns (20 µm diameter), HKs adopted a rounded 

morphology and induced terminal differentiation within 24h, while on larger patterns (50 µm 

diameter) HKs were able to spread and remained undifferentiated. Nuclear morphology is also 

altered as the nuclear cross-sectional area and volume are both reduced on small patterns.  

Immunofluorescence imaging of the nucleoskeletal proteins Lamin A/C showed a clear 

redisposition towards the nuclear periphery after 24h in HKs on the small patterns but not large 

patterns. Analysis of immunofluorescence intensity levels of closed and open chromatin markers 

showed a significant reduction of chromatin markers H3K27Ac, H3K27me3 and H3K9me3 on 

small patterns after 24h. Furthermore, closed chromatin marker H3K27me3 and H3K9me3 

showed differential association into foci; clusters of the marker seem to condense together into 

fewer and larger foci after 24h on small patterns. Interestingly, we also observed nucleoli fusing 

on the small patterns, resulting in less numerous and larger nucleoli and reduced translational 

activity of the HKs. RNAi knockdown of Nesprin-2 and plectin-KO mice cell lines further revealed 

that these responses depend specifically on the size and shape of the nucleus as influenced by 

its linkage to the F-actin network. Finally, transcriptional profiling identified corresponding 

differences in downstream gene expression patterns, notably in ribosome biogenesis, DNA 

damage repair and retinoic acid signalling pathways accompanied by measurable changes in 

cellular phenotype. 

Together, these findings indicate that biophysical cues directly regulate nuclear architecture in 

HKs and are translated in differential expression of genes.  
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The skin homeostasis 

 

The skin is the largest organ in the human body by weight and serves as the primary barrier 

protecting the interior of the body from the external environment, pathogens and water loss1, 

as well as other functions arising from its role as an interface such as somatosensation2. It is 

composed of  three major layers; epidermis, dermis and subcutis1.  

The epidermis is the outermost layer of the skin. It sits above the dermis and is separated from 

it by a basement membrane consisting above all of collagen IV fibrils and laminin 3321. The 

epidermis is mainly composed of keratinocytes that are arranged in stratified layers that overlie 

a basal layer aptly named stratum basale. The other layers, from innermost to outer, are the 

spinous layer (stratum spinosum), granular layer (stratum granulosum), clear or translucent 

layer (stratum lucidum, only present in palms and soles) and finally the cornified layer (stratum 

corneum)1.  

As the primary interface between the interior and exterior of the body, the epidermis is 

subjected to intense physical and biochemical insults by foreign bodies and pathogens, creating 

a substantial need for constant replenishment. This is achieved by what is called epidermal 

homeostasis. The basal layer of the epidermis is made up mainly of proliferating keratinocytes, 

as well as a long-term self-renewing population of stem cells. The epidermal stem cells will for 

the most part stay in an almost quiescent state before undergoing asymmetric division, 

producing one new stem cell and a transit amplifying cell (TAC)3. The latter will keep on 

proliferating and ultimately differentiate. Once differentiating, keratinocytes will start migrating 

Figure 1.1. Schematic representation of the epidermal layers. Adapted from Fuchs et al. 2014 
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from the basal layer outwards4. During this journey they will undergo major changes in 

phenotype culminating in their transformation into enucleated corneocytes, which compose the 

stratum corneum, where eventual desquamation or physical trauma will remove them.  

The initial asymmetric division and the subsequent entry into the differentiation pathway are 

primed by extracellular cues. These cues can be inherent to regular homeostasis, i.e to replenish 

normal loss of skin cells due to desquamation4 but can also respond to more punctual needs. 

For example, during early stage development the epidermis is a fast-growing organ and so 

keratinocytes are in great demand5. Physical insults such as wounds will also require elevated 

levels of proliferation and differentiation to replace the loss of skin6.  

Entry into the differentiation pathway marks several changes in gene expression patterns and 

phenotype of keratinocytes. Initially a withdrawal from the cell cycle accompanied by a 

transition from basal to suprabasal layer can be observed. During this initial transition genes 

coding for intermediate filaments (IF) keratins 5 and 14 will be switched off and replaced by 

keratins 1 and 10, forming a stronger IF network7. This also follows the loss of hemidesmosomes 

linking the keratinocyte to the basement membrane. A shift in desmosome component isoforms 

sees desmogleins (Dsg) and descomocollins (dsc) 2 and 3 replaced by Dsg and Dsc 1, while 

adherens junctions see the loss of P-Cadherin while retaining E-Cadherins8. Involucrin and 

transglutaminase-1 will start being produced as keratinocytes prepare for the last step of 

differentiation: cornification. Transglutaminase-1 will serve to crosslink several substrates 

(including involucrin) into the insoluble cornified envelope. When keratinocytes move above the 

stratum granulosum they produce profilaggrin, the precursor of filaggrin, that serves to bundle 

keratin filaments and avoid water loss of the epidermis9, and loricrin, another component of the 

cornified envelope. Finally, as the cells enter the stratum corneum they undergo nuclear 

degradation while keratin bundles and lipids secreted by lamellar bodies within the cornified 

envelope create a strong and impervious layer that protects the ones bellow.  

The term homeostasis in skin directly implies that this process is balanced, as the number of 

cells being removed from the stratum corneum is replaced by a similar number of new cells 

coming from the stratum basale. All the changes listed here have profound effects on the proper 

maintenance of the epidermis and can be highlighted by the pathologies that arise from faulty 

differentiation. For example, keratins 1 and 10 serve to give the epidermis physical resilience 

through a strong IF network. Mutations in both keratins result in diseases such as Epidermolytic 

Ichthyosis10, which can have life threatening effects in early childhood through severe infection, 

electrolyte imbalances, and sepsis risks while transitioning into a milder form of chronic skin 

blistering during adulthood. Other examples exist, such as Striate palmoplantar keratoderma 

(mutations in desmoglein 1 reduces number of desmosomes and perturbs keratin IF 
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organisation)11, Lamellar ichthyosis (reduction in Involucrin levels which induces alterations in 

desquamation process)12, etc. It is important to note also that as many of these components are 

shared between epithelial cell types their mutations can also create pathologies in other organs, 

most notably the gastrointestinal tract13.  

Certain traumas such as wounds can also disturb this balance and require the system to able to 

withstand punctual changes of diverse magnitude. As with pathologies that arise from improper 

differentiation, faulty wound healing can also result in dysfunctions of varying severity. A simple 

example is certain types of skin tumours that arise from overproliferation of keratinocytes after 

wound healing fails to act properly6,14.  

 

Nuclear architecture 

 

While entry to the differentiation pathway is partly regulated by extracellular signals that induce 

changes in gene expression (which will be reviewed later), these changes are maintained by 

further remodelling of the epigenetic landscape15,16, which arise from how DNA is stored in the 

nucleus. 

Indeed, DNA organisation within the nucleus is a 

highly controlled process, as two meters of it are 

encased into an organelle that is a few micrometers 

wide in diameter. For this to be possible the double 

strands are wrapped around histones, proteins that 

package DNA into nucleosomes, which in turn form 

chromosomes17. These chromosomes occupy their 

own distinct territories and share space with several 

other nuclear bodies such as nucleoli, polycomb 

bodies or Cajal bodies. Several mechanisms allow for 

this complex packaging, from DNA methylation, 

histone covalent post translational modifications 

(PTMs) and higher order chromosome organisation 

in 3D such as topologically associated domains 

(TADs), that are controlled in part by the 

nucleoskeleton18. A striking feature of this 

compartmentalisation within the nucleus is the 

absence of physical barriers; contrarily to 

Figure 1.2. Schematic representation of the different 
levels of chromatin organisation. Adapted from 
Junqueira’s Basic Histology. 
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cytoplasmic organelles which are encapsulated by membranes, nuclear organelles and 

territories are segregated through protein-protein or DNA-protein interactions17. As DNA 

accessibility to the transcriptional machinery is in this way tightly controlled, it allows both for 

“bulk” changes in phenotype of cells as well as for an additional level of fine tuning in the 

expression of genes above the regular use of transcription factors for example19.  

DNA methylation 

 

At the DNA level the first mechanism of epigenetic control is the methylation of DNA at cytosine 

and adenine bases. Cytosine methylation is a common occurrence, especially in the context of 

CpG dinucleotides, and has been widely studied while adenine methylation remains relatively 

rarer and less well understood20. CpG methylation refers to the methylation of a cytosine base 

5 prime to a guanine base, and the relative accumulation of both bases upstream of 

transcriptional start sites is referred to as CpG islands. Hypermethylation of these islands is 

usually associated with repression of gene expression as well as histone deacetylation and 

heterochromatin21 and is catalysed by DNA methyltransferases (DNMT). Inversely 

hypomethylation at these sites are associated with gene activation and euchromatin, and the 

removal of methyl groups is catalysed by DNA demethylases. As of now there are 3 known 

DNMTs (DNMT1, DNMT3A and DNMT3B), each one responsible for specific roles in the 

maintenance or addition/removal of methylation marks. For example, DNMT1 mediates 

maintenance of methylation after DNA replication by acting on the hemimethylated strand22 

while DNMT3A and DNMT3B catalyse de novo methylation of CpG islands23. As direct DNA 

demethylation is a controversial topic, mainly since the actual removal of a methyl group is 

thermodynamically highly unfavourable, the two families of DNA demethylases contribute to 

the two known indirect demethylation pathways. The first one sees conversion of 

methylcytosine by deamination into thymine then base excision and eventual insertion of a 

regular cytosine at the same position24. The second one consists of conversion by hydroxylation, 

catalysed by Ten-Eleven Translocation (TET) enzymes25.  

DNA methylation then plays an important role in gene expression but is also implicated in other 

processes such as X-chromosome inactivation, genome stability through repression of 

transposable elements, genomic imprinting or aging. Aberrant DNA methylation is at the center 

of several pathologies such as cancer26,27, several autoimmune diseases such as rheumatoid 

arthritis28 and multiple sclerosis29, metabolic disorders like hyperglycemia30, or age-related 

diseases like Parkinson31 or Alzheimer32. For example, perturbation of correct X-chromosome 

inactivation, such as mutations in DNMT3B resulting in incorrect DNA methylation in the 

inactivated X-chromosome (Xi), has been linked to general hypomethylation within the Xi seen 
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in Immunodeficiency, Centromere instability and Facial anomalies (ICF) syndrome33. This 

hypomethylation phenomenon results in both improper activation of genes but also in aberrant 

folding of the Xi, affecting genes that are distant from the original methylation sites.  

As of now there is not a clear consensus of how DNA methylation inhibits gene expression but 3 

main hypotheses rise: in the first one DNA methylation simply creates steric hindrance vis a vis 

the translational machinery, for example preventing transcription factor binding34,35. In the 

second one a higher order effect, likely due to electrostatic interactions between DNA and 

histones, induces chromatin compaction and effectively limits access to the translational 

machinery, although proof of this is yet to be found. Finally, the third one arises from 

interactions between chromatin remodelers or histone modifiers and methylated DNA.  

There is mounting proof of this concept as these interactions are being actively researched and 

the fact that DNA methylation does not exist in isolation: this epigenetic mark is correlated with 

specific histone modifications, most notably lysine methylations, hinting at a direct crosstalk 

between the epigenetic mark and the histone modification machinery. For example, methylated 

CpG DNA binding protein MeCP2 (part of the MBD family) is known to associate with Suv39h1/2 

histone methyltransferase36, which implement the H3K9me3 mark on histones, but recent 

research points towards a much more complex mechanism than simple recruitment of histone 

methyltransferases37. Inversely, non-methylated CpG islands can also direct chromatin 

structure. For example, it has been shown that the ZF-CxxC domain protein Cfp1, which is known 

for recruiting Set1a/b H3K4 methyltransferases, binds non-methylated CpG islands in vitro. To 

further demonstrate the regulatory power of DNA methylation we can note a recent discovery 

of a reversible DNA-protein cross-link directed by 5-formylcytosine (5fC), the oxidation product 

of 5-methylcytosine. 5fC displays distinct distribution compared to 5mC, and can form Schiff-

base conjugates with lysine residues of proteins with a “short” half-life38, which indicates a 

possible additional time-sensible transcriptional regulation characteristic of DNA methylation.  

Histones and the histone code 

 

As mentioned before histone PTMs are a well-defined epigenetic mechanism of gene 

transcriptional control39. Histones are alkaline proteins subdivided in five major families: H1/H5, 

the “linker histones” and H2A, H2B, H3 and H4, the “core histones”. Core histones assemble as 

dimers using a “handshake” motif: the head domain of one connects to the tail of the other. The 

four dimers then assemble into a octameric structure; the nucleosome core40. 146 base pairs 

(bp) of DNA can wrap around the nucleosome in a 1.65 left-handed super-helical turn when 
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tightly bound. The linker histones then “close the loop” by binding the nucleosome and securing 

the DNA in place. Consequently, there are about 50bp of DNA separating each nucleosome.  

Interactions between DNA and the histones account for a great part for how tightly packed the 

chromatin is and core histones have tails that stick out of the nucleosome and can be modified 

to modulate these interactions39. For example, two of the major histone PTMs are H3K27me3 

(Histone 3, Lysine residue 27, tri-methylation) and H3K27Ac (Acetylated version). The first 

modification induces a positive charge on the histone, thus attracting the negatively charged 

DNA closer to the nucleosome. This modification is generally found in what is called 

heterochromatin, or compacted chromatin, and is associated with genes that are 

transcriptionally silenced. Inversely, H3K27Ac creates a negative charge on the histone, 

repulsing the DNA and thus opening up the chromatin (the open chromatin state is usually 

referred as euchromatin), giving transcriptional machinery access to the DNA stored there.  

There exists a myriad of histone PTMs that permit a fine tuning of the chromatin opening state, 

which are dubbed the “Histone Code”. Table 1 summarizes a short list of histone PTMs and their 

respective effect on chromatin condensation. Note that methylation or acetylation of histone 

tails do not always have the same effects on activation or repression of nearby genes. It should 

also be noted that there exists many other modifications such as phosphorylation41 and 

ubiquitylation42, as well as arginine methylation43 and threonine/serine/tyrosine 

phosphorilation44 which will not be discussed here but are merely mentioned to underline the 

complexity of the histone code. It is also important to note that there exists controversy around 

the actual significance of the histone code, which would postulate that local chromatin structure 

as dictated by histone modifications are the main drivers of gene expression and that they are 

universal, i.e any two genes sharing equal histone PTMs would have similar expression patterns. 

While the actual importance and moreover reproducibility across genes of local chromatin state 

remains a hot topic, it is undeniable that the histone code only answers part of the question and 

that it must be understood as a fragment of all the possible mechanisms of gene expression.   

Type of 
modification 

Histone residue 

H3K4 H3K9 H3K14 H3K27 H3K79 H3K122 H4K20 H2BK5 

Mon-
methylation 

activation activation  activation activation  activation activation 

di-
methylation 

activation repression  repression activation    

tri-
methylation 

activation repression  repression 
activation, 
repression 

  repression 

Acetylation  activation activation activation  activation   

Table 1.1. Summary of main histone code methylation and acetylation variants and their effect on gene expression. 

Histone PTMs can be found throughout the genome, and each modification has different roles 

depending on their location and combination.  For example, H3K4me3 is prevalent in 
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transcriptionally active promoter regions45. Both H3K9me3 and H3K27me3 are found at 

repressed genes but H3K9me3 occupies constitutively repressed genes while H3K27me3 is 

mostly found at facultatively repressed genes46. Combination of activating or repressing marks 

can help regulate more precisely gene expression. Inversely, chromatin containing both gene 

repressing and gene activating modifications is often called “poised” and is a marker of cell 

stemness as it is prevalent in lineage-specific regulatory genes in embryonic stem cells47. A 

classic combination for poised genes is H3K4me3 and H3K27me348 but others exist. 

Combinations of active/active or repressive/repressive marks also occurs when tuning gene 

expression. H3K27Ac is present at active enhancers containing H3K4me1, effectively 

distinguishing them from inactive enhancers that only contain H3K4me149. 

All these modifications are brought about by enzymes that catalyse each specific histone PTM. 

Depending on the catalysed modification, either addition or removal of a mark, these enzymes 

are called “writers” or “erasers”. Histone methyltransferases (HMTs) and acetyltransferases 

(HATs) are writers while histone demethylases (HDMs or HDMTs) and deacetylases (HDACs) are 

erasers. Each family of writers or erasers can be further down classified depending on the amino 

acid that will receive the PTM (lysine, arginine, etc, as well as their protein domain) and the 

actual PTM catalysed, i.e mono vs. di vs. trimethylation, etc… which are usually closely related 

to the sequence homology of their catalytic sites50. For example, lysine HMTs (or HKMTs) that 

are SET domain containing have particular aromatic residues in their catalytic site that 

determines the final lysine methylation multiplicity state51. HKMT SET7/9 with a tyrosine will be 

sterically hindered to such an extent that only the monomethylated form can fit within the 

catalytic pocket, while phenylalanine will be able to fit a dimethylated lysine52. Owing to the 

complexity of histone PTMs and their effect in chromatin biology, writer and eraser families are 

quite populous and sequence homology in shared domain active sites (e.g SET domain) is varied.   

The activity of writers and erasers is furthermore regulated through their association with other 

proteins. We stated before that discrete modifications of histones can have effects on chromatin 

opening state through electrostatic interactions, but within differentially methylated residues 

electrostatic charges are the same. Rather, multiplicity of methylation serves as a recognizable 

mark to direct protein complexes effectively. Akin to writers and erasers, readers are domains 

that recognize epigenetic markers53. Readers are often found on writers and erasers, like for 

example the bromo domains found in HATs that recognize H4K8Ac 54. But they can also be part 

of more diverse proteins that interact with chromatin or DNA in a myriad of other ways, such as 

Heterochromatin Protein 1 (HP1).  

HP1 is a family of proteins heavily associated with heterochromatin maintenance55 which 

contains a chromodomain capable of recognizing H3K9me356 and a chromo shadow domain, a 
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distantly related domain that is usually present in chromodomain-containing proteins57. The 

chromo shadow domain is of particular interest as not only it does self-associate, effectively 

making HP1 a non-covalent linker of heterochromatin nucleosomes thus helping its 

macromolecular condensation, but also interacts with other chromatin regulating proteins. For 

example, HP1 interacts with histone methyltransferase SUV39H158, serving as a scaffold to 

further direct chromatin condensation through histone methylation and to help maintain 

heterochromatin. It also has been found to work with DNMT159 as well as other diverse proteins 

such as methylated CpG binding protein 2 (MECP2) or the origin recognition complex (ORC).  

There exists a plethora of multi-subunit histone modifying complexes, such as the polycomb 

repressive complexes (PRC)60, Silent Information Regulator (SIR)61 or SAGA62 among others. An 

important result of several readers, writers and erasers working together is the 

contextualisation of histone modification. Indeed, thanks to this multiplicity of subunits histone 

modifications can be targeted to the same histone, the same nucleosome or several 

nucleosomes away63. 

Chromatin remodellers 

 

DNA methylation and the histone code are not only then effective ways to control interactions 

between DNA, histones and other regulating proteins, but can also affect the higher order 

structure of chromatin in a “passive” way. But other complexes serve to directly modify 

chromatin structure using ATP hydrolysis to physically change positions of nucleosomes by 

mobilizing, exchanging or ejecting them; these are called chromatin remodeller complexes. 

Their function is mainly to reveal DNA from the tangle of nucleosomes, exposing it to sequence 

specific regulators. For this they contain the Snf2 family ATPase subunit which effectively 

mobilizes nucleosomes using ATP64. Additionally, they contain several other subunits such as 

epigenetic, DNA or RNA readers which help guide their activity, domains that regulate the 

activity of the ATPase and domains that serve as a scaffold to recruit transcriptional apparatus 

to the DNA. The untangling of DNA for transcription needs to be precise, and sometimes needs 

to be done fast, which is why chromatin remodellers are very diverse in nature as well as 

numerous. There is about one remodelling complex per 10 nucleosomes65 and they are divided 

in at least 4 families depending on the flanking domains of Snf2, each with their own subfamilies. 

The SWI/SNF family have a N-terminus helicase-SANT domain which recruits actin and actin-

related proteins Arp7p and Arp9, and a bromo domain.  Their name arises from the function 

that was being screened when they were discovered in yeast (mating-type SWItching and 

Sucrose Non Fermenting). Eukaryotes have two main members: BAF (Brg1 Associated Factors) 
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and PBAF (Polybromo-associated BAF), both sharing eight subunits. It has been shown that 

recognition of acetylated H3 residues by the bromodomain is necessary for the correct 

configuration of the remodellers before nucleosome sliding but does not need ATP66. After that 

they can either slide67, transfer68 or remodel nucleosomes69. They have been shown to also 

interact with other epigenetic modifiers, such as antagonism with the Polycomb Represive 

Complex (PRC) through direct eviction70,71. Mutation of several subunits, for example Brg1 in 

mice, have shown that they have tumour suppressor capabilities72, and accordingly specific 

inactivating mutations of several subunits are found in several types of cancer, such as BRM73 or 

BAF18074. BAF180 is of special interest as it is thought to give functional specificity to the 

complex through six tandem bromo domains75, hinting to a deregulation of targeting, and thus 

of chromatin remodelling, as the possible initiator of tumorigenesis. 

The ISWI family (Imitation SWItch) contain either the SNF2h or SNF2L ATPase domain and a C-

terminus SANT domain adjacent to a SANT-like ISWI (SLIDE) domain and a HAND domain, all 

which participate in regulating targeting of the ATPase domain. For example the SLIDE domain 

activates the ATPase domain and is needed to slide DNA along the nucleosome76. There exist 7 

members of the family so far: NURF, CERF, CHRAC, ACF, RSF, WICH and NoRC77. They have 

different activities, for example NURF disturbs nucleosomal structure78, hereby facilitating 

access to DNA, while ACF will organize nucleosomes by evenly spacing them79. Biologically the 

whole family participates actively in DNA damage repair mechanisms, such as double strand 

break repair80,81. Albeit the exact mechanisms of these roles are not yet fully understood, most 

of them arise from either targeting nucleosomes of DNA damage sites, opening of the chromatin 

and serving as scaffold for other proteins involved in repair. It is then logic to expect that 

mutations to these complexes end up producing both aberrant chromatin structure as well as 

cells that are hypersensitive to DNA damage. For example RNF20, a E3 ubiquitin ligase which 

ubiquitylates K120 of H2B at DNA damage points82, recruits ISWI family members. Mutations to 

it are observed in colorectal cancer as well as chromatin cohesion and chromosome instability83.  

The CHD family (Chromodomain-Helicase-DNA binding) have an AT-rich DNA binding domain, 

two chromo domains in tandem at the N-terminus and additional subunits that further 

subclassify members into three subfamilies. CHD1 and CHD2 are subfamily one, containing a 

SNF2 domain. Subfamily two contains CHD3-5 and has dual plant homeodomains (PHD), a reader 

domain that target trimethylated histones. Finally, subfamily 3 contains CHD6-9 that have 

Brahma and Kismet domains84. They have a broad array of roles ranging transcription control, 

cellular proliferation and DNA damage repair. A commonly studied complex is NuRD 

(Nucleosome Remodeling and Deacetylase), which couples chromatin remodelling and histone 

deacetylase activities. It contains HDAC1 and HDAC2 as well as CHD3 (a.k.a Mi2α) and CHD4 
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(Mi2β)85, Methyl-CpG binding domain protein MBD2 or MBD3, metastasis-associated proteins 

MTA1, MTA2 or mT3, histone binding-proteins Rbbp7 and Rbbp4 and Nuclear zinc-finger protein 

Gata2a and Gata2b. It also interacts with Lysine Demethylase 1 (LSD1)86 and Cyclin-Dependent 

Kinase 2 Associated Protein 1 (CDK2AP1)87. Different combinations of core elements and 

interacting partners give NuRD a vast array of activities and specificities, sometimes even 

opposed in nature. For example, MTA3 has been shown to upregulate E-cadherin by inhibiting 

the expression of Snail in tumour invasion88, while MTA1 can be found at the center of late 

tumours where E-cadherin is absent89. The NuRD complex is a main player in the differentiation 

of ES cells90,91 and its role in keratinocyte differentiation will be discussed later.  

Finally, the INO80 family (inositol requiring 80) is defined by its split ATPase domain which 

retains activity and acts as a scaffold for the association of RuvB-like proteins, RBb1 and 2. RuvB 

is a bacterial helicase, which sets the INO80 family apart by giving it the ability to bind specific 

DNA structures closely related to Holliday junctions and replication forks, which explains its role 

in homologous recombination and DNA replication92. Furthermore, the INO80 complexes 

contain more than 15 subunits such as actin-related proteins Arp4, Arp5 and Arp8, Actin itself, 

TBP-associated factor 14 (Taf14), nonhistone protein 10 (Nhp10) and Ino eighty subunits 1 to 6 

(Ies1-Ies6)93. As a chromatin remodeller its main role is the exchange of H2A.Z/H2B dimers with 

H2A/H2B94 but is implicated in transcription92, replication95 and cell division, either through its 

DNA translocase activity or serving as a scaffold. The inverse dimer exchange reaction is 

catalysed by SWR1, a member of the SWI/SNF family96, and both seem to play a role in genome 

maintenance97 and control of ESC differentiation98. 

There exist some other chromatin remodeller complexes such as SWR1 or RSC (homologous to 

the SWI/SNF family99) that have yet to be classified into families but have been left out here for 

the sake of brevity.  

Higher order nuclear architecture  

 

While most of the mechanisms of epigenetic gene regulation we have reviewed until now seem 

to regulate chromatin architecture at the nucleosome or perinucleosomal level they also have 

profound effects on a higher scale. When describing chromatin within the nucleus, and more 

importantly chromosomes, the image of a bowl of spaghetti comes easily to mind, where each 

single spaghetti is the double strand of DNA that compose a chromosome. But unlike the 

arbitrary position of single spaghetti in the Italian dish the positions of chromosomes and 

packaging of chromatin in the nucleus is actually very organized (probably because it was not 

designed by Italians).  
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Thanks to advances in fluorescence in situ hybridization and moreover the emergence of 

Chromosome Conformation Capture (3C) technologies it has become obvious that chromatin 

can be highly compartmentalized. Compartmentalization of chromatin has numerous 

advantages from the perspective of gene expression regulation. For example, it allows for 

reagents (e.g enhancers, transcription factors, etc) that might be in low concentration regarding 

the whole nucleus to have localised high concentration. It can also generate transcription 

factories where actively transcribed DNA shares space with high concentrations of RNA 

polymerases, while silent chromatin is kept out. It also better explains certain transcriptional 

phenomena; per example for a long time enhancer-mediated activation of gene transcription 

was thought to be a seemingly random event with stochastic kinetics involved. But the 

apparition of super enhancers100 or transcriptional bursting101 demanded a different model of 

interaction, and compartmentalization through phase separation has been shown to provide a 

better explanation102. As will be discussed later on, compartmentalization through phase 

separation is not a novel concept; Nucleoli and Cajal bodies have been known for a long time to 

be membraneless nuclear organelles that form through phase separation orchestrated by 

proteins and RNA and that can be appreciated with conventional light microscopy.  

Several levels of compartmentalization 

exist within the nucleus: At a more 

“local” level (i.e within genes and their 

close regulatory sequences), we start 

with Insulated Neighbourhoods; 

chromosomal loop structures held 

together by the transcription factor CTCF 

and cohesin. Above it (sub-megabase 

scale), Topologically Associated Domains 

(TADs) represent DNA sequences that 

interact with each other more often than 

would be expected of a stochastic model 

and are thought to be formed by several 

insulated neighbourhoods. Further above it (megabase scale), TADs associate in larger domains 

called compartments, regions of inactive and active chromatin that are spatially segregated. And 

finally, we find chromosomal territories; at a nuclear level each chromosome occupies a specific 

territory, and interphases between chromosomes are also tightly regulated. All these levels of 

regulation, underlined by what has been previously discussed, form the final 3D architecture of 

the nucleus. 

Figure 1.3. Schematical representation of different levels of 
chromatin higher order structure. Adapted from Matharu et al. 
2015 
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Insulated neighbourhoods 

 

Enhancers are segments of DNA that serve as scaffolds to transcription factors and RNA 

polymerase II, effectively recruiting them to the promoters of their target genes by looping. But 

in our bowl of spaghetti, how could these loops effectively target the right gene and not another 

one, proximal or distal, especially considering that most enhancers target genes within their own 

chromosomes? In the recent years evidence of physical restraint of these chromatin loops, 

mediated by CTCF dimers and cohesin, has shed some light onto how this phenomenon could 

be. These loops, termed Insulated Neighbourhoods, span an average of 190 kb and range from 

25 to 940 kb and contain between 1 to 10 genes, 3 being the average103. After their discovery it 

was found that most enhancer-gene interactions happen within their boundaries103,104 and that 

these boundaries were necessary to effectively control their expression. For example deletion 

of CTCF anchor of a PRC-repressed gene led to its activation103.  

Moreover, disruption of the boundaries can lead to aberrant gene activation. For example a 

gain-of-function isocitrate dehydrogenase mutation has been shown to produce 

hypermethylation at cohesin and CTCF binding sites through interference with TET family 5’-

methylcytosine hydroxylases, resulting in activation of receptor tyrosine kinase gene PDGFRA, a 

prominent glioma oncogene105. Also importantly, insulated neighbourhoods seem to be 

maintained during development. Interestingly, while the boundaries may be very similar 

between cell types, enhancer-gene interactions within these neighbourhoods can vary as they 

are cell type specific106. 

Topologically associated domains 

 

TADs are megabase-sized domains that were found through analysis of Hi-C 3C data, a 

development from 3C technology that pairs proximity-based ligation with massively parallel 

sequencing, as being regions of high self-interaction107. As of now there is much to be 

understood on the formation and regulation of TADs but key elements have already been laid 

out.  

We know that TADs are very stable, being similarly disposed through cell types, independent of 

tissue-specific gene expression or histone modifications and are even similar between species, 

e.g human and mice ESCs share between 50% and 70% of TAD boundaries108. This stability raises 

questions about the maintenance of their boundaries. They are enriched in H3K4me3, 

H3K36me3, transcription start sites, house-keeping genes, tRNA genes, short interspersed 

nuclear elements and similarly to insulated neighbourhoods CTCF and cohesin binding sites. 

Both house-keeping genes and CTCF/cohesin binding sites are specially enriched, which points 
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both to high level of expression and insulated neighbourhoods as being the underlying elements 

of TAD boundaries. Other possible factors include DNA supercoiling109 and how specific 

compartments of active and inactive chromatin fold, which will be discuss in the next part.  

Disruption of TADs has been shown to cause aberrant gene expression as is behind several 

pathologies110. For example, using genome editing to modify CTCF/cohesion binding sites, 

perturbation of the structure of the WNT6/IHH/EPHA4/PAX3 locus, all within the same TAD, 

generated mice with severe limb malformations (e.g polydactyly) by causing ectopic interactions 

between several promoters that are non-interacting in wild type111.  

Analogous to TADs are Lamina-Associated Domains (LADs), which consist of similarly sized (10 

to 10’000 kb) genomic regions that interact with itself as well as with the nuclear lamina. LADs 

are particularly prevalent, representing about one-third of the mouse and human genome112,113. 

These regions are mostly associated with silent heterochromatin, enriched in H3K27me3 as well 

as CTCF-binding sites at their periphery and H3K9me3 and H3K9me2 throughout113,114. Their 

dynamic interaction with the nuclear lamina offers a unique structural feature which helps 

define the 3D architecture of the whole genome by helping tether chromosomes to it. LADs can 

be separated in constitutive (cLADs) and facultative (fLADs), the former being LADs that are 

conserved across cell types while the later can vary. cLADs are generally more gene-poor than 

fLADs (less than a gene per Megabase), which foments the idea that their role is mainly 

structural.  

Interestingly, while LADs are nuclear lamina-bound, moving within a micrometer of the nuclear 

lamina over the space of several hours, part of them can be found deep within the nucleus after 

mitosis, hinting to a possible reshuffling of the LADs during cellular division115. There is also 

evidence that some LADs might move following a circadian rhythm which is in part regulated by 

CTCF but is probably not a general feature116. More likely, the nuclear-lamina region serves both 

for cLADs as an anchor point and a transient storage space for repressed genes such as fLADs.  

There is still much to learn about how LADs interact with the lamina, but there is mounting 

evidence that these are multivalent interactions that depend on DNA sequences as well as 

specific context, i.e chromatin state. For example a study found several cis-elements of the β-

globin locus to be necessary for lamina-targeting, but that knock-down of Suv39H, a 

methyltransferase that regulates H3K9me3, and G9a, responsible for H3K9me2, managed to 

detach the β-globin locus from the lamina117. Similar effects have been found with EZH2 and its 

associated mark, H3K27me3118. Finally it is important to indicate that these elements and marks 

interact with parts of the nuclear lamina such as lamin A/C118, Lamin B receptor119, emerin120 and 

several transmembrane proteins121, several of these will be discussed more in depth later on.  
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A/B compartments 

 

The introduction of the Hi-C method initially discovered a larger type of nuclear structures; 

compartments of either actively transcribed, termed A compartment, or inactive B 

compartment chromosomal regions that are spatially segregated122. These compartments are 

larger than TADs (multi-Megabase scale), which were thought to underline them. A 

compartments are associated with open chromatin markers, have a high gene and GC content 

and localize towards the interior of the nucleus while B compartments tend to show the 

opposite123. ATAC-seq and DNaseI digestion experiments confirm that A compartments have 

open chromatin while B compartments has more condensed chromatin. Genetic composition of 

the compartments varies depending cell type, and differentiation programs modify it108.   

Unfortunately lack of proof on how these compartments were regulated and research interests 

in Hi-C technology being more centered around incrementing its resolution power (which 

ultimately led to the discovery of TADs) left compartments a comparatively unresearched area. 

Lately it has been shown that removal of cohesin from DNA through inactivation of NIPBL, the 

factor that loads cohesin onto DNA, can effectively disrupt TADs but that compartments still 

remain, meaning that TADs are not the underlining structure that form compartments124.  

Chromosome territories 

 

Due to the size of chromosomes compared to the nucleus, the concept of Chromosome Territory 

(CT) has been apparent for quite some time as simple light microscopy allows for the observation 

of chromosomal segregation in several species125,126, but we had to wait for modern technology 

to get clear proof of their existence127,128. Since then much has been developed in their imaging 

thanks to in situ hybridization129 and 3D-FISH130, and finally 3C technology has allowed for in-

depth data regarding their relative position with other chromosomes. This led to the realization 

that chromosomes organize in non-overlapping territories122, that contacts between 

chromosomes are limited to the borders of CTs131 and that interchromosomal contacts are non-

random, conserved after mitosis132 and cell-type dependent133.  

Geometrical analysis of chromosomal territories is of course tricky as the nucleus does not 

necessarily have apparent poles, so most research is based on radial distribution of individual 

chromosomes and of intra (giving a sense of shape) versus interchromosomal (determining 

neighbours) contacts. For example, a very interesting case is the X chromosome; comparison 

between the inactive and active form of the X chromosome can reveal great insight into the 

relationship between genome topology, transcriptional activity and the underlying chromatin 

structure. X chromosome inactivation is mediated by the Xist gene in the inactivated X 



28 
 

chromosome (Xi), which codes for a lncRNA that mediates recruitment of silencing proteins such 

as PRC 1 and 2. Their accumulation will create a silent nuclear compartment (often referred as 

the Barr body) where activating histone modifications disappear while heterochromatin markers 

become prevalent. Finally, there is hypermethylation of CpG islands, rending most genes inside 

Xi silent134. But, not all genes are kept this way: the X chromosome has been shown to localize 

most genes to the outer rim of its territory and keep its interior relatively gene poor135. 

Interestingly Xi shows little size difference from the active form, but a more condensed state, 

and can unwrap to resemble the active form after deletion of the Xist locus136. As stated before, 

improper X-chromosome inactivation can result in aberrant gene activation and disease33. The 

radial position of both active and inactive X chromosome is similar although Xi has been shown 

to localize near the nucleolus in late S-phase137, and it seems that in certain cell types 

chromosome size and not gene content regulate radial position138. In line with previous concepts 

gene-poor or inactive chromosomes are found near the nuclear lamina, while gene-rich and 

actively transcribed chromosomes are mostly located towards the interior of the nucleus139,140 

and their localization and shape changes during differentiation141,142.  

Interchromosome space if of special interest, as it seems to be the hub of transcription factories 

as well as translocations131. EM analysis of this space has revealed it to be much larger than 

expected (e.g certain measurements put it at 41.7% of nuclear volume for endothelial cells 

including the nucleoli143) and is theorized to create a complex mesh of intranuclear tunnels that 

mediated free diffusion of components. The contact between separate chromosomal loci has 

been termed chromosome kissing144 and is believed to be a driving force of chromosomal 

territory definition in line with LADs and replicon clusters145. Both silencing and active 

transcription happen at these loci.  

For example, the Ikaros/Lyf-1 gene cluster, a gene involved in lymphocyte-activation, has been 

shown to localize to centromeric heterochromatin, shown by HP1 concentration, and these 

locus only interact with inactive lymphocyte genes in cis and trans chromosomes146. Upon 

maturation of lymphocytes, the Ikaros cluster begins interaction with activated genes. Another 

study found that the Igf2/H19 locus (chromosome 7) interacts with Wsb1/Nf1 (chromosome 11) 

through its imprinting control region, an interaction mediated by CTCF. Inhibition of CTCF or 

deletion of the ICR in the Igf2/H19 locus effectively perturbated expression of Wsb1/Nf1147, 

which could hint at a possible role of CTCF as a building block of transcriptional factories. 

Similarly, non-mixing of DNA from different chromosome territories is also mediated by 

chromatin structure has shown by increased chromosomal intermingling after inhibition of 

HDAC148.  
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The nucleolus 

 

The nucleolus is a membraneless organelle in the nucleus whose main role is the 

compartmentalisation of rRNA synthesis but also plays part in other processes such as cell 

growth, survival, senescence and stress response149. As the rRNA factory, its assembly and size 

are heavily regulated by the cell type, cycle and transcriptional activity. It increases in size 

between interphase and prophase and rRNA synthesis accounts for most transcriptional activity, 

before being disassembled during metaphase150 and eventually reformed at the beginning of 

the next cell cycle. In higher eukaryotes the nucleolus contains 3 distinct regions: Fibrillar 

Centers (FCs), Dense Fibrillar Components (DFCs) and Granular Component (GC). RNA Pol I-

mediated transcription of rRNA genes (rDNA) occurs at the interface between FCs and DFCs. The 

nascent tandem rRNA transcripts create a distinct structure commonly referred to as Christmas 

Trees151. Subsequent processing of pre-rRNA and final assembly with other ribosomal proteins 

happens in the DFC and GC. 

Nucleolus localisation within the nucleus is specified at the genome level by Nucleolar Organizer 

Regions (NORs); clustered arrays of rDNA repeats found on the short arm of five acrocentric 

chromosomes that code for 5.8S, 18S, and 28S rRNA. But there exist silent NORs which are extra-

nucleolar, revealing that transcriptional activity associated with RNA Pol I is an indicator of 

nucleolar structure152,153. Analog to this, chromatin modulating enzymes and rRNA transcription 

regulators are also important factors in its architecture. Per example, Upstream Binding Factor 

(UBF), a TF of rRNA and main component of Pol I machinery, is a marker of the FC. UBF is also of 

interest to us as it behaves similarly to a chromatin remodeller by removing H1154. Fibrillarin 

(FBL), a small nucleolar ribonucleoprotein155, and Nucleophosmin (NPM1)156, a nucleolar histone 

chaperone, which are crucial for proper rRNA maturation, are markers of DFC and GC 

respectively. This indicates that RNA Pol I activity on rRNA genes, as modulated by localized 

chromatin structure, plays an important role in the maintenance and development of nucleoli 

structure. 

Indeed, ribosome synthesis follows punctual needs by the cell for translational capability, and 

rRNA synthesis can account for most of the transcriptional activity in early developing 

embryos157 and is inversely reduced in senescence158. This can be modulated by selectively 

turning on and off NORs using epigenetic reprogramming, and cells that have variant rRNA genes 

have consistently shown to still have similar levels of rRNA transcription159. More intriguingly, 

which NORs activate (or become “dominant”) seems to be random in nature160,161, albeit the 

epigenetic machinery behind these activations acts effectively as both repressed and active 

rDNA can be adjacent yet have opposed expression profiles162. While active or silent rRNA 
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genomic regions can be found within nucleoli silent NORs are always extranucleolar, indicating 

a fine tuning of rRNA synthesis within a single nucleolus. Furthermore, the creation of purely 

synthetic and active NORs and subsequent exogeneous introduction into cells created 

neonucleoli, irrespective of their site of chromosomal integration163, further proving that 

transcriptional activity as mediated by recruitment of binding factors such as UBF is an important 

effector of nucleoli structure.  

Epigenetic regulation of intra and perinucleolar space seems then to be of importance, but little 

is known for now. A striking feature of perinucleolar space is H3K9me3-marked 

heterochromatin. These pericentromeric chromocenters are regulated by HP1, and HP1β is 

found within fibrillarin-positive regions of the nucleolus164. More interestingly, epigenetic marks 

within the nucleolus are differentially maintained compared to interphase nuclear chromatin: 

inhibition of SUV39h, a histone methyltransferase responsible for H3K9me3, does not modify 

the positioning of this mark within the nucleolus, nor that of HP1 β, contrarily to the rest of the 

nucleus164. Disturbing DNMT1, but not DNMT3B, effectively disturbs nucleolar structure and 

subsequently increased levels of H4K16Ac are seen on rRNA genes. SIRT7, a chromatin-silencing 

factor that interacts with SMARCA5 (SWI/SNF-related matrix-associated actin-dependent 

regulator of chromatin, subfamily A, member 5), a component of nucleolar heterochromatin-

silencing complex NoRC, has been shown to also interact with DNMT1, effectively protecting 

rDNA array stability165. DNMT3b has been implicated in rDNA promoter methylation which stops 

UBF from binding, destabilizing nucleoli formation166. In breast carcinomas, rDNA methylation 

status is associated with nucleolar size. Considering that escape from senescence pathways need 

upregulation of ribosomal biogenesis, this is quite interesting167. Many other levels of epigenetic 

control of both rRNA expression and more generally nucleoli structure exist,  such as NoRC168, 

NuRD169, HDAC170, p300170, but out of brevity we will not discuss them here. One final note will 

be made regarding interactions between cohesin and nucleoli, indicating a possible, but yet not 

understood, link between chromatin loops and nucleoli171. 

Nucleoli formation follows a liquid-liquid phase separation dynamic172. In line with this, its 

formation is dependent on several nucleoli-associated protein concentrations within the 

nucleus173. Nuclear enlargement preceding mitosis is a key factor of nucleolar dissociation at this 

step of the cell cycle. Nucleoli also coalesce following Brownian motion, which accounts for 

intercellular variation in their number and size, especially in smaller nuclei174. Considering that 

in a relatively well 3-D defined nucleus their coalescence can implicate up to ten chromosomes, 

this is an indicator of the potential of chromatin to dynamically rearrange. Since different rRNA 

maturation processes are compartmentalized at the interphase of the nucleolus and the 

nucleoplasm, the reduction in total surface due to coalescing on ribosomal biogenesis is unclear. 



31 
 

 

 

Nuclear architecture changes in keratinocyte differentiation 

 

It should now become apparent that like any other 

developmental program, HKs differentiation is 

accompanied by a plethora of changes in their nuclear 

architecture and epigenetic regulation.  

In HKs differentiation, DNA methylation dynamics 

were first seen by treating them with 5-aza-cytidine, a 

compound that inhibits DNMTs, which resulted in 

early differentiation175,176. Later, DNMT1 was 

described as a regulator of proliferation in progenitors 

and enriched in undifferentiated cells. Knock out of 

the Dnmt1 gene results in premature keratinocyte 

differentiation. UHRF1, a protein that directs DNMT1 

to hemimethylated DNA has been found to only be 

expressed in undifferentiated basal cells. Similarly to 

DNMT1 deletion, depletion of UHRF1 leads to 

premature HK differentiation as well as a reduction of 

proliferative potential22. Gene-specific analysis of 

methylation revealed CpG methylation at multiple 

differentiation gene promoters in progenitor HKs, 

methylation that was lost upon induction of 

differentiation22,177. This indicates that DNMT1 role is 

to control entry into the differentiation pathway by inhibiting differentiation genes. DNMT3A 

and B have recently been shown to bind to super enhancers in a H3K36me3-dependent 

manner178 but differ in their mechanism of action and expression profiles during differentiation. 

DNMT3a partners with p63, interaction mediated by TET2, to maintain DNA hydroxymethylation 

at the center of enhancers. DNMT3B on the other hand induces DNA methylation along 

enhancers. Both DNMTs are expressed in basal HKs, but only DNMT3A expression is pursued 

after entry into the differentiation pathway, albeit a change in targets occur; its activity is shifted 

from enhancers that control expression of stem cell proliferation genes to differentiation ones, 

Figure 1.4. Distribution of different epigenetic 
marks among the distinct regions of actively 
transcribed, paused, and inactive genes. 
Adapted from Gdula et al. 2012 
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indicating a dual action. Depletion of either protein inhibits target enhancers as well as reduced 

H3K27Ac mark. It also induced premature differentiation. 

DNMT1 as well as 3A and 3B have been associated with both hyper and hypomethylation in skin 

cancer, some affecting differentiation-related genes, hinting at a possible role in their regulation 

in healthy tissue. The promoter of LAMA3, responsible for the laminin α3 subunit and hence of 

correct anchorage to the basement membrane179, can get hypermethylated in sun-exposure 

related melanomas180. Interestingly, it has been shown that older subjects that are more 

exposed to sun have a higher degree of hypomethylation181. TGFB1 can inhibit the proliferation 

of HKs182 and has been shown to be upregulated in DNMT3A-depleted tumors183. The promoter 

for E-cadherin, which has been shown to be a mediator of differentiation and stratification184, is 

also hypermethylated in neoplasms185.  

Markers for actively transcribed chromatin H3K4me3, H3K56Ac as well as RNA Pol II were found 

to be reduced on suprabasal layers, indicating an overall reduction of transcriptional 

levels186.Gene-specific changes in chromatin landscape are also observed. For example, genes 

that are activated during differentiation (e.g Lef1, Bmp3, Wnt5a, MSx1) show a loss of 

H3K27me3 while gaining H3K4me3 and H3K79me2 histone marks187. Inversely stemness genes 

(e.g CD34, Sox9, Nfact1) will experience the contrary.  

The work of writers and erasers paves in part this process. Histone methyltransferase EZH2 is of 

importance as its partial ablation has been shown to selectively up-regulate differentiation 

genes, implying that EZH2-mediated repression maintains stemness in HKs188,189. The concept 

has been tested in vitro with an eraser, JMJD3, which catalyses demethylation of H3K27 and 

caused HKs to differentiate prematurely and its deletion caused the inverse effect190. H4K20me1 

is catalysed by the work of Setd8, a histone methyltransferase that inhibits apoptosis in the skin 

via regulation of p63 expression. It is also a transcriptional target of c-Myc and serves as a 

mediator in c-Myc induced differentiation.  Its ablation effectively stops HK proliferation and 

differentiation and p63 expression is lost191.  

In parallel, HDAC1 & 2 deletion resulted in failure of epidermal proliferation and stratification 

by perturbing p63-mediated gene repression while not perturbing p63-activated genes192. This 

is due to HDAC1/2 binding the same promoter regions as p63-repressed genes but not p63-

activated ones. Interestingly, inducing global histone hyperacetylation with trichostatin A (TSA) 

stopped shape-induced differentiation of HKs193. This inhibition was shown to be in part p38 

MAPK-mediated by affecting Serum Response Factor (SRF) transcriptional activity and the 

expression of AP-1 TFs. ARNT, a TF that responds to environmental stress, shows reduced 

expression along the differentiation pathway, suggesting a negative regulatory link between 
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ARNT and HK terminal differentiation mediated through reduction of EGFR activity. A study using 

KO of ARNT and TSA, showed that this link is controlled by HDAC activity, whose expression is 

inversely related to ARNT levels194. It also found Filagrin, K10 and loricrin genes to be directly 

regulated by HDAC. These studies show that histone acetylation has different context-

dependent roles in regulating HK differentiation.  

Furthering this point, a recent study proposed that p63 and HDAC1 co-expression patterns could 

potentially be used as a stem cell markers for HKs195. ASH1L, which encodes a SET domain-

containing protein that catalyses H3K36 demethylation, was found in mice to be required for 

epidermal homeostasis. Perturbation of the ASH1L gene resulted in excessive keratinocyte 

proliferation, defective wound healing and skin hyperplasia. The study hinted at a possible 

reason being disturbance of c-Myc but failed to show a direct link196.  

Concerted work of writers and erasers in complexes with readers and chromatin remodellers 

adds another level of HK differentiation control. For example, Mi-2β-NuRD has been shown to 

be of importance during early development of the epidermis, its inhibition induced severe 

epidermal barrier defects in mice during embryogenesis (notably by the progressive loss of 

keratin 14), ultimately leading to neo-natal death. It was found to also be of importance for the 

subsequent maintenance of the self-renewal capability of epidermal precursors91. The ATPases 

Brahma (BRM) or Brahma-related gene 1 (BRG1), share similar functions in later stages 

epidermis development, as knockdown of both induced severe skin barrier defects in mice197. 

BRG1 was shown not to be of importance in proliferation and early differentiation, but is for late 

differentiation, ablation generating severe skin permeability barrier effects, indicating a role in 

lipid structure. Other SWI/SNF regulatory subunits were investigated in a later study, and found 

BAF250a to direct HK differentiation by opposing Actin-Like Protein 6a (ACTL6a) repressive 

effect on HK differentiation gene promoters such as KLF34198.  

PRCs are of special interest in HK differentiation pathways. A study showed that PRC1 

component CBX4 prevents HK stem cells from exiting the quiescent state and becoming TACs as 

well as from becoming senescent, but once cells become TACs it is dispensable in inhibiting their 

proliferation and eventual differentiation199. In the same study it was also shown that CBX4 

inhibits EZH2, DNMT1, DNp63 and c-Myc, further tying their role in HK differentiation together. 

Furthermore another study indicated that CBX4 maintains epithelial identity and proliferative 

activity by repressing selected non-epidermal lineage genes as well as cell-cycle inhibitor genes 

mediated by p63200. PRC2 subunit EZH2 was already discussed before, but a more recent study 

linked it to other subunits EZH1, EED and SUZ12, stating that in HKs they function largely as part 

of the PRC2 and not as lone actors as shown by virtually equal effects upon ablation of any 

individual subunit. PRC2 then becomes a major player in H3K27me3 mark deposition and its 
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perturbation results in premature formation of the cornified layer, aberrant merkel cell 

formation and defective hair follicles201.  

Bioinformatic analysis of mRNA assays after induction of differentiation through different 

pathways identified several chromatin remodellers such as NURF, MORF and LSD1 as of 

importance in HK differentiation202. Further analysis revealed an interaction network between 

ING5, SMARCA5, BPTF, EZH2 and UHRF1. While the two later were already known to control HK 

differentiation, the formers, which are subunits of NURF (SMARCA5 and BPTF) and MORF (ING5), 

were novel and implicated in the control of integrins. In mouse melanocytes, BPTF depletion 

showed reduced TACs for this specific cell lineage, generating a population of mice with white 

coat. This was mediated by MITF, a TF that regulates entry into the differentiation pathway of 

melanocytes, a whose interactome also integrated other NURF complex subunits such as SNF2H, 

SNF2L and RBBP4203.  

Differentiation also affects the higher order nuclear 

architecture. Indeed it has been previously shown that 

the position of chromosomes 18 and 19 change during 

calcium-induced differentiation204.  Chromosome 19, 

which has the highest gene density of all autosomal 

chromosomes, moves from the interior to a more 

peripheral position in early differentiating HKs, while 

chromosome 18, having one of the lowest gene 

densities, mirrors this transition. Interestingly they 

both assume similar radial positions in later stages of 

differentiation. The same study reported variations in 

size, as both chromosomes shrink in volume by about 

20%. Their relative size also varies, from a 5% larger 

chromosome 18 to over 20% larger in late 

differentiated cells, virtually the same as the 

difference in their respective DNA content (76Mbp for 

chromosome 18 versus 64Mbp for 19). This indicates 

a change in chromatin compaction that could be 

coupled with the transcriptional status of HKs during 

differentiation, from a more active/open state in 

undifferentiating HKs, to the more transcriptionally 

silent/closed state of terminally differentiated cells. A 

dynamic, stepwise change in their pair-wise 

Figure 1.5. Epigenetic control of expression of 
terminal differentiation-associated genes in the 
epidermal differentiation complex locus. Adapted 
from Gdula et al. 2012 
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association was also seen depending on the differentiation state, which could also indicate 

stepwise change in transcriptional programs, but without any gene-specific information that is 

pure speculation.  

One of the most important higher-order structures in HKs is the Epidermal Differentiation 

Complex (EDC). This 2Mb region in the 1q21 chromosome contains about 33 known genes 

responsible for tissue development and repair by regulating keratinocyte terminal 

differentiation program through concerted signal pathways205. 28 genes encode several 

structural proteins that fall within 3 subfamilies; cornified envelope precursors (loricrin, 

involucrin and proline-rich proteins), Intermediate Filament (IF) proteins (profilaggrin, and 

trichohyalin), and the calcium-binding S100A proteins, responsible for and array of cellular 

functions206,207. The remaining 5 genes, as well as 10 additional genes found within a 1-Mb 

extended region, encode varied proteins such as cytoskeletal tropomysin (TPM3), HAX1, Laminin 

receptor 6 (LAMRL6), a proteasome subunit (PSMD8L) and 5 initially uncharacterized proteins 

(NICE-1 through 5). The fact that most of these genes have strong implications in keratinocyte 

differentiation implies a functional constraint that permits their coordinated expression.  

Indeed it has been shown that the EDC in differentiating keratinocytes is located to the exterior 

of chromosome 1 territory compared to lymphoid cells where the EDC is transcriptionally 

repressed and found in the interior of the territory208. Similarly, basal layer keratinocytes have 

the EDC much closer to the exterior of the chromosome 1 territory, which could indicate a 

priming of differentiation. Lately 3C data has allowed to determine a dynamic rearrangement of 

enhancer 932, situated almost one Mbp downstream of S100A10, with several EDC gene 

promoters, in a developmental and spatiotemporal fashion209. These interactions were also 

found to be mediated by c-Jun/AP-1. As discussed above the EDC is also regulated locally 

through the epigenetic machinery178,192,194,197,199,210.  

A study reports that nucleoli vary in number and radial distribution; they become less numerous 

and tend to congregate towards the nuclear interior as the HK differentiate186. The study used 

mathematical modelling to determine that this is not an effect of nuclear morphology change 

but a result of active remodelling of the nuclear architecture associated with differentiation. 

Their reduction in number is accompanied by an increase in average volume.  

Finally, macroscopic changes can be observed such as variations in nucleus shape and size. HKs 

found in the basal and granular layer present more elongated nuclei compared to the spinous 

layer and Basal HKs, regardless of their proliferative status, seem also to have larger nuclei than 

suprabasal HKs186,211. Interestingly this is not the case in HKs grown on single layer cultures204. 
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There is then ample proof of the complex interplay between keratinocyte differentiation and 

the epigenetic landscape remodelling although there is still much to discover about it. It is also 

of capital importance to understand that these changes in 3D architecture of chromatin are not 

a simple by-product of keratinocyte differentiation but also an essential part of it as shown by 

the pathologies that arise from perturbing them.  

 

The cytoskeleton and mechanotransduction 

 

As mentioned before several environmental cues will regulate the entry of keratinocytes into 

the differentiation pathway, and a very active line of work in this field is elucidating what cues 

are these, and through which pathways do they induce differentiation. For example one of the 

most well-known inducers is calcium212. Indeed, a calcium concentration gradient is established 

throughout the epidermis, which effectively helps control the differentiation process as the 

keratinocyte migrates through it. Several signalling pathways are controlled by calcium213, both 

intra and extracellularly, such as the formation of desmosomes and adherens junctions which 

serve as extracellular sensing and anchoring apparatuses, the control of activity of several 

kinases or more directly through the Calcium Receptor, a G-Protein Coupled Receptor. All these 

ultimately will play a role in regulating the entry into the differentiation pathway.  

An essential, yet understudied cue is physical force. As discussed before the epidermal barrier 

is subject to continuous external physical insults, but more importantly its proper maintenance 

through homeostasis and its wound-healing potential heavily involve force-sensing of the 

immediate and proximal environments214. For example, asymmetric division perpendicular to 

the basement membrane has been shown to be a simple method of effectively forcing one of 

the daughter cells to stratify by being inherently committed and already positioned 

suprabasaly211. Recently it has been shown that adhesion and cortical tension forces generated 

by neighbouring cell divisions could trigger differentiation and stratification too184. Adhesion 

forces to other cells are regulated by cadherins, that mediate cell-cell contacts, and they also 

have a role in regulating keratinocyte differentiation215. Moreover changes in cadherins 

expression patterns during differentiation drive subsequent forces that help the migration of 

differentiating HKs upwards184. Adhesion forces can also be influenced by the extracellular 

matrix (ECM, essentially the basement membrane in vivo) properties, such as stiffness216,217 or 

composition218, and can have effects on differentiation219. More interestingly, cellular size and 

shape as dictated by restricted ECM contact has been shown to induce terminal 

differentiation220 and modify nuclear morphology221.  
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The cytoskeleton is an important part of mediating these responses to physical stimulus. It is 

made up of complex networks of interlinking filaments and tubules that helps maintain the 

structural integrity of the cell222 as well as having a role in transport223 and migration224. 

Furthermore, dysfunction in its regulation and mechanical properties not only compromises cell 

structural integrity but can also have profound effects on tissue structure. It is also important to 

note, as it will interest us here, that the nucleus also contains its own nucleoskeleton, and like 

its cytosolic counterpart it has a myriad of other uses apart from structural such as gene 

regulation225 226. As discussed later, the two are also linked and integrated, which further 

expands their biological applications.  

Keratinocyte cytoskeleton 

 

In epithelial cells three types of filaments form the cytoskeleton: Microfilaments, Microtubules 

and Intermediate Filaments (IFs). These categories are based on the diameter and biochemical 

properties of each filament that form them. For a simplified approach, this review will only 

concern itself with type I and II IFs (keratins), type V (lamins, in the context of the 

nucleoskeleton) and microfilaments (actin). While microtubules have important roles in 

intracellular transport227 and cell division228, their contribution to mechanical integrity as well as 

mechanotransduction and differentiation in HKs is limited and not yet very well 

understood229,230.  

Figure 1.6. Schematic representation of the molecular connectivity between the Extracellular Matrix (ECM) and the 
Nucleoplasm mediated by the cytoskeleton and typical propagation times of different stimuli. Ingber et al. 2009 
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Keratins 

 

Keratinocytes get their name from their comparatively higher amount of keratin231, IF structural 

protein, than other cell types, and is the main cytoskeletal proteins that accounts for their 

mechanical integrity232. As a main component of the keratinocyte cytoskeleton, keratin plays an 

important role in their mechanotransduction233, compared to other tissues were other 

cytoskeletal proteins, such as actin, are usually the main actors, allowing for tissue-specific 

responses to physical force. In this regard keratin has been heavily studied as a structural 

element of the cytoskeleton and is relatively well understood while its role in other processes 

such as migration, tissue stability or metastasis remains the focus of active research.  

Keratins originated from primordial nuclear Lamin like many other IF genes234. Of all IF human 

genes (70), most (54) encode keratins, and a majority (37) of them are expressed in the skin. 

Gene evolution brought two types; type I and II, which are divided upon their isoelectric 

points235. They have a central α-helical rod subdivided by 3 short linker segments236,237. Rods are 

flanked by larger non-helical domains; head (N-terminal) and tail (C-terminal).  

They are expressed as pairs (one type I and one type II) as they intrinsically form acid-base 

heterodimers. These then assemble into anti-parallel tetramers as their head rods overlap and 

finally into “unit length filaments”; short (60nm) keratin cylinders 10nm thick which will become 

the basic component of the rope-like IFs. This self-organization process usually starts near focal 

adhesions at the periphery of the cell, then polymerization will allow for the elongation and 

thickening of the keratin filaments towards the nucleus. Along the way and at the destination 

they will cross link other keratin filaments, transforming into bundles and finally creating a mesh 

around the nucleus238.  

It is important to note that depending on their differentiation phase keratinocytes will express 

different pairs of keratins231. These changes in keratin populations and hence in their properties 

are paramount to the process of differentiation. Keratin 5 and keratin 14 (K5/14) are indicators 

of basal keratinocytes7 and are the main pair that interact with hemidesmosomes, proteins that 

attach basal keratinocytes to the underlying basement membrane239. When the keratinocyte 

enters differentiation, both hemidesmosomes and K5/14 are downregulated, facilitating 

keratinocyte detachment from the basement membrane and initiating its journey outwards. K5 

can form heterodimers with K15, which seems to be a secondary basal HK keratin and whose 

synthesis might be upregulated in the absence of K14240 and has been linked to a more mature 

type of basal HKs241. K1/K10 are produced in the suprabasal layers of the epidermis and 

represent an important mediator in stratification as well as differentiation. Interestingly they 

are incapable of forming a keratin network on their own and hence rely on the previous K5/14 
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network to assemble242. This is mediated by K1 as its expression precedes K10. Ectopic K10 

expression has been shown to prevent cell proliferation, a phenotype that is rescued by 

expression of K16243. K10 can also form heterodimers with K2, which is also a regular component 

of the suprabasal cells244 and is upregulated in mechanically stressed epithelia245. Both K1 and 

K2 can form heterodimers with K9, which is also involved in mechanically stressed epithelia246. 

Finally K77 and K79 have been found in terminally differentiated HKs247. Many other keratins 

exist that are found in hair follicle (e.g. K71-74,75, K6, K25-28, K81-86) but will not be discussed 

here.  

As stated before keratins are the main influencer of keratinocyte architecture and mechanical 

properties. They are viscoelastic and have high flexibility but can react to external physical forces 

by stiffening. This transition is quick in both directions (i.e. they also recover quickly after 

cessation of deformation)248, probably mediated by their ability to initiate bundling by itself249. 

Fluorescence and FRAP experiments have revealed that in living cells the keratin network is in 

continuous growth250; moving by what can be likened to waveform propagations, usually 

directed towards the cell center251. New keratin fibers are found to be initiated towards the cell 

periphery, but join a more mature, central network along their propagation. The more dynamic 

peripheral filaments are thus more capable of reacting to extracellular impulses, while relying 

on the stability of the central network252. The initiation of the keratin filament follows a 

nucleation of soluble monomers close to focal adhesions253. The nucleation product, possibly 

similar to other IF unit length filament, is devoid of polarity so will grow from both ends until 

they integrate the larger network252.  

There exists a duality of keratin filaments and keratin bundles, which give rise to different 

mechanical properties. Bundles are more stable and have reduced turnover, giving a more 

resilient and durable cytoskeleton and are formed by lateral association of keratin filaments254–

256. These bundles are usually seen perinuclearly and bundling efficiency can be affected by 

several factors that can influence cell behaviour. The first one is the composition of keratin 

dimers within the keratin bundle, as seen by ectopic production of different tissue keratins257. 

Second would be interacting molecules, such as cytolinkers258 like epiplakin259 or plectin, which 

acts as a linker between keratin and the other cytoskeletal networks of microtubules and 

actin260. Finally, keratin PTMs can also influence their assembly dynamics. For example PKC ζ has 

been shown to increase keratin dynamic exchange of subunits leading to thicker bundles in 

response to sheer stress by phosphorylating a K18 serine residue261.  

The pool of keratin monomers is replenished by disassembly of filaments usually near the 

nucleus255,262. Part of this pool will cycle back to the cellular periphery while the rest will maintain 

the perinuclear mesh. Cycling is controlled by factors that govern either keratin bundle assembly 
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or disassembly. As stated before PKC ζ can accelerate this assembly in response to sheer stress. 

P38 MAPK has a similar effect and is also activated by stress factors or during mitosis263. This 

cycling is proposed as the main driving force of keratin IF cytoskeletal function. In static cells, 

the cycling is slow and supposed to “check” the presence of other cells through focal adhesions 

and desmosomes, or of the basement membrane through hemidesmosomes. In motile cells the 

cycling is faster and facilitates growth toward the leading edge. For example, in line with the 

three factors stated before, it has been reported that keratin isotypes, whose function is further 

modulated by protein kinase C α, can affect desmosome stability, intercellular contacts and thus 

whole tissue mechanics264. 

Keratins also have a function in control of homeostasis. It has been shown that repression of 

K14 expression induced reduced production of keratin pair K5, premature differentiation and 

delay in the cell cycle265. These effects were mediated through modulation of Akt-mediated cell 

proliferation and Notch1-dependent differentiation. Recently it has been found that K17 

localizes within the nucleus266,267. It is for now unclear what exact role its nuclear 

compartmentalization does, but one can speculate. For example, K17 has been shown to 

associate with transcriptional regulator AIRE and with p65.  

Adaptor proteins mediate interactions between cytoskeletal proteins and other cellular 

constructs. Keratins can for example use desmoplakin to attach to desmosomes, which link cells 

to other cells, or through plectin to hemisdesmosomes, that link the cell with the basement 

membrane239. These interactions effectively allow for 3D organisation of keratinocytes 

throughout the epidermis and mutation in both keratins and adaptor proteins can compromise 

both cellular and tissue integrity. For example mutation of desmoplakin has been shown to 

decrease cell-substrate and cell-cell forces as well as cell stiffness both in pairs and sheets268. 

Inhibition of keratin levels effectively modulated the adhesive properties of desmoglein 3, a 

desmosomal cadherin, modifying intercellular forces in HKs. Interestingly, this led to the 

discovery that cellular adhesion forces mediated by desmosomes are controlled in part by p38 

MAPK-dependent phosphorylation of keratins. Plectin has been shown to be an important 

player in the coordination of hemidesmosome disassembly during HK differentiation269. 

Mutations in the keratin genes and associated adapters have been linked to several 

malformations of skin with varying severities, from mild to lethal. One of the better known 

diseases linked to keratin mutations is Epidermolysis Bullosa Simplex, where skin becomes 

fragile and easily blisters upon physical trauma270. As keratins are also involved in cellular 

motility their analysis can also give insights into tumour progression and metastasis271.  

Moving away from the cellular periphery to the nucleus, keratin can also physically link to the 

nuclear envelope. Indeed, through plectin272, keratin can interact with nesprin-3, an outer-
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nuclear envelope member of the LINC (Linker of Nucleoskeleton & Cytoskeleton)273, creating an 

indirect physical link between the extracellular space and the nucleus. Interestingly it has been 

shown that plectin mediates in the nuclear morphology of HKs by modulating the perinuclear 

mesh of keratin, a phenomenon in part controlled by the crosstalk with F-actin221. Indeed, cells 

grown on microengineered surfaces which reduced their available adhesive surface showed 

nuclear deformation and removal of plectin incremented the amount of nuclear deformation. 

This effect was found not the be caused by improper link to the nucleus through the LINC, but 

rather by a diminished keratin network surrounding the nucleus that dampens tensile and 

compressive forces. It is important to note that removal of plectin also affected the integration 

of the keratin network to the other cytoskeletal proteins and that previous studies also have 

linked it to elevated MAPK activity274, which is a modulator of nuclear area. Since the LINC 

complex is heavily implicated with the nucleoskeleton and other cytoskeletal proteins, it will be 

discussed in its own section further down.  

Actin 

 

Actin represents a family of globular proteins that form microfilaments and are of great 

importance in the cytoskeleton across mammalian cells, both for mechanical integrity and 

motility. They are usually found in two forms; either as a free monomer (G- actin, for Globular) 

or as a polymer (F-actin, for Filamentous), both with their respective roles in cell biology275. Actin 

shares some structural roles with keratins, as discussed in some examples before269, albeit it is 

not a major player in keratinocyte mechanical integrity232. It is nevertheless of importance for 

skin tissue morphology276 and has important roles in migration277 and transport with myosin 

motors where it serves as a dynamic track278. Actin also works as a mediator in the 

mechanosensory machinery as well as having some gene regulation roles, which is why we will 

mostly discuss these roles here.  

G-actin, who functions primarily as an ATPase, folds into two α/β domains separated by a cleft 

where ATP is hydrolysed. Because of their role in F-actin these are referred as the outer and 

inner domains and the whole structure is referred as the “ATPase fold”. G-actin is also particular 

as it is capable of a comparatively very extended array of interactions with other proteins, giving 

it a wide field of applications which also translates into its filamentous form279.  

F-actin is a very dynamic polymer, to such an extent that elucidating its 3D structure has proved 

monumentally difficult as its symmetry is incompatible with the formation of crystals and the 

wide interactome it possesses create distinct structural states, but some general features have 

been elucidated. F-actin is classically described as a polar double-stranded right-handed helical 

structure with two ends; barbed and pointed. The barbed end is the most dynamic as it 
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elongates about ten times faster than the pointed end280. This elongation can be quite rapid, 

with filaments reaching lengths that are relevant to the cell scale in seconds281, creating a force 

capable of giving cells motility for example. Polymerisation of G-actin into F-actin is mediated by 

three classes of actin nucleation factors: actin-related protein 2/3 (Arp2/3) in complex with 

nucleation-promoting factos (NFPs), formins and tandem-monomer-binding nucleators. They 

are further modulated by other proteins such as profilin282, cofilin283 or molecular motors like 

myosins284.  

Depending on nucleation factors and associated proteins, the actin cytoskeleton can develop 

three distinct networks coexisting in the cytoplasm with different functions285. The first one 

features a small branched architecture that drives a “rolling” of the cell towards its edges. A 

second one features a broader network that is parallel to IFs in the reverse direction (towards 

the nucleus) allowing the cell to “pull” from the ECM. The fibrils that compose the later are 

referred as stress fibres since they react primarily by associating to protect the cell from 

mechanical stress as well as other biological roles such as mechanotransduction286. Finally, we 

have filopodial bundles that help expand the cell by “poking” outwards. These 3 different types 

of networks have different roles and all derive from the same pool of G-actin and some shared 

polymerization factors, indicating that their regulate finite mechanical and mechanosensory 

properties of cells287. An example that is of particular interest to us is that different organizations 

of the actin filament network in stem cell versus TAC HKs have been shown to modulate their 

response to EGF through EGFR signalling, effectively modulating cell fate decisions288. 

F-actin polymers exhibit different mechanical properties, giving rise to differential responses to 

mechanical stimulus. Arising first from their different networks, stress fibers will experiment 

pulling forces, as opposed to compressing forces for lamellipodium. Their structure is also 

different depending on their organization and binding factors289, and can be further modified by 

mechanical stress. For example, applying tensile force to a single filament in vitro demonstrated 

reduced cofilin severing activity290. Inversely another study showed that stretching filaments 

within cells incremented their affinity for myosin II291. Furthermore, not only mechanical stress 

modifies actin affinity to other proteins, but other proteins can also have their affinity with actin 

modified this way. Talin is an integrin-binding protein part of focal adhesions, a similar ECM-

binding complex to hemidesmosomes which connects the ECM to the actin network. Upon 

stretching, talin exposes several cryptic binding sites for vinculin, an actin-binding protein292. A 

similar mechanism has also been observed in adherent-junction protein α-catenin, 

demonstrating that force was needed for actin-binding to the complex293. Finally we will note 

that actin crosslinking proteins as well as polymerization factors also react to force294,295. All of 
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this taken together shows that the actin network is particularly sensible to extracellular forces 

and makes it an ideal candidate to modulate cellular response.  

Actin is also a regulator of gene expression which is modulated by its polymerisation activity. 

This was demonstrated when G-actin was found to bind the SRF coactivator MAL, which moves 

to the nucleus once in its unbound form. Reducing the pool of G-actin through several ways such 

as stabilization of F-actin or Rho-pathway activation induced translocation of MAL to the nucleus 

and activation of SRF296. This pathway can also be activated as a response to extracellular force 

as shown by the induction of HK differentiation on small micropatterns through the activation 

of SRF-MAL220. PREP2, another TF, has been shown to interact with actin similarly to MAL297, 

while YY1, a negative regulator of SRF and interacting partner of INO80 in DNA repair, responds 

inversely by shuttling out of the nucleus following actin polymerisation298.  

But actin is not limited to the cytosol; when bound to profilin, an interacting protein that 

facilitates F-actin depolymerisation, it can also shuttle to the nucleus where it has a wide 

interactome. TIP60, a INO80 chromatin remodeller involved in DNA repair299, and p400, a 

SWI/SNF that interacts with c-myc and polycomb protein300, both interact with actin and with 

each other, an interaction that is of utmost importance in colorectal cancer301. HDAC1 and 2, 

both part of the NuRD complex, have been shown to be inhibited by nuclear actin levels, albeit 

this is probably mediated by actin-interacting proteins302. Actin also interacts with RNA Pol I303, 

II304, and III305, and reducing its active transport into the nucleus has been shown to effectively 

diminish transcriptional levels306. This is further corroborated by indications that actin may play 

an active role in ribosome biogenesis, as shown by defective rRNA production in actin-KO 

mice307. These mice also showed aberrant epigenetic reprograming mediated by chromatin-

bound nuclear myosin 1 (NM1) and SNF2h, a subunit of the chromatin remodelling complex B-

WICH, at rRNA locus. It is unclear if actin and B-WICH interact but ChIP-Seq data showed that its 

subunits localize to the same rRNA genome regions.  

Physical cues can also modify actin localization, having profound effects on gene expression and 

organization. In HKs, mechanical strain can induce a nuclear export of actin and emerin, a protein 

involved in LAD maintenance, towards the exterior of the nuclear lamina, where it will 

polymerize with non-muscle myosin IIA308. This induces a change in LAD chromatin landscape 

where H3K9me2,3 is exchanged to H3K27me3 by PRC2, causing a detachment of the chromatin 

from the nuclear lamina and a rearrangement of chromosomal territories towards the nuclear 

interior. PRC2-mediated silencing targets preferentially lineage-commitment genes, effectively 

blocking initiation of differentiation, and depletion of nuclear actin reduces transcriptional 

activity through its interactions with RNA polymerases. While the study did not measure this, 

both the resulting extensive F-actin network outside of the nuclear membrane as well as the 
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dissociation of LADs probably created a change in rheological properties of HKs, but did 

demonstrate a mechanosensing, actin-dependent, gene-control mechanism.   

Actin polymerization can also happen within the nucleus, albeit at a much lesser extent than in 

cytosol, and exhibits gene-regulation properties. For example, nuclear actin polymerization as 

mediated by formins has been shown to also activate SRF through MAL309. The inverse is also 

possible; depolymerization of nuclear actin filaments through redox modification mediated by 

MICAL-2 is correlated with reduced SRF activity, albeit this time mediated thought myocardin-

related transcription factor-A (MRTF-A)310. Finally we will note that extracellular cues can also 

direct nuclear actin polymerisation; cellular spreading has been shown to induce nuclear actin 

polymerization via the LINC and is mediated by integrin signaling311. Since actin binds both focal 

adhesions containing integrin and the LINC this pathway shows an intriguing self-regulating 

response of actin to physical stimulus with gene-regulation potential. Nuclear export of actin is 

mediated by exportin 6, and detection of basement membrane laminin 111, has been shown to 

inhibit exportin 6 activity effectively incrementing nuclear actin levels312. Interestingly laminin 

111 has been shown to be detected by integrins integrated in hemidesmosomes, which interact 

with keratins, hinting at a possible crosstalk between the two cytoskeletal networks.  

Higher order chromatin movements can also be mediated by actin. As of now there is proof that 

this phenomenon is implicated in chromosomal segregation during meiosis in oocytes313 but 

more important to us is that it has been linked to radial chromosome territory relocation in 

partnership with nuclear myosin314. It has also been shown that the actin cytoskeleton can 

mediate in chromatin stretching following force application, a phenomenon that has 

transcription regulation potential315.  

Regarding whole nuclear mechanics actin actively participates in regulating structural integrity 

of the nucleus. Cell spreading shows a dynamic response by the nucleus, which flattens over 

time. Inhibition of actin and myosin light chain kinase showed to limit spreading of the cell and 

flattening of the nucleus. Expansion of nuclear volume as well as chromatin reorganisation 

following mitosis exit is also dependent on actin polymerisation316. As of now the molecular 

mechanisms of actin influence on nuclear structure are yet to be elucidated. Considering its low 

propensity to form filaments within the nucleus, it is more likely it may play an interacting role 

with lamins, the main component of the nucleoskeleton317, which will be discussed in the next 

section.  

We will mention briefly actin-related proteins (Arps), which are part of the actin superfamily as 

they share extensive sequence homology (80 to 40%)318. In the cytoplasm they interact mainly 

with actin by modulating its polymerisation and filament branching in the cytoplasm, but in the 
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nucleus they are components of several chromatin remodelling complexes belonging to the 

INO80, SWR1 and SWI/SNF families319.   

As indicated before F-actin interacts with other cytoskeletal proteins, like cadherin-based 

adherents junctions, through adaptor proteins like vinculin, or to LINC through Nesprin, making 

a very similar connection between the extracellular space and the nucleus to that of keratins. 

There is also experimental proof of interaction between the two320, which might be mediated 

through plectin321. These interactions add to the versatility of the cytoskeleton and its 

mechanotransductive properties. Some research has been done towards understanding the 

cross-talk between the two networks but much is still to be understood221.  

The nucleoskeleton 

 

As we now know the cytoskeletal network connect to LINCs extranuclearly, and within the 

nucleus LINCs connect to nucleoplasmic proteins such as Lamins. Lamins are nuclear IFs which 

are the main component of the nucleoskeleton322. There are two families; Lamins A and B, which 

in vitro form separate and functionally distinct filaments. They originate from 3 lamin genes that 

code four major and three minor isoforms: LMNA, which codes isoforms A and C as well as AΔ10 

and C2, LMNB1, which codes isoform B1, and LMNB2, which codes for B2 and B3. Lamin isoforms 

share between 53 and 61% sequence homology, which intriguingly makes them numerically 

similarly distinct from each other (albeit this might just be pure coincidence)323.  

All lamins have a small amino-terminal head domain, a long-coiled coil rod domain and a large 

carboxy-terminal globular tail domain. The tail domain contains several motifs that set lamins 

aside as IFs such as a nuclear localization signal, an immunoglobulin (Ig)-fold motif and a CaaX 

motif which undergoes farnesylation in order to further modulate polymerisation and 

localisation324,325.  

They dimerize through their rod domain, then associate head to tail to form linear polymers, 

which in turn associate laterally in groups of 3 or 4 in a staggered antiparallel manner to form 

10nm width filaments326. Polymerisation dynamics and the resulting higher order structures also 

seem to be isoform-dependent.  For example while computational analysis of Lamins A/C 

homology point towards possible heterodimer formation, they strictly undergo 

homodimerization in vivo327 and moreover lamins A and B polymerise in distinct 

microdomains328.  

The nucleoskeleton is between 5 and 10 times stiffer than its cytoskeleton counterpart, and 

while other nucleoskeletal proteins exist (e.g Titin, Actin) this rigidity is mostly due to lamins 

A329, as their knockout generates a 11-fold softer nucleus. Lamins B are thought to inversely give 
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the nucleus elasticity and the ability to deform. While this hints to a separation of roles on each 

isoform, controversy exists in elucidating which roles exactly do they play. Lamins A/C and B 

both localize mainly at the inner nuclear membrane but are also distributed in the nucleoplasm 

where they perform several other roles than structural as well as having different dynamics328. 

For example Lamin B1 can be found in the nucleolus where it is supposed to play a role in 

modulating its plasticity330 and stiffness331. Lamins A are also much more dynamic compared to 

their relatively static lamin B counterparts within the nucleoplasm332.  

PTMs have a role in explaining some of these differences. Lamin C does  not have a farnesylation 

site, which could explain why, while computation analysis of sequence homology would predict 

at least 25% heterodimer formation, lamins A and C strictly form homodimers in vivo327. Lamins 

also undergo phosphorylation, most notably during mitotic disassembly of the nuclear lamina 

as mediated by CDK1333, and SUMOylation, which was demonstrated to alter lamin A dynamics 

and localization in the context of cardiomyopathies334. Regarding nuclear mechanical integrity, 

some studies point towards lamin A being the major player335 while the creation of a lamin C-

only mouse exhibited only mild nuclear fragility336. While these results might seem 

contradictory, they more likely reveal that lamin polymerisation is cell type and cycle 

dependent336,337 as well as responsive to extracellular cues from the environment335, and as we 

will discuss now also strongly dependent on interacting partners. 

Indeed, several observations indicate that lamins and their polymerisation dynamics are heavily 

modulated by their interactome. As shown before lamin A and C do not form heterodimers in 

vivo, but they do in vitro338. Similarly lamin bundles vary in thickness and spacing between in 

vivo and in vitro studies339,340. This points at a modulation of their higher order structure of 

lamins by other proteins. Interaction analysis have uncovered that there are over a hundred 

lamin-binding partners, creating a wide potential for modulation of lamin dynamics341,342. 

Mutations in lamins have been shown to cause the misassembly of lamin filaments in several 

ways, such as changes in subunit spacing or localization and lead to several laminopathies343,344. 

Laminopathies can vary in degree of severity but are usually linked by a common loss of 

mechanical resistance of the cell in general and the nucleus in particular, such as is seen in 

Emery-Dreifuss muscular dystrophy345. These mutations are also accompanied by 

mislocalization of other proteins such as inner nuclear membrane-bound emerin343, hinting 

towards the fact that their interplay is crucial in proper nucleoskeletal maintenance.  

This regulation, and moreover the mechanosensitive properties of the nucleoskeleton, is 

dependent on the integration of the nucleoskeleton to the nuclear lamina. The nuclear lamina 

is a proteinaceous mesh that encompasses the fibrillar networks of lamins and other 

nucleoskeletal proteins as well as nuclear envelope-associated polypeptides. Among the later 
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we will remark LINCs, Nuclear Pore Complexes (NPCs), LEM-domain proteins (such as Emerin), 

LAP1 and LBR, but many other Nuclear Envelope Transmembrane proteins (NETs) exist. While 

the first ones are universal, some NETs are only expressed in certain tissues and cell types, 

incrementing the potential for the role of the nuclear lamina.  LINCs, which link through SUN 

domain proteins to the nucleoskeleton in the INM and nesprins in the outer nuclear membrane 

(ONM) to the cytoskeleton346, serve as a direct connection between both networks. As so they 

play an important role in mechanotransdution which will be discussed below. NPCs are the main 

actors in mediating active transport in and out of the nucleus, and while they have a certain role 

in the positioning of open chromatin347,348 as well as a response to mechanical stimulus349,350, we 

will not discuss them here out of brevity and limited interest towards our research as they seem 

to react more to ECM stiffness than anything else351. The other proteins act mainly as anchorage 

and adaptor proteins between different elements of the lamina as well as chromatin. The 

complex network results in a mechanically rigid but responsive mesh that not only ensures the 

structural integrity of the nucleus but has important roles in transducing mechanical stimuli as 

well 3D organisation of the genome.  

As stated before lamins interact with LADs through lamin A/C118,352, LBR119, emerin120 and several 

transmembrane proteins121. Interestingly enough, while lamin A and B type produce distinct 

networks they have been shown to be able to interact, or at least colocalize, with the same 

genome regions353 and both are impacted similarly by the reshuffling of LAD territories after 

mitosis354. But the KO of lamins in embryonic mice did not affect LAD and interLAD region 

formation,  revealing that NETs could possibly tether chromatin independently of lamin, at least 

at first355. Furthermore the high mobility of lamins A in the nucleoplasm is an indicator that they 

probably do not interact with chromatin by thermselves332, albeit it has been shown that the tail 

of lamin C can interact with core histones directly, this interaction being likely modulated by a 

third party352.  

Indeed LBR was shown to initiate chromatin tethering to the nuclear lamina, but needed lamins 

A to maintain it and was crucial in genome organization during differentiation119. While the 

genomic regions of tethering are still debated it has been demonstrated that LBR can recognize 

H4K20me2356, which indicates a chromatin landscape-dependant mechanism. Emerin is also of 

importance as it has been shown, like other LEM-domain proteins, to interact both with lamins 

and with chromatin through BAF, a DNA-bridging protein357. Mutations in emerin are also quite 

common in EDMD358, and general disruption of emerin results in abnormal nuclear 

morphology359,360 as well as defective gene regulation361. Emerin has also been shown to interact 

with HDAC3, meaning that it not only directly interacts with chromatin but also can regulate its 

organisation362. Furthermore, as stated before emerin plays a role in nuclear lamin regulation308. 



48 
 

Finally other NETs can also promote the location of chromosomes to the nuclear periphery, and 

their activity seems to be cell type and cycle dependant121. All of this then points to a dynamic 

tethering of chromatin to the nuclear lamina, where lamins play a scaffold role. Moreover, 

lamins also modulate transcription by interacting with promoters as well as modifying local 

chromatin landscape363.  

The nuclear lamina then represents an ideal mediator of biophysical cues to chromatin. Indeed, 

we already discussed how emerin, in complex with non-muscle myosin IIA and actin can control 

gene silencing and chromatin compaction in a mechanosensory manner308. Moreover it has 

been shown that emerin-deficient cells had impaired mechanosensory responses to strain, 

which eventually lead to increased apoptosis360. Emerin is also implicated in ECM-stiffness 

sensing and the subsequent modification of chromosome territories, a role it partly shares with 

lamin B2364. Similarly it has been shown that lamins A are upregulated on tissue stiffness and 

regulate matrix-directed differentiation335, a relationship that is not shared with lamins B. It was 

later demonstrated that this upregulation, and increment in nuclear integrity was mediated by 

myosin-II activity that promotes lamins A dephosphorylation, leading to reduced turnover365.  

Shear stress can change nuclear shape and induces upregulation of lamin A as well as a major 

redisposition towards the nuclear lamina, creating a stiffer nuclei that is more likely to resist 

deformation366; this shift in localisation could have gene expression effects. On one side, 

congregation of lamin toward the nuclear periphery can serve as a “trap” for certain molecules. 

For example, lamin A/C and c-Fos can effectively arrest Activating Protein 1 (AP-1)  at the nuclear 

lamina367.  Interestingly, AP-1 has been shown before to be necessary for EDC activation209, and 

AP-1 is a known target of SRF, which as we have discussed before is activated following 

mechanical stimulation of HKs220. Considering that serum stimulation can effectively modulate 

release of AP-1 from its lamin A/C trap throught ERK1/2 and c-Fos368, this mechanosensitive 

mechanism of arrest is thwarted, but taking into  account that there exist other proteins that 

are arrested in such a way369 this could still be a possibility.  

Another likely effect is the removal of lamin-binding partners from the nucleoplasm. For 

example lamin A binds Lamina-Associated Polypeptide 2 α in the nuclear interior370, and these 

complexes have been shown to be required for maintenance of proliferative state in human 

fibroblasts371. As discussed before emerin is an important lamin A/C interacting partner as well 

as with actin, incrementing its polymerisation rate372. Lamin A/C and emerin can thus regulate 

Megakaryoblastic Leukaemia 1 (MKL1)373, a mechanosensitive TF that has been shown to up-

regulate SRF genes309.  
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Finally, another possible pathway is modification of chromatin tethering to the nuclear lamina. 

As of now such a mechanosensitive pathway is still to be discovered, but in light of the 

observations made before it seems a likely occurrence.  

It is important to note that transmission of these extracellular forces require physical 

connections between the cytoskeleton and the nucleus. The LINC complex mediates these 

connections. It contains nesprins, KASH domain proteins in the ONM that connect to actin either 

directly or through microtubule motor proteins, and to keratins through plectin. Inside the 

nucleus, SUN domain proteins connect to lamins and other nuclear lamina proteins.  

Disruption of the LINC complex induces abhorrent nuclear morphology and impaired force 

transmission to the nucleus374, but there have been contradicting reports as to the actual effect 

on mechanosensation. For example, an initial study that used KO of nesprins and KASH proteins 

showed normal activity of mechanosensitive genes following physical stimulation374, indicating 

that the mechanically initiated signal must be transmitted through another channel. But another 

study which looked into different magnitudes of strain found that high frequency but low 

magnitude mechanical signals could activate mechanosensory genes through the LINC complex, 

while higher magnitudes did not375. Mice lacking Nesp4 or Sun1 showed that outer hair cells of 

the ear, highly specialized cells required for hearing (i.e responsive to sound waves), would 

degenerate as hearing matured and would lead to hearing loss376. Both studies point towards 

the ability of the cell to differentiate between mechanical signals and their magnitudes and the 

importance of the LINC complex in this pathway.  
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While many aspects of what cellular machineries are implicated in the translation of biophysical 

cues from the environment to the nuclear interior and how these cues might be translated into 

finite changes of gene expression, much is still left to understand about how the general 3D 

nuclear architecture is affected. Past studies have showed that modulation of adhesive surface 

available to HKs can effectively specify 3D nuclear morphology221, and moreover induce HK entry 

into the terminal differentiation pathway193. The present work will try to further develop those 

studies to elucidate how changes in cellular morphology following reduction in available 

adhesive surface of human keratinocytes will impact its nuclear architecture.  

 

Figure 1.7. Reduction of available adhesive area through micro-engineered substrates allows for modulation of 
nuclear morphology. Primary HKs cultured on either circular collagen islands with diameters of 20, 30 and 50 μm, 
or ellipses (SF8 with equivalent area of 30 μm). (A) Representative immunofluorescence images of F-actin (green), 
lamin A/C (red) and DAPI (blue) (B–E) Quantification of the maximum (B) cross-sectional area, (C) height, (D) volume 
and (E) geometrical shape coefficients. Adapted from Almeida et al. 2015. 
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Aims of project and development of plan 
 

Past studies have demonstrated that entry into the terminal differentiation pathway by 

keratinocytes is accompanied by changes in their nuclear morphology and chromatin landscape. 

It has also been shown that biophysical cues can mediate the entry into the pathway, but as of 

now little is know on how do biophysical cues affect nuclear architecture and epigenetic gene 

regulation. The aim of this PhD thesis will therefore be to investigate that relationship using a 

model system based on micropatterned surfaces to apply simple, defined physical constraints 

on single keratinocytes.  

1. Characterise the effects of cellular shape on nuclear architecture and chromatin 

remodelling. 

Single HKs will be grown in fully spread/compacted configuration on micropatterned 

substrates. Confocal imaging of open (H3K27Ac, H3K4me3) and closed (H3K27me3, 

H3K9me3) markers as well as nucleoskeletal proteins (Lamin A/C, B1) and the nucleolus 

(Nucleolin).  

2. Identify specific genomic regions affected by biophysical cues. 

Here RNA-seq will be used to profile the transcriptome of HKs exposed to defined adhesive 

cues and further experiments will validate affected pathways.  

3. Determining the role of the cytoskeleton in biophysical regulation of nuclear 

architecture. 

Here using previous findings and general knowledge of the cytoskeleton we will perform 

different perturbations to analyse changes in the system and gain additional insight. Using 

inhibitors of the different cytoskeletal proteins/complexes we will study how keratinocytes 

cope with the loss of their structural integrity and analyse the impact on 

mechanotransductive regulation of nucleus morphology. Cell lines with knockout of plectin 

or expressing defective keratin, as well as siRNA knockdown of lamin A/C and nesprin 2, will 

be used to verify any findings from the inhibitor treatments. 
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Chapter 2: Materials and Methods 
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J2 3T3 cell culture 

J2 clone of Swiss 3T3 cells were culture in High glucose DMEM with L-glutamine (Gibco) and 

supplemented with 1% Pen/Strep (Gibco) and 10% Foetal Bovine Serum (Biosera) in T75 cell 

culture flasks. Cells were passaged bi-weekly, at confluence, and replated at 1/10 split ratio. Cell 

culture media was removed and cells trypsinized using 5mL pre-warmed (37 °C) 0.05% trypsin 

in 0.48 mM EDTA solution (Gibco) for 5 minutes. Cells were detached from cell culture flask using 

light tapping. Trypsination was quenched by addition 10 mL of Foetal Bovine Serum (FBS, 

Biosera). Total 15 mL was then transferred to a centrifuge tube and cells spun down at 1.2E3 

rpm for 5 minutes. Supernatant was removed and cells resuspended in 10 mL fresh media. 1mL 

of suspension was then added to 9 mL of fresh media in new T75 cell culture flask. Cells were 

maintained until 25th passage before being discarded. All cell lines were maintained in 5% CO2 

at 37ᵒC. 

Primary keratinocyte cell culture 

A Feeder Layer was prepared as previously described377. Feeder layer was composed of 

confluent T75 of J2 clone of Swiss 3T3 cells. Confluent J2 3T3s were Mitomycin C treated (0.4 

mg/ml in PBS x100 diluted in cell culture media) for 2 to 5 hours before being splitted as 

previously described. 3E6 of Mitomycin C-treated J2s were seeded onto a new T75 the day 

before primary keratinocyte splitting. Primary keratinocytes were seeded onto the J2 feeder 

layer at a density of 5E5 keratinocytes per T75 and co-cultured in FAD medium, composed of 3 

parts DMEM (Gibco) and one part F12 (Gibco) supplemented with 1% Pen/Strep (Gibco), 10% 

Foetal Bovine Serum 1.8E-4 M adenine, 10E-10 M Cholera Toxin (Sigma), 10 ng/ml Epidermal 

Growth Factor (Peprotech), 0.5 µg/ml Hydrocortisone (Fisher) and 5 µg/ml Insulin (Sigma). 

When passaging co-cultures, media was aspirated off and cells washed with pre-warmed PBS 

(Gibco). Cells were then washed thrice with pre-warmed 0.48 mM EDTA solution (Gibco). Each 

wash was accompanied with tapping, to detach Mitomycin C-treated J2s. By the third wash most 

J2s should have detached, or else washing cycles were continued until detachment was 

acceptable. Remaining HKs were then trypsinized using pre-warmed 0.10% trypsin in 0.48 mM 

EDTA solution (Gibco) for 5 minutes. Trypsinization was then quenched using 10 mL of FBS and 

cells spun down as indicated previously. Supernatant was aspirated off and cells resuspended in 

10 mL fresh FAD media. Primary keratinocytes used were from existing stocks of cells extracted 

from neonatal foreskin samples. All samples were obtained following routine circumcision 

procedures at the Royal London Hospital, under the ethical reference number LREC 

08/H0704/65. Cells were used from passage 2 to passage 8 before being discarded.  
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Immortalized keratinocyte HaCaT cell culture 

HaCaTs are a SV40-induced immortalized keratinocyte cell line,  whose generation has been 

described elsewhere378. HaCaTs were cultured in High glucose DMEM with L-glutamine (Gibco) 

and supplemented with 1% Pen/Strep (Gibco) and 10% Foetal Bovine Serum (Biosera). They 

were passaged bi-weekly, splitted using 5mL pre-warmed (37 °C) 0.25% trypsin in 0.48 mM EDTA 

solution (Gibco) for over 10 minutes and then in a similar fashion to J2s. Previously stably-

infected HaCaTs with K14-WT-GFP or K14-R416P-GFP were cell-sorted by FACS to select the 

higher-expressing population prior to being plated unto T75 cell culture flasks and stably 

selected using Neomycin (500 µg/ml, Sigma). Stable infection of HaCaTs was performed 

previously by past members of our laboratory and described elsewhere379. Cells were used from 

passage 2 to passage 20 before being discarded.   

Plec KO mouse keratinocyte cell culture 

Plec KO and WT mouse keratinocytes were provided by Prof. Gerhard Wiche. Cell cultures were 

established from Plec−/−/p53−/− and Plec+/+/p53−/− mice, as described elsewhere380. They were 

cultured in EpiLife medium (Gibco) supplemented with 1% Pen/Strep (Gibco) and KSFM 

supplements (5 mg/cl Bovine Pituitary Extract (BPE), 0.5 µg/cl EGF, Human Recombinant, 

ThermoFisher). Cell culture flasks were type I collagen-coated before seeding cells. For this T75 

cell culture flask was treated with 5 mL PBS (Gibco) containing 30 µg/mL type I collagen (Corning) 

for 1 hour at 37ᵒC before being washed off with PBS. Cells were passaged once weekly, splitted 

in the same way as J2 3T3 cells. Cells were used from passage 2 to passage 20 before being 

discarded.   

RT-qPCR 

Cells were washed once with PBS and subsequently lysed with RLT Plus lysis buffer (Qiagen) 

before RNA extraction. RNA was extracted from samples using RNeasy Plus Micro kit (Qiagen) 

as per manufacturer’s instructions and eluted in 14 µL RNAse-free water. RNA was then reverse 

transcribed using LunaScript™ RT SuperMix kit (NEB). RT-qPCR was performed using qPCRBIO 

SyGreen Mix (PCR Biosystems). Reaction mix was composed of 10 µL 2x qPCRBIO SyGreen Mix 

Hi-ROX, 1 µL reverse-transcribed cDNA, 0.8 µL of 10 µM forward and reverse primer and 7.6 µL 

PCR grade dH2O. All probes were done in duplicates, and no-template controls were introduced 

for all probes. RT-qPCR was performed in a StepOnePlus RT-qPCR System. Program was as 

follows: 1 Cycle at 95 °C for 2 minutes. Then 40 cycles of 95 °C for 5 seconds followed by 60 °C 

to 65 °C for 20 seconds. Melt curve was acquired following this. RT-qPCR data was analysed using 

StepOne™ Software v2.3 (Applied Biosystems). ∆Ct was calculated from averaged Ct of 

duplicates (Cttarget) and compared to reference housekeeping gene (Ctref) as: ∆Ct = 2^(Ctref-

Cttarget).  
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qPCR probe list 

Gene Forward (5’ to 3’) Reverse (5’ to 3’) 

K1 ATTTCTGAGCTGAATCGTGTGATC CTTGGCATCCTTGAGGGCATT 

K10 TGATGTGAATGTGGAAATGAATGC GTAGTCAGTTCCTTGCTCTTTTCA 

K16 TGCCCACCTTTCCTCCCAGCAA CCGGGTCTGACGGCTCGAAG 

K5 CTGCTGGAGGGCGAGGAATGC CCACCGAGGCCACCGCCATA 

K14 TGGACGTGAAGACGCGGCTGG GATTTGGCGGCTGGAGGAGGTC 

INV CTGCCTCAGCCTTACTGTGA GGAGGAGGAACAGTCTTGAGG 

GAPDH ACCCACTCCTCCACCTTTG CTCTTGTGCTCTTGCTGGG 

TGM1 TCACTGTTTCATTGTCTCCA CCCTCACCAATGTCGTCTTC 

DNp63 GAAGAAAGGACAGCAGCATTGAT GGGACTGGTGGACGAGGAG 

LRIG1 GGGGACAGAAAGGAGGAAGT GCCTCTCAGAAGCAGCAAAT 

B2M ATGGAGGTTTGAAGATGCC CTAAGTTGCCAGCCCTCCT 

7SK GAGGGCGATCTGGCTGCGACAT ACATGGAGCGGTGAGGGAGGAA 

H3.1 TCCGCCGTTATCAGAAGTCC GTGTCCTCAAATAGCCCTACC 

BRCA1 TATCACCACTGAATCTCTACCG GACCTCAAACTCTGAGATCCAC 

ATR GAACACCACTGAGAAGCGTG CCACATGGCTCCACATGCAA 

ATM TGCTGACAATCATCACCAAGTTC TCTCCCTTCGTGTCCTGGAA 

RARG GCCCTTCTGTACTGTCCATGT AGAAGCCCAATGGATAGGGTA 

CRABPII TGATGAGGAAGATCGCTGTG TTCCACTCTCCCATTTCACC 

NCL TGTCAGCCCTGTTCCATGTC GCTTGCCTCATAGGAGACCC 

RPL36 CTGGTGCCAGACGTGTTACT TGGAAACACGCACTAAGCCA 

RRP1B AAGAACACGCCCCACTTCAA   AGCAGAAATGTCCTCCGCAA 

H47S pre-rRNA GCTGACACGCTGTCCTCTG TCGGACGCGCGAGAGAAC 

45S pre-rRNA (Mouse) GTTCCCGTGTTTTTCCGCTC CATCGGAGAGCATCAGCCAT 

RPL36 (Mouse) CATCGGAGAGCATCAGCCAT ATCATGTCCCGCACGAACTT 

NCL (Mouse) TGATAGGCTGAGGCCCATTTT TTCCCTTCCCTCCCCAATAAAC 

RRP1B (Mouse) GCTCATCATCCGTGTCGCTA CGGGGTGCTTTTTGAGTTGG 

 

De Novo protein synthesis assay 

Nascent protein levels were determined using Click-iT™ HPG Alexa Fluor™ 488 Protein Synthesis 

Assay Kit (ThermoFisher). 30 minutes before levels were to be determined, cell media was 

switched with methionine-free media supplemented with L-homopropargylglycine. After 30 

minutes cells were washed once with PBS, fixed and permeabilised as per normal IF protocol. 

Samples were then washed once with 3% bovine serum albumin (BSA, Sigma) in PBS. Nascent 

protein was then labelled using 1X Click-iT® HPG reaction cocktail (ThermoFisher) for 30 minutes 

at room temperature, before being aspirated off and cells washed with Click-iT® reaction rinse 

buffer (ThermoFisher). Cells were subsequently labelled for their nucleus using HCS 

NuclearMask™ Blue Stain (1:2000 dilution in PBS, 30 minutes at room temperature), 

subsequently washed with PBS, ddH2O and mounted onto coverslips using Mowiol. Samples 
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were then imaged by epifluorescence as indicated below. Nascent levels of protein were 

assessed by measuring Alexa-488 nm fluorescence levels.   

Retinoic acid reporter assay 

800E3 primary HKs were transfected in T25 cell culture flasks with 0.5 µL TK-Renilla Luciferase 

control (addgene plasmid #16539) and 1.5 µL Retinoic Acid Response Element – Luciferase 

(addgene plasmid #13458) using JetPRIME transfection reagent (Polyplus, 114-07) as described 

below. After 4 hours, cells were seeded onto micropatterned islands. Positive control was 

treated with 1 µM all-trans-retinoic acid (ATRA) introduced in culture media after seeding. 

Negative control was not transfected. Cells were lysed and subsequently luciferase activity was 

measured using Dual Luciferase assay system (Promega) and normalized with Renilla. 100 µL of 

1x Passive Lysis Buffer was added to micropatterned islands in 24-well plate containing HKs. 

Plate was rocked gently for 15 minutes at room temperature. Lysis solution was then transferred 

to 1.5 mL Eppendorf tube. 100 µL of Luciferase Assay Reagent was introduced in wells of 

transparent 96-well plate. 20 µL of lysate was subsequently added and the resulting solution 

mixed thrice by pipetting. Each lysate was analysed in triplicate. 96-well plate was introduced 

into illuminometer (CLARIOstar, BMG Labtech) and emission recorded at 750 nm wavelength for 

10 seconds after 2 second delay. Plate was taken out of illuminometer and 100 µL of Stop & Glo 

Reagent introduced in each well. Plate was re-introduced into illuminometer, shaken for 10 

seconds then emission recorded as previously stated. Renilla signal (post Stop & Glo) was used 

as normalisation for RARE-Luciferase signal.  

siRNA treatment 

1E6 primary HK were seeded unto a type I collagen coated T25 cell culture flask. 24 hours later 

first siRNA transfection was performed using JetPRIME transfection reagent (Polyplus, 114-07). 

siRNAs were:  Silencer™ Select LMNA (s8221), SYNE2 (s23328), Negative Control (4390843). Cell 

culture media was aspirated and 2mL fresh media introduced. 200 µL of jetPRIME buffer and 2 

µL of 20 µM siRNA were introduced in a 500 µL Eppendorf and vortexed for 10 seconds before 

addition of 4 µL jetPRIME reagent. Solution was vortexed for an additional 10 seconds then left 

to incubate at room temperature for 10 minutes before being introduced in cell culture flask. 

Final siRNA concentration in flasks: 20 nM. 48 hours after seeding, 2nd transfection was 

performed. 72 hours after seeding cells were washed and fresh media added. 96 hours after 

initial seeding cells were detached from cell culture flask and seeded upon micropatterned 

islands as previously described.  
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PDMS stamps 

A silicon wafer (Sigma) was cleaned using isopropanol then acetone and blown dry with 

pressurized nitrogen gas. Silicon wafer was then coated with SU-8 2010 (MicroChem) using a 

spin coater (10 seconds at 4000 rpm). SU-8 2010 was then soft-baked by heating silicon wafer 

at 100 °C for 5 minutes before being cooled down at room temperature for 2-3 minutes. 

Photomask containing islands was cleaned using pressurized nitrogen gas then put in contact 

with mask and sealed using clamps. Wafer was then exposed to UV (UV-KUB 6, 100% power for 

10 seconds) before being baked at 100 °C for 5 minutes. Patterns were developed by submerging 

the wafer in PEGMA (Sigma) for 2 to 4 minutes, before being washed with isopropanol and dried 

with pressurized nitrogen gas. Correct generation of patterns was verified using profilometer 

(Profilm3D). Finally PDMS stamp was generated by casting 10% PDMS (Sylgard 184 silicone 

elastomer, Farnell) over the micropatterned wafer and incubating overnight at 70 °C before 

being cut using a microtome blade. Stamp was used for up to two months before being 

discarded.  

Micropattern generation 

Micropatterns were generated through the application of an initiator layer onto gold-coated 

coverslips using PDMS stamps generated through photolithography. This layer served to 

generate a reaction of surface-initiated polymerisation and atom transfer radical polymerization 

(ATRP), generating polymer brushes that were cell-phobic. Gold coated coverslips were 

generated through thermoevaporation using a custom thermoevaporator from Moorfield. 

Coverslips (24x60 mm, 0.17 mm thickness, MUTO pure chemicals) were initially cleaned using a 

plasma cleaner (Henniker plasma HPT-200, 100% power, 10 minutes) then coated with 5 nm of 

chromium before being covered with 15 nm of gold. Brush polymerization solution was prepared 

by dissolving 320 mg 2,2’-bypiridine (Acros), 18mg CuBr2 (Sigma), 12 mg Oligo(ethylene glycol) 

methyl ether methacrylate (mean molecular weight 300,  Sigma) in 24 mL H2O and 6 mL EtOH. 

Solution was degassed using gentle N2 flow under agitation for 30 minutes. After this 82 mg of 

CuCl were added and solution left to degas for additional 15 minutes. 

PDMS stamps were used to depose ω-mercaptoundecylbromoisobutyrate initiator layer on gold 

covered coverslips. These were introduced onto degassed brush polymerization solution and 

left to react for 15 minutes. After that micropatterned coverslips were removed and washed 

first with H2O followed by EtOH and stored for a maximum of one month. 

Micropattern preparation before seeding 

Micropatterns were cut using diamond tipped pen, introduced in either 24-well (1 square cm 

approx.) or 6-well (4 square cm approx.) before being sterilized using 70% EtOH solution for 15 
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minutes followed by double wash with sterile PBS (Gibco). After this 30 μg/mL sterile solution 

of Type I Collagen (Corning) in PBS is added and left to incubate overnight at 4 °C. Following day 

micropatterns were washed by dilution (i.e solution was added onto micropatterns and excess 

aspirated off while carefully leaving enough in the well so that micropatterns would not dry) 

thrice using sterile 1 mM HCl solution and twice with PBS before being incubated in FAD medium 

a minimum of 30 minutes at 37°C before seeding cells.  

Seeding of cells unto micropatterns 

After splitting and resuspension, cells were diluted to appropriate concentrations (2E5 cells/mL 

for 20 µm islands, 4E4 cells/mL for 50 µm islands) in media. Media was aspirated off 

micropatterns and cellular solution introduced in wells. Cells were left to attach for 1-2 hours 

before excess cells being washed off by removing micropattern and dipping it into fresh media 

several times before introducing it into a new well containing fresh media.  

Cytoskeletal Inhibitors 

HKs were seeded unto micropatterned islands as described above. 2 hours after seeding, non-

adherent cells were washed off and fresh media containing 50 µM Blebbistatin (Millipore), 10 

µM Y-27632 (Sigma) or 1 µL/mL DMSO (Sigma) was added. 24 hours later cells were washed 

with PBS and subsequently fixed, permeabilised, blocked and stained as described below.  

Nucleoli live imaging 

Immortalized keratinocyte HaCaT cells were transfected with 3 µg of GFP-Nucleolin plasmid 

(addgene, plasmid #28176) using JetPRIME transfection reagent (Polyplus, 114-07) as described 

previously, 24 hours before seeding cells on micropatterned islands. Micropatterned islands 

were fitted onto a bottomless round confocal dish (VWR) using silicone adhesive sealant 

(Momentive). 45 minutes after seeding excess cells were washed off with fresh media and 

remaining attached cells introduced into Zeiss 880 Laser Scanning Confocal Microscope with 

incubator chamber attached to maintain 5% CO2 and 37 ᵒC during imaging. Up to 5 cells per 

island size were imaged per experiment. Z-stacks were taken every 15 minutes for a total of 3 

hours (12 stills per cell). 

Immunofluorescence staining 

After washing samples with PBS cells are fixed using 4% PFA solution in PBS for 10 minutes 

before being washed twice in PBS. Cells are permeabilized using 0.2% Triton X100 (Sigma) in PBS 

for 5 minutes. If staining for Nucleolin 0.1% Triton X100 for 15 minutes were used. Cells were 

then blocked using 10% FBS in PBS solution with added 25μL cold fish gelatin (Sigma) for 1 hour 

at room temperature. Primary antibody cocktail in blocking solution was then applied and left 

for incubation overnight at 4°C. Next day samples were washed in PBS before applying 
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secondary antibody cocktail and DAPI (Biotium) for 1 hour at room temperature. Finally, samples 

were washed in PBS followed by H2O before being mounted onto microscope slides using 5 µL 

of Mowiol (Sigma).    

Fluorescence imaging and processing 

Epifluorescence images were acquired using Leica DM4000 Epi-Fluoresce Microscope. Epi-

fluorescence images were taken using 40x objective. Confocal images were acquired using Zeiss 

880 Laser Scanning Confocal Microscope. Confocal images were taken using AiryScanFast2D 

configuration, Plan-Apochromat 63x/1.4 Oil DIC M27 objective, 2.3x digital zoom. Images were 

1024x1024 pixels, 17.4522 pixels per micron. Middle section of nuclei was determined using Z-

stack range indicator. Z-stack slices were spaced by 1 μm. 

Primary analysis of images was performed using ImageJ software (v.1.51w, National Institutes 

of Health). Images had their background removed first (rolling ball radius 50 pixels), before 

delimiting region of interest with magic wand tool and measuring intensity. DAPI levels were 

used to normalise all intensity measurements, before being normalised to control condition (50 

µm islands). Morphological analysis was performed by first generating a binary image (Make 

binary). If analysing Z-stacks middle section was used to calculate threshold. Then holes in mask 

were filed and mask visually inspected to verify correct generation. Mask area was then 

measured. For nuclear volumes 3D geometrical measure plugin was used.  

Mean Fractional assay was performed using CellProfiler software (v.2.2.0, www.cellprofiler.org, 

BROAD Institute). Images had to be converted to .tif format using a custom script in imageJ. 

Images were then uploaded to software. Software was instructed to generate a mask based on 

DAPI images (Nuclei, object between 200 and 2000 pixel units) and to measure mask size and 

intensity values of all images within that mask (DAPI, chromatin markers, lamin A/C). These 

measures served as verifications of manually acquired intensity measurements in imageJ. 

Finally, software was instructed to measure radial intensity distribution within the DAPI-

generated mask of images of interest (chromatin markers, lamin A/C) by dividing the nuclear 

area in 20 bins of equal radial distance.  

Foci analysis was performed using InCell Developer Toolbox (v.1.9.2 build 2415, GE Healthcare). 

Nuclei masks were obtained by performing object segmentation on DAPI images with large 

kernel size and subsequently passed through a sieve to discriminate objects based on size. 

Finally, the mask was eroded to remove part of the nuclear periphery. Foci were determined by 

performing object segmentation on chromatin marker images with a small kernel size. Sieve was 

used to discriminate between foci deemed too small (close to optical resolution limit) or too big. 

http://www.cellprofiler.org/
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Objects that did not share more than 90% boundary with mask obtained from DAPI staining 

were removed. Number of objects was finally normalised to DAPI levels.  

Statistical analysis 

Statistical analysis of data was performed using Prism (version 8.4.3, GraphPad). All 

measurements were averaged per experiment, then entered as column analyses (2 conditions) 

or grouped data (4 or more conditions). When comparing 2 conditions, significance was 

investigated through unpaired t-tests. When comparing 4 conditions or more, significance was 

investigated using 2-way ANOVAs. Multiple comparisons were investigated through Tukey’s 

multiple comparisons test when comparing 4 conditions. When comparing 6 conditions (i.e 

siRNA and cytoskeletal inhibitors), Sidak’s multiple comparisons test was used. Radial intensity 

distribution assays were entered as XY data, and significance investigated using Kolmogorov-

Smirnov test.  

Antibodies - Primary 

Antibody Species Fixation 
Method 

Dilution 
(IF/WB) 

Manufacturer Reference 

Lamin A/C Mouse PFA 4% 1:200/1:1000 Santa Cruz sc-7292 

Lamin A Rabbit PFA 4% 1:500 Abcam ab26300 

Lamin B1 Rabbit PFA 4% 1:500 Abcam ab16048 

Nesprin 2 Rabbit N.A /1:1000 Abcam ab103020 

H3K27me3 Rabbit PFA 4% 1:200 Millipore 07-449 

H3K27Ac Rabbit PFA 4% 1:500 Abcam ab4729 

H3K9me3 Rabbit PFA 4% 1:400 Abcam ab8898 

H3K4me3 Rabbit PFA 4% 1:200 Millipore 07-473 

Total H3 Rabbit PFA 4% 1:1000 Abcam ab1791 

Transglutaminase 1 
(BC1) 

Mouse PFA 4% 1:1000 CRUK N.A 

Involucrin (DHI B6) Rabbit PFA 4% 1:1000 CRUK N.A 

GAPDH Mouse N.A /1:20000 Millipore MAB374 

Nucleolin Rabbit PFA 4% 1:400 Abcam ab22758 

Collagen I Mouse PFA 4% 1:2000 Abcam ab90395 

LAMA3 Rabbit PFA 4% 1:200 Sigma HPA009309 

Fibronectin  Rabbit PFA 4% 1:400 Sigma F3648 

γH2AX Mouse PFA 4% 1:1000 Millipore 5636 

53BP1 Rabbit PFA 4% 1:200 Bethyl A300-273A 

P16 Rabbit PFA 4% 1:500 CRUK N.A 

Keratin 14 (LL002) Rat PFA 4% 1:500 eBioscience CBL197 

Pan Keratin (H-240) Rabbit PFA 4% 1:500 Santa Cruz sc-15367 

Plectin (10F6) Mouse MeOH 1:200 Santa Cruz sc-33649 

 

Antibodies -Secondary 

Antibody Species Dilution Manufacturer 

Alexa 488/555 Anti-
Mouse 

Donkey 1:1000 Molecular Probes 
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Alexa 488/568 Anti-
Rabbit 

Goat 1:1000 Molecular Probes 

Anti-mouse HRP - 1:5000 Dako 

Anti-rabbit HRP - 1:5000 Dako 

DAPI Dye 1:1000 Molecular Probes 

Phalloidin 488 Dye 1:200 Molecular Probes 

 

Reagents and buffers 

Buffers and Solutions  Composition  Application  

Mowiol mounting media  Mowiol 40-88, Glycerol, 
0.2 Tris-HCl (pH 8.5).  

Immunohistochemistry  

RIPA  sodium chloride (Sigma), 
1% Triton-X 100, 0.5% 
sodium deoxycholate 
(Sigma), 0.1% sodium 
dodecyl sulphate (SDS) 
(Sigma), Tris, phosphatase 
inhibitor (Roche) at 10x 
and protease inhibitor 
(Sigma) (pH 8.0)  

Total Cell Lysate  

 

Sodium chloride (Sigma), 
1% Triton-X 100, 0.5% 
sodium deoxycholate 
(Sigma), 0.1% sodium 
dodecyl sulphate (SDS) 
(Sigma), Tris, phosphatase 
inhibitor (Roche) at 10x 
and protease inhibitor 
(Sigma) (pH 8.0)  
 

Total Cell Lysate  
 

Running Buffer 2.5 mM Tris, 20 mM 
Glycine, 0.1% SDS, ddH2O, 
pH 8.3  
 

Western Blotting  
 

Transfer Buffer 25 mM Tris, 20 mM 
Glycine, MeOH  

Western Blotting  

 

Western Blots 

For all western blots 200E3 cells were seeded unto 6-well plates which were previously type I 

collagen coated. 24 hours after seeding cells were washed using cold PBS (Gibco) then adherent 

cells scrapped off and lysed using 75 µL of lysis buffer. Lysis buffer consisted of 67.5 µL RIPA 

buffer (ThermoFisher), 7.5 µL phosphatase inhibitor (phosphoSTOP, Roche) and 0.375 µL 

Protease inhibitor Cocktail (Sigma). Lysates were then sonicated (30 second intervals for 5 

minutes in ice water, high setting on diagenode Bioruptor) before being spun down (2500 RPM, 

30 min at 4 °C) and supernatant collected. Total protein concentration was quantified using 

standard Pierce BCA assay (ThermoFisher). Samples were mixed with 4x sample buffer (Life 

Technologies) and β-mercaptoethanol (Sigma) and heated at 95 °C for 5 minutes to denature 

and break cysteine-cysteine bonds. They were subsequently loaded onto 4-15% gradient Mini-

Protean gels (Bio-Rad). Gels were run in a Bio-Rad Mini-Protean Tetra Cell System for 90 minutes 

at 100 V. Gel was then transferred onto a nitrocellulose membrane (GE Healthcare) by current 

(300 mA for 1 hour) in cold transfer buffer. Correct transfer was assessed by staining 

nitrocellulose membrane with Ponceau reagent for several minutes. Ponceau reagent was 

washed off using TBS-T (TBS supplemented with 0.5% Tween-20) and membrane incubated in 
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5% non-fat dry milk (Marvel) in TBS-T for 1 hour under mild shaking for blocking. Membrane was 

then incubated with primary antibody in 5% milk/TBS-T overnight at 4 °C. Following day 

membrane was washed thrice with TBS-T for 5 minutes per wash, before secondary antibody 

incubation in milk/TBS-T (1 hour, room temperature). Membrane was subsequently washed 

thrice with TBS-T before being soaked in HRP substrate peroxide/HRP substrate luminol reagent 

(50:50, Millipore) for 30 seconds. Excess reagent was removed, and membrane imaged using 

ChemiDoc™ Gel Imaging System (Bio-Rad) using signal accumulation mode.  

 

RNAseq – Sample preparation and data pipeline 

Primary HKs were seeded onto micropatterned islands as previously described. 4 hour and 24-

hour samples were washed with PBS before being lysed using RLT Plus Lysis Buffer (Qiagen). 

RNA extraction was performed using RNeasy Plus Micro Kit (Qiagen) and RNA eluted in RNAse-

free H2O. Initial quality control was performed using Nanodrop 2000 before sending samples to 

Genome Center (QMUL, London, UK) for sequencing. RNA was sequenced using NextSeq 500 

High Output Run (150 cycles), 40M reads per sample, 75 bp read length, paired end. Data 

generated was transferred to Basespace sequencing data storage hub. FASTQ files were 

uploaded to Galaxy (https://usegalaxy.org/) and different lanes of same sample/read direction 

were concatenated. Concatenated files were then aligned using HISAT2 to hg19 genome to 

produce BAM files. Average alignment concordance was used as first quality control of data 

(overall >90% reads aligned concordantly 1 time or more). BAM files were then downloaded and 

analysed in SeqMonk (Babraham Bioinformatics, version 1.45.0) using R (R Project, version 

3.5.3). RNA-Seq QC Plot was used to further verify correct alignment. Biological replicates were 

then grouped together, and probes quantitated. Differential expression of genes was performed 

by DeSeq2 with raw counts between couples of individual conditions (alpha set at 0.05 level). 

Lists of differentially expressed genes were then uploaded to the Gene Ontology Resource 

(http://geneontology.org/) to further analyse affected pathways. Top pathways were then 

selected based on relevance.  

  

https://usegalaxy.org/
http://geneontology.org/
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Chapter 3: Characterisation of the Effects of Cellular Morphology 

on Nuclear Architecture and Chromatin Remodelling. 
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Introduction 
 

The nucleus is a central mechanosensory unit in the cell, due to its innermost position within the 

cytoskeleton to which it is physically linked through LINC proteins. The cytoskeleton can transmit 

forces generated from physical deformations of the cellular membrane to the nucleus, which 

will dynamically respond by itself changing in morphology. Inside the nucleus, the 

nucleoskeleton will mediate this change and by doing so interact with chromatin, the packaging 

system of DNA. These interactions modulate gene expression and can have profound 

consequences on cellular fate193.  

Chromatin is a highly dynamic polymer gel, modifying its structure at different organizational 

levels in response to internal and external cellular cues to control overall transcriptional state of 

the cell. At the gene level openness of chromatin is a potent regulator of gene expression 

directing accessibility of genes to the transcriptional machinery. Post-translational modifications 

to histones tails, the core components of nucleosomes which are the building blocks of 

chromatin, help modulate the level of openness and serve as markers for active and repressed 

genes. Association of open and close chromatin regions through phase separation can then help 

compartmentalize specific processes, such as transcriptional factories or rRNA synthesis in 

nucleoli. At the nuclear level, radial positioning of chromatin from the more transcriptionally 

active center to the repressed nuclear periphery serves as another level of transcriptional 

control. Changes in these structures are mediated by histone readers, erasers and chromatin 

remodelling complexes, whose activity can be modulated by cyto and nucleoskeletal proteins.  

While highly synthetic in nature, micropatterned substrates offer a simple system to effectively 

control cell shape and thus create physical stimulus. Previous data has showed that reduction in 

available adhesive area effectively modifies cell and nuclear size and shape and can induce 

terminal differentiation in HKs220. Work by previous members of our laboratory demonstrated 

these changes to be directly mediated by the cytoskeleton. The studies presented here 

characterize the structural changes in nuclear organisation and global chromatin remodelling in 

HKs following nuclear deformation.   
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Differentiation and nuclear deformation 

Previous data demonstrated that HKs grown on micro-patterned collagen islands of 20 μm adopt 

a rounded morphology and initiate terminal differentiation after 24 hours compared to spread 

cells grown on 50 μm islands in the same time period220 and have reduced nuclear cross-

sectional area and volume221. To confirm this experimental model, primary HKs grown on 

micropatterns were labelled by immunofluorescence for the differentiation marker 

Transglutaminase (TG) and imaged by epifluorescence microscopy after 4 and 24 hours. General 

differentiation statistics for each condition are summarized in Table 3.1. Example of 

epifluorescence imaging can be found in Figure 3.1. 

Island Size TG + (4h) TG + (24h) 
Nuclear Cross-Sectional 

Area 
Nuclear Volume 

20 μm 18% (±2%) 55% (±17%) 85.13 ± 19.38 μm2 372.83 ± 34.23 μm3 

50 μm 11% (±10%) 15% (±8%) 142.91 ± 36.67 μm2 541.87 ± 86.29 μm3 
Table 3.1. Transglutaminase-positive cells, Nuclear Cross-Sectional Area and Nuclear Volume at different island size 
and time.  N = 3 experiments for differentiation statistics, N = 12 cells for morphological measurements. Shown as 

mean ± SD 

Similarly, modified nuclear cross-sectional area and volume were investigated by confocal 

imaging in the same conditions, results are summarized in table 3.1. 

Consistent with previous results220,221, these data confirmed that limited adhesion promotes HK 

terminal differentiation and causes a reduction in nuclear volume. Thus, we concluded that the 

technique was working similarly and proceeded to confocal imaging of chromatin markers. 

 

Figure 3.1. Example of epifluorescence-imaged cells grown on 20 µm and 50 µm islands at 24h time point, stained for Nucleus 
(DAPI) and Transglutaminase. Scale bar = 50 μm. 
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Changes in overall chromatin marker levels 

 

To determine changes in overall open and closed chromatin states we performed 

immunofluorescence labelling of chromatin markers H3K27me3, H3K27Ac, H3K9me3 and 

H3K4me3 and imaged them using confocal microscopy at 4h and 24h time points after seeding 

of HKs on micropatterned substrates. Cells were fixed and stained for each marker plus TG to 

serve as a discriminator between differentiating and non-differentiating populations. Statistics 

were derived from at least three separate experiments with at least 20 cells analysed per 

condition per experiment.  Primary HKs used were all from the same donor (passage 2-8).  

H3K27me3 and H3K27Ac levels  

We initially analysed open H3K27me3 and closed H3K27Ac chromatin markers as both have 

been described extensively in HK differentiation and are markers involved in facultatively 

repressed genes and active transcription respectively, hence prime candidates to analyse 

change in gene expression mediated by induction of differentiation. Example of confocal images 

of both can be found in Figure 3.2 and bar graph of measured integrated intensities are 

summarised in Figure 3.3. Our measurements of integrated intensity fluorescence showed no 

Figure 3.2. Representative confocal microscopy images of cells grown on 20 µm and 50 µm islands at 24h time point, 
stained for Nucleus (DAPI), H3K27me3 (Top) or H3K27Ac (Bottom) and Transglutaminase. Scale bar = 10 μm. 
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statistically significant differences between 20 μm and 50 μm islands at 4-hour timepoint for 

both H3K27me3 and H3K27Ac (Figure 4.3.A-B). At 24 hour time point both markers were 

significantly downregulated on smaller islands which is consistent with previous reports193. As 

both markers target the same lysine a simultaneous costain of both markers was performed to 

verify that the observed reduction in overall fluorescence intensity was not a product of 

incorrect targeting. Example of confocal images can be found in Figure 3.3. Finally, as entry into 

the differentiation pathway is accompanied by major chromatin modifications381, we performed 

a discrimination between non-differentiating and terminally differentiating cells on the smaller 

islands after 24 hours: Both markers showed no difference in integrated fluorescence levels 



68 
 

between differentiated and non-differentiated cells (Figure 3.3 C and D) and thus this type of 

analysis was not applied to the following experiments.  

  

Figure 3.3. Normalised integrated intensity measurements of confocal images of H3K27me3 (A) and H3K27Ac (B) 
markers as well as discriminated by TGM1 levels (C & D respectively).  Shown as mean + S.E.M.  N = 3 experiments. n.s: 
non-significant. *: p-value<0.05. (2-Way ANOVA, Tukey multiple comparisons test). E: Representative confocal 
microscopy images of cells grown on 20 µm and 50 µm islands at 24h time point, stained for H3K27me3 and H3K27Ac. 

 

E 
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 H3K4me3 and H3K9me3 levels 

 

We next expanded our analysis by measuring integrated fluorescence intensity of both 

H3K4me3, an open chromatin marker associated with transcriptionally active promoters, and 

H3K9me3382, a closed chromatin marker associated with constitutively repressed genes. 

Examples of confocal images of both stainings can be found in Figure 3.4 and bar graph 

quantification of measured integrated intensities can be found summarised in Figure 3.5. 

Our measurements showed no statistically significant differences between 20 μm and 50 μm 

islands at 4-hour timepoint for both H3K9me3 and H3K4me3 (figure 3.5.A-B). We found no 

differences between island sizes at 24 hours for euchromatin marker H3K4me3 but found a 

statistically significant increment for heterochromatin marker H3K9me3 on large islands 

compared to small. When comparing between time points, we observed no difference between 

4h and 24h in both island sizes for H3K9me3. H3K4me3 did not exhibit change between time 

Figure 3.4. Example of cells grown on 20 μm and 50 μm islands at 24h time point, stained for Nucleus (DAPI) and 
H3K4me3 (Top) or H3K9me3 (Bottom). Scale bar = 10 μm. 
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points for either island size, albeit a non-statistically significant decrease between 4h and 24h 

for 20 μm islands can be appreciated (figure 3.5.B). As previous markers did not show any change 

when discriminated by differentiation markers, we did not apply that analysis modality to the 

available datasets.    

  

Figure 3.5. Normalised integrated intensity measurements of confocal images of H3K9me3 (A) and H3K4Ac (B) 
markers. Shown as mean + S.E.M. N= 3 experiments. n.s: non-significant. *: p-value<0.05. (2-Way ANOVA, Tukey 
multiple comparisons test). 
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Total Histone 3 

 

In addition to specific histone modifications, we also examined total histone 3 levels by 

immunofluorescence and confocal microscopy. Representative confocal images and bar graph 

of measured integrated intensities can be found in Figure 3.6.  

We found total histone 3 to be downregulated in 20 μm islands after 24 hours albeit not 

significantly. This observation suggests that previous changes in chromatin markers could be 

influenced by total histone 3 levels being reduced in smaller islands and thus PTM levels could 

be proportionally higher than measured by immunofluorescence imaging. We theorized the 
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Figure 3.6. Top: Example of cells grown on 20 μm and 50 μm islands at 24h time point, stained for Nucleus (DAPI) and 
Total Histone 3. Scale bar = 10 μm. Bottom: Normalised integrated intensity measurements of confocal images of 
total histone 3. Shown as mean + S.E.M.  N = 3 experiments. n.s: non-significant. (2-Way ANOVA, Tukey multiple 
comparisons test). 
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reduction in total histone 3 levels to be an effect of reduced transcriptional activity of HKs 

growing on smaller islands, as lack of space may produce physical hindrance of the 

transcriptional machinery. But qPCR of H3 as well as several other housekeeping genes did not 

show significant changes across island size (Figure 3.7), hinting that the transcriptional 

machinery has similar activities.    
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Figure 3.7. Relative expression of 7SK lncRNA, β2-Microglobulin (B2M) and Histone 3 (H3) to GAPDH. N = 3 
experiments, each done in duplicates. n.s: non-significant (two-tail t-test, unequal variance assumed). 
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Regulation of heterochromatin organisation 

 

Visual observation of confocal images of chromatin markers also revealed bright fluorescence 

foci of both heterochromatin markers, which appeared larger and less numerous in small islands 

(Figure 3.8 Top), while euchromatin ones were more uniform and did not change much in 

appearance (Figure 3.8 Bottom). We investigated this response by using the InCell Developer 

image analysis software to quantify foci size and number of heterochromatin and euchromatin 

markers. Results are summarised in Figure 3.9.  

Indeed, foci of H3K27me3 and H3K9me3 showed a clear reduction in number on 20 μm versus 

50 μm islands after 24h as well as an increment in size on smaller islands. These differences were 

stable between time points for H3K9me3, but not for H3K27me3: foci on 50 μm islands 

incremented in number and reduced in size between 4 and 24 hours, indicating that coalescence 

Figure 3.8. Closeup of confocal images of heterochromatin marker H3K9me3 (top) and H3K27Ac (bottom). Arrows 
indicate local concentration of marker, or “foci”. Heterochromatin markers exhibited larger and less numerous foci on 
smaller islands after 24h (top) while euchromatin markers seemed comparatively unperturbed (bottom).  

Figure 3.9. Analysis of foci number and size of different chromatin markers. Shown as mean + S.E.M. N = 3 experiments. 
n.s: non-significant. *: p-value<0.05. **: p-value<0.01. (2-Way ANOVA, Tukey multiple comparisons test). 
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of fluorescence foci might be an effect of cells with reduced adhesion, which is lost upon 

spreading.  

Regarding open chromatin markers we observed a similar effect at 4-hour time point which is 

then lost. H3K27Ac fluorescence foci showed a significant difference in number between 20 μm 

and 50 μm islands at 4-hour time point but none at 24 hours. When comparing between time 

points, 20 μm islands displayed a lower amount of foci at the 4-hour time point. Foci on 20 μm 

islands after 4 hours also seem to be larger, but the difference was not statistically significant. 

50 μm islands showed no difference in foci number between time points, but interestingly their 

size also seemed to decrease between 4h and 24h although the difference was also not 

significant. H3K4me3 foci showed a decrease in number in 20 μm versus 50 μm islands after 24h 

but no change in size. Over time both 20 μm and 50 μm islands foci became more numerous, 

albeit only significantly on large islands, and smaller in size but not significantly. These 

experiments indicate that limited adhesion causes heterochromatin marks to associate into 

fewer and larger foci while euchromatin foci are less affected.  

 

Dynamic radial redisposition of chromatin markers 

 

We next asked if the radial disposition of the chromatin markers was influenced by nuclear size. 

Closed chromatin markers usually associate more with the nuclear lamina where active gene 

silencing takes place, while open chromatin markers are found more towards the nuclear 

interior where transcription usually occurs. We used a radial distribution feature of the 

CellProfiler suite to measure fractional mean intensity, i.e the mean fluorescence of a radial 

region compared to the mean fluorescence of the whole nucleus. Values over 1 indicate a higher 

than average fluorescence intensity and vice versa. Results are summarized in figure 4.9. A 

striking feature of all chromatin markers at 24 hours is the similar distribution regardless of 

island size (Figures 3.10 A-D) with minor concentration towards the nuclear periphery. When 

considering their initial state at the 4h time point, we observe a noisier distribution, particularly 

for 20 μm islands (Figures 3.10 A-D). This finding suggests that over time markers reset to a 

stable radial distribution that is not dependent on nuclear volume.  

Of all chromatin markers H3K9me3 showed the most interesting behaviour: a localised peak 

towards the nuclear lamina at 0.9-0.95 normalized distance from center for 20 μm and 50 μm 

islands at 24h, albeit a more pronounced one on 20μm islands. H3K9me3 showed a higher than 

average fluorescence towards the nuclear center for 50 μm islands at both time points while 

distribution remained flat for 20μm islands at 24h. A striking feature of the 4h curve for 20μm 
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islands is the oversized peak towards the nuclear lamina. Considering recent reports on the 

mechanoresponsive properties of H3K9me3383, this could indicate an early response to 

reduction of nuclear volume which is later on dispersed. 

From these findings we conclude that cell shape does not appear have a major impact on the 

radial distribution of histone PTMs within the nucleus after 24 hours. 

 

 

 

  

Figure 3.10. Radial distribution of chromatin markers plotted as radial mean fractional intensity: values over 1 indicate 
a higher than average fluorescence intensity and vice versa. A. H3K27me3. B. H3K27Ac. C. H3K9me3 D. H3K4me3. 
Shown as average + S.E.M. N = 3 experiments.  
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Lamin levels and radial distribution 

 

Following our characterization of chromatin markers, we investigated nucloskeletal proteins 

Lamin A/C and B1. Lamin A/C has been shown to be a major regulator of nuclear stiffness and 

associates with LADs. Inversely, Lamin B1 contributes significantly less to nuclear mechanic 

integrity but associates with TADs of euchromatin. We initially measured integrated intensity 

from immunofluorescence stainings of both lamins imaged with confocal microscopy. Example 

of confocal images can be found in figure 3.11 and quantification of measured integrated 

intensities can be found in Figure 3.12. Total levels of Lamin A/C showed no significant difference 

between island size and timepoints (Figure 4.12.A-B). Lamin B1 did exhibit a difference between 

island size as indicated by 2-way ANOVA, but not between time points.  

Analysis of the Lamin A/C radial distribution showed a major redisposition towards the nuclear 

periphery on 20 μm islands after 24 hours, compared to a lesser redistribution also towards the 

Figure 3.11. Example of cells grown on 20 µm and 50 µm islands at 24-hour time point, stained for Nucleus (DAPI) 
and Lamin AC (Top) or Lamin B1 (Bottom). Scale bar = 10 μm. 
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nuclear lamina on 50 μm islands (figure 3.13.B). This change is dynamic, as differences are less 

striking at the 4h time point, although we can already discern an increment in mean fractional 

intensity towards the nuclear periphery on 20 μm islands (figure 3.13.B). While Lamin B1 also 

displayed a clear localization towards the nuclear periphery, this was a common feature 

regardless of island size or time point. Considering the role of both lamins in nuclear architecture 

these data indicate that Lamin B1 does not reorganize dynamically following physical 

confinement while Lamin A/C does.  

 

  

 

Figure 3.12. Normalised integrated intensity measurements of confocal images of Lamin AC (A) and Lamin B1 (B). 
Shown as mean + S.E.M. N= 3 experiments. n.s: non-significant. *: p-value<0.05 (2-Way ANOVA, Tukey multiple 
comparisons test). 

 

Figure 3.13. Radial distribution of nucleoskeletal proteins plotted as radial mean fractional intensity: values over 1 
indicate a higher than average fluorescence intensity and vice versa. A. Lamin AC. B. Lamin B1. Shown as average + 
S.E.M. N = 3 experiments. 
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Nucleoli condensation 

 

As nucleoli are large structures within the nucleus and have important roles in ribosomal 

biosynthesis and thus in transcriptional control, we next quantified the morphology of nucleoli. 

Example of confocal images can be found in figure 3.14 and measurements of nucleoli size and 

number can be found on table 3.2, a bar graph representation of both number and relative size 

of nucleoli on figure 3.15.  

Nearly all cells grown on 20 μm islands had a single, large nucleolus compared to cells from 50 

μm islands, which usually had between 1 and 3 nucleoli of varying sizes (Table 3.2, Figure 3.15). 

As the nuclear volume of restricted cells is reduced, the relative size to the nucleus of nucleoli is 

thus increased in 20 μm islands. This difference between relative area to the nuclear area is 

significant between nucleoli of 20 μm and 50 μm islands at 4 and 24 hours (Figure 3.15.B). There 

is a significant reduction in nucleoli number between 20 μm and 50 μm islands at 24-hour time 

point (Figure 3.15.A) but also between 4 and 24-hour time points in 20 μm islands (Figure 3.15.B) 

indicating a fusing in between those time points. Aspect ratio of nucleoli is reduced in both 20 

μm and 50 μm islands between 4h and 24h (Table 3.2).  

 

 

Figure 3.14. Example of cells grown on 20 μm and 50 μm islands at 24-hour time point, stained for Nucleus (DAPI), 
Nucleolin and Transglutaminase. Scale bar = 10 μm. 
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As nucleoli size and shape is thought to be regulated by phase separation dynamics we theorized 

that the overall reduction in nuclear volume forces nucleoli to fuse together We transfected 

HaCat cells with a Nucleolin-GFP construct and performed live imaging at early time points post 

seeding to observe nucleoli fusion. An example of the phenomenon can be seen in Figure 3.16.A 

and a quantification of measured fusion events in Figure 3.16.B-C. To further demonstrate the 

universality of this mechanism we seeded other cell lines on the same micropatterned surfaces 

and observed a similar trend across all of them (Figure 3.17). 

Finally, we noted a lack of nucleolin staining in the interior of nucleoli on 20 μm islands, unlike 

fully stained nucleoli on 50 µm islands, suggesting that sub-nucleolar structure may also be 

altered.  

 

 20 μm - 4h 20 μm - 24h 50 μm - 4h 50 μm - 24h 

n° of nucleoli per nucleus 1.46 ± 0.76 1.09 ± 0.33 1.89 ±1.05 1.69 ± 0.99 

Area of Nucleoli (μm2) 11.24 ± 8.22 12.21 ± 6.72 11.90 ± 9.45 11.67 ± 7.97 

Area of Nucleus (μm2) 85.66 ± 18.11 86.22 ± 16.52 149.43 ± 35.15 143.39 ± 35.15 

Relative size to Nucleus (%) 13.85 ± 8.72 17.35 ± 8.81 8.99 ± 6.73 8.67 ± 6.57 

Aspect Ratio 1.45 ± 0.39 1.24 ± 0.25 1.47 ± 0.49 1.33 ± 0.27 

Table 3.2. Morphological statistics derived from nucleolin and DAPI stainings. N = 3 experiments. Shown as mean ± 

SEM. 
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Figure 3.15. Nucleoli number (A) and relative size (B). Shown as mean + S.E.M. N = 3 experiments *: p-value<0.05. **: 
p-value<0.01. ***: p-value<0.001 (2-Way ANOVA, Tukey multiple comparisons test). 
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Figure 3.16. Top: Representative images of nucleoli fusing in HaCat cells transfected with Nucleolin-GFP construct seeded 
on 20 µm islands. Bottom: % of cells with observed fusion events. Shown as mean + S.E.M. N = 3 experiments, 4 cells 
imaged per island size per experiment. *: p-value<0.05 (two-tail t-test, equal variance assumed). 
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Figure 3.17. Nucleoli number of diverse cell types grown on micropatterned surfaces. Shown as mean + S.E.M. N = 3 
experiments. n.s: non-significant. **: p-value<0.01. ***: p-value<0.001. ****: p-value<0.0001 (2-Way ANOVA, Tukey 
multiple comparisons test). 
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Discussion 

 

Here, we have made a first step towards understanding how reduction of nuclear volume as 

generated through constraining of HKs can create changes in chromatin remodelling and 

architecture. For this, we characterized several key components of nuclear architecture, such as 

heterochromatin and euchromatin markers, nucleoskeletal proteins as well as nucleoli. We have 

described several dynamic changes to these components following cellular confinement, and 

we aim to investigate the mechanisms of these changes in following chapters to better elucidate 

the intricate relationship between biophysical cues, nuclear architecture and HK biology. 

We have observed minute changes in overall heterochromatin markers, with both H3K27me3 

and H3K9me3 being downregulated on restricted cells. A similar trend is appreciated for 

euchromatin marker H3K27Ac, but no apparent change in H3K4me3 marker was found. Global 

changes in histone acetylation have already been reported during keratinocyte differentiation, 

specifically H4K20Ac384, but here we saw no differences between non-differentiated and 

terminally differentiating cells. While H3K27me3 showed a downregulation on small islands, 

discrimination upon differentiation also showed no differences, further pointing that changes 

(or lack thereof) are not necessarily differentiation related. However, the lack of correlation 

between histone PTMs and differentiation here may also be due to a mismatch or delay in the 

timing of expression for differentiation markers such as TG. Future studies will have to analyse 

a broader spectrum of chromatin markers and timings to get a more precise picture of the 

possibly complex dynamic chromatin changes that arise from modifying available adhesive 

space of HKs. Moreover, considering that changes in histone PTMs are often gene-specific, other 

techniques, mainly ChIPseq, would provide information that would be more relevant.  

Interestingly, total histone 3 showed a non-significant downregulation on small islands, putting 

a certain doubt on the specificity of histone PTM changes. This downregulation is non-significant 

compared to the changes in PTMs, albeit this may be due perhaps to a low N number. Changes 

in overall H3 may also not necessarily impact the chromatin markers that were studied. Indeed, 

they might indicate a reduction in free floating H3 or perhaps do not incorporate the PTMs 

studied. Dual staining of both total histone 3 and chromatin markers would be able to give us a 

definite ratio to which re-evaluate the data.  

Nevertheless, analysis of global changes in histone PTMs is a very limited tool as we know that 

most of these PTMs are gene and context specific. RNAseq data of constrained or non-

constrained HKs will provide more gene-specific information, and CHIP-seq analysis in future 

studies would provide a more detailed information on gene-specific regulation.  
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Foci analysis as well as radial profile of these markers provided further geometrical information. 

We observed a significant heterochromatin foci association, and a similar but less pronounced 

effect on euchromatin foci distribution. In contrast, the radial distribution of PTMs was not 

affected by nuclear shape. In Chapter Six, perturbation of the system with cytoskeletal inhibitors 

will be used to investigate whether these effects are purely biophysical responses or 

consequences of other signalling pathways.  

We theorize that the phenomenon of both euchromatin and heterochromatin downregulation 

and foci aggregation is an attempt by the nucleus to both reduce chromatin volume and save 

space in a smaller nucleus, while maintaining essential gene transcription relatively 

unperturbed. Indeed, compaction of chromatin could potentially create kinks and breaks in 

DNA, and recent studies have shown that reduction of dense chromatin can effectively protect 

DNA from mechanical loading of the nucleus383. Counterintuitively, heterochromatin foci 

compaction would theoretically increment chromatin viscosity385, but perhaps this phenomenon 

is better explained by the reduced intranuclear volume. Cell survival is directly dependent on 

maintaining transcriptional activity stable, and physical hindrance of transcriptional machinery 

accessibility to chromatin because of compaction would effectively perturb the system. Hence, 

reducing closed chromatin and compacting the remaining could effectively both increment 

chromatin deformability and optimize storage, leaving more space for open chromatin to be 

transcribed without hindrance.  

Further proof of this is needed, such as rheological analysis of the compacted nucleus, counter-

staining of RNA polymerases to analyse the distribution of transcriptional factories or de novo 

RNA and protein synthesis measurements to verify if transcriptional levels are hindered. One 

hint at this is the reduced levels of total histone 3. As of now we see little biological sense for 

the cell to effectively reduce its levels of a core nucleosome protein, as it will further hinder DNA 

storage. There has been reports of histone levels being downregulated after DNA damage386, 

but it seems unlikely here. Rather, we believe this to be a consequence of a defect in translation. 

Further to this point, nucleoli aggregation and condensation could also affect ribosomal 

biogenesis. qPCR analysis of H3, several housekeeping genes as well as rRNA did not show any 

major changes, but this could be an artefact of transcriptional levels being downregulated 

similarly for all genes. We will investigate this further by using de novo protein synthesis assays 

in the next chapter.  

Nucleoskeletal proteins showed a dual response, Lamin A/C exhibiting redistribution to the 

nuclear periphery on small islands, but no change in expression, while lamin B1 the exact 

opposite (no redisposition but changes in overall levels). This provides an interesting system to 

further probe how biophysical cues could modify either position or expression of proteins. The 
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functional role of Lamin A/C in chromatin remodelling and gene expression will be investigated 

in Chapter 5.  

Finally, nucleoli condensation following nuclear compaction is a novel phenomenon which we 

report here for the first time. While nucleoli fusing together due to proximity is not a novel 

concept, almost nothing is known of nucleoli reacting to biophysical cues. Reports indicate 

possible interactions with Lamin B1330, H3K9me3387 and nuclear actin388, and which will be prime 

candidates to be analysed with our model. New insights here have the potential to expand our 

knowledge of their regulation which is intrinsically linked to ribosomal biogenesis and global 

protein synthesis.  

In summary, we have described the initial parameters of our model and gained primary 

information on chromatin condensation processes due to nuclear compaction (Figure 3.17). 

These initial observations will serve as a starting point to interrogate the mechanical regulation 

of these responses and the downstream effects on gene expression. 

              50 μm    20 μm 

 

 

  

Figure 3.17. Schematic representation of chromatin condensation. Left: HKs grown on 50 µm islands. Right: HKs 
grown on 20 µm islands. Blue: DAPI. Red: Lamin A/C. Green: Heterochromatin. Purple: cytoplasm. 
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Chapter 4: Analysis of Gene Expression Programmes Regulated by 

Cell Morphology 
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Introduction 
 

In the previous chapter we reported observed global chromatin structural changes in HKs 

following nuclear deformation. Changes in chromatin organization are often accompanied with 

changes in downstream transcriptional activity, and both phenomena occur in differentiating 

HKs. Indeed, gene clustering by function, such as seen in the EDC, will see a change in their 

position within the nucleus and a change in their chromatin state during differentiation208, which 

will eventually lead up to activation of transcription of the whole cluster. Genes can also be 

affected by biophysical cues while not necessarily exhibiting perceptible changes in macroscopic 

chromatin structure and observed chromatin structural changes do not tell us how individual 

gene transcription is affected. Therefore, more gene specific information is needed to fully 

assess the impact of altered nuclear morphology on epigenetic gene regulation. 

We expect that cell and nuclear morphology significantly affect gene transcription. As stated 

previously HK compaction following reduced available adhesive area induces terminal 

differentiation which is accompanied by major changes in gene expression. Lamin A/C regulates 

LADs and its relocation towards the nuclear lamina could potentially change the transcription of 

nuclear lamina associated genes. Condensation of heterochromatin foci, and changes in 

euchromatin foci could also be indicative of modifications in accessibility of genes. Finally, 

merging of nucleoli likely would impact ribosomal RNA biogenesis and ribogenesis, which could 

ultimately affect whole cell translational capabilities.  

In the following chapter we will use next-generation RNA sequencing (RNA-seq) to characterize 

the transcriptome of HKs grown on micropatterned surfaces and subsequently investigate how 

these changes affect key signalling pathways and phenotype.  
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Changes in transcriptional profile of HKs due to available adhesive space 
 

Main Affected Pathways 

 
Total RNA was extracted from HKs grown on 20 µm and 50 µm islands at 4h and 24h time points 

in biological triplicates. RNA was then sequenced using next generation sequencing (paired end, 

75 bp read length, 30 M reads per sample). Reads were aligned to genome (Homo Sapiens 

GRCh37 assembly) using HISAT2 and differential analysis, PCA and hierarchical clustering of gene 

expression was performed using SeqMonk. Scatterplot of differentially expressed genes 

between 20 µm and 50 µm at 24 h time point is shown in Figure 4.1. We compared genes 

differentially expressed between island sizes at the early 4h time point and found only two, both 

more expressed on smaller islands. In comparison, similar statistical analysis revealed 1820 

Figure 4.1. Scatterplot of differentially expressed genes between 20 µm and 50 µm islands at 4-hour (A) and 24-hour 
(C) time points. Highlighted in blue are DESEQ significantly differentially expressed genes. B: PCA plot of highlighting 
PCA 1 versus PCA 2. Blue: 20 µm 24h. Red: 50 µm 24h. Green: 20 µm 4h. Orange: 50 µm 4h. D: Unsupervised 
hierarchical clustering plot of all samples with highlighted clusters of interest. Next page: three most enriched GO 
terms of non-clustered data and 4 largest hierarchical clusters. 
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genes to be differentially transcribed between island sizes at 24h time point. A majority of these 

(1261) were upregulated on 20 µm islands.  

Principal component analysis (PCA) of all samples revealed first component to be time as it 

separated samples based on time point. Second component separated 24-hour samples by 

island size while being less effective for 4-hour samples. The PCA clustering plot is shown on 

Figure 4.1. The results suggest that HKs grown on micropatterns are initially a homogenous 

population when seeded and then separate into different transcriptional programs based on 

available adhesive area. We then performed unsupervised hierarchical clustering of 

differentially expressed genes at 24-hour timepoint which revealed 20 clusters of similarly 

varying transcript levels. Heat map of clusters can be found in Figure 4.1. As can be perceived 

visually, hierarchical clustering correctly categorised samples based both time and island size. 

Subsequently the largest clusters (10 or more genes) were analysed using the Gene Ontology 

(GO) resource (http://geneontology.org/). Cluster 12 was the largest (831 genes) and only 

upregulated in small islands at 24 h. Most enriched GO terms within that cluster were 

cornification and establishment of skin barrier. Cluster 5 was the second largest (332 genes) and 

only upregulated in large islands. One of the most enriched GO terms was found to be DNA 

replication, indicative of basal keratinocytes. These patterns of gene expression confirm that 

this model effectively induces HK terminal differentiation on smaller islands and validate the 

RNA-seq analysis.  
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There appeared to be a small but measurable amount of differentiation even on the large 

islands, as we observe that 28 genes linked to cornification are upregulated on large islands at 

24h time point compared to 4h. However, when looking at small islands we find 55 genes to be 

upregulated in this category, which indicates that HKs grown on small islands are differentiating 

to a greater extent. In parallel, 8 genes linked to hemidesmosome formation and 11 to basement 

membrane organisation are upregulated on large islands after 24h compared to 4h, suggesting 

that this population is also attempting to form stable basal-like adhesions. Small islands in 

comparison do not show an upregulation in genes that are linked to basement membrane 

attachment, and furthermore exhibit a downregulation of DNA replication genes, which are 

good indicators of a differentiating population.   

We then interrogated which other pathways were being affected. GO analysis of clustered and 

non-clustered data revealed a plethora of affected pathways (over 100 for both clustered and 

non-clustered, often overlapping in nature) but we focused our subsequent investigation on the 

following three. The first one was the DNA double strand break repair pathway, third and second 

most upregulated GO term on non-clustered and clustered data, respectively. It was selected 

because there has been mounting support for mechanosensitive roles of lamin A/C in DNA repair 

mechanisms in the past years389 as well as recent reports indicating that reduction of 

heterochromatin following mechanical stimuli was an effective DNA-protecting phenomenon383. 

Retinoic acid (RA) biosynthesis was the most enriched GO term of 20 µm island non-clustered 

data. It is of interest as RA has been found to be implicated in lamin A/C regulation390. Finally, 

ribogenesis was chosen as analysis of cluster 15, third largest cluster and upregulated in small 

islands, found ribosomal small subunit assembly and initiation of translation the second and 

third most enriched GO terms. Cluster 5 also found ribogenesis to be an enriched GO term. This 

could be intrinsically connected to nucleoli fusion, as ribogenesis is housed within the nucleolus, 
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Figure 4.2. Relative expression levels of genes on 20 µm islands compared to 50 µm islands after 24 hours from 
qPCR. All genes normalised to GAPDH transcript levels.  Shown as mean + S.E.D. N = 3 experiments.  
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while interestingly the pathway seemed to be upregulated in both large and small islands. As a 

final validation of our RNA-seq analysis we selected a few genes from each pathway to measure 

RNA transcripts by qPCR in independent follow-up experiments. The list of differentially 

expressed genes in selected pathways can be found in table 4.1 and qPCR results found on figure 

4.2.  
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Pathway Genes  Log2 Fold Change 

Retinoic Acid 
pathway 
 

Retinoic Acid Receptor Gamma (RARG) 
Cellular retinoic acid-binding protein 2 (CRABP2) 
Dehydrogenase/reductase SDR family member 9 
(DHRS9) 
Retinol-binding protein 1 (RBP1) 
Aldehyde dehydrogenase family 1 member A3 
(ALDH1A3) 
Retinal dehydrogenase 2 (ALDH1A2) 
Aldehyde Dehydrogenase 3 Family Member B1 
(ALDH3B1) 
Cytochrome P450 Family 1 Subfamily B Member 1 
(CYP1B1) 
Cytochrome P450 Family 2 Subfamily W Member 1 
(CYP2W1) 

-1.684 
-1.787 
-2.868 
 
-1.41 
-1.765 
 
-1.495 
-3.148 
 
-1.657 
 
-3.167 

DNA damage 
response 

Flap endonuclease GEN homolog 1 (GEN1) 
Telomere-associated protein (RIF1) 
DNA replication licensing factor (MCM6) 
Breast cancer type 1 susceptibility protein (BRCA1) 
Breast cancer type 2 susceptibility protein (BRCA2) 
DNA replication licensing factor (MCM4) 
Fanconi anemia group J protein (BRIP1) 
Fanconi anemia group B protein (FANCB) 
Structural maintenance of chromosomes flexible 
hinge domain-containing protein 1 (SMCHD1) 
Poly [ADP-ribose] polymerase 1 (PARP1) 
DNA replication licensing factor (MCM5) 
DNA mismatch repair protein (MSH2) 
Bloom syndrome protein (BLM) 
DNA repair protein (XRCC2) 
Protein MMS22-like (MMS22L) 
Sororin (CDCA5) 
Claspin (CLSPN) 
Cell division control protein 45 homolog (CDC45) 
DNA repair protein RAD51 homolog 1 (RAD51) 
N-acetyltransferase ESCO2 (ESCO2) 
DNA polymerase theta (POLQ) 
DNA repair protein RAD50 (RAD50) 
DNA replication ATP-dependent helicase/nuclease 
DNA2 (DNA2) 
DNA-dependent protein kinase catalytic subunit 
(PRKDC) 
Serine-protein kinase ATM (ATM) 
Serine/threonine-protein kinase ATR (ATR) 
DNA repair and recombination protein RAD54-like 
(RAD54L) 
DNA replication licensing factor MCM3 (MCM3) 
Flap endonuclease 1 (FEN1) 
DNA replication licensing factor MCM7 (MCM7) 
DNA replication licensing factor MCM2 (MCM2) 

1.012 
0.918 
0.877 
1.315 
1.533 
0.897 
1.001 
1.337 
0.866 
 
0.984 
0.72 
0.688 
1.134 
1.628 
0.892 
0.784 
1.72 
0.78 
0.812 
0.952 
1.344 
0.931 
1.131 
0.941 
1.232 
 
0.862 
0.981 
1.053 
 
0.687 
 
0.648 
0.712 
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Poly [ADP-ribose] polymerase 2 (PARP2) 
DNA polymerase alpha catalytic subunit (POLA1) 
Chromatin assembly factor 1 subunit A (CHAF1A) 
Denticleless protein homolog (DTL) 
ATP-dependent DNA helicase DDX11 (DDX11) 
E3 ubiquitin-protein ligase UHRF1 (UHRF1) 

1.052 
0.825 
1.035 
1.331 
0.901 
1.238 

Ribogenesis Ribosomal Protein S2 (RPS2) 
Ribosomal Protein S4X (RPS4X) 
Ribosomal Protein S5 (RPS5) 
Ribosomal Protein S9 (RPS9) 
Ribosomal Protein S10 (RPS10) 
Ribosomal Protein S12 (RPS12) 
Ribosomal Protein S27 (RPS27) 
Ribosomal Protein S28 (RPS28) 
Ribosomal Protein S29 (RPS29) 
Ribosomal Protein L13 (RPL13) 
Ribosomal Protein L29 (RPL29) 
Ribosomal Protein L32 (RPL32) 
Ribosomal Protein L36 (RPL36) 
Ribosomal Protein L37 (RPL37) 
Ribosomal Protein L39 (RPL39) 
Ribosomal Protein L41 (RPL41) 
Ribosomal Protein LP0 (RPLP0) 
Ribosomal Protein LP2 (RPLP2) 
Ribosomal Protein L28 (RPL28) 
Nucleolin (NCL) 
Nucleolar Protein 8 (NOL8) 
RNA Binding Motif Protein 19 (RBM19) 
RNA Binding Motif Protein 28 (RBM28) 
Ribosome Biogenesis Factor BMS1 (BMS1) 
mRNA turnover protein 4 homolog (MRTO4) 
Nucleolar protein 14 (NOP14) 
Nucleolar protein 2 (NOP2) 
NOP2/Sun RNA Methyltransferase 2 (NSUN2) 
Nucleolar pre-ribosomal-associated protein 1 (URB1) 
Nucleolar pre-ribosomal-associated protein 2 (URB2) 
Nucleolar and coiled-body phosphoprotein 1 (NOLC1) 
Nucleolar MIF4G domain-containing protein 1 
(NOM1) 
Ribosome biogenesis regulatory protein homolog 
(RRS1) 
Ribogenesis Regulating Protein 1 B (RRP1B) 
Ribosomal L1 domain-containing protein 1 (RSL1D1) 
Large subunit GTPase 1 homolog (LSG1) 
H/ACA ribonucleoprotein complex subunit DKC1 
(DKC1) 
DEAD-Box Helicase 31 (DDX31) 
DEAD-Box Helicase 21 (DDX21) 
DEAD-Box Helicase 11 (DDX11) 

-0.732 
-0.672 
-0.899 
-0.829 
-0.85 
-0.882 
-1.013 
-0.713 
-1.249 
-0.685 
-0.652 
-0.708 
-0.941 
-0.786 
-1.198 
-0.882 
-0.788 
-0.706 
-0.664 
0.856 
1.131 
0.791 
0.824 
0.792 
0.665 
0.968 
0.756 
0.633 
0.972 
0.78 
1.046 
1.143 
 
0.909 
 
0.613 
0.819 
0.704 
0.763 
 
1.019 
0.75 
0.901 

  

Table 4.1. Differentially expressed genes from HKs grown on 20 and 50 µm micropatterned islands after 24h belonging 
to selected pathways and respective fold changes of RNA expression in small islands compared to large islands. 
Highlighted selected genes for qPCR validation of RNA-seq analysis.  
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DNA Double Strand Break Repair pathway 
 

GO analysis of RNAseq revealed up to 50 gene transcripts that are upregulated in large islands 

to be implicated in DNA double strand break (DSB) repair as well as general DNA repair 

pathways. Interestingly, when comparing between time points on small islands, we can also 

observe up to 137 genes related do DNA repair being downregulated at 24-hour time point. In 

contrast, there is no such change between time points for 50 µm islands.  

To determine associate functional changes in DNA damage repair we performed parallel 

immunofluorescence labelling of phosphorylated histone isoform γH2AX and TP53BP1 and 

imaged them using epifluorescence microscopy at 4h and 24h after seeding of HKs on 
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Figure 4.3. Example of epifluorescence imaging of HKs grown on 20 µm and 50 µm islands at 24h time point, stained 
for phosphorylated histone isoform γH2AX and 53BP1. Double foci indicative of active DNA DSB repair sites are 
highlighted. Scale bar = 20 μm. 

Figure 4.4. Proportion of HKs grown on 20 µm and 50 µm islands with active DSB repair sites, as determined by 
colocalizing double foci of γH2AX and 53BP1. Shown as mean + S.E.M, N = 3 experiments. n.s: non-significant. *: p-
value < 0.05 (2-Way ANOVA, Tukey multiple comparisons test). 
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micropatterned substrates. Histone isoform H2AX is a member of the H2A histone family and is 

phosphorylated to become γH2AX upon DNA DSB. TP53BP1 is subsequently recruited to γH2AX 

and promotes DSB repair through non-homologous end-joining391. When both proteins localise 

to the same region it is highly likely that that is a region undergoing DSB repair. Thus, the number 

of double foci is a good indicator of how much DNA DSB repair is happening within the nucleus. 

Representative images of double foci are shown in Figure 4.3 and bar graph of measured 

proportion of cells with DBS repair sites are summarised in Figure 4.4. 

Initial observation confirms that there are significantly more DSB repair site on HKs grown on 

large islands both at 4 hour and 24-hour timepoint, albeit only significant in the former. This 

suggests that large available adhesive space support DNA damage repair processes on HKs.  

 

Retinoic Acid biosynthesis 
 

The next pathway to be investigated was related to Retinoic Acid (RA) biosynthesis. RA 

biosynthesis was the most enriched GO term of HKs grown on 20 µm islands. It revealed 8 genes 

related to RA biosynthesis to be upregulated with a 10.99-fold enrichment over reference list.  

To measure if these changes in gene expression were accompanied by changes in intracellular 

RA signalling, HKs were transfected with a firefly luciferase reporter containing a RA responder 

element and its activity measured 24 hours after seeding. RA binding to the response element 

activates transcription and luciferase expressed, whose activity can be quantitated using a 
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Figure 4.5. Retinoic Acid reporter activity as measured from fluorescein bioluminescence assay. Shown as mean + 
S.E.M. N = 4 experiments. *: p-value < 0.05. (two-tail t-test, equal variance assumed).  
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bioluminescence assay. Measured luciferase activity is represented in bar graph form in Figure 

4.5.  

Elevated RA reporter activity on small islands was observed, indicating intranuclear elevated 

levels of RA. This suggests that smaller available adhesive space can induce upregulation of RA 

biosynthesis in HKs.  

Ribogenesis 

 
The final pathway to be analysed was ribogenesis. Interestingly, we found genes related to this 

GO term to be upregulated in both large and small islands after 24h. Translational initiation was 

one of the most enriched GO terms on small islands, with 25 genes upregulated, all of them 

ribosomal proteins. Similarly, rRNA processing was one of the most enriched GO terms for large 

islands with 31 upregulated genes. None of those were ribosomal proteins, but strikingly most 

were ribogenesis regulators.  

We saw in the previous chapter that common housekeeping genes transcript levels were not 

significantly changed across island size, but observed a slight downregulation in H3 levels, 

hinting at a possible translational defect. As a proxy measure of ribosomal activity, we measured 

total amount of rRNA transcripts by qPCR using a primer pair targeting 47S pre-rRNA. Regardless 

of rRNA splicing and maturation, changes to nascent rRNA transcripts would likely be translated 

in changes in total ribosomes. qPCR results can be found summarised in bar graph form in Figure 

4.6.  

We can observe a significant drop of 47S pre-rRNA transcripts on HKs grown on small islands 

compared to large islands after 24 hours. Taking into consideration that ribogenesis modulators 

20 m 50 m

0.0

0.5

1.0

1.5

47S pre-rRNA qPCR

R
e
la

ti
v

e
 e

x
p

re
s

s
io

n
 l
e

v
e

ls

✱

Figure 4.6. Relative expression levels of 47S pre-ribosomal RNA as quantified from qPCR experiments. Shown as mean 
+ S.E.M. N = 3 experiments. *: p-value < 0.05 (twin-tail t-test, equal variance assumed). 
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such as splicing factors are upregulated on large islands; this proxy measure of ribosomes could 

explain the reduced translational capabilities of HKs grown on small islands. 

To further explore this phenomenon, we investigated if the translational capabilities of the cells 

were being affected. We measured de novo protein synthesis using a commercial kit based on 

click-it chemistry. After seeding, HKs are exposed to a methionine homolog containing an alkyne 

bond which is integrated in nascent proteins. Using click chemistry, a fluorophore containing an 

azyde moiety is attached to the proteins through the alkyne bond, whose levels we measure 

with epifluorescence microscopy. Bar graph of measured fluorescence intensity are summarised 

in Figure 4.7. 

We can observe a drop in integrated fluorescence on small islands after 24 hours compared to 

large islands. This difference is not observed at the earlier 4-hour timepoint. This indicates a 

drop in nascent proteins, which hints at the abovementioned defect in translation.  
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Figure 4.7. Top: Representative epifluorescence images of HKs grown on micropatterned surfaces stained for nucleus 
and nascent protein. Bottom: Normalised integrated intensity measurements of epifluorescence microscopy images of 
nascent proteins. N = 3 experiments. n.s: non-significant. *: p-value < 0.05 (2-Way ANOVA, Tukey multiple comparisons 
test). 
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Discussion   
 

We have shown in this chapter that growing single HKs on micropatterned surfaces limiting their 

adhesive area effectively changes their transcriptional profile and is accompanied by 

quantifiable changes in their phenotype. Bulk analysis of differentially expressed genes indicate 

that reduced adhesive space leads to HK premature differentiation and confirmed this facet of 

the model. In addition, we have identified several other affected pathways which were not 

related to HK differentiation, notably DNA damage repair, retinoic acid biosynthesis and 

ribogenesis. We theorize that these pathways are modulated by the adhesive space made 

available to the HKs. 

Initial analysis of the data was aimed at verifying that the model can induce HK differentiation. 

We observed that only 2 genes were significantly differentially expressed between island sizes 

at the early 4-hour time point, indicating that both populations have a homogenous origin and 

that island size does not induce a selection bias.  GO analysis revealed both island sizes to have 

upregulated differentiation profiles after 24 hours compared to 4-hour samples, but 

proportionally higher in smaller islands. As discussed before, we believe this to be due to the 

heterogenous populations found on both island sizes. Indeed, small islands only see about half 

of HKs differentiate after 24h. On the other hand, multicellular islands are a common occurrence 

on large islands, and they often differentiate. To aggravate this further, since multicellular 

islands have more cells than monocellular islands, even a small amount of them would have an 

overrepresentation on bulk analysis. Nevertheless, these discrepancies were not large enough 

that differences could not be perceived between both island sizes and permitted to extract 

valuable information such as a plethora of affected pathways.  

The first affected pathway we investigated was DNA damage repair. Interestingly, this pathway 

was upregulated on large islands compared to small ones after 24 hours. Such a difference could 

not be perceived at the earlier 4-hour time point, indicating either that small islands have their 

DNA damage repair capabilities reduced over time or that their need is diminished. We 

quantified DNA DSB repair sites from colocalization of γH2AX and 53BP1 foci to explore if 

changes to RNA transcript levels did translate in changes in DNA repair activity. We found that 

indeed HKs grown on large islands had more DSB repair sites compared to smaller islands, albeit 

only significantly so at the early 4-hour time point.  

A number of recent studies in the mechanobiology field  have described the protective 

mechanical role of lamins in DNA damage392, but also of how substrate stiffness can induce said 

damage389. Indeed, substrate stiffness can modulate focal adhesion number and maturity. This 

in turn can generate DNA damage by having the actin cytoskeleton pull on the nucleus from 
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more mature focal adhesions. Aspects of both phenomenons may be seen here. On one hand 

lamin A/C redistribution in small islands could be enhancing their DNA protecting role by 

providing the nucleus with higher mechanical integrity. On the other hand, HKs grown on larger 

islands could have more focal adhesions and cytoskeletal tension used to pull on the nucleus 

and thus generate DNA damage. Finally, as discussed before reduction of heterochromatin could 

also give more deformability and resilience to chromatin thus protecting it. Combination of all 

three could explain why the amount of DNA damage is higher on large islands. Verification of 

the first two could be done quite easily; Lamin A/C knock down using siRNA would elevate DNA 

damage if true, and similarly blocking actin contractility using blebbistatin would reduce it. 

Blocking histone demethylases thus hindering loss of heterochromatin markers would also give 

insight into this phenomenon. Unfortunately, if it is true that all three factors are working 

synergistically then changes might be too small to perceive it. There is also the possibility that a 

hidden mechanism, maybe such as impaired translational capabilities of HKs grown on small 

islands, is behind the reduced DNA DSB repair sites. Similarly, maybe DNA damage mechanisms 

are downregulated in differentiating HKs as they do not undergo DNA damage checks which are 

part of the cell cycle. Inducing DNA damage, e.g using UV light, and then comparing how both 

island sizes react would help clear this doubt. Finally, it is interesting to note that substrate 

stiffness and cellular differentiation are also linked393 and that here we discuss available hard 

substrate as a parameter of DNA damage induction. One could entertain the thought of how our 

model would change if we could change the elastic modulus of the micropatterned islands and 

how in turn that would affect both HK differentiation and DNA damage.  

The second affected pathway was retinoic acid biosynthesis, which was upregulated on small 

islands. Using a transfected luciferase reporter system, we measured elevated intracellular 

levels of RA in HKs grown on 20 µm islands. Considering that RA has been shown to inhibit HK 

differentiation394, this upregulation in a differentiating population is intriguing. RA signalling has 

been implicated in lamin biogenesis and to be mechanoresponsive390, and we believe that lamin 

radial redistribution may be responsible for the upregulated RA pathway. Further proof of this 

will be needed, such as knock down of lamin A/C using siRNA, or hopefully disturbing the radial 

redistribution by perturbing force transmission between the cytoskeleton and the nucleus using 

cytoskeletal inhibitors.  

The final affected pathway that we investigated was ribogenesis. This pathway was particularly 

interesting as nucleoli fusion was one of the main findings from the initial macroscopic 

characterisation of our model. Thus, it was important to ask how ribogenesis and protein 

synthesis would be affected. It was intriguing then to see a mixed response, with 25 ribosomal 

protein genes being upregulated on small islands, while 31 ribogenesis regulators on the large 
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islands. The model was initially interrogated for total de novo protein synthesis and found them 

reduced on small islands after 24 hours. We then aimed at discerning if these decreased levels 

were due to either reduced total levels of ribosomes or at reduced ribosomal activity. For this 

we used an estimation of total 47S rRNA transcripts as a proxy measure of total ribosomes and 

found them to be downregulated on small islands.  

Together, these data suggest that there is indeed a reduced number of total ribosomes in HKs 

grown on 20 µm islands, and that this is translated in overall reduced translational activity. We 

also note that changes in ribogenesis modulators as revealed by transcriptome data very 

probably also hint at a perturbed ribosomal splicing and maturation which probably also have 

effects on ribosomal activity. We theorise that the mixed response in mRNA transcripts could 

originate from an unknown compensation or feedback mechanism. It would of course be most 

useful if a direct measurement of total ribosomes could be performed. Unfortunately, it was 

found that a direct measure by northern blot or gradient centrifugation would not be 

appropriate considering the low amount of starting materials we can get off the micropatterned 

surfaces. These methods, coupled with rRNA-seq, would resolve many of the doubts that have 

arisen from the data presented here. The next step in our investigation here will be to link HK 

nuclear size with nucleoli condensation and ribogenesis.  

In summary, this chapter adds a transcriptomic dimension to the characterization of the HKs 

nuclear compaction model following reduced available adhesive space. Combined with the 

initial findings of Chapter 4, we have now drawn a rough outline of the main macroscopic and 

genomic changes that can be observed. The last chapter of this thesis will dissect the relationship 

between these changes and force transmission through the cytoskeleton to the nucleus. 
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Chapter 5: Investigation of the Cytoskeletal-Nucleoskeletal 

Linkage in Biophysical Regulation of Nuclear Architecture 
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Introduction 
 

In the first chapter we described the nucleus as a central mechanosensing unit due to its 

innermost position within the cell and mechanical integration with the cytoskeleton. Biophysical 

cues sensed by the cytoskeleton are ultimately transmitted to the nucleus through a chain of 

mediators, from focal adhesions to the LINC. Both cytoskeletal components and mediators are 

diverse in nature and roles, making several of them redundant395. This redundancy allows the 

cell to maintain part of its mechanosensory ability as well as mechanical integrity shall any of 

the components fail (e.g such as in genetic abnormalities). This fail-safe approach is furthermore 

strengthened by the existence of compensation mechanisms396. Taken together, both factors 

make perturbation experiments difficult to interpret as the effect of a perturbation might be 

minimized by a compensation mechanism. Inversely, this diversity is a double-edged sword: it 

gives us a comparatively large pool of targets to choose from. Comparisons between distinct 

perturbations should allow to extract more clear relationships between cytoskeletal 

components and nuclear architecture.  

We have selected several key mediators in force transmission to the nucleus that we will probe 

in this chapter. Initially, cytoskeletal inhibitors will be used to perturb F-actin, a major 

cytoskeletal component. These results will be compared with cell lines that express a mutant 

version of keratin 14, which exhibits defective keratin filament assembly as found in EBS397. This 

mutation has been shown to generate a more severe effect than complete KO of keratin type I 

KO398. This approach will give insight into how the main cytoskeletal networks regulate force 

transmission. Next, we will investigate mouse cell lines which have had plectin, a major 

cytolinker, knocked out genetically. Loss of plectin has been shown to increase actin filament 

assembly thus providing a contrasted picture upon which we can compare previous actin 

inhibition results. Moreover, they exhibit enlarged nuclei due to increased nuclear 

deformability221, which will provide crucial data on how nuclear morphology affects previously 

observed changes. Finally, small interfering RNA (siRNA) will be used to knock down nesprin 2 

and lamin A/C. Nesprin 2 is a central component of the LINC, and its knockdown will diminish 

force transmission to the nucleus via F-actin filaments. Lamin A/C knockdown will on the other 

hand help disconnect chromatin through LADs from the nuclear envelope118,352 and diminish 

nuclear mechanical integrity329. Comparison of the two should allow us to analyse the role of 

the nuclear envelope.  

Our aim in this chapter will be to determine how the previously established cell shape-induced 

changes in nuclear architecture depend on specific components of the cytoskeleton and 

nucleoskeleton. Taken together, these analyses should provide causational links between 
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cytoskeletal components and changes in nuclear architecture following biophysical cues from 

the extracellular space.  
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Disruption of cytoskeletal organisation 

 

Blebbistatin and Y-27632  

To determine the role of the actin cytoskeleton in mediating shape-induced changes in nuclear 

architecture, we first used common cytoskeletal inhibitors to perturb actin dynamics. Actin has 

been shown to be a major mediator in mechanotransduction as well as being a regulator of 

nuclear size399, and thus perturbing its network would give additional insights. We chose 

blebbistatin, a small molecule inhibitor of myosin II, and Y-27632, a ROCK-inhibitor, which 

inhibits both contractility and F-actin polymerisation. Representative images of HKs treated with 

inhibitors and stained for actin (phalloidin) can be found in Figure 5.1. Visual inspection of 

treated cells confirmed perturbation. After treatment with blebbistatin cells showed disrupted 

actin network. HKs treated with ROCK inhibitor exhibited more disperse actin, elevated cell 

spreading and the apparition of lamellipodia-like protrusions.  

Nuclear morphology, H3K27Ac and H3K9me3 levels 
 

Quantification of changes in nuclear morphology was initially performed before analysing 

chromatin markers H3K27Ac and H3K9me3 of HKs grown on micropatterned islands treated 

with cytoskeletal inhibitors for 24 hours. We selected heterochromatin marker H3K9me3 and 

euchromatin marker H3K27Ac from previous experiments as they were the most sensitive to 

changes in cellular shape. Representative images of HKs treated with inhibitors and stained for 

H3K27Ac can be found in Figure 5.2. Bar graph summary of nuclear volume and H3K27Ac 

immunofluorescence intensity changes can be found in Figure 5.3. Representative images of HKs 

treated with inhibitors and stained for H3K9me3 and bar graph summary of H3K9me3 

immunofluorescence intensity changes can be found in Figure 5.4. 

Figure 5.1. Representative confocal images of HKs treated with DMSO (1 µL/mL), Blebbistatin (50 µM) and ROCK 
inhibitor Y-27632 (10 µM) after 24 hours labelled for actin cytoskeleton. Scale bar = 10 μm. 
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Initial analysis showed that while previous trends of smaller nuclear volume and lower H3K27Ac 

and H3K9me3 intensity levels for smaller islands compared to large ones on control conditions 

can be appreciated they were not statistically significant here. Nevertheless, trends can be 

observed, as small islands seem to have smaller nuclear volume and lower H3K27Ac and 

H3K9me3 intensity levels compared to large islands across conditions, and 2-Way ANOVA 

indicated island size to be a source of significant variation for all three measures (Nuclear 

Volumes p-value: 1.31E-2, H3K27Ac: 2.2E-3, H3K9me3: 1.47E-2). Nuclear volume of HKs grown 

on large islands appeared reduced after treatment with cytoskeletal inhibitor Blebbistatin, 

which was to be expected as the acto-myosin network tension on the nucleus was hindered. 

Figure 5.3. Bar graph of nuclear volumes (right) and H3K27Ac (left) relative fluorescence integrated intensities. Shown 
as mean + S.E.M. N = 3 experiments. n.s: non-significant. *: p-value < 0.05 (2-Way ANOVA, Sidak multiple comparisons 
test). 

Figure 5.2. Representative confocal microscopy images of HKs grown on micropatterned islands and treated with 
DMSO (1 µL/mL), Blebbistatin (50 µM) and ROCK inhibitor Y-27632 (10 µM) after 24 hours labelled for H3K27Ac and 
DAPI. Scale bar = 10 μm. 
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This was accompanied by non-statistically significant increments in their H3K27Ac levels for both 

Blebbistatin and ROCK inhibitor. H3K9me3 levels remained comparatively unperturbed across 

conditions, with a non-significant reduction of intensity levels on large islands treated with ROCK 

inhibitor. 
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Figure 5.4.  Top: Representative confocal microscopy images of HKs grown on micropatterned islands and treated 
with DMSO (1 µL/mL), Blebbistatin (50 µM) and ROCK inhibitor Y-27632 (10 µM) after 24 hours labelled for H3K27Ac 
and DAPI. Scale bar = 10 μm. Bottom: Bar graph of H3K9me3 relative fluorescence integrated intensities. Shown as 
mean + S.E.M. N = 3 experiments. n.s: non-significant. (2-Way ANOVA, Sidak multiple comparisons test). 
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Lamin A/C levels and radial distribution 

 

Next, nucleoskeletal response to perturbation of actin was analysed by confocal imaging of 

lamin A/C. Representative images and bar graph summary of immunofluorescence intensity 

measurements and radial distribution can be found in Figure 5.5. Cytoskeletal inhibitor 

treatment did not seem to have significant effects on lamin A/C intensity levels. On the other 

hand, radial distribution of lamin A/C in small islands was significantly reduced near the nuclear 

periphery after cytoskeletal inhibitor treatment, while large islands were comparatively 

unaffected. These results suggest that overall lamin A/C levels do not change in response to 

biophysical cues induced by micropatterned substrates. Furthermore, perturbation of F-actin 

leads to more disperse lamin within the nucleus, specifically on small micropatterns. 

Overall, these results raise interesting questions. Easing of F-actin tension onto the nucleus did 

not appear to have significant effects, and was expected for blebbistatin221. In contrast 

differences in H3K27Ac levels between island sizes became more pronounced. Both these 

observations suggest that nuclear volume and H3K27Ac levels are not intrinsically linked, and it 

is likely chromatin markers are regulated by balanced compressive and tensive forces upon the 

nucleus. Similarly, lamin A/C appeared to not be affected by cytoskeletal inhibitor treatment but 

exhibited a slight altered radial profile on small islands which resembled more their larger 

counterparts, possibly due to perturbation of F-actin tension.  
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Figure 5.5.Top: Representative confocal microscopy images of HKs grown on micropatterned islands and treated with 
DMSO (1 µL/mL), Blebbistatin (50 µM) and ROCK inhibitor Y-27632 (10 µM) after 24 hours labelled for lamin A/C and 
DAPI. Scale bar = 10 μm. Center: bar graph of relative normalised integrated intensity of Lamin A/C. Shown as mean + 
S.E.M. N = 3 experiments.  n.s: non-significant. (2-Way ANOVA, Sidak multiple comparisons test). Bottom: Radial 
distribution of lamin A/C plotted as radial mean fractional intensity: values over 1 indicate a higher than average 
fluorescence intensity and vice versa. Significance calculated using Kolmogorov-Smirnov test. N = 3 experiments. 
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Disruption of keratin cytoskeleton stability 

 

Nuclear morphology 

 

We next investigated the role of the keratin cytoskeleton in nuclear mechanotransduction using 

the HaCaT immortalized keratinocyte cell lines with stable overexpression of keratin 14 with the 

dominant R416P point mutation. This mutation is localised in the central rod domain of the K14 

protein, allowing its filament formation but becoming very unstable. This results in the 

formation of K14 aggregates under mild forces, as can be appreciated in Figure 5.6 compared to 

overexpression of the wild type control. As keratins, and namely keratin 14 in basal 

keratinocytes, are the main cytoskeletal proteins accountable for HKs mechanical integrity232, 

this mutation is theorised to have effects on how forces are transmitted to the nucleus. The 

point mutation is also based on a common mutation found in severe Dowling-Meara form of EB 

thus adding clinical relevance to the model400.  

Figure 5.6. Top: Representative confocal images of HaCaTs transfected with WT K14-GFP (left) or K14-R416P-GFP 
(left) seeded on large micropatterns after 24 hours labelled for K14, DAPI and lamin A/C. Scale bar = 10 μm. Bottom 
left: Bar graph of nuclear volumes. Bottom right: Bar graph of nuclear cross-sectional area. Shown as mean + S.E.M. 
N = 3 experiments.  n.s: non-significant.  **: p-value < 0.01 (2-Way ANOVA, Tukey multiple comparisons test). 
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Effects of this mutation on nuclear morphology was initially investigated. Findings are 

summarised in Figure 5.6.  The K14-R416P mutation does not appear to have significant effects 

on nuclear volume. However, no differences could be appreciated between island sizes for WT 

in contrast with previous findings. We further investigated changes in cross-sectional area and 

observed significant changes across islands size, but not between keratin WT and mutant. This 

indicate that HaCaT nuclei can react to cellular spreading by incrementing their cross-sectional 

area but their lack of change in nuclear volume indicate that they are incompressible.    

H3K9me3 levels 

 

Next, heterochromatin marker H3K9me3 reaction to keratin cytoskeletal network perturbation 

was investigated. Measured relative integrated intensities can be found in Figure 5.7 in bar 

graph form. Similarly to nuclear volumes there seems to be little effect from K14 mutation. 

While there is a significant downregulation of H3K9me3 intensity on small islands compared to 

large ones for WT, that significance is lost for cells transfected with the mutated form. 

Nevertheless, trends between conditions are similar, and differences between same island size 

but different constructs are not significant.  

 

Lamin A/C levels and radial distribution 

 

Figure 5.7. Left: Representative confocal images of HaCaTs expressing WT K14-GFP or K14-R416P-GFP seeded on 
micropatterned islands after 24 hours labelled for DAPI and H3K9me3. Scale bar = 10μm. Right: Bar graph of 
H3K9me3 relative fluorescence integrated intensities. Shown as mean + S.E.M. N = 3 experiments.  n.s: non-significant. 
*: p-value < 0.05 (2-Way ANOVA, Tukey multiple comparisons test). 
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After this, changes in lamin A/C levels and radial distribution were quantified. Bar graph of 

relative integrated intensities as well as radial profiles can be found in Figure 5.8. Here lamin 

A/C intensity levels were significantly upregulated in R416P cells compared to WT on large 

islands, and 2-way ANOVA indicated K14 R416P mutation to be a source of significant variance. 

When observing changes in radial profile no significant changes were perceived between R416P 

cells compared to WT.  

 

 

 

Figure 5.8. Top left: Representative confocal images of HaCaTs expressing WT K14-GFP or K14-R416P-GFP seeded on 
micropatterned islands after 24 hours labelled for DAPI and lamin A/C. Scale bar = 10 μm. Top right: Bar graph of 
lamin A/C relative fluorescence integrated intensities. Shown as mean + S.E.D. N = 3 experiments.  n.s: non-significant. 
*: p-value < 0.05 (2-Way ANOVA, Tukey multiple comparisons test). Bottom: Radial distribution of lamin A/C plotted 
as radial mean fractional intensity: values over 1 indicate a higher than average fluorescence intensity and vice versa. 
N = 3 experiments. 
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Nucleoli number 

 

Finally, the role of the keratin cytoskeleton in the regulation of nucleoli numbers was 

investigated. Bar graph of measured average nucleoli number per cell can be found in Figure 

5.9. A larger number of nucleoli on large islands was observed, albeit only significantly so in 

R416P cells, consistent with previous experiments. In summary, no significant effect of K14-

R416P mutation was observed.  

Altogether, results show that HaCats expressing K14 with R416P point mutation do not exhibit 

dramatic changes in nuclear volume, lamin A/C radial distribution, H3K9me3 levels and nucleoli 

number. However, changes in overall lamin A/C levels could be observed. Previous reports have 

pushed the idea that the perinuclear keratin network protects the nucleus from 

deformation221,400 but unfortunately we did not observe significant changes in nuclear volume. 

But changes in lamin A/C levels could be indicative of a compensation mechanism to protect the 

nucleus from deformation. Our previous results also indicated a relation between nuclear size 

and nucleoli number, so the lack of change in nucleoli number was expected. H3K9me3 appears 

until now to be unaffected by perturbations to the actin and keratin cytoskeletons. 
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Figure 5.9. Bar graph of average nucleoli number per cell of K14 WT versus K14 R416P cells. Shown as mean + S.E.M.  
N = 3 experiments. n.s: non-significant. *: p-value<0.05. (2-Way ANOVA, Tukey multiple comparisons test). 
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Cytolinker Plectin KO 

 

Nuclear morphology 

 

As an alternative model of keratin disruption, a mouse keratinocyte cell line with a total knock 

out of the Plec gene for the cytolinker plectin was next employed. Plectin links F-actin and 

keratin and anchors intermediate filaments to hemi-desmosomes260,401. Plec KO has been shown 

to destabilise keratin IF network through loss of connection to other cytoskeletal networks, 

which helps stabilise their network formation. It induces larger nuclear deformability in the 

context of micropatterned surfaces by means of perinuclear keratin organisation 

perturbation221. Furthermore, Plec KO upregulates F-actin as can be appreciated in Figure 5.10. 
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Figure 5.10. Top: Representative confocal microscopy images of Plec WT and Plec KO keratinocytes grown on 
micropatterned surfaces stained for DAPI and H3K9me3. Bottom: Bar graph of nuclear volumes of WT versus Plec KO 
cells. Shown as mean + S.E.M. N = 4 experiments.  n.s: non-significant. *: p-value < 0.05 (2-Way ANOVA, Tukey multiple 
comparisons test). 
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Increased F-actin tension on the nucleus likely increases deformation. As of such, this model 

provides an important contrast to the F-actin inhibitors, which decrease acto-myosin 

contractility, and K14 disruption.  

The effect of Plec KO on nuclear morphology was initially investigated. Representative images 

of Plec KO cells grown on micropatterns can be found in Figure 5.11 and graph bar of observed 

nuclear volumes can be found in Figure 5.10.  

2-way ANOVA indicated that both island size and Plec KO had significant effects on nuclear 

volume variation, albeit differences between individual conditions were only significant 

between Plec KO and WT. Visual inspection indicates that there are larger nuclei on larger islands 

and Plec KO cells. This increment was expected, as Plec KO cells have been shown to have more 

deformable nuclei, possibly due to upregulated F-actin network and perturbed perinuclear 

keratin221.  

H3K27Ac and H3K9me3 levels 

 

Next levels of chromatin markers H3K27Ac and H3K9me3 were analysed. Bar graph summary of 

measured relative intensities can be found in Figure 5.11. While H3K27Ac was minimally affected 

by Plec KO, a significant downregulation of H3K9me3 can be appreciated for Plec KO cells 

compared to WT across both pattern sizes. Like previous experiments, the general trend of lower 

intensities for lower available adhesive space held true. It is interesting to note that plec KO had 

the opposite effect on H3K9me3 compared to the K14-R416P mutation.   
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Heterochromatin foci distribution 

 

Considering that Plec KO has a significant effect on nuclear volume, we analysed next the 

distribution of size and number of foci for heterochromatin marker H3K9me3 as previously 

done. Bar graph summary can be found in Figure 5.12.  
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Figure 5.11. Top: Representative confocal microscopy images of Plec WT and Plec KO keratinocytes grown on 
micropatterned surfaces stained for DAPI and H3K27Ac. Bottom: Bar graph of H3K27Ac (left) and H3K9me3 (right) 
relative fluorescence integrated intensities. Shown as mean + S.E.M. N = 3 experiments.  n.s: non-significant. **: p-value 
< 0.01 (2-Way ANOVA, Tukey multiple comparisons test). 
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Unfortunately, no significant changes due to Plec KO could be appreciated. Indeed, changes in 

foci size across island size and between Plec KO and WT were not significant. Foci number was 

significantly affected by island size as revealed by 2-way ANOVA but not by Plec KO. As expected, 

there were more numerous foci on larger islands, although only significantly so for the WT cells.  

 

Lamin A levels and radial distribution 

 

Next, we investigated the nucleoskeletal protein lamin A. Representative confocal images, bar 

graphs of measured fluorescence and radial profile can be found in Figure 5.13.  

Overall levels as measured by immunofluorescence do not appear to be significantly affected by 

either island size or Plec KO, albeit a small non-significant increment in Plec KO cells compared 

to WT can be visually appreciated. Analysis of radial distribution revealed that Plec WT cells 

behaved similarly to primary HKs, with cells grown on small islands displaying a higher 

distribution near the nuclear periphery compared to cells grown on large islands which had a 

more disperse distribution. In contrast, Plec KO cells showed a more disperse distribution for 

both island sizes. It is interesting to note that these variations in lamin A radial distribution seem 

to scale with nuclear volume, but moreover we believe that increased tension onto the nuclear 
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Figure 5.12. Analysis of foci size and number of H3K9me3. Shown as mean + S.E.M, N = 3 experiments. n.s: non-
significant. *: p-value<0.05 (2-Way ANOVA, Tukeys multiple comparisons test). 
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envelope from the upregulated actin cytoskeleton as generated by the KO of plectin could be 

behind the reduction of peripheral lamin A.  
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Figure 5.13. Top: Representative confocal images of Plec WT versus Plec KO mouse keratinocytes seeded on 
micropatterned islands after 24 hours labelled for DAPI and lamin A. Scale bar = 10 μm. Center: Bar graph of Lamin A 
relative immunofluorescence integrated intensities. Shown as mean + S.E.M. N = 3 experiments. Bottom: Radial 
distribution of lamin A plotted as radial mean fractional intensity: values over 1 indicate a higher than average 
fluorescence intensity and vice versa. N = 3 experiments. 
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Nucleoli and ribogenesis 

 

Nucleoli number 

 

As observed changes in nuclear morphology should correlate with changes in nucleoli number, 

average number of nucleoli per cell was measured next. Bar graph summary can be found in 

Figure 5.14. A significant increase in nucleoli number was observed for Plec KO cells compared 

to WT for both island sizes. Similarly to previous results, larger islands exhibited a larger number 

of nucleoli compared to smaller ones. As theorised these results indicate that nucleoli number 

appear to scale with nuclear volume.  
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Figure 5.14. Top: Representative epifluorescence microscopy images of Plec WT and Plec KO keratinocytes grown on 
micropatterned surfaces stained for DAPI and Nucleolin. Bottom: Bar graph of nucleoli number of WT versus Plec KO 
cells. Shown as mean + S.E.M.  N= 3 experiments. *: p-value<0.05. **: p-value<0.01 (2-Way ANOVA, Tukey multiple 
comparisons test). 
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Protein synthesis 

 

To further explore the link between nuclear volume, nucleoli number and translational 

capabilities, de novo protein synthesis levels were acquired as previously done. Bar graph of 

measured normalised fluorescence intensities are summarised in Figure 5.15. 

Plec WT cells behaved similarly to the previously observed trends in primary keratinocytes, with 

cells grown on small islands showing reduced protein synthesis levels, albeit differences were 

not significant. Plec KO cells followed a similar trend, but differences between island size were 

significant. 2-way ANOVA confirmed island size to be a significant source of variation. While 

differences between WT and KO cells grown on small islands were not significant, an increment 

could be visually appreciated. Plec KO cells grown on large islands in contrast had significantly 

larger levels of nascent proteins compared to all conditions. As expected, 2-way ANOVA also 

indicated Plec KO to be a significant source of variation. These results appear to scale with 

nucleoli number and with nuclear volume.  

Ribogenesis genes expression 

 

We then questioned if ribogenesis genes were being affected as previously observed in HK 

primary cells. We investigated this by performing qPCR on pre-ribosomal RNA 45S, Nucleolin, 

RPL36 and RRP1B. Bar graph of the relative expression levels can be found in Figure 5.16.  
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Figure 5.15. Bar graph of normalised integrated intensity measurements of epifluorescence microscopy images of 
nascent proteins of Plec WT versus Plec KO cells grown on micropatterned surfaces. N = 3 experiments. n.s: non-
significant. ***: p-value < 0.001 (2-Way ANOVA, Tukey multiple comparisons test). 
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qPCR revealed no significant changes across conditions nor island sizes, but trends could be 

appreciated. Indeed, we observe a non-significant increase of pre-ribosomal RNA 45S on both 

island sizes for Plec KO cells compared to WT. Similarly, RRP1B expression appears to be non-

significantly increased for KO cells compared to WT. Both Nucleolin and RPL36 remain 

comparatively unchanged. Unfortunately, these results do not allow to extract a clear link 

between pre-ribosomal RNA, ribogenesis effectors and nuclear volume. Moreover, they might 

indicate a limitation of working with Plec KO cells. Indeed, NCL, RPL36 and RRP1B were chosen 

from the previous RNA sequencing data done on primary human keratinocytes. Plec KO cells are 

also p53-null, which has potentially chromatin-organisation effects that could hinder the 

expected biophysical response. Nevertheless, we will note a non-significant increment in 45S 

pre-ribosomal RNA, in accordance with our hypothesis.   
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Figure 5.16. Bar graph of relative expression levels of 45S pre-ribosomal RNA (top left), Nucleolin (top right), Ribosomal 
Protein Large 36 (bottom left) and Ribogenesis Regulating Protein 1B (bottom right) of WT versus Plec KO cells grown 
on micropatterned surfaces as evaluated by qPCR. All genes were normalised to 7SK transcript levels. Shown as mean 
+ S.E.M, N = 3 experiments.  
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Perturbation of nucleoskeletal proteins 

 

Nuclear morphology 

 

The final set of studies used siRNA to knockdown (KD) LMNA and SYNE genes, which code for 

lamin A/C and nesprin 2, respectively. Lamin A/C serves both as the principal component of 

mechanical integrity of the nucleus in keratinocytes as well as an anchorage point for chromatin. 

LMNA KD was predicted to induce higher deformability of the nucleus as well as disconnection 

of the chromatin from the nuclear lamina, perturbing force transmission to it. Nesprin 2 serves 

as one of the main extranuclear components of the LINC, linking the F-actin network to the 

nucleus. SYNE2 KD would then see a disconnection of the nucleus from the cytoskeleton and 

perturb force transmission to it while leaving its mechanical integrity untouched. Comparative 

analysis of both data should reveal specific facets of force transmission to the nucleus.  

HKs were transfected with SYNE2, LMNA or non-targeting siRNAs 72 and 48 hours before 

seeding upon micropatterned islands. 24 hours after seeding they were fixed and 

immunolabeled. Subsequently they were imaged using confocal microscopy allowing us to 

measure changes in nuclear morphology. Analysis of protein levels by Western Blot and bar 

graph summary of measured nuclear volumes after siRNA treatment can be found in Figure 5.17. 

As can be observed, siRNA treatment had significant effect on protein levels. LMNA KD was 

accompanied with a reduction in both lamin A and C isoforms. SYNE2 KD saw mainly a reduction 

in nesprin 2 2γ isoform, which is mainly located at the nuclear envelope402.   

Figure 5.17. Left: Western blot of lamin A/C and Nesprin II after siRNA treatment of HKs compared to control 
nonspecific siRNA. Right: Bar graph of nuclear volumes of HKs grown on micropatterns after siRNA treatment. Shown 
as mean + S.E.M. N= 3 experiments. ns: non-significant. *: p-value < 0.05. **: p-value < 0.01 (2-Way ANOVA, Sidak 
multiple comparisons test). 
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While nuclear volume was unperturbed on small islands siRNA KD significantly altered nuclear 

morphology in spread cells on large islands. Compared to non-targeting controls, HKs grown on 

large islands treated with LMNA siRNA have larger nuclear volumes, while those treated with 

SYNE2 siRNA are smaller, like those of smaller islands. This finding suggests tensive forces from 

the F-actin cytoskeleton expand the nucleus on large islands, and disconnection from the 

cytoskeleton by SYNE2 KD reduces nuclear volume. Inversely, LMNA KD disrupts the primary 

structural component of the nucleus, making it more susceptible to deformation. 

 

H3K27Ac and H3K9me3 

 

Overall levels 

 

We next interrogated if the disruption in force transmission and subsequent changes in nuclear 

morphology would have an effect in overall chromatin marker levels of H3K27Ac and H3K9me3. 

Representative confocal images and bar graph summary of relative integrated intensity 

measurements are shown in Figure 5.18.  

The foremost characteristic that we can observe from fluorescence intensity measurements is 

that both closed and open chromatin markers are upregulated on both siRNA treatments. 2-way 

ANOVA revealed siRNA to be the only significant source of variation for both markers, while 

interestingly island size was not. Moreover, only LMNA siRNA-treated cells had individual values 
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which differed significantly from non-targeting siRNA. It is interesting to note that the response 

of both chromatin markers appears to be uncoupled from nuclear volume regulation.  
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Figure 5.18. Top: representative confocal images of HKs grown on 50 µm micropatterned islands after 24 hours 
immunolabelled for open chromatin marker H3K27Ac and close chromatin marker H3K9me3. Scale bar = 10 μm. 
Bottom: bar graph of relative normalised integrated intensity of H3K27Ac (left) and H3K9me3 (right). Shown as mean 
+ S.E.M. N = 3 experiments.  *: p-value < 0.05 (2-Way ANOVA, Sidak multiple comparisons test). 
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H3K9me3 foci organisation 

 

We then expanded our analysis of heterochromatin marker H3K9me3 by investigating their 

association into foci as previously done. Bar graph summary of foci number and area can be 

found in Figure 5.19. 

 

HKs treated with non-targeting siRNA behaved similarly as reported in Chapter 3. Both hetero 

and euchromatin foci were significantly less numerous on small islands compared to larger ones. 

They also appeared to be smaller, albeit not significantly. This trend was also similar for LMNA 

siRNA-treated cells. HKs treated with SYNE2 siRNA had indistinguishable foci number and foci 

size across island size. Unlike chromatin marker overall levels H3K9me3 foci number appears to 

be correlated with nuclear volume.  

 

 

 

  

Figure 5.19. Analysis of foci number and size of H3K9me3 of HKs treated with control, LMNA and SYNE2 siRNA and 
grown on micropatterned surfaces. Shown as mean + S.E.M, N = 3 experiments. n.s: non-significant. **: p-
value<0.01. ***: p-value<0.001 (2-Way ANOVA, Sidak multiple comparisons test). 
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Lamin A/C levels and radial distribution 

 

We next investigated how lamin A/C levels and radial distribution could be affected by SYNE2 

KD. We expected SYNE2 KD to induce a similar lamin A/C profile on 50 µm islands compared to 

20 µm. Representative confocal images and bar graph summary of immunofluorescence 

intensity measurements can be found in Figure 5.20. Radial distribution plots can be found in 

figure 5.21.  

Unexpectedly, an upregulation of lamin A/C can be observed in HKs treated with nesprin 2 siRNA 

for both island sizes at 24 hours. We theorise that the upregulation of lamin levels may be a 

compensation mechanism to reinforce mechanical integrity of the nucleus.  
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Figure 5.20. Left: representative confocal images of HKs treated with control and SYNE2 siRNA grown on 50 and 20 
µm micropatterned islands after 24 hours immunolabelled for lamin A/C. Scale bar = 10 μm. Right: bar graph of relative 
normalised integrated intensity of lamin A/C. Shown as mean + S.E.M. N = 3 experiments.  n.s: non-significant. ***: p-
value < 0.001 (2-Way ANOVA, Tukey multiple comparisons test).  
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Figure 5.21. Radial distribution of lamin A/C plotted as radial mean fractional intensity: values over 1 indicate a higher 
than average fluorescence intensity and vice versa. n>50 cells per condition, N=3 experiments. 
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Initial observation of lamin A/C radial distribution does not reveal major differences between 

island size in non-targeting siRNA treated cells. Similarly, SYNE2 siRNA treated HKs do not exhibit 

major differences in lamin A/C radial profile, albeit a slight downregulation towards the nuclear 

periphery can be observed. Nevertheless, SYNE2 siRNA does not appear to have major effects 

on lamin A/C radial distribution.   

 

Nucleoli number 

 

The next set of studies investigated the role of lamin A/C and nesprin 2 in the regulation of 

nucleolar morphology. Nucleoli number was analysed using confocal imaging of HKs 

immunostained for nucleolin. Representative images can be found in Figure 5.22 and the bar 

graph summary can be found in Figure 5.23.  

HKs treated with control siRNA behaved similarly to previous measures with HKs growing on 

small islands exhibiting significantly smaller number of nucleoli. Nucleoli number was 

significantly reduced in HKs treated with SYNE2 siRNA on 50 µm islands and like the number of 

nucleoli on 20 µm islands. In contrast LMNA siRNA treatment did not affect nucleoli number. As 

expected, it appears that nucleoli number correlates with nuclear volume. 

Figure 5.22. Representative confocal images of HKs treated with control, LMNA and SYNE2 siRNA grown on 50 and 
20 µm micropatterned islands after 24 hours immunolabelled for Nucleolin. Scale bar = 10 μm. 
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Ribogenesis genes expression and protein synthesis 

 

Following the previous results, we investigated if KD of nesprin 2 and its subsequent effects on 

nuclear volume and nucleoli number could potentially affect ribogenesis and translation. 

Changes in transcript levels of 47S pre-ribosomal RNA, NCL, RPL36 and RRP1B were first 

quantified. Bar graph summary of relative transcripts levels can be found in Figure 5.24.  

47S pre-ribosomal RNA showed significant differences between island sizes for control siRNA in 

accordance with previous data. But interestingly differences between island size disappeared 

after treatment with SYNE2 siRNA, both being at an intermediary expression level. As expected, 

a 2-way ANOVA indicated the interaction to be a significant source of variance. Similarly to Plec 

KO, nesprin 2 KD by siRNA did not appear to have significant effects on expression levels of 

ribogenesis effectors NCL and RPL36. RRP1B had no significant differences between island sizes, 

albeit a slight downregulation of expression levels could be appreciated on small islands 

compared to large. More importantly, SYNE2 siRNA-treated cells appeared to have lower 

expression levels than control, and a 2-way ANOVA indicated SYNE2 siRNA treatment to have a 

significant effect on RRP1B expression. Taken with the previous Plec KO data, these results 

indicate that nuclear morphology may have quantifiable effect on pre-ribosomal RNA and RRP1B 

but not NCL and RPL36.  

To further this analysis, changes in nascent protein levels were quantified as previously done. 

Bar graph summary of measured fluorescent intensities can be found in Figure 5.25.  
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Figure 5.23. Bar graph of nucleoli number. Shown as mean + S.E.M. n > 60 cells for each condition, N = 3 experiments. 
n.s: non-significant. *: p-value<0.05. (2-Way ANOVA, Sidak multiple comparisons test). 
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Non-targeting siRNA-treated cells showed a significant reduction of nascent protein levels on 

small islands compared to large islands in accordance with previous results. SYNE2 siRNA 

treatment had no significant effect on cells grown on 20 µm islands compared to control 

conditions. But interestingly a significant decrease was perceived in SYNE2 siRNA-treated cells 

grown on large islands compared to control, while still being significantly higher than cells grown 
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Figure 5.24. Bar graph of relative expression levels of 47S pre-ribosomal RNA (top left), Nucleolin (top right), 
Ribosomal Protein Large 36 (bottom left) and Ribogenesis Regulating Protein 1B (bottom right) of control versus 
SYNE2 siRNA-treated cells grown on micropatterned surfaces as evaluated by qPCR. All genes were normalised to 7SK 
transcript levels. Shown as mean + S.E.M, N = 4 experiments. n.s: non-significant. *: p-value<0.05. **: p-value<0.01. 
(2-Way ANOVA, Tukeys multiple comparisons test). 

Figure 5.25. Bar graph of normalised integrated intensity measurements of epifluorescence microscopy images of 
nascent proteins of control versus SYNE2 siRNA-treated cells grown on micropatterned surfaces. N = 3 experiments. 
n.s: non-significant. *: p-value < 0.05 **: p-value < 0.01 ***: p-value < 0.001 (2-Way ANOVA, Tukey multiple 
comparisons test). 
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on small islands. These results indicate that the effect of SYNE2 siRNA treatment on translational 

capabilities of cells scales with its effect on nuclear size, albeit not completely.  
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Discussion 

 

In this chapter we investigated the role of key components of the cytoskeleton and 

nucleoskeleton in the regulation of nuclear morphology, chromatin architecture and translation 

using small molecule inhibitors and genetic methods. Overall, we found that nucleoli number 

scale with nuclear volume, and that this appears to have direct effects on translation as seen by 

changes in protein synthesis levels and ribogenesis genes expression. Heterochromatin marker 

H3K9me3 inversely scaled with nuclear volume, while euchromatin marker H3K27Ac was mainly 

upregulated after nucleoskeletal or actin perturbation. Finally, Lamin A/C radial distribution was 

affected by perturbations that targeted the F-actin network. Altogether, while confirming that 

correct mechanical integration of the nucleus in the cytoskeleton is a key modulator of nuclear 

architecture with gene transcription and translation effects, direct causational links that explain 

these phenomena are still to be found. 

Our initial approach consisted of using Blebbistatin and Y-27632 to perturb actin network 

formation and mechanics. Unfortunately, this strategy did not yield expected results: nuclear 

morphology was not significantly changed, and changes in H3K27Ac marker as well as lamin A/C 

were minimal. Indeed, H3K27Ac hinted at a slight upregulation. Lamin A/C levels were similar if 

downregulated. Its radial distribution did show a reduction towards the nuclear periphery for 

HKs grown on 20 µm islands. Overall, albeit striking changes in actin cytoskeleton organisation 

could be observed upon treatment of HKs with both inhibitors, little perturbation of tension to 

the nucleus was perceived by measuring our set of nuclear architecture factors. This either puts 

into question the general role of the actin cytoskeleton in the modulation of nuclear architecture 

in our model or raises doubts about how effective is perturbing it using these cytoskeletal 

inhibitors. There might be some compensation mechanisms that would minimize their action, 

but other approaches such as use of stronger inhibitors (e.g latrunculin) or translational 

suppression with siRNA would yield a better perturbation which would answer these questions. 

There is also the possibility that focusing our investigation solely on the 24-hour timepoint we 

might be missing temporal responses which could happen at an earlier time point.  

Our second strategy, using overexpression of keratin 14 with a dominant mutation, did not heed 

expected results. Nuclear volume changes were not significant between island size nor keratin 

WT and mutated form, indicating that possibly the cell line had incompressible nuclei. H3K9me3 

marker intensity levels were also unaffected. Interestingly enough, we reported larger 

differences in nuclear volumes between island sizes for cells which expressed the mutated form, 

and this was translated in a similar trend for nucleoli number, further cementing the notion that 
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both characteristics are intrinsically linked. Regarding lamin A/C levels, a slight increase could be 

observed for large islands. While a formation of aggregates of keratin 14 was clearly visible for 

cells stably infected with the mutated form, this was not the case for all cells, and levels varied 

across samples. This puts in doubt how effective transfecting a defective keratin is in perturbing 

the native keratin cytoskeleton, which still contains fully functional keratin 14. A genetic editing 

of the keratin gene, or better yet using Dowling-Meara patient samples, may show better 

results, and this is a potential tool to develop in future studies.  

Our third approach consisted of using mouse keratinocytes, which had a total knockout of 

plectin, a multi-functional cytolinker. Plec KO generates cells with higher actin levels as well as 

more mature focal adhesions, which we believe result in elevated intracellular tension on the 

nucleus403. Simultaneously, loss of linkage between the F-actin and keratin cytoskeleton is 

thought to perturb the stability of the perinuclear keratin cage. This consequently generates 

more deformable and larger nuclei221, as could be appreciated in our model too. Regarding 

chromatin markers there was minimal effect on H3K27Ac levels, but a significant 

downregulation on H3K9me3 levels. This is consistent with previous reports that higher tension 

on the nucleus results in drops in heterochromatin marker levels as a way for chromatin to 

better disperse mechanical tension to avoid DNA damage383. A significant increment in nucleoli 

number was observed, as expected of larger nuclei. As theorised in the previous chapter, we 

further investigated if these changes in nuclear volume and nucleoli number had effects on 

translational capabilities and ribogenesis pathway. We found that indeed incremented nuclear 

volume and nucleoli number correlate with higher de novo protein synthesis levels, albeit we 

could not directly link this to incremented pre-rRNA levels nor ribogenesis effectors which did 

not vary in a significant way. Considering that both pre-rRNA and ribogenesis effectors were 

selected from previous studies involving primary HK, perhaps this perceived discrepancy 

originates from an incorrect choice of transcripts to measure. A general downregulation of 

heterochromatin as seen by reduced H3K9me3 levels could also induce elevated transcriptional 

levels. A more robust and complete measure, such as with RNA sequencing and other chromatin 

markers, would help shed light into this phenomenon.  

The final perturbation strategy consisted in the use of siRNA to transcriptionally silence lamin 

A/C and nesprin 2. Lamin A/C silencing would theoretically help disconnect part of the chromatin 

from the nuclear lamina and LADS and thus hinder mechanotransduction to the chromatin while 

allowing nuclear changes in morphology404. On the other hand, nesprin 2 silencing would allow 

the whole nucleus to be disconnected. When nuclear volumes were measured changes in 

nuclear morphology were observed for SYNE2 siRNA treated HKs but not for LMNA. Interestingly 

these changes saw nuclei on large islands shrink to a similar size of those of small islands, which 
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can be explained by the loss of tension from the actin cytoskeleton exerted on the nucleus. Why 

such a change is not seen on smaller islands is debatable. One reason might be that the HKs have 

reached a minimal nuclear size upon which further compaction is not possible. Another 

reasoning is that reduced available adhesive space, upon which focal adhesions are built, 

reduces the possible tangential “pulling points” on the nucleus, thus explaining why nuclei are 

smaller on smaller islands. In that direction of thought then, removing the actin anchoring to the 

nucleus would do little to reduce its volume further. Similarly, knockdown of lamin A/C, the 

major mediator in regulating structural integrity of the nucleus would have had effects on its 

nuclear volume, but we only observed a slight increment in 50 µm island nuclei. This could also 

be due to the need of a large adhesive space to create a tangential tensive force upon the 

nucleus, and thus a more deformable nuclei would enlarge. Potentially also, other unknown 

mechanisms involving chromatin as a regulator of nuclear architecture might be at play.  

Interestingly, while nesprin 2 connects the LINC with the actin cytoskeleton, our selection of F-

actin inhibitors did not appear to generate similar results regarding nuclear volume (or the rest 

of measured parameters for that matter). Perhaps this is indicative that the severity of the 

perturbation using cytoskeletal inhibitors was not enough to induce measurable changes. As 

indicated before, other strategies to disrupt the F-actin network would have to be investigated 

to better assess its role in our model.  

We observed then that in both siRNA treatments both open and close chromatin markers 

H3K27Ac and H3K9me3 respectively were upregulated in all island sizes, and more so in LMNA 

siRNA treated ones. Recent studies have shown that heterochromatin downregulation can 

happen because of compressive forces exerted on the cell, and that this is in part modulated by 

the mechanical resistance of the nucleus383. In the first chapter of results we hypothesised that 

this could be the reason behind downregulation chromatin markers in small islands. Here we 

see that the opposite, i.e perturbing nuclear mechanical integration into the cytoskeleton or its 

mechanical integrity, results in elevated heterochromatin marker levels. What is intriguing is the 

fact that H3K27Ac behaves similarly, which is counterintuitive to the concept that close 

chromatin markers are reduced to give chromatin more deformability. Furthermore, we 

observed elevated levels of lamin A/C in SYNE2 siRNA treated cells which could increment 

nuclear mechanical rigidity. This dual response could be the reason behind why SYNE2 siRNA 

treatment sees a lower increment in chromatin marker levels.  

When characterising chromatin foci and nucleoli we observed that nuclear size correlates with 

heterochromatin foci number and size as well as nucleoli number, as it was apparent from 

similar size of all nuclei in SYNE2 siRNA-treated HKs. As previously observed euchromatin 

markers did react but to a lesser extent. Taken together with the Plec KO data on nucleoli, these 
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findings suggest that nucleoli number scales directly with nuclear size. Considering that nucleoli 

are delimited by phase-separation172 and possess Brownian motion174, these results were 

expected. Heterochromatin-promoting proteins such as HP1 have shown phase-separation 

properties405,406, which could potentially also explain the perceived coalescence of 

heterochromatin foci.  

Finally, we observed that nascent protein levels correlated with nuclear size. In parallel, a change 

in pre-ribosomal RNA 47S and RRP1B levels was perceived, hinting that the changes in 

translational capability are linked to a perturbed ribogenesis. Ribosomal RNA is produced in 

nucleoli, and so that their levels is scalable with nucleolar number, and in our model nuclear 

volume, was to be expected. We know also that nucleolar size, number and activity is regulated 

by the proteins and RNA that composes it174,407, and changes in their concentration, as could 

arise from changes in nuclear volume, could potentially affect nucleolar dynamics. While we 

expected pre-ribosomal RNA levels to be affected by changes in nucleolar numbers, it is very 

interesting to note that at least one protein (RRP1B) transcriptional levels appear to be scalable 

with nuclear volume. As with Plec KO studies the selection of ribogenesis effectors and 

ribosomal proteins whose transcripts were measured was limited. A more thorough 

investigation could unveil more direct links between nuclear size and ribogenesis. As before we 

also note that these measures are proxy measures of actual ribosome levels, which were 

technically not possible under the scope of this project, but if done would better answer 

important questions that stem off this research.   

One important aspect of what has been observed in this chapter is the difference between 

changes to nuclear architecture that stem off changes in nuclear size, and changes that come 

from force transmission to the nucleus. While both of the phenomenon are intrinsically linked 

(i.e the nucleus changes size because of the forces that are exerted on it), we must separate 

changes in chromatin configuration such as nucleoli or heterochromatin foci fusing which come 

from altered nuclear volume, from changes such as chromatin marker levels, which could come 

from force transmission to the chromatin. Indeed, nucleoli, and we believe heterochromatin 

foci, form by phase separation and thus their fusing mechanics are governed by nuclear volume 

but are inherently mechano-irresponsive, which can be seen by their lack of reactivity to 

cytoskeletal and nucleoskeletal inhibitors. On the other hand, chromatin markers and lamin 

radial distribution respond to mechanical stimuli as well as perturbation of the mechanosensing 

pathways.  

It is interesting to note that most perturbations reduced nuclear size and saw upregulated 

chromatin markers, while Plec KO, which incremented nuclear size, saw a drop in 

heterochromatin marker H3K9me3. This could possibly point at a directionality of forces exerted 
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upon the nucleus. We saw most perturbations decrease the tension of the actin cytoskeleton on 

the nucleus thus allowing other forces, such as the one generated by the nucleoskeleton or 

perhaps the keratin perinuclear cage, to shrink the nucleus. At the same time, this disconnection 

from the actin cytoskeleton would be expected to affect the potential of the nucleus as a 

mechanosensing unit, as it is less integrated in the cytoskeleton, and perhaps is the reason 

behind a dysregulation of H3K9me3 levels. Inversely, Plec KO which theoretically sees an 

increment in actin levels as well as a perturbation of perinuclear keratin resulted in elevated 

nuclear volume and downregulation of heterochromatin marker H3K9me3, found in recent 

research to be a response of HKs to extracellular biophysical cues383. But we must keep in mind 

other possible explanations, such as variations in soluble actin fraction, which could potentially 

also affect nuclear actin which is known to have effects on chromatin319, and moreover 

H3K9me3 levels408. It is also possible that nesprin 2 KD could see upregulation of other nesprins 

such as nesprin 3, which also links with plectin and the IF network and could have possible 

chromatin remodelling effects unknown to us. KO of nesprin 2 has also been shown to reduce 

HK proliferation409, and possibly has effects on differentiation too, which as we know bring their 

own changes to chromatin architecture. More complete future studies will have to further 

dissect the complex relationship between nuclear volume, mechanosensing and chromatin 

architecture to paint a clearer picture.  

In this final chapter we have successfully employed several approaches at perturbing 

components involved in force transmission to the nucleus and chromatin by systematically 

destabilising cyto- and nucleoskeletal components. We observed the effect of these 

perturbations on previously measured characteristics of nuclear compaction due to reduced 

available adhesive space on HKs as well as other cell types. This permitted to obtain insights into 

how mechanical integration of the nucleus affects its role as a central mechanosensing unit of 

the cell in the context of nuclear and chromatin architecture. 
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Chapter 6: Discussion 
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This project has aimed to uncover how external biophysical cues influenced human keratinocyte 

nuclear architecture. Furthermore, it aimed at understanding the role of cytoskeletal and 

nucleoskeletal mediators in nuclear mechanosensing as well as describing the downstream 

phenotypic impact on cell function.   

To achieve this, single HKs available adhesive space was modulated using micropatterned 

surfaces. This in vitro model permitted the generation of a simple and homogenous biophysical 

cue on single cells. HKs grown on small, 20 µm diameter islands, adopted a rounded morphology 

while cells grown on larger, 50 µm diameter islands were more spread and flattened. This was 

translated into modified nuclear morphology; round cells had smaller nuclei and spread cells 

had larger nuclei. Interestingly, this morphological change had clear effects on HK differentiation 

as about half of primary HKs grown on small islands entered terminal differentiation after 24 

hours, unlike their spread counterparts which remained largely undifferentiated.  

Based on these observations, this project set out to investigate how HK reduced nuclear size as 

induced by limited available adhesive area affected its nuclear architecture and phenotype 

through three distinct aims. The first aim set out to acquire general characteristics of 

macroscopic nuclear architecture differences between spread and rounded HKs. The second 

focused on gene-specific differences by means of transcriptome profiling and subsequent 

analysis of affected pathways. Finally, the third aim investigated the roles of the cytoskeletal 

and nucleoskeletal networks in the regulation of HK nuclear architecture by perturbing selected 

cytoskeletal and nucleoskeletal mediators. Each of these separate aims constituted separate 

chapters of results in this thesis.  

In the first results chapter (Chapter 3), we initially confirmed that HKs grown on 20 µm diameter 

micropatterned islands have smaller nuclear volume and enter terminal differentiation after 24 

hours compared to HKs grown on 50 µm islands, as previously reported193,221. Next, 

heterochromatin markers H3K27me3 and H3K9me3 as well as euchromatin markers H3K27Ac 

and H3K4me3 were investigated. HKs grown on small islands saw a downregulation of 

H3K27me3, H3K27Ac and H3K9me3 but not H3K4me3 after 24 hours compared to large islands. 

Downregulation of histone acetylation had also been previously described in this model221.  

To investigate differences between differentiating and non-differentiating cells segregation of 

HKs based on their TGM1 levels was performed but no significant differences in H3K27me3 and 

H3K27Ac levels was found. Considering that HK differentiation has been shown to influence 

chromatin architecture at the gene level16 this was unexpected. This could be indicative of 

nuclear size being more deterministic of chromatin architecture compared to differentiation. 

Perhaps it could also be caused by a delay between initiation of terminal differentiation and 
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chromatin marker changes which are not apparent at the timepoints that were considered. 

Moreover, changes in chromatin markers are often gene-specific, and lack of overall changes do 

not necessarily mean lack of specific changes at differentiation-associated genes. More gene 

specific techniques such as ChIPseq would shed light into how cell and nuclear morphology could 

potentially impact transcription. Unfortunately for this set of studies ChIPseq was not a possible 

choice due to the low amount of cells per micropatterns.  

As most measured differences indicated downregulation of chromatin marker on small islands, 

total levels of histone 3 were quantified. A non-statistically significant downregulation of total 

histone 3 levels in small islands was observed. This could partly explain the previously observed 

downregulation of chromatin markers. These results provide proof that cell and nuclear 

morphological changes induce a response by chromatin markers levels. They also underline how 

analysis of global changes in histone PTMs is a very limited tool as these changes are often gene 

and context specific, and thus do not provide valuable information about gene regulation. 

Similarly, they also exemplify best one of the main drawbacks of a multitude of experiments 

here presented; low N numbers. Indeed, a higher statistical size would have helped properly 

assess the trends that were observed here and in other sections of this work. A power series 

would have best allowed to determine the correct N number to address these shortcomings.  

Next, radial distribution of chromatin markers was investigated. While the distribution of 

markers at early 4-hour timepoint was significantly different across island size for most markers, 

all of them had similar profiles at 24 hours. It is apparent that long term radial distribution of 

chromatin markers is not affected by nuclear shape. Interestingly, all markers appeared to have 

elevated levels near the nuclear periphery. While expected of heterochromatin markers, this 

was not for euchromatin ones. It was also interesting to observe a clear peak of heterochromatin 

marker H3K9me3 near the nuclear periphery at 4h point for small islands which subsequently 

was reduced. This could be in line with previous reports that described H3K9me3 aggregation at 

the nuclear lamina to mechanically protect the genome383 which also eventually dispersed. 

Using a custom pipeline for the IN Cell Developer software, chromatin marker foci size and 

number were quantified next. A significant difference in heterochromatin foci organisation was 

observed in 20 µm islands, resulting in less numerous and larger foci compared to 50 µm islands. 

Comparatively, a similar trend was observed in euchromatin foci albeit less pronounced. 

Heterochromatin has been described in the past as behaving by phase separation102, a process 

modulated by HP1406 and useful in creating associated chromatin domains. However, this 

concept has been challenged in recent literature410, which indicates that chromocenters might 

actually be generated through collapsed chromatin globules. Nevertheless, our results suggest 

that reduction of nuclear volume may be responsible for forcing heterochromatin foci to 
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associate together. Phase separation would better explain this phenomenon while the 

possibility of proximity of collapsed chromatin globules associating together and sharing 

bridging molecules such as HP1 would also make sense. Euchromatin foci is not known to 

possess phase separation properties. Furthermore, some open chromatin foci are theorized to 

be transcription factories411, where RNA polymerases are relatively immobile while genes are 

shuttled in and out using increased affinity between promoters and transcription factors. In this 

model, alteration of chromatin architecture leads to dysregulated transcription412. 

Consequently, open chromatin foci would have to remain comparatively unaffected for correct 

transcriptional state to be maintained.  

Nucleoskeletal proteins lamin A/C as well as B1 were investigated next. Both exhibited no 

significant differences in overall levels across time point. Lamin B1 did appear to have 

downregulated levels in small islands while lamin A/C did not.  Furthermore, lamin B1 did not 

appear to have modified radial distribution under any condition. In contrast, lamin A/C showed 

elevated levels near the nuclear periphery on small islands. Considering the role of lamin A/C in 

mechanical integrity329, this could be a mechanoresponsive mechanism to protect the nucleus 

from compressive forces. Indeed, one would expect that close localisation of lamin A/C would 

be indicative of their association into fibres with stronger mechanical properties, albeit this 

remains to be proven. Furthermore, as levels do not appear to change across island size and 

keeping in mind that lamin A/C has been shown to also have gene regulating properties363, this 

relocalisation could potentially have gene expression effects such as in the regulation of LADs. 

Similarly, Lamin B1 is usually considered to have a more gene-regulatory role than 

structural329,413. Downregulation in small islands might also have gene regulatory effects. As 

lamin A/C and B1 usually interact with LADs and euchromatin TADs respectively, changes in 

radial distribution and levels might possibly impact hetero- and euchromatin levels as well as 

radial distribution. While changes in overall chromatin levels were perceived, no significant 

change in their radial distribution was observed making the latter unlikely.  

Finally, nucleoli number and size were analysed. Nucleoli were shown to fuse on small islands 

while their size remained comparatively unaffected, and this phenomenon was observed in a 

variety of cell lines. Like heterochromatin, nucleoli behave by liquid-liquid phase separation172 

and their condensation is expected to stem off reduced nuclear volume.  

Overall, the first chapter of results described how several nuclear architecture parameters were 

affected by altered cell and nuclear morphological changes. These initial observations served as 

a starting point to interrogate the mechanical regulation of these responses and the 

downstream effects on gene expression.  
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In the second results chapter (Chapter 4) next generation RNA sequencing was used to 

characterize the transcriptome of HKs grown on micropatterned surfaces. Differences in gene 

expression patterns were then used to investigate how restricted available adhesive area 

affected key signalling pathways and phenotype.  

Initial analysis of data suggested that island size was not pre-selecting different populations of 

HKs as seen by their lack of differences in gene expression profiles at the early 4-hour time point. 

In contrast RNA extracted from 24-hour samples exhibited significant differences in expression 

profiles, indicating that available adhesive space effectively induces changes in the 

transcriptome. Bulk analysis indicated that reduced adhesive space leads to HK premature 

differentiation and confirmed this facet of the model. Further analysis of bulk and hierarchically 

clustered data revealed several affected pathways to be subsequently investigated, notably DNA 

damage repair, retinoic acid biosynthesis and ribogenesis. 

The first affected pathway investigated was DNA damage repair. This pathway was upregulated 

on large islands compared to small ones after 24 hours. We quantified DNA DSB repair sites from 

colocalization of γH2AX and 53BP1 foci to explore if changes to RNA transcript levels did 

translate in changes in DNA repair activity. We found that HKs grown on large islands had more 

DSB repair sites compared to smaller islands, albeit only significantly so at the early 4-hour time 

point. Interestingly, we observed that differences in DSB repair sites preceded changes in RNA 

expression of DNA damage factors. Localisation to DSB sites and phosphorylation of DNA 

damage factors is often fast (<1h)383,389,414, but little is known on the upregulation of their genes. 

Observation of a broader amount of time points would surely help answer some of these 

questions.  

Chapter 3 described several observed changes in nuclear architecture with potential DNA 

damage protecting effects that could explain this phenomenon. Recent research has described 

changes in H3K9me3 levels central to protecting DNA from extracellular forces383. The role of 

Lamin A/C in DNA damage prevention is also known389, and its radial redistribution could be a 

potential mechanism for it. Tension generated by stiff substrates can induce DNA damage389 and 

while substrate stiffness is the same across island size perhaps changes in available adhesive 

area can modulate DNA damage. Furthermore, this tension can be modulated by focal 

adhesions403, which cultured HKs have been shown in this model and in literature415 to possess 

specific patterns of expression. Finally, as over half of HKs grown on small islands initiate 

terminal differentiation, their exit from the cell cycle could explain downregulated DNA damage 

sensing as well as active repair. Indeed, several reports indicate that differentiating HKs exhibit 

diminished DNA repair416 and DSB repair sites417,418. This reasoning is difficult to integrate with 

the difference in DSB repair sites at 4-hour timepoint due to the lack of differences in 
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differentiating cells. Inducing differentiation on large islands, using per example high calcium 

concentrations, would be a straightforward way of shedding light into this complex issue.  

While the previous reasoning, that exit from the cell cycle induces diminished DNA damage 

sensing and repair, another explanation could be that differentiating cells often undergo 

heterochromatization18, and that this compaction of chromatin may hinder access to the DNA 

damage repair machinery419. In our model we see both a reduction of heterochromatin markers 

as well as what appears to be their coalescence on small islands, so this reasoning is difficult to 

incorporate. Inhibition of histone deacetylases could potentially help ascertain how correct this 

hypothesis is.  

Recent research has also unveiled a very interesting facet of DNA damage repair: the appearance 

of nucleoplasmic and nucleolar actin filaments388. Previous research220 has shown that HKs 

grown on large islands possess higher levels of G-actin compared to small islands. This elevated 

population of cytoplasmic actin could potentially increment nuclear actin levels, and thus 

influence DNA damage response. Moreover, new data420 (yet to be peer-reviewed) indicates 

that these nucleolar actin filaments modulate nucleolar size. If this data is to be true, our model 

would be a very interesting tool to further investigate these relationships between nucleolar 

size, activity and DNA damage repair processes.  

The second affected pathway was retinoic acid biosynthesis, which was upregulated on small 

islands. Using a transfected luciferase reporter system, we measured elevated levels of 

transcriptional activity of RA response elements in HKs grown on 20 µm islands. Considering that 

RA has been shown to inhibit HK differentiation394, this upregulation in a differentiating 

population is intriguing. RA signalling has been implicated in lamin biogenesis390, and lamin radial 

redistribution may be responsible for the upregulated RA pathway. Moreover, extracellular 

matrix rigidity has been linked to lamin A/C regulation through Retinoic Acid Receptor γ421. 

Similar levels of lamin A/C were observed across island size in the previous chapter. Perhaps this 

seemingly odd observation is the results of a hidden compensation mechanism, but 

nevertheless underlines the complex nature of mechanical regulation of lamin A/C. 

The final affected pathway that was investigated was ribogenesis. Small and large islands saw 

upregulation of genes for ribosomal proteins and ribogenesis regulators, respectively. The 

model was initially interrogated for total de novo protein synthesis and found that it was 

reduced on small islands after 24 hours. Previous reports have shown that HKs entering terminal 

differentiation have elevated nascent protein levels as well as enlarged nucleoli186, and it is 

accepted that nucleolar size scales with cellular translational needs158,173,422. This is then in stark 

contrast with our previous finding that overall nucleolar size does not vary between island size. 



139 
 

To further investigate if this was a result of a shortage of ribosomes or reduced ribosomal 

activity, qPCR of total 47S pre-rRNA transcripts was performed. Small islands were found to have 

reduced levels of 47S pre-rRNA. While not a direct measure of actual ribosomes, reduced pre-

ribosomal RNA levels are thought to most likely couple with reduced ribosomal levels423. It is 

likely that this is perturbing ribogenesis, and that upregulation of ribosomal proteins in small 

islands is a compensation mechanism. Indeed, recent research has unveiled the idea that 

nascent ribosomes are sequestered by ribosomal proteins in order to force their export from 

the nucleolus, as mature ribosomes by reducing their affinity to nucleolar scaffold proteins407. 

Another report indicates that nucleolin, which was found to be downregulated on small islands, 

induces chromatin decondensation424. Perhaps downregulation on small islands of nucleolin is 

modulating heterochromatin condensation. The ribogenesis pathway response is highly 

complex and will surely be a very interesting ground for future research.  

This chapter added a transcriptomic dimension to the characterization of the HKs nuclear 

compaction model. It showed that restrictive adhesive space can effectively generate a 

transcriptional response from HKs. Combined with the initial findings of Chapter 4, they served 

as a foundation that the following chapter could build upon to dissect the relationship between 

these changes and force transmission through the cytoskeleton to the nucleus. As a final 

comment on this chapter it is important to note that a low N number of 3 samples per condition 

may have robbed us of needed sensitivity to properly appreciate certain minute changes, as was 

for exemplified by the seemingly erroneous categorization of one of the 20 µm 4 hour sample 

in both the PCA and hierarchical cluster plots.  

The last results chapter, Chapter 5, employed several strategies to perturb specific key 

mediators in force transmission to the nucleus to assess their effect on previously established 

cell shape-induced changes in nuclear architecture. The aim was to extract information on which 

and how these mediators affected HK chromatin organisation.  

The first strategy consisted of using small molecule cytoskeletal inhibitors blebbistatin and Y-

27632. Blebbistatin is an inhibitor of myosin II, and Y-27632, a ROCK-inhibitor, inhibits both 

contractility and F-actin polymerisation. Unfortunately, while treatment of HKs with them 

resulted in visible changes to the actin cytoskeleton, little effect was appreciated in nuclear size, 

chromatin markers and lamin A/C levels. Lack of effect on nuclear morphology by blebbistatin 

in our model was expected as it was already reported221. We previously discussed the possibility 

of changes in heterochromatin marker H3K9me3 to be the result of a mechanical dampening 

mechanism to protect chromatin383. We hoped to see some changes using blebbistatin, which 

has been shown to induce changes in heterochromatin and lamin A/C389 levels. But a slight 

downregulation of lamin A/C radial distribution near the nuclear periphery was evident for HKs 
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grown on small islands, which might be indicative of the actin cytoskeleton role in that particular 

response. No change was appreciated in large islands. All these results taken together indicate 

that actin cytoskeleton perturbation did not appear to have significant effects in the regulation 

of our list of parameters. There is of course the possibility that the two selected inhibitors are 

not as effective at perturbing the F-actin network as we thought, albeit visual inspection assured 

us that they were, or that some compensation mechanism is minimizing the perturbation. 

Perhaps the use of other inhibitors, such as phalloidin, cytochalasin B or latrunculin would yield 

more perceptible changes, or the use of other perturbations such as siRNA. There is also the 

strong possibility that measuring changes at the 24 hour timepoint is untimely, as some of these 

responses can occur at earlier times383.  

For the next series of perturbation studies, a HaCaT cell line expressing the dominant R416P 

mutation in the keratin-14, analogous to the one found in patients suffering from severe 

Dowling-Meara form of EB. As keratin is the main source of keratinocyte mechanical integrity, 

this perturbation was expected to significantly affect nuclear mechanotransduction.  

Unfortunately, little effect was appreciated, from similar nuclear size across conditions to a slight 

upregulation of heterochromatin marker H3K9me3 levels, mainly in small islands. Lamin A/C 

exhibited a more pronounced reaction, with upregulated levels, which was unexpected since 

the general understanding of lamin A/C regulation is that it reacts to altered actomyosin 

activity389. Even more intriguing considering recent reports which indicate downregulated 

actomyosin upon KO or mutation of keratins425,426. But perhaps the change in cell type and the 

type of disruption, as well as the use of sheets of cells respectively, are to blame for the 

differences between literature and the data here presented. While lamin A/C levels were 

changed, no significant change in radial distribution could be observed.  

Little is known of keratin-based regulation of nuclear architecture and chromatin. Previous 

research has shown the importance of the perinuclear keratin cage in regulating nuclear 

shape400, which we did not observe here. Nuclear shape was influenced by island size as we 

could appreciate by changes in cross sectional area, which implies that perhaps HaCaTs nuclear 

volume is incompressible. Recent work has uncovered some roles of keratin 14 in regulating the 

Hippo pathway through sequestration of YAP based on the degree of disulfide bonding its IF 

network undergoes427, with effects on lamin A/C levels and differentiation. While that research 

indicated that point mutations hindering disulfide crosslinking hinted at a perturbed 

mechanosensing and cellular structural defects, it does not appear to be the reason behind its 

effect on YAP. Likely here, the perturbed keratin cytoskeleton appears to have little to no effect 

on our limited set of nuclear architecture parameters. Other keratins, such as keratin 17, appear 

as of now to be much more promising candidates in having nuclear roles266,428. Moreover, 



141 
 

previous research found K17 to be upregulated in K14 null mice keratinocytes429, which might 

be the case here. Perhaps the choice of cell type (immortalized keratinocytes) and the type of 

perturbation were inappropriate for this set of experiments. Using Dowling-Meara patient 

samples compared to healthy donors could be perhaps a more direct way of assessing the effect 

of the mutation.  

The following studies used a mouse keratinocyte cell line with a total KO of the Plec gene. Past 

research have shown these cells to exhibit elevated levels of F-actin and disruption of 

perinuclear keratin filaments, resulting in more deformable and larger nuclei221, providing an 

interesting contrast to the previous strategies.  

Larger nuclei were indeed observed in our model, accompanied by lower levels of H3K9me3. 

Larger tension on the nucleus has already been linked to reduced H3K9me3 levels, and could 

very much be the case here too383. Considering also that plectin KO in keratinocytes has been 

linked to modified MAPK signalling274, which in turn has been linked to several chromatin 

remodellers430, there is a possibility that some of these changes are affected by it. It is also 

appropriate to consider that MAPK, actin contractility, focal adhesions and FAK, as well as other 

signalling pathways were not investigated in this course of studies and could have potential 

effects in many of the observed phenomena.  

Changes in nuclear size and heterochromatin levels were not accompanied with significant 

changes in H3K9me3 association into foci. It was however accompanied by more numerous 

nucleoli and moreover elevated levels of protein synthesis. The lack of response from 

heterochromatin and euchromatin foci association due to larger nuclear volume might be 

indicative that foci are as dissociated as possible. It is interesting then, that although we could 

perceive a clear downregulation of at least one of the markers (H3K9me3), and thus would 

assume general changes in chromatin organisation, we did not perceive such a change at the 

foci organisation level. Perhaps subtler changes are at play which could not be appreciated using 

our methods. Both the increased number of nucleoli and reduced heterochromatin levels might 

also be responsible for the elevated protein synthesis. Analysis of pre-ribosomal 45S rRNA did 

not yield significant changes, so we are inclined to believe that the reduced levels of 

heterochromatin to be mainly responsible. More numerous nucleoli might also have other 

effects on ribogenesis which we could not ascertain, so a more complete investigation would be 

needed to fully characterise this phenomenon.  

Finally, lamin A levels did not appear to be significantly changed, but its radial distribution near 

the nuclear periphery was reduced, this time for cells grown on both small and large islands. 

Considering that Plec KO has been associated to changes in keratin IF network as well as elevated 
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levels of actin, and that previous data here presented appeared to indicate lamin A/C to respond 

to changes in keratin but not actin networks, this lack of change in levels is puzzling. Conceivably 

it is the result of some compensation mechanism unknown to us. Changes in radial distribution 

could possibly be attributed to changes in nuclear size, as larger nuclei appear to possess more 

dispersed levels of lamin towards the nuclear periphery. Changes in actin tension might also 

possibly be involved in this phenomenon, but for now there is no explicit explanation to this. 

This also further questions the findings from the actin network perturbations, as perhaps the 

inadequacy of the chosen inhibitors led to erroneous interpretation of the role of the actin 

cytoskeleton in the regulation of lamin A/C, and indeed it is the theorised elevated actin tension 

generated by Plec KO that drives this dispersion of lamin A/C. Perhaps it is the loss of crosstalk 

between both cytoskeletal networks which is to blame. Treating the K14-mutant HaCaTs with 

actin inhibitors would be one way to examine this complex crosstalk issue.  

The last set of studies used siRNA to effectively KD production of lamin A/C and Nesprin 2. Both 

proteins serve important roles in how forces are transmitted to chromatin and the nucleus, 

respectively. These complementary set of studies aimed to compare how attachment of the 

nuclear envelope to the cytoskeleton, or chromatin to the nuclear envelope, affects nuclear 

architecture.  

While LMNA siRNA did not yield observable changes in nuclear size, significantly smaller nuclei 

on HKs grown on large islands could be appreciated for SYNE2 siRNA treatments. KD of nesprin 

2, and thus hypothetical disconnection of the nucleus from the actin cytoskeleton could indicate 

then that the shrinking of the nucleus on large islands is the result of the loss of F-actin tension. 

Lamin A/C KD does not result in larger nuclei, so perhaps the size of HK nuclei is more dependent 

on the balance between tensive and compressive forces generated by the actin and keratin 

networks221. There is also the possibility of some regulation generated by the microtubule 

network, which was absent in this set of studies. The lack of change in HKs grown on small islands 

treated with SYNE2 siRNA is perhaps indicative of the need of tangential anchoring of actin 

filaments to effectively be able to assert tensive forces upon the nucleus to enlarge it. In this 

perspective the disconnection from the actin cytoskeleton does little effect to further compress 

the nucleus.  

In contrast with plec KO results, siRNA KD of lamin A/C and nesprin 2 resulted in elevated levels 

of H3K9me3 and particularly H3K27Ac. As previously indicated, heterochromatin 

downregulation can happen as a result of tensive forces applied upon the nucleus, and that this 

response is dependent on nuclear mechanical integrity383. Here we can observe an inverse 

effect; predicted disruption of tensive forces upon the nucleus, or perturbation of its mechanical 

integrity, results in upregulated H3K9me3 levels. That euchromatin marker H3K27Ac behaved 
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similarly was not expected, nor can be explained in a similar fashion. Considering that both 

proteins dwell close to the nuclear periphery and are known to interact with 

heterochromatin118,352,409 and each other431, the similar response regarding chromatin markers 

may be indicative of a common chromatin regulating pathway. Further analysis such as 

comparison of ChIPseq data, co-immunoprecipitation of interaction partners would shed more 

light into this possibility. There is also the likely possibility that both responses are simply 

unrelated, and that while the H3K9me3 upregulation is related to the aforementioned reasons, 

H3K27Ac changes could stem off the perturbation of the LINC and the nuclear lamina, two major 

nuclear scaffolding structures with known chromatin organization properties354,432.  

Lamin A/C KD did not significantly affect either heterochromatin or euchromatin foci number or 

size. In contrast, nesprin 2 KD saw reduced H3K9me3 foci number and caused a slight increase 

in H3K27Ac foci size on large islands. Analogously, nesprin 2 KD reduced the number of nucleoli 

on large islands. As discussed before both heterochromatin foci and nucleoli are believed to 

behave by phase separation405,407, so changes in their organisation correlate with changes in 

nuclear size and further corroborate some of our previous findings and support this model of 

nuclear architecture.  

Changes in nucleoli number were also accompanied by reduced de novo protein synthesis levels 

and altered expression of 47S pre-ribosomal RNA and RRP1B. Both pre-ribosomal RNA 47S and 

RRP1B transcriptional levels appeared to scale with nuclear size.  This hints again at the 

possibility that nuclear shape can alter nucleolar number which in turn can affect ribogenesis. 

Nucleolar fusion induces chromatin reorganization, as separate NORs come together433, and 

these reorganizations could impact chromatin structure and gene expression. Nucleolar 

Associated Domains (NADs) are frequently shared with LADs and are often gene rich regions. 

Nuclear shrinkage and nucleolar fusion would inherently bring changes in nucleolar and nuclear 

lamina surface. These surfaces are where NADs and LADs are located, and changes in them could 

be translated in changes in nucleolar dynamics, as has been theorised recently in senescent 

cells434,435. Moreover, nucleoli are also a dense structure, and fusing in a smaller nucleus could 

make them even denser, physically hindering diffusion and chromatin access of the 

transcriptional machinery. Apart from perturbed chromatin architecture, changes in nuclear 

volume could also affect the concentrations of nucleolar scaffold proteins (such as nucleolin), 

rRNA (47S) and ribosomal proteins (RPL36), and in turn modulate nucleolar dynamics173,174,407. A 

more extensive analysis of nucleolar compartments, nucleoli-associated biomolecules and 

nucleolar chromatin organisation would be necessary to better understand this response.  

Important take-aways from this chapter are the difference between effects that stem off 

changes to the nuclear volume and changes due to perturbation of force. Of course, both 
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phenomena are in essence connected, as in our model nuclear volume is dependent of how 

tensive and compressive forces are exerted unto it but can have divergent downstream effects. 

This is clearly observed in the strategies which did not yield changes to nuclear volume but did 

affect other nuclear architecture features and vice versa.  

In this regard we can postulate a model which classifies nuclear responses to biophysical cues in 

two types. The first type are nuclear volume-dependent. In this category we can find changes to 

nucleoli number and heterochromatin foci distribution. These types of responses are generated 

because of the biophysical nature of these nuclear structures, i.e membraneless organelles, 

which behave as liquid droplets. Direct phenotypic changes are due to these variations in nuclear 

volume, such as changes in protein synthesis or RRP1B levels. The second type of responses are 

dependent on the integration of the nucleus in the cytoskeleton. We classify changes in lamin 

A/C levels, radial distribution, and chromatin markers in this category. We theorise these 

changes to be caused by modifications to how forces are transmitted to the nucleus, but might 

also be caused by other means, such as biochemical signalling cascades.  

This final chapter therefore uncovered mechanistic insights into the inner working of the 

previously observed changes in chromatin architecture and gene expression in HKs induced by 

limited adhesive space. Multiple strategies to perturb cyto- and nucleoskeletal components 

allowed to further our understanding of our model and provided important information on the 

role of the nucleus as a mechanosensing unit.  
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Outlook and Future Directions 
 

We have provided through this project a characterisation of changes to HK nuclear architecture 

and gene expression induced by limited adhesive space as well as understandings as to the roles 

of several cyto- and nucleoskeletal components in their regulation. While important features 

have been uncovered, many other remain to be elucidated.  

The initial characterisation of changes to nuclear architecture presented changes in several key 

chromatin markers saw induced differentiation in small islands. While these changes give 

information on macroscopic changes to nuclear architecture, they are quite limited if not 

accompanied by more gene-specific information. Similarly, RNAseq data reflects bulk changes 

in gene expression, and does not provide insight into the behaviour of single cells or specific sub-

populations. More in-depth genetic analyses, such as ChIPseq of the presented chromatin 

markers and lamin A/C, and single cell RNAseq are needed to fully characterise the genetic scope 

of this project.  

Analysis to changes at regulatory regions of the genes that are affected could give insight in how 

the macroscopic changes to chromatin markers affect individual genes. We saw reduced levels 

of H3K27Ac, H3K27me3 and H3K9me3 in small islands, with upregulation of retinoic acid 

signalling genes. Analysis of these markers at promoters or enhancers of the affected genes 

would provide valuable information as to which chromatin remodellers are responsible for this 

characteristic response. Changes in lamin A/C radial distribution would hopefully also be 

reflected in its interaction with regulatory regions. Further inhibition of chromatin remodellers, 

such as histone deacetylases using trichostatin A, would help verifying their participation. We 

could also envision more localised strategies, such as using an inactive Cas9 (dCas9) protein to 

target specific promoter or enhancer regions with chromatin remodellers436,437. This would allow 

to control the chromatin state at these regions, and thus determine the role of local chromatin 

architecture in the biophysical regulation of gene transcription. Then, with the use of 

cytoskeletal inhibitors we could help identify more direct links between biophysical cues and 

local chromatin changes. Single-cell analysis would help with the differentiation aspect of the 

project, which was not examined in-depth once we could not appreciate changes in chromatin 

organisation. Moreover, we could potentially also find other subpopulations which are lost in 

bulk analysis. We believe that there are very possibly interesting aspects of cell fate decisions to 

be found.  

The DNA damage response was found to be quite intriguing and the model could serve as an 

interesting tool to investigate the roles of both lamin A/C and the cytoskeleton in its modulation. 
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Indeed, laminopathies such as Hutchinson–Gilford progeria syndrome are accompanied by 

premature aging of the skin, a phenotype akin to senescence and thought to be linked to DNA 

damage response438. Perturbation experiments where HKs would be seeded on both island sizes, 

treated with blebbistantin and in parallel LMNA siRNA and stained for H2AX/53BP1 foci would 

surely provide very interesting initial results. Following experiments could then probe known 

DSB repair pathways and their relationship to cyto- and nucleoskeletal elements.  

The retinoic acid response, especially in the context of lamin A/C as well as psoriasis439, skin 

cancer440, aging441 and other cosmetical applications442, is also a promising alley of research. 

Experiments would have to determine if lamin A/C redisposition or retinoic acid upregulation 

are the initial steps of the response to reduced available adhesive area. HKs could be treated 

with retinoic acid or LMNA siRNA and lamin A/C or retinoic acid levels could be determined, 

respectively. Then targeted KD of other components such as RARG, CRABP2 or the cytoskeleton 

while observing changes in lamin A/C levels, DNA damage or differentiation would further 

characterise this response. 

Our most important set of results concerned the nucleolar coalescence observed on small 

islands and the consequent reduction of pre-ribosomal RNA and protein synthesis levels. 

RNAseq data revealed a plethora of affected components of the ribogenesis pathway, and we 

provided mechanistic information into how nuclear size could affect translational activity. There 

exist many more ways this complex phenomenon could be probed. Expanding the 

characterisation of affected ribogenesis effectors and ribosomal proteins in perturbation 

experiments would be important, as they are numerous, and their roles poorly understood. 

rRNAseq would also give valuable insight into rRNA transcription and maturation, helping 

localise which specific steps are affected. Measuring changes in nuclear protein concentration 

and partition coefficients of scaffold proteins would give a better understanding into the 

thermodynamics behind nucleolar dynamics. Overall, we believe this model could become a 

very useful tool in the field of nucleolar dynamics where much is still to be discovered in how 

nucleoli regulate their size and how it affects ribogenesis. 

Finally, this model represents a unique platform to study genome organisation, especially as a 

contrasted example of senescent nuclei which are often enlarged443. For example, recent 

research into how chromatin compaction level modulates penetration of RNA polymerases 

could possibly benefit from such a model444. Our project did not preoccupy itself on small nor 

large scale DNA interactions, which are possibly modified. Hi-C analysis, as well as ChIPseq 

analysis of CTCF binding regions would very probably reveal some interesting changes in 

interactions. Analogously, very recent research has indicated the possible existence of “super-

silencer regions”, in contrast to the well-established super-enhancer regions, as regions of DNA 
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which contain high levels of repressive chromatin markers with long-range interactions (not yet 

published data)445. Surely the forcing together of heterochromatic regions, as we theorise could 

be the consequence of heterochromatin foci condensation, could potentially generate 

unnatural super-silencer regions, with hopefully measurable changes in chromatin architecture 

and gene expression.  

This model has been used in the past to gain valuable insight into how biophysical cues as 

transmitted by the cytoskeleton affect HK differentiation and nuclear morphology. This work 

has pushed this understanding further by associating specific nuclear architecture features as 

well as phenotypic changes to it. Correct mechanotransduction and chromatin organisation are 

paramount to HK differentiation and skin homeostasis, and defects are associated with a 

plethora of ailments188,192. Further characterization of this model, and moreover the expansion 

to include patient samples would greatly improve our understanding of these diseases and 

potentially bring new insights as to their treatment and skin biology in general.  
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Conclusion 
 

This work has laid down the foundations of a full characterisation of nuclear architecture and 

transcriptional changes resulting of altered available adhesive area of HKs. It also expanded this 

characterisation by providing basic mechanistic insights into the role of the cytoskeleton in 

modulating such a response.  

We observed macroscopic changes in nuclear architecture, mainly downregulation of chromatin 

markers H3K27me3, H3K27Ac and H3K9me3 on small islands, accompanied by heterochromatin 

foci and nucleolar condensation as well as radial redistribution towards the nuclear periphery of 

lamin A/C. RNA sequencing revealed changes in gene transcription, most notably in the DNA 

damage repair, retinoic acid and ribogenesis pathways. DNA damage was upregulated in large 

islands and accompanied by incremented DSB repair sites. Retinoic acid signalling was 

upregulated on small islands and we measured elevated levels of transcriptional activity of RA 

response elements. The ribogenesis pathway was affected in a mixed fashion, with upregulation 

of ribosomal proteins in small islands and upregulation of ribogenesis effectors in spread cells. 

Reduced adhesive area was then linked to reduced levels of pre-ribosomal RNA 47S transcript 

levels and protein synthesis levels. We then used mice keratinocytes with Plec KO to ascertain 

that nucleoli number and protein synthesis levels incremented with nuclear size. Inversely, HKs 

with nesprin 2 KD showed reduced nuclear volume, reduced nucleoli number, protein synthesis 

levels and pre-rRNA 47S levels, further proving their relation. Reduced nuclear volume was also 

linked to heterochromatin foci association. Finally, we observed that Lamin A/C and nesprin 2 

KD had upregulated levels of chromatin markers H3K27Ac and H3K9me3, indicating that the 

cytoskeleton and nucleoskeleton have roles in chromatin regulation.  

We proposed that nuclear responses to biophysical cues can be divided into two categories: 

changes stemming off nuclear volume, such as nucleoli number and heterochromatin foci 

association, and changes generated by mechanical coupling of the nucleus, such as chromatin 

marker and lamin A/C levels. These two types of responses are intrinsically linked, as they are 

both ultimately influenced by the equilibrium of forces exerted on the nucleus. It reveals how 

mechanotransduction can generate responses not only by direct physical linkage but also by 

varying other parameters such as nuclear volume with effects on diffusion dynamics of 

intranuclear bodies. This raises questions also as to how changes in nuclear volume could affect 

other parameters, such as intranuclear concentration of transcription factors or scaffolding 

proteins. We also uncovered a characteristic mechanical regulation of lamin A/C levels and radial 

distribution. We believe this regulation has potential roles in DNA damage response and retinoic 

acid signalling, to be found in future studies, and could potentially uncover hidden aspects of 
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laminopathies. Similarly, while not yet reported it is possible that genetic defects, such as in EBS 

variations caused by plectin defects446, or even in other more naturally occurring conditions such 

as seen in synaptic activity-induced neuronal nuclear deformation447, could affect nuclear 

volume. These changes in nuclear shape could have downstream effects on nucleoli number and 

overall cellular translational capabilities. Finally, we found particular interest in the lack of 

response from cytoskeletal inhibitors and keratin mutation. Both the F-actin and keratin 

cytoskeleton are arguably two of the most important mediators in mechanostransduction, yet 

little effect on nuclear architecture could be found while perturbing them. We do not deny their 

involvement in nuclear mechanics but indicate that better tools for their perturbation and a 

better understanding of their crosstalk are needed.  

This work has presented novel insights into nuclear architecture and its complex relationship 

with the cytoskeleton, which mediates biophysical cues from the environment. The findings here 

presented describe for the first time changes to chromatin architecture as induced by available 

adhesive area, as well as introduces the concept of mechanical regulation of nucleolar dynamics. 

Mechanostransduction can modulate significant parts of cellular life such as cell fate decisions 

or metabolism and are partly governed by the changes to chromatin 3D structure that they 

generate. Future work will expand upon this work to bring even more in-depth knowledge as to 

the inner workings of this fascinating phenomenon.  
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