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Abstract

This paper presents an event-triggered statistical estimation strategy and a data collection architecture for situational awareness
(SA) in microgrids. An estimation agent structure based on the event-triggered Kalman filter is proposed and implemented for
state estimation layer of the SA using long range wide area network (LoORAWAN) protocol. A setup has been developed which
provides enormous data collection capabilities from smart meters in order to realize an adequate level of SA in microgrids.
Thingsboard Internet of things (IoT) platform is used for the SA visualization with a customized dashboard. It is shown that by
using the developed estimation strategy, an adequate level of SA can be achieved with a minimum installation and communication
cost to have an accurate average state estimation of the microgrid.

1 Introduction

Smart grid is the recently proposed structure for the modern-
ized power systems. The main characteristic of the proposed
smart grid is better utilisation of renewable energy sources
(RESs) and distributed generations (DGs) toward having the
stabilized, reliable, and resilient power system. This require-
ment with the complexity of information and communication
technologies (ICT) in smart grid, mandates the division of the
power system into subsystems called "microgrids" [1]. These
subsystems operate autonomously in both islanded mode and
connected mode regarding to the main grid. Microgrids oper-
ate differently regarding their applications and targets designed
for, but they should be able to provide a common interface to
the main grid to be integrated optimally.

Rural microgrids and smart villages are specific types of
microgrids that pose unique requirements in terms of avail-
ability, cost, and operation [2]. The basic building blocks of
"smartness" include access to high-quality education, health-
care, information and communication technologies, finance,
and clean water. However, underlying these building blocks lies
one important element: energy [2].

The main sources of energy accessible in rural areas are
usually renewable energy sources. Photovoltaic (PV) panels
and fuel cells (FCs) are among the cheapest available energy
sources. These sources are intrinsically direct current (DC),
that if integrated correctly, removes the need for costly DC-
AC converters and decreases electrical loss [3]. Also, DC loads
such as mobile phones, digital assets and LEDs for lighting,
form the main part of home appliances. As the main type of
electrical loads in villages are home appliances, DC microgrids
are proposed for the implementation of them recently [3].

Low cost installation and operation of these types of micro-
grids have been the topic of research for the last few years [4].
With the introduction of the Internet of things (IoT) commu-
nication infrastructure, the cost of communications has been
reduced to a great extent. Therefore, the trade-off between con-
troller complexity and data communication cost has become
simpler to reach a solution [5].

State estimation is an important part of a robust controller,
as a high number of the robust control techniques are based
on state feedback [6]. Also for the systems which are based
on the output signal feedback, state estimation is inevitable for
internal stability analysis and situational awareness (SA) [7, 8].
The low inertia characteristic of the microgrids necessitates
that the state estimator to work in real-time with a reasonable
communication and computation cost [9]. In the literature of
state estimators, two different approaches have been taken, dis-
tributed and centralized state estimation [10]. Both approaches
have advantages that suits them for the specific application.
Distributed state estimation approach is mainly used when
the system is large and the computation cost of a centralized
estimator would make the solution infeasible. Although dis-
tributed approaches remove the single point of failure problem,
it requires a high number of computing agents for state estima-
tion tasks, which is not appropriate for small to medium sized
microgrids [11, 12].

In contrast, the basic assumption in the centralized state esti-
mation approach, is to have a single estimator, which collects
the data from the sensors installed throughout the microgrid.
Therefore, the sensors doesn’t need to be smart and compu-
tationally powerful, as they only have to measure and send
the data to the collector [13]. Furthermore, the rate at which
the sensors transmit the measurements greatly affects the per-
formance of the state estimator, the network traffic, and the



energy consumption of battery based nodes [14]. Traditional
state estimator theories were originally developed based on the
fact that the signals were sampled periodically with a predeter-
mined sampling period. With the advent of Internet of things
(IoT) communication technologies, this basic assumption is not
practical anymore, because the IoT technology trend is mov-
ing toward lower speed communication for longer distances
and reduced power for wireless transmission [15, 16]. There-
fore, modernized state estimators should be designed as such
that are able to fuse the event-based data from different sensors
across the microgrid. To address this need, the authors in this
paper propose a centralized event-based optimal linear statisti-
cal state estimator, suitable for medium sized microgrids, with
Send-on-Delta (SoD) measurements.

The structure of the paper is as follows. In Section 2, situ-
ational awareness domains related to microgrid are discussed
and also the control and operation requirements are provided.
In Section 3, the proposed estimation strategy analysis is pro-
vided with the developed event-based Kalman estimator. In
Section 4, the implemented setup for evaluation of the estima-
tion strategy is shown. Lastly, Section 5 presents the results of
the analysis. The paper is concluded in Section 6.

2 Situational Awareness in Microgrids

Traditionally, the SCADA systems in microgrids monitor the
basic variables and states to control both the power quality
and demand response. One of the primary advantages of the
microgrids is the enhanced grid monitoring, from the demand
response and power quality to the smart user behaviour [17].
This makes the smart grid not a sole entity providing services to
consumers, but also a collection of different systems and tech-
nologies cooperating together to bring the highest reliability at
the lowest cost with the participation of power consumers.

A smart grid is a multilayer, distributed, and multidomain
system in which different types of operations are taking place
in tandem [18]. A close coordination should occur among all
the players with different goals. Naturally, SA is designed for
such a smart grid should be multilayered where in each layer,
a team distributed SA handles the versatile tasks, such as the
load forecasting, equipment health monitoring, power quality
monitoring, cybersecurity, and unit commitment.

New functionalities of the modern grid comes with the
cost of security risks of connection to the Internet. If in the
past, industrial systems were considered secure, due to the
use of proprietary controls and limited connectivity, smart grid
increases the exposure of SCADA systems, and consequently
sustaining the security issues in the network. Implementation
of the adequate SA for microgrids still needs to be developed
further in a number of crucial areas, including [9, 19, 20]:

« Communication infrastructure monitoring Faulty operation
of the communication devices can lead to a verity of
unknown issues bringing the entire system down. Hence,
the efficient monitoring of the operation of the switches and
advanced metering infrastructure (AMI) gateways would
guarantee a reliable system.

« Equipment health monitoring Health monitoring of the
equipment especially in the distribution systems, is possible
through the IoT platforms. Every equipment can be moni-
tored from different control centres across the multilayered
grid. The SA system can use health monitoring data in order
to make preemptive decisions. For instance, number of fail-
ures in protection devices in a specific area of smart grid,
can pinpoint the design problems in that specific area. This
can be used for the prioritised maintenance.

» Power generation and consumption The unit commitment
in a smart grid is different from the one in a traditional grid,
in which the power generation programming are merely
based on the behaviour of the two players (i.e., power plant
constrains, as well as load dynamics). Each player makes
decisions based on different factors, such as weather and
time. In a smart grid, number of players are continuously
increasing due to different structure in the decision mak-
ing. Distribution companies seek high income, where the
consumers need cheap energy. The adequate SA can accom-
modate this multiplayer decision-making scenarios, in order
to improve the power system operation and planning.

* Microgrids connection status Different logics operate
behind the microgrid operation which decides that in which
situations the microgrids should operate in an islanded
mode or in a connected mode. Awareness of when and why
a microgrid gets disconnected from the main grid makes
the unit commitment and tertiary control cost effective and
resilient to the faulty and abnormal situations.

* Cybersecurity One of the most important factors in the
adequate SA framework is the cyber SA. The appropriate
analysis of the network traffic, as well as the distributed
intrusion detection systems (DIDS) can be employed to
increase the security of the overall SA-centric system.

The presented topics by no means are the exhaustive list of
the research topics in an adequate SA system, but it covers the
most important issues which can be used as a starting point.
The common technologies available to villages in rural areas
for power generation are solar panels, micro-wind electric,
micro-hydro electric and bio-gas. In order to efficiently extract
power for the sources, the DC-DC converters should operate in
maximum power point tracking mode. Villages mandate sev-
eral constraints in terms of control strategy and communication
infrastructure, which are analysed in the following.

The main control requirements for smart villages are:

* The controller should be decentralized and distributed.
As smart villages don’t have a central authority to mon-
itor microgrid online, distributed autonomous controllers
provide reliable operation.

+ Distributed controllers should support Plug-and-Play (P&P)
operation. This is in fact a must for villages as they usually
expand in time, so new sources of energy should be able to
utilized easily without any interruption to the other users.

+ Excess power generated by DGs should be stored for times
that the power is not available.



3 Distributed Average Consensus Protocol

Each estimation agent has an average state estimator that uses
the local measurements and information from the neighboring
agents to update the local estimates of the average microgrid
quantities. The average state estimator implements a distributed
average consensus protocol for tracking the dynamic signals
from [21] and [22].

The agents are connected by a sparse communication graph
G(V,€) with the nodes V = (1,..., ) and edges £. Each
graph node represents an estimation agent, and the graph edges
represent communication links between them. (i,j) € £ if
there is a link allowing information flow from node 7 to node
j- The neighbours of i node are given by N;, where j € N, if
(4,%) € €. The graph adjacency matrix is given by A = [a;;] €
RN*N where a;; > 0if (j,4) € € and a,; = 0 otherwise.

For the ith ES system, let z; be a local state variable, and let
T; be a local estimate of the average value of that state for the
ES systems. The ith estimation agent receives the average state
estimates from its neighbours j € N, and its average state esti-
mator implements the following distributed average consensus
protocol:

T, =x -‘rJ Z ai;(T; —;)dt (D

JEN;

Each node in the network has in-degree d; = Z;\’:l a;; and
out-degree d¢ = Zj\;l a;;. Moreover, the graph is balanced if
d; = d¢ for all the nodes. The graph degree matrix is given
by D = diag{d;} and the graph Laplacian matrix is also given
by L = D — A. The global dynamics of the distributed average
consensus protocol are given by:

X=x—-LX 2)

Applying the Laplace transform yields the following transfer
function matrix for the average consensus protocol [21]:

X
G =3 = s(sly +L)! 3)

X and X are the Laplace transforms of Z and , respectively.
For a balanced communication graph with a spanning tree,

the steady-state gain of the average consensus protocol is given
by the averaging matrix [23]:

lim G** = @, where [Q];; = 1

5—0 N “)

The final value theorem shows that for a vector of step inputs,
the elements of X(¢) converge to the global average of the
steady-state values x°°:

lim X(t) = lim G lim sX = Qx"* = (x**) 1

IS
t—o0 s—0 t—o0
3.1 Event-Based Kalman Filter Design

Consider the following linear system which is the state space
realization of distributed average consensus protocol transfer

function in each estimator agent:

(6)

where x € R" is the estimated state and y € RP is the output
measurement. The process noise w (¢) and measurement noise
v(t) are the uncorrelated, zero-mean white Gaussian random
signals, fulfilling the following:

E{w(t) w(s)'} =Q (t — s) (7)
E{v(t) v(s)'} = Ri(t - s) ®)
E{w; (t)v;(s)} =0, 1<i<n, 1<j<p 9)

where w; and v; are the i-th and j-th elements of the w and
v, respectively. Also, R is the measurement noise covariance,
and @ is the process noise covariance. It is assumed that the
i-th sensor only transmits the data when the difference between
the current sensor value and the previously transmitted value is
greater than &;.

The states are also estimated periodically with the period of
T'. For simplicity, it is assumed that there is no delay in the
sensor data transmission. Using the SoD method [24], the esti-
mator continuously with a period of 7' demands the data from
the sensors no matter the data becomes available. For exam-
ple, if the last received i-th sensor value is y; at the time ;45
and there is no i-th sensor data received for ¢ > ¢;,.; ;, then the
estimator can estimate y; () as:

Yi (tlast,i) —0; <y (t) < Y (tlast,i) +9; (10)

The last received i-th sensor data is used to compute the
OUtput Yeomputed,s €veN if there is no sensor data transmission:

ycomputed,i (t) = yz (ﬁlast,i) = sz (t) + (% (t) + Az (t; tlast,i)
(11)
where A; (¢, tase,i) =Vi (trase.s) —yi () and:

|A; (t, tase,i)| < 05 (12)

In (11), the measurement noise increases from wv; (t) to
v; (8) + Ai (t tiast,i). I A (f,t1ase,:) 1s assumed to have
the uniform disgribution with (12), then the variance of
A, (ttase,i) 18 %@', which is added to the measurement noise
covariance in standard Kalman filter R(7, ¢) when (11) applies.

Improved Kalman Measurement Update Algorithm: An
algorithm is proposed here to appropriately improve the mea-
surement update part of the standard Kalman filter algorithm,
which is adapted to the SoD event-generation condition by
increasing the measurement noise covariance R;:

1. Initialization set

&7(0), By

Yiase = C27 (0) 13)



2. Measurement update

R, =R (14)
if i-th measurement data are received
jjlast,i =Y (kT) (15)
else
Ry, (i,i) = Ry (i,1) + —+ (16)
end if
K, =P C'(CP;C'+ R,)™*
& (kT) =&~ (kT) + Ki(Jiase — C2~ (KT))
P.=(I-K,C)P, (17
3. Project ahead
“((k+1)T) =exp (AT)z (ET)
P, =exp(AT)P,exp (A'T) + Qq (18)

where (), is the process noise covariance for the discretized
dynamic system; y;,,, is defined as (19):
19)

’
Ylast = [ylast,lﬂ ylast,27 e 7ylast,p]

The presented event-triggered Kalman filter has been devel-
oped to implement the distributed controller and estimator as
an NCS. It should be noted that in the proposed event-triggered
observer, convergence is obtained by using the Kalman opti-
mal observer. However, choosing the lower values of §; would
result in the considerable reduction in the convergence time
[24]. The controllers only receive updates from their neighbour
controllers which is reflected in the L matrix of the transfer
function that has been realized. Distributed average consen-
sus is then achieved for each estimator based on the number of
neighbour controllers. Also, the higher the number of adjacent
controllers are, the faster the estimator would converge [25].

4 Developed Experimental Prototype for
Situational Awareness

The developed IoT setup consists of several nodes support-
ing long range wide area network (LoRaWAN) communica-
tion protocol from Seeeduino® (Seeeduino LoRaWAN) and a
real-time microgrid simulator from dSPACE® (Microlabbox
DS1202). The nodes are connected to the real-time simulator
via the BNC connectors that can be both Analog Outputs and
Analog Inputs. The schematic of the setup is shown in Fig 1.
The real-time simulator allows the testing of different micro-
grid operation scenarios with only changing the simulation
configuration in the MATLAB software.

Since microgrids will be installed in private urban or rural
areas, the monitoring software should be accessible easily by
the operators, and also a well-designed human machine inter-
face (HMI) is essential, in order to achieve the adequate SA.

Fig. 1 Developed setup with the connected LoORaWAN sensor
nodes.

Fig. 2 Developed web-based dashboard using the Thingsboard
IoT platform.
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Fig. 3 Situational awareness-centric platform based on the IoT
protocols.

In this regard, the web-based dashboards are suitable for this
purpose, as they can be remotely accessed. In this work, the
Thingsboard® open-source software is used as the operator
dashboard. Thingsboard is a web-based dashboard designer
written in Java which provides different widgets to visualise
the values received from the developed nodes. Fig 2 shows
the dashboard interface developed using the HTMLS, CSS, and
Javascript programming languages.

The LoRaWAN protocol necessitates a gateway to be
employed for the data collection and distribution. In this setup,



a Raspberry Pi with proper communuication modules for the
gateway operation is used. This gateway converts the received
data from LoRaWAN nodes and transforms them into MQTT
payloads which are transmitted to the MQTT broker. Things-
board IoT software provides the MQTT broker which in this
work is employed for data processing and archiving. The data
collection architecture for the situational awareness-centric
microgrid platform based on the IoT protocols is shown in
Fig 3. By using the mentioned protocols and devices, the cost
of monitoring of smart grid is greatly reduced for realising the
adequate SA. The upper layers in SA usually need different
types of data, in order to analyse the current state of microgrid.
The developed hardware setup is comparably more affordable
than the existing monitoring devices, which makes it an ideal
choice for the big data collection and processing in smart grid.
The software stack developed for this device, fully sup-
ports the Arduino® integrated development environment (IDE).
Many libraries are developed for the Arduino that can be
used seamlessly in this device. In addition, the battery life is
extended due to the event-based communication. Hence, lower
rating batteries can be used that leads to the cost reduction.

5 Results

In order to evaluate the proposed state estimation approach, in
this section, an example is given based on the developed multi-
agent system with a distributed average consensus control.
Consider a first-order multi-agent system defined as:

T; = U, (20)
The state of the controller agents are denoted by the vector
z(t) = [z1(6)T, 22 ()T, ..., w5(¢)T], and the initial conditions
are set as z° = [52, 44,47, 48, 49] with the average of 48 volts.
The topology graph shown in Fig 4 is connected, i.e., is the
requirement for the stability.

Fig. 4. Communication graph between the estimation agents.

The two simulations are given; a simulation without delay
(i.e., Fig 5) and one with delay of 150ms (i.e., Fig 6), in
the event transmission, when the event-triggering condition is
violated.

In both these figures, the state and measurement error values
of the DG controller agents are shown. The measurement error
values’ profile illustrates a fluttering behavior. It presents when
the agents are triggered at an event instant, the norm of the
measurement error e;(t) is set to zero, due to the update of the

state, when there is no delay. In contrast, as shown in Fig 5,
the error decay rate is higher comparing to the one with delay,
i.e., in Fig 6. It can be seen the event-triggered control strategy
performs well in an environment with switching topologies.
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Fig. 5 States and errors of the distributed estimator agents
without delay.
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Fig. 6 States and errors of the distributed estimator agents with
delay.

Table 1 Parameters of the Event-Triggered Kalman Estimator.

0;(Voltage) | 0.1V
0;(Energy) | 0.01 p.u.
Q 0
R
T 1 Second

6 Conclusion

This paper presents a data collection architecture and an
event-triggered estimation strategy for situational awareness in
microgrids. A setup has been developed which provides enor-
mous data collection capabilities from smart meters, in order to
realise an adequate SA level in microgrids. It is shown by using



the developed strategy, adequate level of SA is achieved with a
minimum installation and communication cost.
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