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Abstract

Stochastic epidemic models are useful in modelling the duration of epi-

demic outbreaks. It has been observed that the behaviour of the ex-

tinction time of epidemics changes across some point (or domain in

multi-dimensional spaces) in the parameter space, known as the ‘crit-

icality’: generally speaking, epidemics in the subcritical regime tend to

end quickly, whereas epidemics in the supercritical regime tend to prevail

around the quasi-stationary state for a long time before extinction. In

recent years, there has been substantial interest in the phase transition

window around the criticality, called the ‘critical regime’. We expect

to observe the critical behaviour not only at the criticality point, but

across the entire critical regime, and the boundary of the critical regime

is expected to be approaching the criticality as the population size tends

to infinity. However, while this phenomenon is well-discussed for one-

dimensional epidemic models like SIS, there is little work done on two

or higher-dimensional models.

This thesis is concerned with the scaling behaviour in and around the

phase transition window of the extinction time of a class of two-dimensional

stochastic epidemic models named SIRS. The stochastic SIRS model is

a continuous-time Markov chain modelling the spread of infectious dis-

eases with temporary immunity, in a homogeneously-mixing population

of fixed size N . More specifically, we study the asymptotic distribu-

tions of the extinction time of SIRS models as N tends to infinity, with

both the parameter space and the initial state of the model treated as

functions of N . Our results provide a comprehensive picture of various

possible scalings and the corresponding limit distributions within the

subcritical and the critical regimes. Our approach also provides us with

descriptions of the entire trajectory of SIRS epidemics. Simulations are

implemented to verify our results.
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C(M,S) – the set of continuous mappings from M to S.

For functions f(x), g(x):

f(x) = Θ(g(x)) or f(x) � g(x) – There exists constant K > 0 s.t.

K−1|g(x)| ≤ |f(x)| ≤ K|g(x)|;

f(x) = o(g(x)) or f(x)� g(x) or g(x) = ω(f(x))⇐⇒ limx→∞
f(x)
g(x)

= 0;

f(x) ∼ g(x)⇐⇒ limx→∞
f(x)
g(x)

= 1.

(f ∨ g)(x) = f(x)∨ g(x) and (f ∧ g)(x) = f(x)∧ g(x), where a∨ b := max{a, b} and

a ∧ b := min{a, b}.

⇒ – weak convergence;
P−→ – convergence in probability;

ρ− lim – convergence w.r.t. ρ-topology.

ix



Chapter 1

Introduction

The stochastic SIRS model describes the spread of a disease with temporary

immunity in a closed population of size N . Each susceptible individual is expected

to contract the disease at rate λoI/N , where I denotes the current size of the in-

fected population. Parameter λo ∈ R+ is known as the transmission rate. Once

infected, each individual is immediately infectious and will recover at rate µo = 1

independently of other individuals. Each recovered individual loses immunity at

rate γo ∈ R+ and becomes susceptible independently. For future reference, we use

interchangeably both the words infected and infectious, and the words recovered

and immune when referring to population compartments in our epidemic models.

The subscript ‘o’ stands for ‘original’ and is introduced to distinguish the original

variables from the scaled variables.

Formally, the stochastic SIRS model is constructed as a two-dimensional continuous-

time Markov chain (INt , R
N
t )t≥0, where INt represents the size of infected population

at time t, and RN
t represents the size of immune population at time t. The model

is associated with the transition rates:

(i, r)→ (i+ 1, r), at rate λo(N − i− r)i/N,

(i, r)→ (i, r − 1), at rate γor, (1.1)

(i, r)→ (i− 1, r + 1), at rate i.

We will state the definition of the stochastic SIRS model and the simpler SIS and
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SIR models in full detail in Chapter 2.

After the basic parameters of a disease are understood, researchers naturally want

to predict the course of development of the epidemic, and one of the variables of

interest, known as the extinction time, represents how long it takes for the pathogen

to die out within a population. In this thesis, the extinction time is modelled as the

stopping time TNo := inf{t : INt = 0}.
We aim to study the scaling behaviour of the distribution of the extinction time

of stochastic SIRS models, as the population size N tends to infinity. In particular,

we are interested in how the scale of the parameters (λo, γo) and the initial states

(IN0 , R
N
0 ) affect the asymptotic distribution of the extinction time.

The study of this problem, associated with the simpler SIS and SIR models, dates

back to as early as 1975 by Barbour [1]. Since then, most of the work has been on SIS

models, and focused mainly on the expectation instead of the distribution [2–5]. For

both SIS and SIR models, it has been proved that there exists a ‘critical value’ of the

transmission rate, and that the extinction time is O(logN) when the transmission

rate is strongly subcritical, and is O(ecN) for some constant c ∈ R+ when the

transmission rate is strongly supercritical. It has also been shown that the shape of

the scaled distribution is affected by the scaling of IN0 . For a while, only the cases

with the initial size of infected population IN0 � 1 or O(N) were studied.

Another observation made by existing literature is that the critical parameter

regime is an o(1)-sized neighbourhood around the critical value. More specifically, if

as N →∞, the transmission rate of the SIS (resp. SIR) model tends to the critical

value faster than N−1/2 (resp. N−1/3), then the corresponding extinction time is

O(N1/2) (resp. O(N1/3)).

One important work on stochastic SIS models is by Foxall [6], who developed a

framework that allows a comprehensive investigation over all possible combinations

of transmission rates and initial sizes of infected population.

To our knowledge, this thesis is the first to study the scaling behaviour of SIRS

extinction time in the subcritical (λo ≤ 1) and near-critical (λo → 1) regimes. We

contribute in the following three directions.

Firstly, we extend Foxall’s framework from the one-dimensional SIS model with

a one-dimensional parameter space to the two-dimensional SIRS model with a two-

2



dimensional parameter space. Despite both being two-dimensional, the SIRS model

is significantly more complicated than the SIR model, since the latter has a mono-

tonicity property. While the SIS and the SIR models are both driven by a single

parameter (the transmission rate), the SIRS model incorporates a second parame-

ter describing the average duration of immunity. In addition, there is no explicit

solution to the ODE system describing deterministic SIRS models.

We succeed to identify the boundary of the critical regime, and obtain explicit

expressions of the asymptotic distributions for a wide range of possibilities. We show

how the scaling of the extinction time changes from logN to N1/3 as the transmission

rate approaches the criticality from below. We illustrate these cases with diagrams.

Some cases with large initial sizes of the infected and immune populations are not

covered by our results. However, we believe our techniques can be extended to all

subcritical cases.

Secondly, we obtain an approximation for the scaled distribution in the critical

regime. From a theoretical point of view, this is associated with the existence and

uniqueness problem of a PDE associated with a degenerate operator. It can also be

viewed as an application of Kühnemund’s bi-continuous semigroup theory [7], and

is especially interesting because the setting is non-Gaussian.

Thirdly, we run simulations to verify our theoretical results. In particular, we

investigate the practicality of various methods for simulating an epidemic model

with large N . We choose to implement the τ -leaping method alongside the stan-

dard SSA method. The simulation result suggests that the τ -leaping method can

be an effective time-saver when simulating the long-term behaviour of near-critical

epidemic models.

Now we will outline the structure of the rest of the thesis, and give a brief

overview of the main results.

Summary of Chapters 2 and 3

We set up both mathematical and epidemiological background in these two chap-

ters.

In Chapter 2, we introduce the basic notations and properties of continuous-time

3



Markov chains, the epidemiology background and motivation to our problem, and

define the stochastic SIS, SIR, SIRS models and their deterministic counterparts.

In Chapter 3, we introduce the techniques and theories used in this thesis, in-

cluding ODE approximation, diffusion approximation, the order-preserving coupling

method, and the theory of bi-continuous semigroups.

Summary of Chapter 4

The main result of Chapter 4 is Theorem 4.6 below, in which we derive the

asymptotic distribution of the stochastic SIRS model when the initial size of infection

IN0 is ‘small’.

The process INt is a birth-death chain with birth rate λo(1−N−1(RN
t + INt )) and

death rate 1. For models in the subcritical and near-critical parameter regimes, when

IN0 is small, INt will remain small and thus its transition rates will be approximately

linear. To our advantage, the extinction time of linear birth-death chains is explicitly

known. Using the method of order-preserving coupling introduced in Section 3.2,

we can sandwich each trajectory of the SIRS models between a pair of linear birth-

death chains whose extinction times have the same asymptotic distribution, and in

this way we can pinpoint the asymptotic distribution of the SIRS extinction time.

The technique described above has been applied by [1] to stochastic SIR models,

and by [6,8] to subcritical stochastic SIS models. The complexity of extending this

technique to the SIRS models comes from the necessity to approximate RN
t . This

has not been an issue in the stochastic SIR model since RN
t monotonically increases

with respect to t.

Looking at the birth rate λo(1 − N−1(RN
t + INt )), it is natural to consider the

cases RN
0 � N and RN

0 = o(N) separately. This is the motivation for labelling the

cases as Case 1.x and Case 2.x in Theorem 4.6 below.

Theorem [4.6]. Consider a sequence of stochastic SIRS models defined in (2.5),

indexed by N ∈ N, with parameters λo = λo(N) > 0 and γo = γo(N) > 0, and initial

states (IN0 , R
N
0 ) = (I0(N), R0(N)).

Let TNo := inf{t : INt = 0}. If one of the following conditions is satisfied, then

we have the explicit expression of the asymptotic distribution of TNo :

4



Cases 1.1-1.3 are cases where both the initial size of infection I0 and immunity

R0 are small, whereas Cases 2.1 and 2.2 are cases where I0 is small and R0 is of

order N .

• Case 1.1: I0|1− λo| → 0, I0R0 = o(N), I0 = o(N1/2γ
1/2
o ).

If I0 = O(1),

lim
N→∞

PN
[
TNo ≤ w

]
=

(
1 +

1

w

)−I0
;

and if I0 →∞,

lim
N→∞

PN
[
TNo
I0

≤ w

]
= e−

1
w .

• Case 1.2: I0(1 − λo) → a > 0, λo = λo(N) < 1, and I0 = o
(
N1/2γ

1/2
o

)
,

I0R0 = o (N).

If I0 = O(1),

lim
N→∞

PN
[
TNo ≤ w

]
=

(
1 +

a

eaw − 1

)−I0
;

and if I0 →∞,

lim
N→∞

PN
[
TNo
I0

≤ w

]
= exp

{
− a

eaw − 1

}
.

• Case 1.3: I0(1 − λo) → ∞, λo = λo(N) < 1, I0 = o
(
N(1−λo)γo
log I0(1−λo)

)
, and

R0 log I0(1− λo) = o (N(1− λo)). Then

lim
N→∞

PN
[
(1− λo)TNo − log(1− λo)I0 ≤ w

]
= e−e

−w
.

• Case 2.1: I0 = O(1), R0 = r0N , r0 > 0, λo = λo(N) ≤ 1 and γo = o(1).

Let a := limN→∞ 1− λo + λor0, then

lim
N→∞

PN
[
TNo ≤ w

]
=

(
1 +

a

eaw − 1

)−I0
.

• Case 2.2: I0 →∞, R0 = r0N , r0 > 0, and there exists ε1, ε2 > 0 such that

5



I0 = o (N1−ε1) and γo = o (N−ε2). Let a := limN→∞ 1− λo + λor0, then

lim
N→∞

PN
[
aTNo − log(aI0) ≤ w

]
= e−e

−w
.

Theorem 4.6 covers the entire domain {(λo, γo) ∈ R2
+ : λo ≤ 1}, and a subset of

{(λo, γo) ∈ R2
+ : λo ≥ 1}. The range of the latter is a function of the initial state

(I0, R0).

Theorem 4.6 suggests that for ‘small’ I0, {(λo, γo) ∈ R2
+ : λo ≤ 1} can be divided

into two regimes, the boundary of which is illustrated by the blue dotted line in

Figure 1.1. For details on Figure 1.1 and the definition of 〈·〉, see Section 2.3.2.

1
3

1
2

1 ∞

1
3

1

∞

−〈1− λo〉 = 1+〈γo〉
2

A

B

−〈1− λo〉

−〈γo〉

Figure 1.1: The division of the parameter space of SIRS models

In Figure 1.1, the regime below the blue line represents{
(λo, γo) : N1/2(1− λo)γ1/2

o →∞
}
,

where given suitable (I0, R0), we can observe the behaviours of all five cases in

Theorem 4.6. In the complement regime{
(λo, γo) : N1/2(1− λo)γ1/2

o <∞
}
,

only Cases 1.1, 2.1 and 2.2 can be observed.

The asymptotic distributions of the cases where I0 → ∞ are extreme value

6



distributions. The intuition is that when the size of the infected population is small,

infected individuals induce almost independent epidemics. The extinction time can

be viewed as the maximum extinction time among all these local epidemics.

Summary of Chapter 5

In this chapter, we first identify the critical scaling of stochastic SIRS models in

both time and space through a heuristic argument. Under the critical scaling, the

scaled parameter space (λ̂, γ) is defined as

λ̂ := (1− λo)N1/3, γ := γoN
1/3, (1.2)

and the scaled stochastic SIRS model (Y N
t , Z

N
t )t≥0 is defined as

Y N
t :=

IN
N1/3t

N1/3
, ZN

t :=
RN
N1/3t

N2/3
. (1.3)

We also define the scaled extinction time TN = inf{t : Y N
t = 0}.

The main results of this chapter concern the case where the scaled parameters

and the scaled initial states are of O(1). This is illustrated in Figure 1.1 as the

shaded area B. In the first half of Chapter 5, we will show that (Y N , ZN) converges

in distribution to a limit diffusion (Y, Z) and as do their extinction times, i.e., TN ⇒
T := inf{t : Yt = 0}. The only analogous result available in the existing literature

is by Foxall [6], who proved the same convergence for stochastic SIS models.

Compared to [6], we need to take one step further and make sure the limit

diffusion is indeed well-defined, since the limit generator is not elliptic and has

unbounded, non-Lipschitz coefficients. Fortunately, Brunick [9] has studied a type

of degenerate martingale problems related to our limit diffusion, and our statement

can be proved by a standard localisation argument [10].

Formally, the first half of the main results is stated as follows.

Theorem [5.7]. Let (1 − λo(N))N1/3 → λ̂ ∈ R, γ := limN→∞ γo(N)N1/3 ≥ 0 and

Y N
0 → y0 > 0, ZN

0 → z0 > 0. Then the process (Y N , ZN) converges in distribution

to (Y, Z) in D([0,∞),R2), where (Y, Z) is the unique weak solution to the stochastic

7



differential equation system

dY = −(λ̂+ Z)Y ds+
√

2Y dW,

dZ = (Y − γZ)ds, (1.4)

with initial conditions Y0 = y0, Z0 = z0.

Theorem [5.8]. Let (Y N
0 , ZN

0 ) = (uN , vN) and (Y0, Z0) = (u, v). If (uN , vN) →
(u, v) ∈ R2

+, then TN ⇒ T .

In the second half of Chapter 5, we study the distribution of T . There is no

known analogous result for stochastic SIS and SIR models.

It is a standard practice to express the distribution of the hitting time of a dif-

fusion as the solution to a Cauchy-Dirichlet problem. However, the well-posedness

of said problem does not directly follow from the well-posedness of the martingale

problem on domain C∞c (R2
+), since the domain is not dense in B̂C(R2

+) with respect

to the uniform topology, where (B̂C(R2
+), ‖·‖) is the Banach space of bounded con-

tinuous functions with continuous extensions to [0,∞)2. We construct the solution

using a generalised Chernoff product formula proved by [11].

Theorem [5.9]. Let V (t) be a bounded linear operator on B̂C(R2
+) for each t > 0,

such that

V (t)f(u, v) :=

∫ ∞
0

g(t, ue−(λ̂+v)t;m)f(m, ve−γt + ut) dm,

for t ≥ 0 and f ∈ B̂C(R2
+), where

g(t, u;m) =
1

t
u1/2m−1/2e−(u+m)/tI1

(
2m1/2u1/2

t

)
,m, u, t > 0,

and I1(·) is defined as (5.7). Define

Un(u, v, t) :=

(
V

(
t

n

))n
1R2

+
(u, v).

The tail distribution of T , i.e. P
[
T > t

∣∣∣(Y0, Z0) = (u, v)
]
, for each t > 0, is the

limit of Un(u, v, t) as n→∞, for (u, v) ∈ R2
+ uniformly on compacts.
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Summary of Chapter 6

Chapter 6 focuses on the subcritical regime when the initial size of the infected

population is too large to meet the assumptions in Theorem 4.6. We show that with

suitable assumptions on (I0, R0), the trajectory of the stochastic SIRS epidemic can

be well-approximated by the solution to some ODE systems, until a time when

Theorem 4.6 is applicable. We can derive the asymptotics of the time taken for

the corresponding ODE systems to travel between two given states (we will refer to

this as ‘elapsed time’). The asymptotic distribution is then derived by shifting the

asymptotic distribution in Theorem 4.6 according to the elapsed time.

The analogous results for stochastic SIR models can be found in [1] and the

results for stochastic SIS models can be found in [6, 8]. In all these cases, the

approximating ODEs are the corresponding deterministic epidemic models, where

‘corresponding’ means sharing the same parameters and initial states. The descrip-

tions of the deterministic epidemic models are introduced in Section 2.2.2 to 2.2.4.

However, things are more complicated in stochastic SIRS models. Theorem 6.3

states that when γo is small and IN0 � N , the limit ODE is the corresponding

deterministic SIR model. The variable tSIRS (a→ b) is the elapsed time of the deter-

ministic SIRS model, and kSIR and kSIRS are the constants in the asymptotics of the

elapsed time of the deterministic SIR and SIRS model respectively. The locations

of their precise definitions are included in the statements of the main results of this

chapter.

Theorem [6.3]. Consider the stochastic SIRS model defined in (1.1) with parameters

limN→∞ λo(N) =: λlim ≤ 1 and γo = o (N−εγ ) for some εγ > 0, and initial states

lim
N→∞

IN0 /N > 0, lim
N→∞

RN
0 /N ≥ 0.

Then we have

P
[
(1− λlimθ∗lim)TNo − kSIR − logN − log(1− λlimθ∗lim) ≤ w

]
→ e−e

−w
.

where θ∗lim = limN→∞ θ
∗(xN0 , y

N
0 ;λo), and kSIR = kSIR

(
N−I0−R0

N
, I0
N

;λo
)

are defined

in Lemma 6.1.

The second main result of this chapter, Theorem 6.7, concerns the parameter
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regime {(λo, γo) : 1 − λo � N−1/3, γo � N−1/3}. This regime is illustrated in

Figure 1.1 as the shaded area A. The strongly subcritical case is a special case of

Theorem 6.7 and is stated separately in Theorem 6.12. The reason why we state

these two theorems separately is that we are able to obtain the exact asymptotics

of tSIRS (I0N
−1 → a) only for the strongly subcritical case.

Theorem [6.7]. Consider the stochastic SIRS model defined in (2.5) with parameters

λo = λo(N) ↑ 1 and γo = γo(N) ↓ 0, satisfying (1 − λo)N1/3 → ∞, γoN
1/3 → ∞,

and limN→∞
1−λo
γo
6= 1. If γo � 1− λo, we in addition require that there exists some

small εp > 0 such that N
εp
3 γ

1+εp
o � 1− λo.

Suppose the initial states of the model satisfy for some constants cy, dy, cz > 0

the conditions

IN0 = I0(N) ≤
[
dy

N(1− λo)γo
log(N1/3(1− λo))

, cy(1− λo)γoN
]
,

RN
0 = R0(N) ≤

czNγ
1+εp
o , if γo � 1− λo,

cz(1− λo)N, otherwise.

Then

P
[
(1− λo)TNo − (1− λo)tSIRS

(
I0N

−1 → a
)
− log a− logN(1− λo) ≤ w

]
→ e−e

−w
,

where a = a(N) ≥ N−1 can be chosen arbitrarily, as long as a = o((1− λo)γo). The

asymptotic distribution above is independent of the choice of a.

Theorem [6.12]. Suppose limN→∞ λo(N) = λlim < 1 and limN→∞ γo(N) = γlim > 0

are constants independent of N , λlim +γlim 6= 1, and λo(N) +γo(N) 6= 1 for N ∈ N.

Suppose further that the initial condition satisfies

lim
N→∞

IN0
N

> 0, lim
N→∞

RN
0

N
> 0.

Then we have as N →∞,

P
[
(1− λo)TNo − (kSIRS + logN + log(1− λo))

]
→ e−e

−w
,

where kSIRS is defined as in Lemma 6.11.
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Summary of Chapter 7

We conduct numerical experiments in MATLAB to verify our results in Chapter 4

and 6. We also review and compare the available methods of simulation in this

chapter. The simulation shows that the asymptotic distributions we have derived

are a fairly good approximation of the simulated data.
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Chapter 2

Setting up the background

In this chapter, we start by introducing the mathematical and epidemiology

background, before rigorously defining the stochastic SIS, SIR, SIRS models and

their deterministic counterparts. Next, we will review the available results on near-

critical behaviours and extinction times of epidemic models, and state precisely the

objective of this thesis. Lastly, we introduce the diagrams we use throughout this

thesis to illustrate the regimes of the parameter space and the initial state space.

2.1 Continuous-time Markov chains

Consider a continuous-time càdlàg Markov chain X = (Xt)t≥0 on (Ω,F ) with a

finite state space S ⊂ Rd, whose natural filtration is (Ft)t≥0, and let Px, x ∈ S be

the corresponding probability measure. Such a process is defined by its initial state

X0 = x0 and the transition rates from state x to x + j, denoted as q(x, j), j ∈ J ,

where J is the set of possible increments/decrements X can have in the following

sense:

Px0
[Xt+∆t = x+ j|Xt = x] = q(x, j)∆t+ o(∆t).
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Denote a jump at time t as ∆Xt := Xt−Xt−, then we can define random measures

on [0,∞)× J as

µ :=
∑

t:∆Xt 6=0

δ(t,∆Xt) and υ(dt, j) := q(Xt−, j)dt.

Thus we can write

Xt = X0 +

∫ t

0

∑
j∈J

jµ(ds, j).

Let (H(t, j))t≥0 be a left-continuous adapted process for each j ∈ J . It is known

that if H satisfies for all t ≥ 0,

E

[∫ t

0

∑
j∈J

|H(s, j)|υ(ds, j)

]
<∞,

then it is known that

Mt =

∫ t

0

∑
j∈J

H(s, j)(µ− υ)(ds, j)

is a well-defined martingale (see e.g. Theorem 8.4, [12]).

It follows that we can decompose X as

Xt = x0 +

∫ t

0

∑
j∈J

jq(Xs−, j)ds+Mt, (2.1)

where the martingale part Mt :=
∫ t

0

∑
j∈J j(µ− υ)(ds, j) is called the compensated

martingale, and
∫ t

0

∑
j∈J jq(Xs−, j)ds is called the compensator.

Alternatively, we can view the process X as driven by an embedded discrete-time

Markov chain Y = (Yn)n∈N,n≥0 and a sequence of holding times {Sn}n∈N,n≥1.

Let q(x) :=
∑

j∈J q(x, j) and Y0 = x0. For n ≥ 0, let Y follow the transition

probability

Px0

[
Yn+1 = x+ j

∣∣∣Yn = x
]

= π(x, j) :=
q(x, j)

q(x)
, j ∈ J,
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and Sn+1 ∼ Exp (q(Yn)), the exponential distribution with parameter q(Yn). Then

we can define (Xt)t≥0 as Xt = Yn for
∑n

i=1 Si ≤ t <
∑n+1

i=1 Si, n ≥ 1, and Xt = Y0

for 0 ≤ t < S1.

If the finite state space S can be decomposed as a set of transient states S \ {0}
and an absorbing state {0}, then X will absorb at 0 almost surely. We can define

the absorption time TX := inf{t : Xt = 0}.
Let Pmn(t) := P [Xs+t = n|Xs = m]. The Q-matrix of X is defined as Q =

(Qmn)m,n∈S, where

• Qmn = q(m,n−m), for m 6= n, and

• Qmm = −q(m).

The Kolmogorov forward equations state that P (t) = (Pmn(t))m,n∈S, t ≥ 0, is the

solution of
dP (t)

dt
= P (t)Q, P (0) = I,

where I represents the identity matrix.

The Kolmogorov forward equations give the exact expression of many quantities

of interest, among which, the exact form of the distribution of TX can be expressed

as

P
[
TX ≤ t

∣∣∣X0 = m
]

= Pm0(t).

The reader can find more details in [13].

2.2 Epidemic models

The SIRS epidemic models are mainly used to describe the behaviours of micro-

parasite infections of humans. Throughout this thesis, we also need the definitions

of two simpler models, SIS and SIR. In this section, we will introduce all three

model structures, which are characterised by the different natural history of the

infections (in other words, the journey a typical patient goes through). Of each

model structure, we introduce the deterministic version and the stochastic version.
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These models are known as compartmental models, which means that the indi-

viduals in the population are divided into broad subgroups and the model tracks

individuals collectively.

For a comprehensive reading on epidemic modelling tailored for public health

practitioners, one can refer to [14].

2.2.1 Background

In this subsection, we will introduce the basic concepts used in compartmen-

tal epidemic models. Many of these are widely used in epidemic and ecological

modelling. Although usually considered oversimplified compared to the reality, the

constructions below allow us to carry out more complicated analytical study.

Assumption 2.1 (Target population). We assume that our target population is

• closed / without demography, i.e., there is no birth, death, migration into or

out of the population; and

• homogeneously mixing, i.e., all individuals are considered to be identical. All

individuals are assumed to be making effective contact with an arbitrary mem-

ber of the rest of the population at equal rates.

In the stochastic version, we assume the population has a finite size N ∈ N. This

allows us to construct a sequence of stochastic models indexed by the parameter N .

In the deterministic version, we assume a continuum population, with compart-

mental variables interpreted as asymptotic proportions in a finite population as

N →∞. Therefore, it makes sense to use the ‘proportion’, instead of the ‘number’

to measure the size of each subgroup. In the following, we construct the determin-

istic version as the average scenario when the population size tends to infinity.

The population is divided into some or all of the following compartments:

• Susceptible (S), which consists of individuals who are currently healthy but

can get infected;

• Infectious/Infected (I), which consists of individuals who are infected by the

disease and can transmit the infection to others;
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• Recovered/Immune (R), which consists of individuals who are immune to the

disease.

Another basic compartment studied in the literature is Pre-infectious (also called

‘Exposed’, E), consisting of individuals who are infected but not yet infectious.

Assumption 2.2 (Parameter space). Assuming the target population has all three

compartments S, I and R, the movement of a typical patient in the target population

is determined by three parameters λo, µo and γo:

• The terminologies and verdicts below follow from [15].

Each susceptible individual is expected to contract the disease at rate λoI/N ,

where I denotes the current size of infection. This rate is known as force of

infection. Parameter λo ∈ R+ is a composite measure of contact rates and

transmission probability, usually known as transmission rate. The assump-

tion where the force of infection is assumed to depend on the proportion of

infection, rather than the size of infection, is called frequency dependent trans-

mission. We note, however, that many mathematical works (e.g., [16]) refer

to the stochastic models under this assumption as ‘density dependent pro-

cess’. Frequency dependent transmission is usually considered a reasonable

assumption for vector-borne diseases in human societies.

• Each infectious individual recovers at recovery rate µo independently. Its re-

ciprocal 1/µo is the average infectious period. Without loss of generality, from

Section 2.2.3 onward, we assume µo = 1. To illustrate how the deterministic

and the stochastic models are defined, we keep µo arbitrary in Section 2.2.2.

• Each recovered individual loses immunity at the rate of waning immunity

γo ∈ [0,∞). Its reciprocal 1/γo is the average period of immunity.

As we will see in the formulation of the SIS models below, the ‘rates’ above

are understood in the context of continuous-time Markov chains when constructing

the stochastic models. The deterministic version of each model can be heuristically

interpreted as the limiting average trajectory of the stochastic version as N →∞.

The natural history of an infectious disease is reflected in different models by

the transition route of a typical individual between different compartments. The
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idea of compartmental models is versatile in application. By introducing appropri-

ate compartments and transition assumptions, we can address the heterogeneity in

sociodemographic factors, contact structures, or the complexity in the transmission

modes (e.g. vector-borne diseases) [17].

2.2.2 Without immunity: the SIS models

The SIS models assume that the state of a typical individual follows the pattern

‘Susceptible - Infectious - Susceptible’. It is often used for curable sexually trans-

mitted infections, for which the individual will gain negligible immunity following

the infection.

Indexed by the population size N , the stochastic SIS model is defined as a

continuous-time Markov chain IN valued in [N ], representing the size of the Infec-

tious compartment, with transition rates:

i→ i+ 1, at rate λo(1− i/N)i,

i→ i− 1, at rate µoi.

The deterministic SIS model can be derived as follows:

Define the proportion of the Infectious compartment in the population at time t

as y(t) :

y(t) := lim
N→∞

INt
N
.

In a small time interval [t, t+∆t], the number of individuals moving from Susceptible

to Infectious is,

SNt × per capita force of infection in [t, t+ ∆t]×∆t =
λoS

N
t I

N
t

N
∆t. (2.2)

Similarly, the number of individuals moving from Infectious to Susceptible is

µoI
N
t ∆t. Dividing by N on both sides of above and (2.2), and letting N → ∞, we

have

y(t+ ∆t)− y(t) = λo(1− y(t))y(t)∆t− µoy(t)∆t.

We can relate the difference equation above to a one-dimensional ODE by taking
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the time step ∆t→ 0:

dy

dt
= λo(1− y)y − µoy = (λo − µo)y

(
1− λo

λo − µo
y

)
, y(0) = y0 ∈ (0, 1].

This equation is known as the logistic equation and is often used to model the

density dependent population growth in ecology. It can be solved by separation of

variables. The solution is: when λo/µo 6= 1,

y(t) =
λo − µo
λo

(
1 +

λo − µo − λoy0

λoy0

e(µo−λo)t
)−1

, t ≥ 0,

and when λo/µo = 1,

y(t) = λ−1
o (t+ y−1

0 )−1, t ≥ 0.

The long-term behaviour of y(t) depends on the value of λo:

• when λo/µo ≤ 1, limt→∞ y(t) = 0, which indicates the extinction of the epi-

demic;

• when λo/µo > 1, limt→∞ y(t) = 1 − µo
λo

, which indicates the prevalence of the

epidemic. Such limit is often referred to as the endemic equilibrium.

It turns out that λo/µo = 1 is the critical value dividing a quick extinction and an

endemic for all three models in this chapter under Assumption 2.1. In the context

of epidemiology, R0 := λo/µo is called the basic reproduction number. The basic

reproduction number describes the ability of a disease to prevail and can be loosely

interpreted as the average number of cases caused by an infectious individual during

his/her entire infectious period in an entirely susceptible population [3].

2.2.3 Immunising infections: the SIR models

The SIR models assume that a typical individual follows the pattern Susceptible

- Infectious - Recovered. The individuals in the Recovered compartment either have

gained permanent immunity or have been removed from the population. Besides

‘immunising infections’ (i.e., those for which individuals gain permanent immunity),

SIR models are also used to model infections with waning immunity (e.g., influenza,
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COVID-19) during a short time period after it is introduced to the population.

The stochastic SIR model is a continuous-time Markov chain (IN , RN) valued

in [N ] × [N ], where INt and RN
t are the sizes of Infectious/Infected and Recov-

ered/Immune compartments at time t respectively, with the transition rates:

(i, r)→ (i+ 1, r), at rate λo(N − i− r)i/N,

(i, r)→ (i− 1, r + 1), at rate i.

Similar to the previous section, the deterministic SIR model is described by the

ODE system

dx

dt
= −λoyx,

dy

dt
= λoyx− y,

dz

dt
= y, (2.3)

(x(0), y(0)) = (x0, y0) ∈ [0, 1)× (0, 1], x(0) + y(0) + z(0) = 1,

where x, y, z denote respectively the proportion of the size of S, I, R compartments

in the target population.

These variables are dependent through the relation x(t) +y(t) + z(t) ≡ 1. Some-

times we find it more convenient to use (x, y)-coordinates while in other occasions

we prefer (y, z)-coordinates.

From the ratio of the first and the third equations in (2.3), we have

dx

dz
= −λox,

x(t) = x(0)e−λo(z(t)−z(0)) ≥ x(0)e−λo ,

from which we can express x(t) in terms of y(t), for all t ≥ 0.

In particular, given a solution (x(t), y(t)) to (2.3), for all t such that y(t) ≤ y0,

we can represent the value of x(t) when y(t) = a by the following mapping:

θ : (0, y0]→ [0, 1], a 7→ x ◦ (y)−1(a).
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Notice that λo ≤ 1, we have y(t) ≤ y0 for all t ≥ 0.

Also it follows that for all λo ∈ R+, limt→∞(x(t), y(t)) = (θ∗, 0) where θ∗ :=

lima↓0 θ(a) is a function of (x0, y0) and λo.

For numerical analysis, we need the following result:

Lemma 2.3 (A simple property of θ). The function θ is differentiable on (0, y0),

and can be expressed in terms of the principal branch of Lambert W function W0,

θ(y(t)) = −W0(−x0λoe
−λo(x0+y0−y(t)))

λo
. (2.4)

In particular,

θ∗(x0, y0;λo) := lim
a↓0

θ(a) = −W0(−x0λoe
−λo(x0+y0))

λo
∈ [0, 1].

Proof. From x(t) = x(0)e−λo(z(t)−z(0)), we have

−λoθ(y)e−λoθ(y) = −λox0e
−λo(x0+y0)eλoy.

The rest of the statement follows from the definition and property of Lambert W

function, which can be found in e.g. [18].

In the long term, all infectious individuals in this model will gain immunity.

Therefore, unlike in the SIS models, we need to use the final size of infection to

indicate whether the epidemic dies out quickly. The final size of infection z(∞) is

defined as

z(∞) := lim
t→∞

z(t) = 1− θ∗.

The criticality is at λo = 1 in the sense that when x0 ↑ 1, if λo < 1, then

z(∞)→ 0, whereas if λo > 1, then z(∞) > 0. In other words, an epidemic outbreak

from a single infectious individual will take place only when λo > 1.
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Figure 2.1: The value of z(∞) as a function of R0. Six lines from top to bottom:

when y0 = 1, 0.8, 0.6, 0.4, 0.2, 0.

2.2.4 Waning immunity: the SIRS models

The SIRS models assume that a typical individual moves according to the pattern

‘Susceptible - Infectious - Recovered - Susceptible’. In contrast to the SIR model,

the SIRS model assumes that immune individuals eventually lose their immunity

and become susceptible again. A wide range of infections belong to this category,

especially when being observed over a long time period.

With the same notations for the SIR model, the stochastic SIRS model is for-

mulated as a two-dimensional continuous-time Markov chain (IN , RN), with the

transition rates:

(i, r)→ (i+ 1, r), at rate λo(N − i− r)i/N,

(i, r)→ (i, r − 1), at rate γor, (2.5)

(i, r)→ (i− 1, r + 1), at rate i.
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The deterministic SIRS model is defined as the ODE system

dx

dt
= γoz − λo(1− y − z)y,

dy

dt
= λo(1− y − z)y − y,

dz

dt
= y − γoz, (2.6)

(y(0), z(0)) ∈ (0, 1]× [0, 1), x(0) + y(0) + z(0) = 1.

The criticality of (2.6) is at λo = 1 in the sense illustrated by the following theorem.

Theorem 2.4. Consider the ODE system (2.6).

For λo ≤ 1, the disease-free equilibrium (1, 0, 0) is globally asymptotically stable.

For λo > 1, the endemic equilibrium

(x∗, y∗, z∗) :=
(
λ−1
o , (1− λ−1

o )(γo + 1)−1γo, (1− λ−1
o )(γo + 1)−1

)
is globally asymptotically stable.

Proof. We will prove the theorem using the (x, y)-coordinate of the system (2.6).

The construction of Lyapunov functions used below follows [19]. The proof

follows from the global LaSalle’s principle (Theorem 5.25, p.204, [20]).

The domain {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 1} is an invariant set. For the case

λo ≤ 1, we choose the Lyapunov function to be

V (x, y) = −(1− x− y)− log x.

For the case λo > 1, we choose the Lyapunov function to be

V̂ (x, y) := x− x∗ −
(
x∗ +

γo
λo

)
log

x+ γo
λo

x∗ + γo
λo

+ y − y∗ − y∗ log
y

y∗
.

Both V and V̂ are smooth and positive definite on their domain, and their global

minimums satisfy

inf
(x,y)

V (x, y) = V (1, 0) = inf
(x,y)

V̂ (x, y) = V̂ (x∗, y∗) = 0.
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Next we check that

V ′(x, y) :=
dV (x(t), y(t))

dt
= −(1− λo)y − γo(1− x− y)(x−1 − 1) ≤ 0,

and {
(x, y) : V ′(x, y) = 0

}
= (1, 0).

Similarly,

V̂ ′(x, y) :=
dV̂ (x(t), y(t))

dt
=
dx

dt

(
1−

x∗ + γo
λo

x+ γo
λo

)
+
dy

dt

(
1− y∗

y

)
=− γo(λo + γo)

(x+ γo
λo

)(1 + γo)
(x− x∗)2 ≤ 0.

The set

SV̂ :=
{

(x, y) : V̂ ′(x, y) = 0
}

= {(x, y) : x = x∗},

contains no other trajectory except for the trivial trajectory (x(t), y(t)) ≡ (x∗, y∗),

since dx/dt 6= 0 for any point (x, y) 6= (x∗, y∗) in SV̂ .

Thus by the global LaSalle’s principle (Theorem 5.25, p.204, [20]), the system is

globally asymptotically stable.

2.2.5 Deterministic models vs stochastic models

In the deterministic models, we assume that the randomness of the real world

can be ‘averaged out’, in order to reveal the underlying disease dynamics. The

stochastic models, however, aim to reflect this randomness.

In general, there are three ways to incorporate randomness into epidemic models

[15]:

• adding random terms to population variables,

• defining parameters as random, and

• explicitly modelling individual-level events as random.

The third method is more popular and is the idea behind the stochastic epidemic
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models we introduced in the last three subsections.

The deterministic and stochastic models introduced above model the persistence

behaviour of epidemics very differently. This is shown in two quantities that attract

a lot of mathematical attention: the endemic state and the duration of the epidemic.

An epidemic modelled as a deterministic model goes extinct for all SIR models and

for SIS and SIRS models when R0 ≤ 1. On the other hand, for SIS and SIRS models

when R0 > 1, the epidemic prevails with a constant proportion of the population

being infected. In other words, it reaches an endemic equilibrium. In this sense, it

is difficult to define the duration of an epidemic in the deterministic model, and we

shall turn to the stochastic version for help.

The stochastic models allow us to model the duration of the epidemics as hitting

times of continuous-time Markov chains. This is shown to be effective in interpreting

real-life data; for example, Broadfoot [21] studies the single-farm and inter-farm

persistence of foot-and-mouth disease in livestocks, using both homogeneous mixing

SIR models and SIR models on various graphs.

Since our models all have finite state spaces, the extinction will happen in finite

time almost surely. To define a non-trivial endemic state for the stochastic models,

the concept of quasi-stationary distribution is introduced. The quasi-stationary dis-

tribution of the stochastic SIS model is defined as the stationary distribution of INt

conditioned on that the extinction has not occurred, and was first investigated in

1960s by [22]. It can be obtained through an iterative scheme (See [4]).

The stochastic models and their deterministic counterparts are related in that:

stochastic epidemic models can be well-approximated by their respective determin-

istic counterpart up to any constant time, in a sense that will be introduced in

Section 3.1.1.

2.2.6 Near-critical behaviours

In previous sections, we identified the criticality of all three epidemic models and

observed that the epidemic tends to die out when the transmission rate λo is below

the criticality λo = 1, and tends to spread when λo is above the criticality. We refer
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to this phenomenon as ‘phase transition’.

As pointed out by [23], one of the arising challenges for stochastic epidemic mod-

els is the study of near-critical behaviours. They argued via examples that many

epidemics of interest are neither strongly supercritical nor strongly subcritical, espe-

cially when the epidemic is still emerging, or is close to elimination under eradication

effort. For example, a pathogen strain may switch from subcritical to supercritical,

due to genetic or environmental change, and thus causes an outbreak. Conversely,

a vaccination programme may push the transmissibility of a pathogen strain in the

opposite direction.

By defining the parameters as functions of population size N , we are able to

describe the near-critical behaviours with precision. We say the model is in near-

critical regime if λo(N)→ 1 as N →∞. We say the model is subcritical if λo(N) < 1

for all N ∈ N and is strongly subcritical if limN→∞ λo(N) < 1.

It has been found in both stochastic SIS and SIR models that phase transition

can be observed in a subset of the near-critical regime, which is often referred to as

‘critical window’, ‘transition region’ or ‘critical regime’. In this thesis, we adopt the

name critical parameter regime.

For the stochastic SIS model, N̊asell [4] observes a phase transition in the quasi-

stationary distribution across the near-critical regime at λo = 1 + cN−1/2, c > 0.

From a diffusion approximation point of view, the same critical regime scaling

|λo − 1| � N−1/2 is identified by Dolgoarshinnykh and Lalley [24] and Foxall [6].

Though sharing the same scaling with [4], the authors of [24] do not believe that

there is a direct link between the two phenomena. From the perspective of extinc-

tion times, Doering, Sargsyan, and Sander [5] show that the Fokker-Planck equation

provides an estimation with O(1)-error to the expected extinction time of the su-

percritical SIS model, applicable only when λo = 1 + O(N−1/3−ε) for some ε > 0.

Later, Foxall [6] proves that for λo = 1 + O(N−1/2), the extinction time of an SIS

model converges in distribution to the hitting time to 0 of its limit diffusion.

Dolgoarshinnykh and Lalley [24] also identify the critical parameter regime as

|λo − 1| � N−1/3 for the SIR model, using the same diffusion approach as the one

they used for SIS models. However, they didn’t give a rigorous proof of their state-

ment.
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2.3 Objectives

There is no known result on the near-critical behaviours of the stochastic SIRS

models. In this thesis, we study this problem from the perspective of extinction

time of epidemics.

The extinction times of the three compartmental epidemic models above can all

be defined as

TNo := inf{t : INt = 0}.

The extinction time provides valuable perspective to disease control and pre-

vention policy and thus has received constant research interest. In mathematical

literature, we have a lot of results regarding the stochastic SIS [2,3,6,8,25] and SIR

models [1].

In particular, we would like to know how the distribution of TNo scales with

N, (λo, γo) and (I0, R0). That is, supposing that parameters (λo, γo) and initial states

(I0, R0) are all given functions of N , we would like to find functions f1(N), f2(N)

such that the distribution of TNo −f1(N)
f2(N)

has a non-degenerate limit as N →∞.

Throughout the thesis, we assume λo, γo are finite as N →∞.

Estimating the duration TNo as a function of basic reproduction rate R0 = λo,

immunity rate γo and population size N can help us understand the disease and

suggest the control measures. For example, measles is observed to be prone to local

extinction in small reasonably isolated communities, with a population of size N

below some critical size. Empirical data suggests that the estimated mean period

between measles outbreaks is of order N−
1
2 [26, 27].

The exact expression of the distribution of the extinction time can be analysed

using the corresponding Kolmogorov forward equations. However, the solution to

the Kolmogorov forward equations can be algebraically cumbersome, and is not a

straightforward indicator of how the extinction time is affected by various parame-

ters. The available numerical simulation methods are also time-consuming when the

target population is large. Therefore, many researchers have attempted to provide

asymptotic results concerning the mean and distribution of the extinction time.
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2.3.1 Literature review

There is few result on the extinction time of stochastic SIRS models. As far as

we are aware, the only available result appears in [28], where it was shown that,

given the strongly supercritcal case (R0 > 1) and IN0 , R
N
0 � N , the extinction time

is of order ecN for some constant c > 0.

Nevertheless, the available results on the stochastic SIS and SIR models is a

good indicator of what we shall expect.

The asymptotic distribution of the extinction time of the stochastic SIR model

is obtained by [1] very early on. On the other hand, studies on SIS extinction time

were mainly focusing on expectation (See [2–5]), until recent years when progress

was made in the analogous results of the asymptotic distribution by [8].

Historically, for the strongly subcritical case (R0 < 1), Kryscio and Lefévre [2]

attempt to derive the asymptotic distribution of the extinction time with ‘large’ IN0 ,

but obtain an erroneous result as pointed out by [5]. We believe the error occurs

because they directly quote the result of birth-death chain coupling of the SIR model

in [1] when the method is not suitable for their assumptions. Andersson and Djehiche

[29] show that with IN0 being a constant, the SIS extinction time a.s. converges to

the extinction time of a linear birth-death chain by suitable couplings. N̊asell [4]

approaches this problem through the study of quasi-stationary distribution, and

obtains the expected extinction time for both IN0 = 1 and IN0 at the quasi-stationary

equilibrium.

For the strongly supercritical case R0 > 1, Andersson and Djehiche [29] prove

that, if IN0 � N , then the extinction time weakly converges to an exponential

distribution with an expectation of the order N−1/2eN(log R0−1+R−1
0 ). Later, Doering,

Sargsyan and Sander [5] derive the same leading term for the expectation of the

extinction time with the same initial state. They also show that the remaining term

is of the order N−3/2eN(log R0−1+R−1
0 ).

The extinction times of models with non-classic assumptions have also been

investigated. Here are a few examples: N̊asell [30] and Kamenev and Meerson [31]

both attempt to remove the ‘closed population’ assumption by studying the SIS

and SIR model with immigration and death rates respectively. Both models assume

that the total populations are in steady states. Lopes and Luczak [32] extend the

27



methodology of [8] to a two-dimensional classic SIS model. Ball, Britton and Neal

[33] replace the Markovian assumption of the recovery of the classic SIS model to

be any i.i.d. distributions, and study the expected extinction time. There are

also various studies on heterogeneously-mixing models where spatial structure is

introduced to the population, e.g. [33, 34].

2.3.2 Visualisation of assumptions

To better illustrate the various combinations of the scaling of the parameters

and initial states, we introduce the notation 〈·〉.

Definition 2.5. The mapping 〈·〉 is defined as follows:

For any function f = f(N), 〈f〉 = a ∈ R if and only if |f(N)| � Na. If |f(N)|
tends to infinity faster then any polynomials, we say 〈f〉 = ∞; and if |f(N)| tends

to infinity slower then any polynomials, we say 〈f〉 = 0+ and 〈1/f〉 = 0−.

In this sense, we have the property that for any functions f, g,

|f(N)g(N)| → 0 ⇐⇒ 〈f〉+ 〈g〉 < 0 or 〈f〉+ 〈g〉 = 0− .

Using this definition, we can describe the initial states by (〈I0〉, 〈R0〉) ∈ [0, 1]2

and the parameter regime by (−〈1 − λo〉,−〈γo〉) ∈ [0,∞]2. One of the advantages

of this set-up is that it can be effectively visualised through the diagrams.

For example, the sequence of stochastic SIRS models {(IN , RN)}N∈N with con-

stant parameters (λo, γo) and I0, R0 � N belongs to a family of model sequences.

This family can be represented by a vector (A1, A2) = (−〈1−λo〉,−〈γo〉, 〈I0〉, 〈R0〉) ∈
R4, where A1 = (0, 0) and A2 = (1, 1), and can be visualised as in Figure 2.2.
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Figure 2.2: An example of our visualisation of assumptions
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Chapter 3

Main techniques

In this chapter, we introduce the techniques used in this thesis. More specifi-

cally, the ODE approximation introduced in Section 3.1.1 is used in Chapter 4 and

Chapter 6, the diffusion approximation and the theory of bi-continuous semigroups

are used in Chapter 5, and the order-preserving coupling for birth-death chains is

used in Chapter 4.

3.1 Sample path approximation

In the early days, a lot of works chose to study the extinction time by approx-

imating the solution of Kolmogorov forward equations. Recently, more works have

adopted the approach of sample path approximation. Sample path approximation

seems to be the most fruitful approach so far, and has the advantage of providing

an understanding of the entire trajectory of the epidemic.

In this section, we introduce two types of approximation: comparison to the

solutions of ODEs and comparison to a diffusion limit.

Assumption 3.1 (Continuous-time Markov chains in finite population models).

Consider a sequence of Markov chains indexed by N , valued in finite state space

SN ⊂ Rd, and is denoted as {(XN
t )t≥0}N∈N. For each N , XN is uniquely defined by

its initial state XN
0 = xN0 → x0 as N → ∞, and transition rates qN(x, j), j ∈ JN ,

where JN is the set of possible jumps in column vectors. We assume the number of
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elements in JN is finite and independent of N , and

j̄N := max
{
|j| : j ∈ JN

}
→ 0, N →∞. (3.1)

Assume that the transition rates qN(x, j) satisfy the following: for each x ∈ SN ,

bN(x) :=
∑
j∈JN

jqN(x, j),
∣∣bN(x)

∣∣ <∞,
aN(x) :=

∑
j∈JN

jjᵀqN(x, j),
∥∥aN(x)

∥∥ <∞, (3.2)

and ucc− lim aN(x)→ a(x), ucc− lim bN(x)→ b,

where a ∈ C(Rd,Sd), and b ∈ C(Rd,Rd) is globally Lipschitz with Lipschitz constant

lb, |·| denotes the Euclidean norm and ‖·‖ denotes the matrix norm induced by |·|,
and ‘ucc’ represents ‘uniformly on compacts’.

3.1.1 Comparison to ODEs

As in (2.1), we can decompose XN
t as the sum of the compensator∫ t

0

bN(XN
s−)ds,

and the compensated martingale MN
t with zero mean.

The following proposition, which modifies Proposition 8.8, [12], shows that when

the diffusivity of XN , denoted as aN in (3.2), is small in a suitable sense, MN
t can

be made arbitrarily small with high probability as N →∞.

Proposition 3.2. Consider the sequence of Markov chains {XN}N∈N as defined in

Assumption 3.1. Denote the i-th component of vector j as ji. For each given N ,

t0 > 0 and ā = ā(N) > 0, let

τ t0(i, ā) := inf

{
t :

∫ t∧t0

0

∑
j∈JN

qN(XN
s−, j)j

2
i ds > ā(N)

}
, i = 1, 2, · · · , d, (3.3)
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then for any δ = δ(N) < ā/maxj∈JN |ji|,

P

[
sup

s≤t0∧τ t0 (i,ā)

∣∣〈ei,MN
s

〉∣∣ ≥ δ

]
≤ 2 exp

{
− δ

2

4ā

}
, i = 1, 2, · · · , d.

Proof. For any θ ∈ Rd, Define h(x; θ) := e〈θ,x〉 − 〈θ, x〉 − 1 and

KN
t (θ) := exp

〈θ,MN
t 〉 −

∫ t

0

∑
j∈JN

qN(XN
s−, j)h(j; θ)ds

. (3.4)

It is easy to see that
(
KN
t (θ)

)
t≥0

is a martingale with mean 1, since

KN
t (θ) = exp

〈θ,XN
t 〉 −

∫ t

0

∑
j∈JN

qN
(
XN
s−, j

) (
e〈θ,j〉 − 1

)
ds

,
=KN

0 (θ)−
∫ t

0

KN
s−(θ)

∑
j∈JN

(
e〈θ,j〉 − 1

)
υ(ds, j)

+

∫ t

0

exp

−
∫ s

0

∑
j∈JN

qN
(
XN
u−, j

) (
e〈θ,j〉 − 1

)
du

 ∑
j∈JN

(
e〈θ,X

N
s−+j〉 − e〈θ,XN

s−〉
)
µ(ds, j)

=1 +

∫ t

0

KN
s−(θ)

∑
j∈JN

(
e〈θ,j〉 − 1

)
(µ− υ)(ds, j),

where the definition of µ, υ and the martingale property follows from our discussion

in Section 2.1, and KN(θ) is bounded.

For any x, θ ∈ Rd,

h(x; θ) ≤ e|〈θ,x〉| − | 〈θ, x〉 | − 1 ≤ 1

2
| 〈θ, x〉 |2e|〈θ,x〉|. (3.5)

Conditioned on the event {t < τ t0(i, ā)} and letting θ = cei for any c = c(N) > 0,

we have∫ t∧t0

0

∑
j∈JN

qN(XN
s−, j)h(j;±cei)ds ≤

1

2
c2 exp

{
cmax
j∈JN
|ji|
}
ā, i = 1, 2, · · · , d. (3.6)
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Now for t > 0, any A = A(N) > 0 and B = B(N) > 0, let

τM(θ, B) := inf{t :
〈
θ,MN

t

〉
≥ B}.

Since h(j; θ) is non-negative,

P

τM(θ, B) ≤ t0 ∧ τ t0(i, ā),

∫ τM (θ,B)∧t0

0

∑
j∈JN

qN(XN
s−, j)h(j; θ)ds < A


≤P

 sup
s≤t0∧τ t0 (i,ā)

〈
θ,MN

s

〉
≥ B,

∫ τM (θ,B)∧t0

0

∑
j∈JN

qN(XN
s−, j)h(j; θ)ds < A


≤P

[
KN
τM (θ,B)∧t0(θ) ≥ eB−A

]
≤eA−BE

[
KN
τM (θ,B)∧t0(θ)

]
= eA−B,

where the last equality follows from Doob’s optional sampling theorem.

Let

θ = ± δ

2ā
ei.

It follows from (3.6) that on the event {t < τ t0(i, ā)},∫ t∧t0

0

∑
j∈JN

qN(XN
s−, j)h(j;± δ

2ā
ei)ds ≤

δ2

4ā
, i = 1, 2, · · · , d.

We then have

P

[
sup

s≤t0∧τ t0 (i,ā)

∣∣〈ei,MN
s

〉∣∣ ≥ δ

]

≤P
[
τM

(
δ

2ā
ei,

δ2

2ā

)
≤ t0 ∧ τ t0(i, ā)

]
+ P

[
τM

(
− δ

2ā
ei,

δ2

2ā

)
≤ t0 ∧ τ t0(i, ā)

]
≤2 exp

{
δ2

4ā
− δ2

2ā

}
= 2 exp

{
− δ

2

4ā

}
,

and the statement follows.

Proposition 3.2 is helpful when we approximate continuous-time Markov chains

with the solutions of ODEs. In particular, when the ODE is the mean-field differ-
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ential equation of the continuous-time Markov chain, the approximation is known

as the law of large numbers, as found in extensive literature, e.g., [16], [12].

The idea is the following:

Recall the drift of XN and its limit b defined in (3.2). Let x(t) be the unique

solution to the ODE

dx = b(x)dt, x(0) = x0. (3.7)

The existence and uniqueness of x(t) defined for all t ∈ [0,∞) is guaranteed by b

being continuous and globally Lipschitz. The discrepancy between XN and the limit

function x can be measured by the largest deviation between the two on a compact

time interval, i.e., sups∈[0,t]

∣∣XN
s − x(s)

∣∣.
To bound the deviation stated above, we need the following Gronwall’s inequality.

Theorem 3.3 (Gronwall’s inequality, p.498, [16]). Let ε ≥ 0, and f be a Borel

measurable function that is bounded on compact intervals, and satisfies for some

M > 0,

0 ≤ f(t) ≤ ε+M

∫ t

0

f(s)ds, t ≥ 0,

then

f(t) ≤ εeMt, t ≥ 0.

From (2.1) and (3.7), we have that the following holds pathwise,

∣∣XN
t − x(t)

∣∣ ≤∣∣XN
0 − x(0)

∣∣+

∫ t

0

∣∣b(XN
s−)− b(x(s))

∣∣ds
+

∫ t

0

∣∣∣∣∣∣
∑
j∈JN

jqN(XN
s−, j)− b(XN

s−)

∣∣∣∣∣∣ds+ |MN
t |,
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and after taking supremum over a compact time interval,

sup
s∈[0,t]

∣∣XN
s − x(s)

∣∣ ≤∣∣XN
0 − x(0)

∣∣+

∫ t

0

lb sup
u∈[0,s]

∣∣XN
u − x(u)

∣∣ds
+

∫ t

0

∣∣bN(XN
s−)− b(XN

s−)
∣∣ds+ sup

s∈[0,t]

∣∣MN
s

∣∣.
Then we apply Gronwall’s inequality pathwise and obtain

sup
s∈[0,t]

∣∣XN
s − x(s)

∣∣ ≤(∣∣XN
0 − x(0)

∣∣+

∫ t

0

∣∣bN(XN
s−)− b(XN

s−)
∣∣ds+ sup

s∈[0,t]

∣∣MN
s

∣∣) elbt
The first two terms in the parentheses on the RHS above can be made arbitrarily

small due to Assumption 3.1 and the third term can be bounded using Proposi-

tion 3.2.

In Chapter 5, we apply a modified version of this approximation.

3.1.2 Comparison to diffusions

Definition 3.4 (Martingale problem). Consider a linear operator A : Dom (A) 7→
C(Rd) defined as

Af(x) :=
1

2

∑
1≤m,n≤d

amn(x)
∂2f

∂xm∂xn
+
∑

1≤m≤d

bm(x)
∂f

∂xm
, (3.8)

where the covariance matrix a : Rd → Sd and the drift vector b : Rd → Rd are

locally bounded measurable functions. For D ⊂ Dom (A), a Rd-valued process X

with càdlàg paths (resp. the corresponding probability measure on the Skorokhod

space) solves the (A, D)-martingale problem with the initial state x if X0 = x -a.s.

and f(Xt)− f(X0)−
∫ t

0
Af(Xs)ds is a martingale for all f ∈ D.

Definition 3.5 (Well-posed). For D ⊂ Dom (A), a (A, D)-martingale problem is

said to be well-posed if for any initial state x, the problem has a unique solution X.

Definition 3.6 (Stopped martingale problem). Let Xt be a càdlàg process with
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X0 = x ∈ U . For an open subset U ⊂ Rd, define the exit time of Xt from U as

τxU := inf{t ≥ 0 : Xt /∈ U}.

We say that X solves the stopped (A, D)-martingale problem with initial state x if

Xt = Xt∧τxU -a.s. and

f(Xt)−
∫ t∧τxU

0

Af(Xs)ds

is a martingale for all f ∈ D.

Assuming we have a diffusion limit candidate that is the solution of a well-posed

martingale problem, then we can proceed to discuss the weak convergence of the

sequence {XN}N∈N.

The following theorem provides a sufficient condition of the existence and unique-

ness of a (A, C∞c (Rd))-martingale problem.

Theorem 3.7 (Theorem 10.2.2, [35]). Let a : Rd → Sd and b : Rd → Rd be locally

bounded measurable functions in (3.8). If a is positive definite, i.e.,

inf
|θ|=1

θᵀa(x)θ > 0, ∀x ∈ Rd,

and if there exists C <∞ such that

max{‖a(x)‖, 〈x, b(x)〉} ≤ C(1 + |x|2), x ∈ Rd,

then the (A, C∞c (Rd))-martingale problem is well-posed.

The stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0,

satisfying a(x) = σ(x)σᵀ(x) has a solution unique in law if and only if the corre-

sponding (A, C∞c (Rd))-martingale problem is well-posed.

If a is not strictly positive definite, then the martingale problem is called degen-

erate, whose well-posedness needs to be investigated on a case-by-case basis.
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In the following, we will present a theorem tailored to the type of continuous-

time Markov chains defined in Section 3.1, which is a direct corollary of Theorem

4.1, p.354, [16].

Theorem 3.8. Consider operator A defined in (3.8). Let a ∈ C(Rd,Sd), b ∈
C(Rd,Rd). Suppose the (A, C∞c (Rd))-martingale problem is well-posed. For N ≥ 1,

let XN and BN be processes with sample paths in D([0,∞),Rd), and let AN be a sym-

metric d×d matrix-valued process such that (AN)mn has sample paths in D([0,∞),R)

and AN(t)− AN(s) ∈ Sd for t > s ≥ 0. Set FN
t = σ(XN

s , BN(s), AN(s) : s ≤ t).

Let τNr := inf{t : |XN
t | ≥ r or |XN

t−| ≥ r}, and suppose that MN(t) := XN
t −

BN(t), and (MN)m(MN)n − (AN)mn, 1 ≤ m,n ≤ d, are FN
t -local martingales, and

that for each r > 0, T > 0,

lim
N→∞

E

[
sup

t≤T∧τNr

∣∣∣XN
t −XN

t−

∣∣∣2] = 0,

lim
N→∞

E

[
sup

t≤T∧τNr

∣∣∣BN(t)−BN(t−)
∣∣∣2] = 0,

lim
N→∞

E

[
sup

t≤T∧τNr

∣∣∣(AN(t))mn − (AN(t−))mn

∣∣∣] = 0, (3.9)

sup
t≤T∧τNr

∣∣∣(BN(t))m −
∫ t

0

bm(XN
s )ds

∣∣∣ P−→ 0,

sup
t≤T∧τNr

∣∣∣(AN(t))mn −
∫ t

0

amn(XN
s )ds

∣∣∣ P−→ 0,

and limN→∞X
N
0 = x0.

Then {XN}N∈N converges in distribution to the solution of the (A, C∞c (Rd))-

martingale problem with initial state x0.

The following is a corollary of Theorem 3.8 when applied to the sequence of

Markov chains {XN}N∈N defined in Assumption 3.1.

Theorem 3.9 (Weak convergence to the diffusion limit). Consider a sequence of

continuous-time Markov chains {XN}N∈N defined as in Assumption 3.1. Let opera-

tor A be defined as (3.8) and let the (A, C∞c (Rd))-martingale problem be well-posed.
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Then {XN}N∈N weakly converges to the solution of the (A, C∞c (Rd))-martingale

problem with initial state x0.

Proof. Let

BN(t) =

∫ t

0

∑
j∈JN

jqN(XN
s−, j)ds =

∫ t

0

bN(XN
s−)ds,

and

AN(t) =

∫ t

0

∑
j∈JN

jjᵀqN(XN
s−, j)ds.

Recall the decomposition (2.1) of XN , we have MN(t) := XN
t − BN(t) = MN

t is a

martingale, and

E
[
(MN

t )m(MN
t )n − (MN

s )m(MN
s )n

∣∣∣Fs

]
= E

∫ t

s

∑
j∈JN

jm(µ− υ)(dr, j)

∫ t

s

∑
k∈JN

kn(µ− υ)(dr, k)
∣∣∣Fs


= E

∫ t

s

∑
j,k∈JN

jmkn d
[
(µ− υ)([s, t], j), (µ− υ)([s, t], k)

]∣∣∣Fs


= E

∫ t

s

∑
j∈JN

jmjnµ(dr, j)
∣∣∣Fs

 = E

∫ t

s

∑
j∈JN

jmjnυ(dr, j)
∣∣∣Fs


= E

[
(AN(t)− AN(s))mn

∣∣∣Fs

]
,

which shows that MN
t (MN

t )ᵀ − AN(t) is also a martingale.

Assumptions (3.9) can be easily verified: the first line follows from (3.1), the

second and third lines follow from the definition of AN , BN , and the fourth and fifth

lines follow from our assumption (3.2).

3.2 Stochastic dominance and coupling

In this section, we introduce the basic definitions and facts that allow us to

compare two Markov processes.

Definition 3.10 (Partially ordered set and increasing set). Let (S,�) be a partially
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ordered set, that is, the binary relation � satisfies for any a, b, c ∈ S,

1. a � a;

2. If a � b and b � a then a = b;

3. If a � b and b � c then a � c.

A subset F ⊂ S is called an increasing set if x � y, x ∈ F implies y ∈ F .

Definition 3.11 (Stochastic dominance). Let (S,�) be a partially ordered set.

Probability measures P and P′ are defined on S. Then P is said to be stochastically

dominated by P′ if for all increasing sets F ⊂ S, P[F ] ≤ P′[F ].

Consider Markov processes X, Y valued in S with transition probabilities

pXt (x,A) := P
[
Xs+t ∈ A

∣∣∣Xs = x
]
, pYt (y, A) := P

[
Ys+t ∈ A

∣∣∣Ys = y
]
.

Process X is said to be stochastically dominated by Y if probability measure pXt (x, ·)
is stochastically dominated by pYt (y, ·) for all x � y, t ≥ 0.

Definition 3.12 (Order-preserving coupling). Let stochastic processes X, Y each

take values in a countable partially ordered set (S,�). An order-preserving coupling

is a stochastic process (X ′, Y ′) valued in S×S, whose marginals are distributed the

same as the original processes X, Y , and which satisfies that, for given constant

initial states X ′0 � Y ′0 , the following condition holds:

P [X ′t � Y ′t , ∀t ≥ 0] = 1.

The following theorem establishes the relationship between stochastic dominance

and order-preserving coupling in Markov chains.

Theorem 3.13 (Existence of Markov order-preserving coupling, Theorem 1, [36]).

Let X, Y be non-explosive continuous-time Markov chains where X is stochasti-

cally dominated by Y . Then there exists a non-explosive order-preserving coupling

(X ′, Y ′) which is a Markov chain.

We can explicitly construct an order-preseving coupling between simple Markov

chains, e.g. birth-death chains.
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Example 3.14 (Order-preserving coupling for birth-death chains). Consider two

birth-death chains Z1, Z2, both defined on a state space N. For i = 1, 2, Zi has

transition rates  z → z + 1, at rate bi(z),

z → z − 1, at rate di(z),

where b1(z) ≥ b2(z), d1(z) ≤ d2(z) for all z ∈ N, and their initial states satisfy

Z1
0 ≥ Z2

0 . The order-preserving coupling (Ẑ1, Ẑ2) is defined on N× N, satisfying:

At state (z, z), (Ẑ1, Ẑ2) has transition rates

(z, z)→ (z + 1, z), at rate b1(z)− b2(z),

(z, z)→ (z + 1, z + 1), at rate b2(z),

(z, z)→ (z − 1, z − 1), at rate d1(z),

(z, z)→ (z, z − 1), at rate d2(z)− d1(z),

and at state (z1, z2), z1 6= z2, Ẑ1 and Ẑ2 jump independently. Since Ẑ1 and Ẑ2 will

a.s. not jump at the same time, their paths will a.s. not cross each other when

|z1 − z2| = 1.

The intuition as to why this coupling is order-preserving is that, Ẑ1, with higher

birth rates and lower death rates, will stay above Ẑ2 until they meet, in which case,

they will jump together until either Ẑ1 moves upward, or Ẑ2 moves downward.

Lastly, we state the following theorem which is useful for comparing diffusions.

Theorem 3.15 (Comparison theorem, Theorem 3.7, p.394, [37]). For i = 1, 2,

let (X i
t)t≥0 be a diffusion valued in R, with drift coefficient bi(t, x) and diffusion

coefficient σ(t, x). Let X1 and X2 be defined with respect to the same Brownian

motion. If

• b1, b2 are bounded Borel functions such that b1 ≥ b2 everywhere and at least

one of them satisfies a Lipschitz condition,

• (σ(t, x)− σ(t, y))2 ≤ C|x− y| for some positive constant C, and

• X1
0 ≥ X2

0 -a.s.,
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then

P
[
X1
t ≥ X2

t , ∀t ≥ 0
]

= 1.

3.3 Bi-continuous semigroups

In this section, we outline the theory of bi-continuous semigroups following [7].

Firstly, we need to introduce a topology coarser than the topology induced by

the uniform norm ‖·‖.

Definition 3.16 (Seminorm). A seminorm on Φ is a map p : Φ → R such that

for all f, g ∈ Φ: (1) p(f) ≥ 0; (2) p(αf) = |α|p(f) for every scalar α; and (3)

p(f + g) ≤ p(f) + p(g).

Definition 3.17 (Locally convex topology). Let Φ be a vector space and P :=

{pq}q∈Q be a family of seminorms on Φ. The locally convex topology generated by

P is the coarsest topology ρ on Φ s.t. each pq is continuous.

Assumption 3.18 (Assumptions 1.1, [7]). Let (Φ, ‖·‖) be a Banach space with

topological dual Φ′, and let ρ be a locally convex topology on Φ with the following

properties:

1. The space (Φ, ρ) is sequentially complete on ‖·‖-bounded sets, i.e., every ‖·‖-
bounded ρ-Cauchy sequence converges in (Φ, ρ).

2. The topology ρ is Hausdorff and coarser than the ‖·‖-topology.

3. The space (Φ, ρ)′ is norming for (Φ, ‖·‖), i.e., for all x ∈ Φ,

‖x‖ = sup{|f(x)| : f ∈ (Φ, ρ)′, ‖f‖(Φ,‖·‖)′ ≤ 1},

where ‖·‖(Φ,‖·‖)′ denotes the operator norm.

On the Banach space (Φ, ‖·‖), with additional topology ρ induced by a family of

seminorms {pq}q∈Q, we can define the bi-continuous semigroup and related concepts.

Most of the definitions in the theory of bi-continuous semigroups mirror the ones in

the theory of strong continuous semigroups. Since we aim to present an application
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of the theory, we will only list below the definitions and theorems that are directly

relevant to our proofs.

Definition 3.19 (Bi-equicontinuity). A semigroup (Rt)t≥0 is called (globally) bi-

equicontinuous if

ρ− lim
n→∞

Rtfn → 0

holds, for any uniformly bounded sequence {fn}n∈N ρ-converging to 0 uniformly

w.r.t. t ∈ [0,∞).

It is called locally bi-equicontinuous if the convergence is uniform w.r.t. t in

compact intervals.

Remark 3.20. The following condition, known as locally equicontinuous, implies

local bi-equicontinuity:

For each q ∈ Q, we can find q̃ ∈ Q independent of t, such that for all f ∈ Φ,

pq(Rtf) ≤ pq̃(f).

The converse, however, is not true. Consider the family of operators defined in

(5.20), we can prove by contradiction that (St)t≥0 is not locally equicontinuous w.r.t.

(B̂C(R2
+), ucc).

Assuming for every compact set K ⊂ R2
+, we can find compact set K0 ⊂ R2

+

such that for all f ∈ B̂C(R2
+),

‖Stf‖K ≤ ‖f‖K0
,

then it must be true that for all h ∈ B̂C(R2
+) satisfying h = 0 on K0, and strictly

positive elsewhere,

‖Sth‖K ≤ ‖h‖K0
= 0.

The LHS of the inequality above is strictly positive, so there is a contradiction.

In order to use the local equicontinuity condition, one may want to work with a

finer topology.

Definition 3.21 (Bi-continuous semigroup). A semigroup (Rt)t≥0 is said to be bi-

continuous w.r.t. ρ-topology if
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• R0 = I, RsRt = Rs+t.

• Rt is exponentially bounded w.r.t. to the classic operator norm on (Φ, ‖·‖).

• (Rt)t≥0 is strongly bi-continuous, i.e.,

ρ− lim
t↓0

(Rt − I)f = 0, f ∈ Φ.

• (Rt)t≥0 is locally bi-equicontinuous.

Definition 3.22 (Bi-dense). A subset of S ⊂ Φ is called bi-dense if for every f ∈ Φ

there exists a ‖·‖-bounded sequence {fn}n∈N ⊂ S which ρ-converges to f .

Definition 3.23 (Generator and domain). Let (Rt)t≥0 be a bi-continuous semigroup

on Φ. The generator (A,Dom (A)) is defined as

Af := ρ− lim
t↓0

Rtf − f
t

,

for f ∈ Dom (A), where Dom (A) is the collection of f ∈ Φ such that

sup
t∈(0,1]

∥∥∥∥Rtf − f
t

∥∥∥∥ <∞, ρ− lim
t↓0

Rtf − f
t

∈ Φ.

Definition 3.24 (Bi-closure). Consider the operator (A,Dom (A)). For any {fn}n∈N ⊂
Dom (A) such that {fn}n∈N and {Afn}n∈N are ‖·‖-bounded, and have respective lim-

its f = ρ− limn→∞ fn and y = ρ− limn→∞Afn. If f ∈ Dom (A) and Af = y, then

we say (A,Dom (A)) is bi-closed.

Proposition 3.25 (Proposition 1.18 (d), [7]). Let (A,Dom (A)) be the generator of

a bi–continuous semigroup (Rt)t≥0 on Φ. Then the subspace Φ0 := Dom (A)
‖·‖
⊂ Φ

is (Rt)t≥0–invariant and Rt|Φ0 is the strongly continuous semigroup on Φ0 generated

by A|Φ0 (A|Φ0 is known as the part of A in Φ0), where

A|Φ0f := Af for all f ∈ Dom (A|Φ0) ,

and

Dom (A|Φ0) := {f ∈ Dom (A) ∩ Φ0 : Af ∈ Φ0}.
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The generalised version of the Chernoff product formula is particularly relevant

to our problem.

In the following, we denote the space of linear bounded operators on the space

Φ as L (Φ).

Theorem 3.26 (Theorem 4.1, [11]). Let V : [0,∞) −→ L (Φ) satisfy the following

conditions:

1. V (0) = I.

2. ‖V (t)m‖ ≤ Memwt for all t ≥ 0, m ∈ N, and for some constants M ≥ 1 and

w ∈ R.

3. The operator family {(e−wtV (t))
k

: t ≥ 0} is locally bi-equicontinuous uni-

formly for k ∈ N.

4. The family
(
V (s)f−f

s

)
s∈[0,t]

is ‖·‖-bounded for any t > 0 and

Af := ρ− lim
s↓0

V (s)f − f
s

exists for all f ∈ D ⊂ Φ, where D and (α−A)D are bi-dense subsets in Φ for

some α > w.

Then the bi-closure of (A, D) generates a bi-continuous semigroup (Rt)t≥0 which is

given by the Chernoff Product Formula, i.e.,

Rtf = ρ− lim
n→∞

(
V

(
t

n

))n
f,

for all f ∈ Φ and uniformly for t in compact intervals of [0,∞).

Remark 3.27. Theorem 4.1, [11] improves Proposition 2.9, [7] in the sense that the

former only requires {V (s)f−f
s
}s∈[0,t] to be ‖·‖-bounded and ρ-convergent as s ↓ 0,

while the latter requires the stronger ‖·‖-convergence.
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Chapter 4

Small initial infections

In this chapter, we study the cases where the size of the infected population is

so small that the randomness becomes the dominating effect. In subcritical regimes

with medium or large initial size of infections, the final phases of all epidemics fall

into this category, and the behaviours we study below determine the shape of the

asymptotic distribution of the extinction time TNo .

One way to look at this is that when the size of infection is small, the jump rates

of IN is approximately linear, and thus we can compare IN to linear birth-death

chains, whose properties are well-understood. The other way to look at this is to

compare IN to a branching process, where each infected individual induces its own

epidemic. Since the size of infection is small, these epidemics can be viewed as

almost independent and the extinction time is the maximum extinction time among

all the small epidemics. This explains intuitively why the asymptotic distributions

in this chapters appear to be extreme value distributions.

The structure of this chapter is as follows: after a brief introduction in Sec-

tion 4.1, we prove some preliminary properties of linear birth-death chains in Sec-

tion 4.2. The main result of this chapter is stated and proved in Section 4.3 and

illustrated in diagrams in Section 4.4.
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4.1 Introduction

It was noticed from very early on, in the study of the extinction time of stochastic

epidemic models, that the trajectory of the size of infected population IN can be

well-approximated by linear birth-death chains when IN is small. By linear birth-

death chains, we mean the continuous-time Markov chains (Lt)t≥0 valued in N, with

transition rates

x→ x+ 1, at rate λx,

x→ x− 1, at rate µx,

where parameters λ, µ are known as birth rate and death rate respectively.

The approximation is rigorously justified by coupling IN between two linear

birth-death chains whose extinction times have asymptotically identical distribu-

tions. The theory of coupling is introduced in Section 3.2.

The existing works using this technique include [1] on stochastic SIR models,

and chronologically [2,8,29] on subcritical stochastic SIS models. Among these, the

result of [29] is deduced from a remark in [2]. The authors of [2] try to quote the

result of [1] but fail to pose the correct conditions for the coupling, i.e., IN0 needs to

be sufficiently small. This error is pointed out in [8]. The authors of [8] present a

rigorous discussion of coupling subcritical SIS models with linear birth-death chains.

Finally, Foxall [6] shows that we can use this technique to obtain the asymptotic

distribution of extinction time of small initial infections for subcritical, critical and

supercritical SIS models.

When we extend this technique to the SIRS models, the situation is considerably

more complicated. In this chapter, we are only able to cover the parameter regime

when λo(N) ≤ 1 and a subset of cases when λo(N) tends to 1 from above sufficiently

quickly.
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4.2 Properties of linear birth-death chains

Theorem 4.1 (Asymptotic of linear birth-death chains, Theorem 1, [6]). Let {LN}N∈N
be a sequence of linear birth-death chains with birth rate λN > 0 and death rate

µN > 0.

Let TNbdp := inf
{
t ≥ 0 : LNt = 0

}
. The distribution of TNbdp converges to the fol-

lowing limits as N →∞:

Suppose that LN0 = L0 is a constant independent of N :

1. If µN − λN → 0, then

lim
N→∞

PNL0

[
TNbdp ≤ w

]
=

(
1 +

1

w

)−L0

, w > 0;

2. If µN − λN → a > 0, then

lim
N→∞

PNL0

[
TNbdp ≤ w

]
=

(
1 +

a

eaw − 1

)−L0

, w > 0.

Suppose that LN0 = L0(N)→∞:

3. If L0(µN − λN)→ 0, then

lim
N→∞

PNL0

[
TNbdp
L0

≤ w

]
= e−

1
w , w > 0;

4. If L0(µN − λN)→ a > 0, then

lim
N→∞

PNL0

[
TNbdp
L0

≤ w

]
= exp

{
− a

eaw − 1

}
, w > 0;

5. If L0(µN − λN)→∞, then

lim
N→∞

PNL0

[
(µN − λN)TNbdp − logL0(1− λN/µN) ≤ w

]
= e−e

−w
, w ∈ R.

In particular, if for some a(N) ∼ L0(µN−λN), we have L0(µN−λN)−a(N) =
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o
(

a
log a

)
, then we can also write the limit distribution as

lim
N→∞

PNL0

[
a(N)

TNbdp
L0

− log
a(N)

µN
≤ w

]
= e−e

−w
.

Proof. We shall drop the subscription and the superscription of the probability

measure below, since there is no confusion.

It is possible to obtain the closed form of the distribution of TNbdp.

Fix arbitrary N , and let Pn(t) := P
[
LNt = n

]
. By the Kolmogorov forward

equation,

dPn(t)

dt
= −(λN + µN)nPn(t) + λN(n− 1)Pn−1(t) + µN(n+ 1)Pn+1(t). (4.1)

Denote the probability generating function G(z; t) =
∑∞

n=0 z
nPn(t), |z| < 1, which

has the properties
∂G

∂t
(z; t) =

∞∑
n=0

zn
dPn(t)

dt
,

∂G

∂z
(z; t) =

∞∑
n=0

nzn−1Pn(t).

Multiplying zn to both sides of (4.1) and adding up from n = 0 to infinity, we have

∂G

∂t
− (z − 1)(λNz − µN)

∂G

∂z
= 0.

Consider characteristic curves parametrised by r. Let t = r, z = z(r), and

dG

dr
=
∂G

∂t
+
∂G

∂z

dz

dr
= 0,

dz

dt
=
dz

dr
= −(z − 1)(λNz − µN).

When λN 6= µN , the solution has the form

z − µN/λN
z − 1

exp{−(λN − µN)t} = constant.
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Thus we have a solution of the form G(z; t) = f
(
z−µN/λN

z−1
e−(λN−µN )t

)
. Insert the

initial condition G(z; 0) = zL
N
0 , we have that f has the form

f(x) =

(
x− µN/λN
x− 1

)L0

.

Therefore

G(z; t) =

(
z(λNe

−(λN−µN )t − µN)− (µNe
−(λN−µN )t − µN)

z(λNe−(λN−µN )t − λN)− (µNe−(λN−µN )t − λN)

)L0

. (4.2)

We have

P
[
TNbdp ≤ t

]
= P

[
LNt = 0

]
= G(0; t) =

(
exp{−(λN − µN)t} − 1

exp{−(λN − µN)t} − λNµ−1
N

)L0

(4.3)

=

(
1 +

λ̂N

eλ̂N t − 1

)−L0

,

where λ̂N := µN − λN .

Notice that this expression does not require µN > λN .

Case 1 and 2 can be derived by taking λ̂N → a ≥ 0 in (4.3).

For Case 3, let t = wL0, since L0λ̂N = o(1), we have

λ̂N

exp
{
λ̂N t

}
− 1

=
λ̂N

exp
{
wλ̂NL0

}
− 1
∼ (wL0)−1 → 0.

It follows that

P

[
TNbdp
L0

≤ w

]
=
(
1 + (wL0)−1 + o

(
(wL0)−1

))−L0 → e−
1
w .
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For Case 4, let t = wL0, then λ̂N t ∼ aw, and λ̂N

eλ̂N t−1
∼ λ̂N

eaw−1
→ 0.

P

[
TNbdp
L0

≤ w

]
= P

[
TNbdp ≤ t

]
=

1 +
λ̂N

exp
{
λ̂N t

}
− 1

−L0

=

(
1 +

λ̂N
eaw − 1

+ o

(
λ̂N

eaw − 1

))−L0

→ exp
{
− a

eaw−1

}
.

For Case 5, let the leading asymptotic order of λ̂NL0 be a(N), and b(N) :=

λ̂NL0 − a(N) = o(a(N)).

Let t =
(
w + log λ̂NL0

)
λ̂−1
N , we have

P
[
TNbdp ≤ t

]
= P

[
λ̂NT

N
bdp − log λ̂NL0 ≤ w

]
=

1 +
λ̂N

exp
{
λ̂N t

}
− 1

−L0

=

(
1 +

λ̂N

λ̂NL0ew − 1

)−L0

→ exp
{
−e−w

}
.

Now let t = (w + log a(N))L0/a(N) instead.

P
[
TNbdp ≤ t

]
= P

[
a
TNbdp
L0

− log a ≤ w

]
=

1 +
λ̂N

exp
{
λ̂N t

}
− 1

−L0

=

(
1 +

λ̂N
(aew)1+b/a − 1

)−L0

= exp

{
− a+ b

e(1+b/a)wa1+b/a − 1

}
.

When ab/a → 1, the last expression tends to exp{−e−w}. And ab/a → 1 if and only

if b
a

log a→ 0, hence the second part of Case 5 is proved.

The following three lemmas estimate the probability of a birth-death chain hit-

ting some given larger state starting from a given state. Although the approach is

routine, since we are interested in the case when all parameters are of various scaling

of N , we will state the full proof.
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Lemma 4.2 (Hitting probability of linear birth-death chains). Let L be a linear

birth-death chain with birth rate λ(N) > 0 and death rate 1, and L0 = l(N) ∈ N.

As N →∞, the probability that Lt ever reaches k(N) > l(N) tends to 0, if either

1. (1− λ)(k − l)→∞, λ(N) < 1 for all N ∈ N and limN→∞ λ(N) ≤ 1, or

2. l(N) = o(k(N)), (1− λ)k → 0 and λ→ 1.

Proof. Let hi be the probability of L ever hitting k from L0 = i, i ∈ N. Then {hi}i≤k
is the minimal non-negative solution (See Theorem 3.3.1, p.112, [13]) of

0 = λ(hi+1 − hi) + (hi−1 − hi), 1 < i < k,

hk = 1, h0 = 0.

It has a solution
{
λ−i−1
λ−k−1

}
i≤k

. Since {hi}i∈N is the minimal solution,

λ−i − 1

λ−k − 1
≥ hi, i ≤ k.

If (1− λ)(k − l)→∞, λ(N) < 1 for all N ∈ N, and limN→∞ λ(N) ≤ 1, we have

hl ≤ λk−l =
(

(1− (1− λ))
1

1−λ

)(1−λ)(k−l)
→ 0.

If (1− λ)k → 0 and λ→ 1, we have

λ−i =
(

(1− (1− λ))
1

1−λ

)(1−λ)i

→ 1, i ≤ k.

Notice that this is true even if λ(N) ≥ 1 for some N ∈ N.

It follows that

lim
N→∞

hl = lim
N→∞

∑l−1
i=0 λ

−i∑k−1
i=0 λ

−i
= lim

N→∞

l − 1

k − 1
= 0,

when l = o(k).

Lemma 4.3 (Hitting probability of immigration-death chains absorbing at 0). For

any given N ∈ N, let L be an immigration-death chain with immigration rate α(N) >
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0 and death rate µ(N) > 0, absorbing at 0. That is, L has the transition rates for

x ≥ 1:

x→ x+ 1, at rate α,

x→ x− 1, at rate µx;

and L remains at 0 once it hits 0.

Let L0 = l(N)→∞. Then the probability that Lt ever reaches 2l(N) tends to 0

as N →∞, if

lim
N→∞

l(N)µ(N)

α(N)
> e.

Proof. Let hi be the probability of L ever hitting k from L0 = i, i ≤ 2l. Then

{hi}i≤2l is the minimal non-negative solution of

0 = α(hi+1 − hi) + µi(hi−1 − hi), 1 ≤ i < 2l,

h2l = 1.

It has a general solution {xi}i≤2l, where

xi =

∑i−1
k=0(µ/α)kk!∑2l−1
k=0 (µ/α)kk!

+ h0

(
1−

∑i−1
k=0(µ/α)kk!∑2l−1
k=0 (µ/α)kk!

)
, 1 ≤ i ≤ 2l,

x0 = h0,

for any h0 ∈ [0, 1]. The minimal non-negative solution is reached when h0 = 0.∑l−1
k=0(µ/α)kk!∑2l−1
k=0 (µ/α)kk!

= hl

When limN→∞
lµ
eα
> 1, we have

2l−1∑
k=l

(µ/α)kk! ≥ (µ/α)ll!
l−1∑
k=0

(µ/α)kk!,
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and for sufficiently large N ,

hl ≤
∑l−1

k=0(µ/α)kk!∑l−1
k=0(µ/α)kk! + (µ/α)ll!

∑l−1
k=0(µ/α)kk!

=
1

1 + (µ/α)ll!
≤ 1

1 + l1/2
(
lµ
eα

)l√
2π
→ 0.

Lemma 4.4 (Hitting probability of immigration-death chains). For given N ∈ N,

let L be an immigration-death chain with immigration rate α(N) > 0 and death rate

µ(N) > 0. That is, L has the transition rates for x ≥ 0:

x→ x+ 1, at rate α,

x→ x− 1, at rate µx.

If L0 = l(N) → ∞, µ = O(1) and α = o(lµ), then for t0 = t0(N) → ∞ satisfying

t0 = o
((

lµ
αe

)l)
, the probability of the event ‘Lt reaches 2l before t = t0’ tends to 0 as

N →∞.

Proof. Notice that L0 = l(N)→∞, µ = O(1) and α = o(lµ) imply

lim
N→∞

l(N)µ(N)

α(N)
> e.

Under this condition, in Lemma 4.3, we have estimated the probability for Lt starting

from l to ever reach 2l before reaching 0, denoted as hl, and have

hl = o

((
lµ

αe

)−l)
.

To prove the statement in Lemma 4.4, we argue that with probability tending to 1,

Lt can reach l from 0 at most dt0e times within time interval [0, t0]. If this is indeed

the case, then

P

[
sup
t∈[0,t0]

Lt ≥ 2l

]
≤ (dt0e+ 1)hl → 0.

Since Lt is stochastically dominated by Poisson process Ct with rate α, by order-
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preserving coupling, we have

P [Lt travels from 0 to l at leastdt0e times within [0, t0]] ≤ P [Ct0 ≥ ldt0e] ,

where Ct0 ∼ Poisson(αt0). Since ldt0e > αt0 for all sufficiently large N , we have

the following bound of the tail probability of Poisson distributions (Theorem 5.4,

p.97, [38])

P [Ct0 ≥ ldt0e] ≤
(
eαt0
ldt0e

)ldt0e
e−αt0 → 0.

There will be several times when we need to bound the value of
∫ t

0
INs ds for t > 0.

In the following lemma, we provide an upper bound for this quantity.

Lemma 4.5. Let L(l) = (Lt)t≥0 be a linear birth-death chain with birth rate λ =

λ(N) > 0, death rate µ = µ(N) > λ(N), and L0 = l(N) for N ∈ N.

Let

TL := inf {t : Lt = 0} ,

and

H(l) :=

∫ TL

0

Lsds.

Then for each N ∈ N, L0 = l(N) and δ = δ(N) > 0, we have

P [H(l) > δ] ≤ l

(µ− λ)δ
. (4.4)

Proof. We fix N throughout the proof.

Denote the Laplace transform of H with L0 = l(N) as

H∗(a; l) := E
[
e−aH(l)

]
, a ≥ 0.

Let S denote the sojourn time of L(l) before its first jump. The explicit expression
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of H∗(a; l) can be obtained following a first-step analysis (e.g. p.482, [39]):

E
[
e−aH(l)

]
=

λ

λ+ µ
E
[
e−a(H(l+1)+Sl)

]
+

µ

λ+ µ
E
[
e−a(H(l−1)+Sl)

]
,

H∗(a; l) =
λ

λ+ µ
H∗(a; l + 1)

∫ ∞
0

e−las(λ+ µ)le−(λ+µ)lsds

+
µ

λ+ µ
H∗(a; l − 1)

∫ ∞
0

e−las(λ+ µ)le−(λ+µ)lsds,

Then

H∗(a; l) = (λH∗(a; l + 1) + µH∗(a; l − 1)) (λ+ µ+ a)−1.

The solution of the above is

H∗(a; l) =

(
λ+ µ+ a−

√
(λ+ µ+ a)2 − 4λµ

2λ

)l

, l ≥ 1.

E [H(l)] = −dH
∗(a; l)

da

∣∣∣
a=0

=
l

µ− λ
.

By the Markov inequality, we have for each N ∈ N and any δ = δ(N) > 0,

P [H(l) > δ] ≤ E [H(l)]

δ
=

l

(µ− λ)δ
.

4.3 Main result

In this section, we state and prove our main result regarding the asymptotic dis-

tribution of the extinction time of SIRS epidemics with small initial size of infection.

Theorem 4.6 (Small initial infections). Consider a sequence of stochastic SIRS

models defined in (2.5), indexed by N ∈ N, with parameters λo = λo(N) > 0 and

γo = γo(N) > 0, and initial states (IN0 , R
N
0 ) = (I0(N), R0(N)).

Let TNo := inf{t : INt = 0}. If one of the following conditions is satisfied, then

we have the explicit expression of the asymptotic distribution of TNo :
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Cases 1.1-1.3 are cases where both the initial size of infection I0 and immunity

R0 are small, whereas Cases 2.1 and 2.2 are cases where I0 is small and R0 is of

order N .

• Case 1.1: I0|1− λo| → 0, I0R0 = o(N), I0 = o(N1/2γ
1/2
o ).

If I0 = O(1),

lim
N→∞

PN
[
TNo ≤ w

]
=

(
1 +

1

w

)−I0
;

and if I0 →∞,

lim
N→∞

PN
[
TNo
I0

≤ w

]
= e−

1
w .

• Case 1.2: I0(1 − λo) → a > 0, λo = λo(N) < 1, and I0 = o
(
N1/2γ

1/2
o

)
,

I0R0 = o (N).

If I0 = O(1),

lim
N→∞

PN
[
TNo ≤ w

]
=

(
1 +

a

eaw − 1

)−I0
;

and if I0 →∞,

lim
N→∞

PN
[
TNo
I0

≤ w

]
= exp

{
− a

eaw − 1

}
.

• Case 1.3: I0(1 − λo) → ∞, λo = λo(N) < 1, I0 = o
(
N(1−λo)γo
log I0(1−λo)

)
, and

R0 log I0(1− λo) = o (N(1− λo)). Then

lim
N→∞

PN
[
(1− λo)TNo − log(1− λo)I0 ≤ w

]
= e−e

−w
.

• Case 2.1: I0 = O(1), R0 = r0N , r0 > 0, λo = λo(N) ≤ 1 and γo = o(1).

Let a := limN→∞ 1− λo + λor0, then

lim
N→∞

PN
[
TNo ≤ w

]
=

(
1 +

a

eaw − 1

)−I0
.

• Case 2.2: I0 →∞, R0 = r0N , r0 > 0, and there exists ε1, ε2 > 0 such that
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I0 = o (N1−ε1) and γo = o (N−ε2). Let a := limN→∞ 1− λo + λor0, then

lim
N→∞

PN
[
aTNo − log(aI0) ≤ w

]
= e−e

−w
.

The cases above cover all of the parameter regime {(λo, γo) : λo ≤ 1}, and Case

1.1 also covers a subset of the parameter regime {(λo, γo) : λo ≥ 1}. At the end of

this section, we will use diagrams to illustrate the different combinations of param-

eters and initial states covered in the theorem above.

The rest of this section is dedicated to proving Theorem 4.6.

The process IN has the following transition rates at time t when INt = x:

x→ x+ 1, at rate λo
(
1−N−1(x+RN

t )
)
x,

x→ x− 1, at rate x.

The general idea of the proof is that we will sandwich IN between two linear birth-

death chains whose extinction times have the same asymptotic distributions, accord-

ing to Theorem 4.1. The construction of such coupling follows from Example 3.14.

To make sure the birth rates and death rates are in the correct order, we will need

to find upper-bounds held with high probability for IN and RN .

The intuition behind discussing two broad scenarios depending on the order of

R0 is as follows:

If R0(N)/N → 0, then IN , with small initial value and additional assumptions,

will have a birth rate close to λo. Looking at Theorem 4.1, it makes sense to discuss

three different cases within this scenario based on the limit of I0(1− λo).
If R0(N)/N → r0 ∈ (0, 1], then IN , with small initial value and additional

assumptions, will have a birth rate close to λo(1 − r0). Depending on whether

I0 = O(1), we can divide this scenario into two cases corresponding to the last two

cases in Theorem 4.1.

The proof of Case 1.1 to 1.3 follows the same idea: we choose an appropriate
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k(N) and m(N) such that R0 ≤ m(N) for sufficiently large N , and as N →∞,

P
[
RN
t ≤ 2m(N), INt ≤ k(N), ∀t ≥ 0

]
→ 1.

Define two linear birth-death chains L and L, such that L has birth rate λo and death

rate 1, and L has birth rate λo(1− k(N)+2m(N)
N

) and death rate 1. Let L0 = L0 = I0.

Then we only need to check that the extinction times TL and TL have the same

asymptotic distributions.

We will state the proof of Case 1.1 in full detail, and omit the repeated content

in Case 1.2 and 1.3.

Case 1.1: I0|1− λo| → 0, I0R0 = o(N), I0 = o(N1/2γ
1/2
o ).

Notice in this case it is necessary that |1− λo| → 0.

Since I0 = o(N1/2γ
1/2
o ), we can find κ(N)→∞ such that

κ(N)�
(
N1/2γ1/2

o ∧ |1− λo|−1) I−1
0 .

Let k(N) := I0κ(N). Define linear birth-death chain L with birth rate λo and death

rate 1, and linear birth-death chain L with birth rate λo(1− k(N)+2m(N)
N

) and death

rate 1. Let L0 = L0 = I0. From Example 3.14, there is an order-preserving coupling

between IN and L such that INt ≤ Lt, for all t ≥ 0. Since I0 � k, (1−λo)k(N)→ 0

and λo → 1, we can apply the second case in Lemma 4.2 to L, and obtain that with

probability tending to 1, INt ≤ Lt ≤ k(N).

For N ∈ N, conditioned on {INt ≤ k(N)}, each RN is stochastically dominated

by an immigration-death chain M = (Mt)t≥0 with immigration rate k(N) and death

rate γo and M0 ≥ R0.

Let M0 = m(N) := N1/2γ
−1/2
o ∨R0, and t0 = M0γo. It is obvious that M0 →∞

and k = o(M0γo).

Since M0γo
ke
→∞ and M0γo = O(M0), we have

t0 = o

((
M0γo
ke

)M0
)
.
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Thus all the conditions of Lemma 4.4 are met, and we have

P
[
RN
t ≥ 2m(N), ∀t ≤ t0

∣∣∣ INt ≤ k(N)
]
≤ P [Mt ≥ 2M0, ∀t ≤ t0]→ 0.

It follows that with probability tending to 1,

λo ≥ λo

(
1− INt +RN

t

N

)
≥ λo

(
1− k(N) + 2m(N)

N

)
.

Denote TL := inf{t : Lt = 0} and TL := inf{t : Lt = 0}. From Case 1 and 3 of

Theorem 4.1, we have TL is of order I0 = o(t0). It follows that as N →∞,

P [TL < t0]→ 1.

For each N ∈ N, conditioned on{
INt ≤ k(N), RN

t ≤ 2m(N), ∀t ≤ t0

}
,

there is an order-preserving coupling between L and IN and between IN and L such

that Lt ≤ INt ≤ Lt for all t ≥ 0. For sufficiently large N , we have

P
[
TL ≤ TNo ≤ TL < t0

]
≥ P

[
INt ≤ k(N), RN

t ≤ 2m(N), ∀t ≤ t0
]
.

Notice that I0M0 ≤ I0N
1/2γ

−1/2
o + I0R0 = o(N). Since

lim
N→∞

(
1− λo

(
1− k(N) + 2m(N)

N

))
L0 = lim

N→∞
(1− λo)I0 + lim

N→∞
λo
I0(k(N) + 2m(N))

N

= lim
N→∞

(1− λo)L0 = 0,

the asymptotic distribution of TNo follows from Case 1 in Theorem 4.1 if I0 = O(1),

and Case 3 if I0 →∞.

Case 1.2: I0(1− λo)→ a > 0 and I0 = o
(
N1/2γ

1/2
o

)
, I0R0 = o (N).

Notice that this is only possible if (1 − λo)N1/2γ
1/2
o → ∞. This case covers the

scenarios where λo is independent of N and I0 = O(1).
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Let m(N) := N1/2γ
−1/2
o ∨R0 →∞.

Since I0 = o (mγo), by letting k(N) :=
√
I0mγo →∞, we have

(1− λo)
√
I0mγo � (1− λo)I0 � 1.

By the first case in Lemma 4.2, with probability tending to 1, INt ≤
√
I0mγo for all

t ≥ 0.

Again, let M = (Mt)t≥0 be the immigration-death chain dominating RN . Let

M0 = m(N), and we have k = o(M0γo). For

t0 = mγo = o

((
M0γo
ke

)M0
)
,

by Lemma 4.4 and the argument similar to the previous case, we have

P
[
RN
t ≥ 2m(N), ∀t ≤ t0

∣∣∣INt ≤√I0mγo, ∀t ≥ 0
]
→ 0.

The extinction times TL and TL have the same asymptotic distribution as spec-

ified in Theorem 4.1 (Case 2 when I0 = O(1) and Case 4 when I0 →∞). As in the

previous case, as N →∞,

P [TL < t0]→ 1.

Since I0

√
I0mγo = o(I0mγo) = O(I0M0), and I0M0 ≤ I0N

1/2γ
−1/2
o + I0R0 =

o(N), we have

lim
N→∞

(
1− λo

(
1−
√
I0mγo + 2m

N

))
L0 = lim

N→∞
(1− λo)I0 + lim

N→∞
λo
I0(
√
I0mγo + 2m)

N

= lim
N→∞

(1− λo)L0 = a.

Case 1.3: I0(1− λo)→∞, I0 = o
(
N(1−λo)γo
log I0(1−λo)

)
, and R0 = o

(
N(1−λo)

log I0(1−λo)

)
.

This case is possible only if (1−λo)N1/2γ
1/2
o →∞. It covers the scenarios where

λo is independent of N , and I0 →∞.

Let k(N) := 2I0. Since (1 − λo)I0 → ∞ and λo(N) < 1, by the first case in

Lemma 4.2, with probability tending to 1, INt ≤ 2I0.
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Since I0 = o
(
N(1−λo)γo
log I0(1−λo)

)
, and R0 = o

(
N(1−λo)

log I0(1−λo)

)
, we can find m̃(N) such that

I0 � m̃γo �
N(1− λo)γo
log I0(1− λo)

.

Let

m(N) =
N(1− λo)

log2N(1− λo)
∨R0 ∨ m̃.

We have the properties: I0 = o(mγo) and

m = o

(
N(1− λo)

log I0(1− λo)

)
.

At the beginning of this proof, we state that N1/2(1− λo)γ1/2
o →∞, from which we

also have (1− λo)−1 � N(1− λo).
Define linear birth-death chains L and L the same way as in Case 1.2.

The extinction time of TL, according to Case 5, Theorem 4.1, is of order (1 −
λo)
−1 log I0(1− λo). Notice that

(1− λo)−1 log I0(1− λo)� N2(1− λo)2.

Let t0 = N2(1− λo)2, then similarly we have

P [TL < t0]→ 1.

Since

log t0 = 2 logN(1− λo)� N1/2(1− λo)1/2 log
mγo
2eI0

� m log
mγo
2eI0

,

it follows from Lemma 4.4 that,

P
[
RN
t ≥ 2m(N), ∀t ≤ t0 |INt ≤ 2I0, ∀t ≥ 0

]
→ 0.
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Since I0 = o (m(N)), we have

lim
N→∞

(
1− λo

(
1− 2(I0 +m)

N

))
L0 − lim

N→∞
(1− λo)I0 = lim

N→∞
λo

2I0(I0 +m)

N

= o

(
I0(1− λo)

log I0(1− λo)

)
,

and the rest follows from the order-preserve coupling.

For Case 2.1 and 2.2, we require that γo is sufficiently small, so that RN does

not move far away from R0(N) ∼ r0N , r0 ∈ (0, 1) before extinction. According to

Theorem 4.1, when I0 = O(1), we expect the extinction time to be of order O(1);

whereas when I0 →∞, we expect the extinction time to be of order log I0 +O(1).

Firstly, we estimate the probability that RN will remain close to r0N for duration

of order logN .

Lemma 4.7. Let

XN,1
t := INt /N, XN,2

t := RN
t /N,

with initial states XN,1
0 = I0(N)/N and XN,2

0 → r0 > 0. Let δ = δ(N) > 0. For

sufficiently large N , if t1 = t1(N) satisfies 0 < t1 < δγ−1
o , then we have

P
[
sup
t≤t1

∣∣∣XN,2
t −XN,2

0

∣∣∣ > 4δ

]
≤ 2 exp

{
− δ2N

4(γo + 1)t1

}
+

I0

(1− λo + λor0/2)δN
.

(4.5)

Proof. We consider N ∈ N to be sufficiently large and fixed throughout the proof.

Let

TR(ε) := inf

{
t ≥ 0 : sup

s≤t

∣∣∣XN,2
s −XN,2

0

∣∣∣ > ε

}
.

The process XN has transition rates:

qN((x1, x2), j) =


Nγox2, j = (0,− 1

N
),

Nx1, j = (− 1
N
, 1
N

),

Nλo(1− x1 − x2)x1, j = ( 1
N
, 0).

(4.6)
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It is also easy to see that the state space of XN is a subset of [0, 1]2.

By the argument introduced in Section 3.1.1, we can write

XN,2
t = XN,2

0 +

∫ t

0

∑
j

j2q
N
(
(XN,1

s , XN,2
s ), j

)
ds+MN

t

= XN,2
0 +

∫ t

0

(
−γoXN,2

s +XN,1
s

)
ds+MN

t , (4.7)

where MN is a zero-mean martingale. We also have for any x1, x2 ∈ [0, 1],∑
j∈JN

j2
2q
N((x1, x2), j) = N−1γox2 +N−1x1 < (γo + 1)N−1.

For any given N and ε = ε(N) > 0, let

TM(ε) := inf

{
t : sup

s≤t

∣∣MN
s

∣∣ > ε

}
.

By Proposition 3.2, we have for any t1 = t1(N),

P [TM(ε) ≤ t1] ≤ 2 exp

{
− ε2N

4(γo + 1)t1

}
. (4.8)

Taking the supremum and applying Gronwall’s inequality to (4.7), we have

sup
s≤t

XN,2
s ≤ XN,2

0 +

∫ t

0

γo sup
u≤s

XN,2
u ds+

∫ t

0

XN,1
s ds+ sup

s≤t

∣∣MN
s

∣∣,
sup
s≤t

XN,2
s ≤

(
XN,2

0 + sup
s≤t

∣∣MN
s

∣∣+

∫ t

0

XN,1
s ds

)
eγot,

sup
s≤t

(
XN,2
s −XN,2

0

)
≤ XN,2

0 (eγot − 1) +

(
sup
s≤t

∣∣MN
s

∣∣+

∫ t

0

XN,1
s ds

)
eγot. (4.9)

On the other hand, from (4.7) we have, for all t ≥ 0, XN,2
t ≥ XN,2

0 − γot −
sups≤t

∣∣MN
s

∣∣. It follows that for all t > 0,

inf
s≤t

(
XN,2
s −XN,2

0

)
≥ −γot− sup

s≤t

∣∣MN
s

∣∣. (4.10)
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Combining (4.9) and (4.10), we have

sup
s≤t

∣∣∣XN,2
s −XN,2

0

∣∣∣ ≤ (eγot − 1) +

(
sup
s≤t

∣∣MN
s

∣∣+

∫ t

0

XN,1
s ds

)
eγot.

Define Tint(ε) := inf
{
t :
∫ t

0
XN,1
s ds > ε

}
.

For t1(N) and δ = δ(N)→ 0 satisfying γo(N)t1(N) < δ(N) for sufficiently large

N , on the event

{t < TM(δ) ∧ Tint(δ) ∧ t1} ,

we have

sup
s≤t

∣∣∣XN,2
s −XN,2

0

∣∣∣ =
(
γot1 +O(γ2

o t
2
1)
)

+ 2δ(1 + γot1 +O(γ2
o t

2
1)) < 4δ.

In other words, P
[
TR(4δ) > t

∣∣∣t < TM(δ) ∧ Tint(δ) ∧ t1
]

= 1.

It follows that

P [TM(δ) ∧ Tint(δ) ∧ t1 ≤ TR(4δ)] = 1. (4.11)

Let Tsum(x) := inf
{
t : XN,1

t +XN,2
t ≤ x

}
.

It follows from (4.11) that for sufficiently largeN , on the event {t < TM(δ) ∧ Tint(δ) ∧ t1},

XN,1
t +XN,2

t ≥ XN,2
0 − 4δ >

3r0

4
,

which suggests that

P
[
Tsum

(r0

2

)
> TM(δ) ∧ Tint(δ) ∧ t1

]
= 1. (4.12)

The inequality is strict because (XN,1 + XN,2) has jump sizes of order N−1 and

cannot reach r0/2 from above 3r0/4 in one jump.

Also from (4.11),

P [TR(4δ) < t1] ≤ P [TM(δ) < t1] + P [Tint(δ) = Tint(δ) ∧ TM(δ) < t1] .

The upper bound of P [TM(δ) < t1] is obtained in (4.8). For the second term on the
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RHS above, conditioned on the event {Tint(δ) = Tint(δ) ∧ TM(δ) < t1}, the equality

(4.12) is equivalent to

P
[
Tsum

(r0

2

)
> Tint(δ)

]
= 1.

Then

P [Tint(δ) = Tint(δ) ∧ TM(δ) < t1] ≤ P
[
Tint(δ) < Tsum

(r0

2

)
∧ t1

]
.

On the event
{
t < Tsum

(
r0
2

)
∧ t1

}
, the process IN is dominated by a linear birth-

death chain L = (Lt)t≥0 with birth rate λo
(
1− r0

2

)
and death rate 1. Therefore,∫ t

0
XN,1
s ds is stochastically bounded by

N−1

∫ TL

0

Lsds = N−1H(I0),

where TL and H(I0) are defined as Lemma 4.5.

For any t > 0, the probability P [Tint(δ) ≤ t] is then bounded by the probability

P [H(I0) > Nδ]. By (4.4),

P [Tint(δ) = Tint(δ) ∧ TM(δ) < t1] ≤ P [Tint(δ) < t1] ≤ P [H(I0) > Nδ]

≤ I0

(1− λo + λor0/2)Nδ
.

Together with (4.8), we have

P [TR(4δ) < t1] ≤ 2 exp

{
− δ2N

4(γo + 1)t1

}
+

I0

(1− λo + λor0/2)Nδ
.

Now we are ready to discuss different cases under the second scenario, depending

on the size of I0.

Case 2.1: I0 = O(1) and γo = o(1).

Let δ(N) = γ1−ε
o ∨N−1/3 for a small ε > 0. Then we have any t1 = O(1) satisfies
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t1 < γ−εo ≤ δγ−1
o . By Lemma 4.7,

P
[
sup
s≤t1

∣∣RN
s −R0

∣∣ > 4δN

]
→ 0.

Define δ0(N) := |R0/N − r0|.
For each N ∈ N, define two linear birth-death chains L and L such that L has

birth rate λo(1−r0+4δ+δ0) and death rate 1, and L has birth rate λo(1−r0−4δ−δ0)

and death rate 1. Let L0 = L0 = I0.

Denote

TR(4δ) := inf

{
t ≥ 0 : sup

s≤t

∣∣RN
s −R0

∣∣ > 4δN

}
.

Then for t < TR(4δ),

I0λo(1− r0 − 4δ − δ0) ≤ I0λo

(
1− INt +RN

t

N

)
≤ I0λo(1− r0 + 4δ + δ0),

and all three terms tend to limN→∞ I0λo(1− r0).

Recall a := limN→∞ 1− λo + λor0 ∈ (0,∞).

The conclusion then follows from Case 2 of Theorem 4.1:

P
[
TNo ≤ w

]
= P

[
TNo ≤ w, TR(4δ) ≤ w

]
+ P

[
TNo ≤ w, TR(4δ) > w

]
→
(

1 +
a

eaw − 1

)−I0
,

where we use the fact from above that for all w > 0

P
[
TNo ≤ w, TR(4δ) ≤ w

]
≤ P [TR(4δ) ≤ w]→ 0.

Case 2.2 I0 → ∞ and there exists ε1, ε2 > 0 such that I0 = o (N1−ε1) and

γo = o (N−ε2).

Let δ = N−bε2 , where positive constant b is chosen to satisfy b < 1
2ε2
∧ ε1

ε2
∧ 1.

Then we have that any t1 = O(logN) satisfies t1 < δγ−1
o = N (1−b)ε2 .

Since δ2N = N1−2bε2 and I0
δN
� N bε2−ε1 are both of negative polynomial orders
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of N , by Lemma 4.7,

P
[
sup
s≤t1

∣∣RN
s −R0

∣∣ > 4δN

]
→ 0.

The constructions of L and L, and the stopping time TR(4δ) remain the same as

Case 2.1. We still have that, with probability tending to 1, for t ≤ TR(4δ),

λo(1− r0 − 4δ − δ0) ≤ λo

(
1− INt +RN

t

N

)
≤ λo(1− r0 + 4δ + δ0).

Let a := limN→∞ 1− λo + λor0 ∈ (0,∞).

Following from Case 5 of Theorem 4.1, the extinction times of L and L tend to

the same limit if I0(4δ + δ0) = o
(

aI0
log(aI0)

)
, which is equivalent to N−bε2 logN → 0.

The conclusion then follows from Case 5 of Theorem 4.1:

P
[
aTNo − log(aI0) ≤ w

]
= P

[
TNo ≤ a−1 log(aI0) + a−1w < TR(4δ)

]
+ P

[
TNo ≤ a−1 log(aI0) + a−1w, TR(4δ) ≤ a−1 log(aI0) + a−1w

]
→e−e−w ,

where we use the fact that for any constants c1, c2 > 0,

P [TR(4δ) ≤ c1 logN + c2]→ 0.

4.4 Summary

We illustrate the conditions of different cases in the previous section using the

diagram introduced in Definition 2.5. Notice that except for Case 1.1, it is assumed

that λo(N) ≤ 1.
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1/2 1 ∞

1

∞

−〈1− λo〉 = 1+〈γo〉
2

−〈1− λo〉

−〈γo〉

Figure 4.1: Parameter regime: divisions with small initial size of the infected pop-

ulation

In Figure 4.1, the area shaded with vertical lines represents{
(λo, γo) : −〈1−λo〉 <

1 + 〈γo〉
2

}
or equivalently

{
(λo, γo) : N1/2(1−λo)γ1/2

o →∞
}
.

In this regime, based on the scaling of (I0, R0), as illustrated in the first diagram in

Figure 4.2, we can find behaviours of all five cases in Theorem 4.6.

Similarly, the complement area{
(λo, γo) : −〈1−λo〉 >

1 + 〈γo〉
2

}
or equivalently

{
(λo, γo) : N1/2(1−λo)γ1/2

o → 0

}
is illustrated in the second diagram in Figure 4.2.

The boundary scenario{
(λo, γo) : −〈1− λo〉 =

1 + 〈γo〉
2

}
is similar to the second diagram in Figure 4.2. In Chapter 4, we will give the

illustration when −〈1− λo〉 = −〈γo〉 = 1/3.
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a b c 1

1 + 〈1− λo〉

1

1− 〈I0〉

〈I0〉 − 〈γo〉

1.1

1.2

1.3

2.22.1

〈I0〉

〈R0〉

c b a 1

1 + 〈1− λo〉

1

1− 〈I0〉

〈I0〉 − 〈γo〉

1.1

2.22.1

〈I0〉

〈R0〉

Figure 4.2: Diagram of small initial infection cases, where a = −〈1−λo〉, b = 1+〈γo〉
2

,

c = 1 + 〈1− λo〉+ 〈γo〉, and the numbers denote the cases in Theorem 4.6.

We can see for all the parameter combinations we are interested in, as long as

the initial size of infection I0 is sufficiently small, and the initial size of immunity

R0 satisfies certain conditions, we have the explicit expression of the asymptotic

distribution of the extinction time TNo .
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Chapter 5

The critical parameter regime

In this chapter, we identify the critical parameter regime of the stochastic SIRS

model, and investigate the behaviour of its extinction time. We show that as N →
∞, with suitable initial states, the stochastic SIRS model in the critical regime

weakly converges to a degenerate diffusion, and the asymptotic distribution of the

SIRS extinction time is equal to the distribution of the hitting time of the limit

diffusion.

5.1 Introduction

The critical regime, also known as ‘transition region’ or ‘critical window’ in

literature, is a subset of the parameter space of the stochastic epidemic models, in

which we can observe phase transitions.

The existence of critical regimes in stochastic epidemic models was first discov-

ered by N̊asell [4] in stochastic SIS models. In the last decade, a more detailed

picture was established for the stochastic SIS and SIR models, both of which have

one-dimensional parameter space λo ∈ R+. Our theoretical motivation is to estab-

lish the analogous result in the stochastic SIRS model, which has a two-dimensional

parameter space (λo, γo) ∈ R2
+.

The stochastic SIS model has a critical regime of width N−1/2. That is {λo :

|λo(N) − 1| = O(N−1/2)}. This was observed by various authors through two dif-
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ferent approaches: in [4], it is observed through the asymptotic approximation of

the exact expression of quasi-stationary distributions and expected extinction times;

whereas in [24] and [6], it is observed through performing a suitable scaling to a se-

quence of Markov chains indexed by the population size N in such way that the

limit of the scaled processes is a diffusion. Such scaling is called the critical scal-

ing. The authors of [24] comment that they cannot find a direct link between their

observations and the one by [4].

The stochastic SIR model has a critical regime of width N−1/3. This is observed

by [40] and [24] through the scaling approach.

The behaviour of the extinction time within the critical regime is well studied

only in the case of the stochastic SIS model. The earlier works include [25] and [5].

N̊asell [25] studied the quasi-stationary distribution, and the expected extinction

time of SIS models initiated at quasi-stationary equilibrium, as well as at IN0 = 1.

Doering, Sargsyan and Sander [5] derived the expected extinction time of SIS models

at criticality λo = 1 with an O(1) error term. The most comprehensive study so far

is by Foxall [6], who showed that the asymptotic distribution of the extinction time

is equal to the distribution of the hitting time of the limit diffusion.

Less is known about the distribution of the hitting time of the diffusion obtained

as the limit of stochastic epidemic models. Foxall [6] did not attempt to make any

description of the hitting time itself. While studying the total size of the infection

in the stochastic SIS model in the critical regime, Dolgoarshinnykh and Lalley [24]

proposed the idea of random time change. Extending this idea to the stochastic SIR

model, we can associate the extinction time with ‘the hitting time of a Wiener pro-

cess to a parabola’ through a random time change, where the probability density of

the latter is derived explicitly in Theorem 2, [40]. It seems that there is no straight-

forward way to extend the same idea to the stochastic SIRS model. The random

time change approach is also not helpful in providing analytical approximations.

The limit of multidimensional discrete stochastic models in epidemiology and

population genetics often turns out to be degenerate diffusions. There is no uni-

versal result for the well-posedness of the martingale problem/parabolic problems

associated with degenerate generators, and different types of degeneracy are usually

investigated on a case-by-case basis.
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Our approach in the first half of this chapter is an extension of [6] to the stochastic

SIRS model. In Section 5.2, we find the critical scaling of the stochastic SIRS

model through a heuristic argument. For completeness, in Section 5.3, we state

the asymptotic distribution of the extinction time within the critical regime, when

the initial sizes of the infection is small. This is a straightforward corollary of

Theorem 4.6. In Section 5.4, we prove that the extinction time of the stochastic

SIRS model converges in distribution to the hitting time of the limit diffusion as

N → ∞. Special attention is required here as the limit diffusion is degenerate on

the entire R2
+ with unbounded coefficients.

It is a standard practice to express the distribution of hitting time of diffusions

as the solution of PDEs. As a result, we obtain a time-homogeneous PDE with the

end condition in B̂C(R2
+), the Banach space of bounded continuous functions which

have continuous extensions to [0,∞)2. The well-posedness of the PDE problem does

not directly follow from the well-posedness of the martingale problem on domain

C∞c (R2
+), since C∞c (R2

+) is not dense in (B̂C(R2
+), ‖·‖), where ‖·‖ denotes the uniform

norm. To deal with this scenario, new types of semigroups have been defined in

literature, usually with either a weaker continuity property, or a definition of strong

continuity for a weaker topology. Analogous generation theorems and approximation

theorems have been developed (See [7] for a comprehensive review). Kühnemund [7]

develops a general framework of the bi-continuous semigroup to unite many of these

individual results, and proves a generalised version of the Chernoff product formula.

The Chernoff product formula motivates a set of numerical approximations,

which is often referred to in the area of computation as splitting method [41]. The

much-better-known Trotter product formula can be viewed as a corollary of the clas-

sic Chernoff approximation. In Section 5.5, we introduce and apply the generalised

Chernoff approximation based on the framework developed by [7], and prove the

well-posedness of the PDE associated with the distribution of our extinction time.

5.2 Critical scaling of Markov chains

We would like to scale the SIRS process (INt , R
N
t )t≥0 in both time and space,

and will denote the scaled process as (Y N
s , Z

N
s )s≥0. We use a heuristic argument to
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explore what the critical scaling should be.

Define scaled parameters λ̂ and γ such that

INt =NβY N
N−αt, 0 < β ≤ 1,

RN
t =N ξZN

N−αt, 0 < ξ ≤ 1,

λo =1− λ̂

N δ
, δ > 0,

γo =γN−κ, κ ≥ 0.

Clearly, a stochastic SIRS process is subcritical when λ̂ > 0, and supercritical when

λ̂ < 0.

Let
(
Y N

0 , ZN
0

)
= (y, z). Define ∆Y N := Y N

s − y, ∆ZN := ZN
s − z. Then we have

the following expected linear and quadratic increments in time s:

Ey,z
[
∆Y N

]
= y(−λ̂N−δ −Nβ−1y −N ξ−1z + λ̂yNβ−1−δ + λ̂zN ξ−1−δ)Nαs+ o(s)

∼ y(−λ̂N−δ −N ξ−1z)Nαs,

Ey,z
[
∆ZN

]
∼
(
Nβ−ξy − γN−κz

)
Nαs,

and

Ey,z
[
(∆ZN)2

]
∼ N−ξ

(
Nβ−ξy + γN−κz

)
Nαs,

Ey,z
[
(∆Y N)2

]
= N−βy

(
2−Nβ−1y −N ξ−1z + λyNβ−1−δ + λ̂zN ξ−1−δ

)
Nαs+ o(s)

∼ 2yNα−βs,

Ey,z
[
∆ZN∆Y N

]
= −N−β−ξNβyNαs+ o(s) ∼ −Nα−ξys.

The first observation is that a non-trivial scaling should satisfy β < ξ; otherwise,

Ey,z
[
∆ZN

]
would be asymptotically dominating the other four expectations above.

The second observation is that Ey,z
[
(∆ZN)2

]
and Ey,z

[
∆ZN∆Y N

]
are both

asymptotically dominated by the O
(
Nα+β−ξ) term in Ey,z

[
∆ZN

]
. Therefore, out

of the five expectations above, only the following three can be of the leading order
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of magnitude:

Ey,z
[
∆Y N

]
∼ y(−λ̂N−δ −N ξ−1z)Nαs,

Ey,z
[
∆ZN

]
=
(
Nβ−ξy − γN−κz

)
Nαs,

Ey,z
[
(∆Y N)2

]
∼ 2yN−βNαs.

The only possibility for all three terms above to be of the same order of N is when

α = β = δ = κ = 1/3, ξ = 2/3 and t = N1/3s. In other words, it is natural to use

the scaled parameters

λ̂(N) := (1− λo)N1/3, γ(N) := γoN
1/3, (5.1)

and consider the following scaled SIRS process:

Y N
t :=

IN
N1/3t

N1/3
,

ZN
t :=

RN
N1/3t

N2/3
, (5.2)

given the deterministic initial state (Y N
0 , ZN

0 ) = (yN0 , z
N
0 ). We may drop the sub-

script or superscript of P when there is no confusion about which initial state we

are discussing.

It is not unexpected that the scaling we applied to (IN , RN) and λo is consistent

with what is found for stochastic SIR model in [24], as the latter is a special case of

stochastic SIRS model with γo = 0.

The transition rates of (Y N , ZN) at (y, z) are

(y, z)→ (y +N−1/3, z) at rate N2/3(1− λ̂N−1/3)(1− yN−2/3 − zN−1/3)y,

(y, z)→ (y, z −N−2/3) at rate N2/3γz, (5.3)

(y, z)→ (y −N−1/3, z +N−2/3) at rate N2/3y.

The critical scaling divides the parameter space into four regimes depending

on whether −〈1 − λo〉 and −〈γo〉 are smaller than 1/3. See Section 2.3.2 for the

definition of 〈·〉.
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1
3

1
2

1 ∞

1
3

1

∞

−〈1− λo〉 = 1+〈γo〉
2

−〈1− λo〉

−〈γo〉

Figure 5.1: Parameter regime: the shaded area represents the critical regime.

In this chapter, we look at the parameter regime (−〈1−λo〉,−〈γo〉) ∈ [1/3,∞)2,

which is called the critical parameter regime.

5.3 Small infection

For completeness, we state the asymptotic distribution of the extinction time in

the critical regime with small initial size of the infection.

Theorem 5.1. Let the parameters (λo(N), γo(N)) satisfy |1 − λo|N1/3 → λ̂ ∈ R
and γoN

1/3 → γ ≥ 0, and let the initial state of the stochastic SIRS model be

(IN0 , R
N
0 ) = (I0, R0). Then we have the following results:

1. When I0 = o
(
N1/3

)
and R0 = o

(
NI−1

0

)
:

if in addition I0 →∞,

lim
N→∞

PN
[
TNo
I0

≤ w

]
= e−

1
w , w > 0;

if in addition I0 = O(1),

lim
N→∞

PN
[
TNo
I0

≤ w

]
=

(
1 +

1

w

)−I0
, w > 0.
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2. When I0 = O(1) and R0 ∼ r0N for r0 ∈ (0, 1],

lim
N→∞

PN
[
TNo ≤ w

]
=

(
1 +

r0

er0w − 1

)−I0
, w > 0.

3. When I0 = o (N1−ε) for some ε > 0, and R0 ∼ r0N for r0 ∈ (0, 1],

lim
N→∞

PN
[
r0T

N − log(r0I0) ≤ w
]

= e−e
−w
, w ∈ R.

1
3

1

2
3

1

1− 〈I0〉

〈I0〉 − 〈γo〉

1

32

〈I0〉

〈R0〉

Figure 5.2: Diagram of small initial infection cases, where −〈1− λo〉 = 1+〈γo〉
2

Proof. This is a corollary of Theorem 4.6.

For the rest of this chapter, we focus on the case where I0 � N1/3 andR0 � N2/3.

5.4 Diffusion limit

Given a fixed initial state of infection (IN0 , R
N
0 ) = (I0(N), R0(N)) in our original

model, the initial state of the scaled process (Y N , ZN) is also a function of N :

(yN0 , z
N
0 ) := (N−1/3I0(N), N−2/3R0(N)). Under this scaling, we consider the cases

where limN→∞(yN0 , z
N
0 )→ (y0, z0) ∈ R2

+.
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We shall denote the extinction time of Y N as

TN := inf
{
t : Y N

t = 0
}
.

The stopping time TN is related to the extinction time TNo of the original process

in the following sense: given (Y N
0 , ZN

0 ) = (N−1/3I0(N), N−2/3R0(N)),

TN = TNo N
−1/3.

From the heuristic analysis above, we expect the diffusion limit of (Y N , ZN) to

be a Markov process generated by some extension of the operator

Gf(y, z) = −(λ̂+ z)y∂yf + (y − γz)∂zf + y∂yyf, f ∈ C2
c (R2

+). (5.4)

The covariance matrix
(

2y 0
0 0

)
is degenerate on the entire domain R2

+. Since the

operator is not uniformly elliptic, we need to make sure that such limit process is

well-defined, which is equivalent to proving the G-martingale problem with initial

state (y0, z0) ∈ R2
+ is well-posed.

This particular type of degeneracy is studied in [9].

Theorem 5.2 (Theorem 5.14, [9]). Let d = d0 + d1 with d1 ≤ d0. Let a : [0,∞) ×
Rd → Sd0, b(0) : [0,∞)× Rd → Rd0 be measurable functions, and b(1) ∈ C1,2,1(R+ ×
Rd0 × Rd1 ,Rd1). Let b : [0,∞) × Rd → Rd denote b(s, x) = (b(0)(s, x), b(1)(s, x))ᵀ.

Suppose that for all T > 0, x ∈ Rd,

inf
s∈[0,T ]

inf
θ∈Rd0 ,
|θ|=1

〈θ, a(s, x)θ〉 > 0,

lim
y→x

sup
s∈[0,T ]

‖a(s, y)− a(s, x)‖ = 0.

Further suppose that there exists constant C such that

sup
s∈[0,∞)

‖a(s, x)‖+ |b(s, x)|2 ≤ C(1 + |x|2),

and that the Jacobian matrix of b(1)(s, x) restricted to the first d0 components is of
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rank d1 for all (s, x) ∈ [0,∞)× Rd, i.e.,

rank


∂bd0+1(s,x)

∂x1
· · · ∂bd0+1(s,x)

∂xd0
...

. . .
...

∂bd0+d1
(s,x)

∂x1
· · · ∂bd0+d1

(s,x)

∂xd0

 = d1.

Denote

A :=
∑

1≤m≤d

bm(s, x)
∂

∂xm
+

1

2

∑
1≤m,n≤d0

amn(s, x)
∂2

∂xm∂xn
.

Then the (A, C∞c (R2))-martingale problem is well-posed.

For convenience, in the rest of this subsection, we also refer to the degenerate

martingale problem in Theorem 5.2 as the (a, b)-martingale problem. This should

not be confused with the term ‘(A, D)-martingale problem’ defined in Definition 3.4.

Notice that a is valued in Sd0 rather than Sd. The (a, b)-martingale problem

stopped by τ is then defined as finding (Yt, Zt) with initial state (y, z) such that

f(Yt∧τ , Zt∧τ )−
∫ t∧τ

0

Af(Ys, Zs)ds

is a martingale for all f ∈ C∞c (R2
+).

We apply the localisation argument of a generalised martingale problem on sub-

sets of R2 from [10] to Theorem 5.2 in order to study the G-martingale problem

defined at the beginning of this section.

We will frequently be using the following sequence of functions in the rest of this

chapter.

Definition 5.3 (Exhaustion of R2
+ and {ιn}n∈N). Let {Dn}n∈N be a sequence of

open subsets of R2
+ such that D̄n ⊂ Dn+1 and

⋃∞
n=1 Dn = R2

+. We refer to said

sequence {Dn}n∈N as an exhaustion of R2
+.
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We define a sequence of functions {ιn}n∈N ⊂ C∞c (R2
+) on {Dn}n∈N satisfying:

ιn(u, v)


= 1 (u, v) ∈ D̄n,

∈ [0, 1] (u, v) ∈ Dn+1\D̄n,

= 0 (u, v) ∈ R2
+\D̄n+1.

(5.5)

Proposition 5.4. For G defined in (5.4), the (G, C∞c (R2
+))-martingale problem is

well-posed.

Proof. Denote the one-point compactification of D = R2
+ as R̂2

+ = R2
+ ∪ {∆}. Take

the exhaustion of R2
+ as {Dn := (1/n, n)2}n∈N,n≥2. Define stopping times τn :=

inf{t : Yt /∈ Dn}. Then τ∆ ≡ limn→∞ τn is also a stopping time.

Let Ω̂D be the space of continuous trajectories valued in D̂ = R̂2
+, satisfying the

following: either τ∆ =∞, or τ∆ <∞ and (Yτ∆+t, Zτ∆+t) = ∆ for all t > 0. Let F̂D

denote the Borel σ-algebra on Ω̂D and define the filtration F̂D
t = σ((Ys, Zs), s ∈

[0, t]).

Define

an(y, z) := |2y|ιn(y, z) + (1− ιn(y, z)),

bn(y, z) :=

(
−(λ̂+ z)y

y − γz

)
ιn(y, z) +

(
0

y

)
(1− ιn(y, z)).

Let Ω = C([0,∞),R2) and F be the Borel σ-algebra on Ω. Define Ft =

σ((Ys, Zs), s ∈ [0, t]).

By Theorem 5.2, for each n, the (an, bn)-martingale problem with initial state

(y, z) ∈ R2 has a unique solution
{
P(n)
y,z , (y, z) ∈ R2

}
on (Ω,Fτn).

Our localisation argument relies on the statement of Theorem 13.1, [10], the proof

of which proceeds exactly as in Theorem 10.4, pp. 34-35, [10], applying Theorem

10.5 of the same reference. The proof only requires the well-posedness of the original

martingale problem and therefore is applicable to our degenerate generator. It

follows that there exists a unique solution
{
P̂y,z, (y, z) ∈ D̂

}
on (Ω̂D, F̂D) to the
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generalised (a, b)-martingale problem with initial state (y, z) ∈ D which satisfies

P̂y,z
∣∣∣
F̂D
τn

= P(n)
y,z

∣∣∣
Fτn

,

for all n ∈ N, where

a(y, z) = |2y|, b(y, z) =

(
−(λ̂+ z)y

y − γz

)
.

We now argue that
{
P̂y,z, (y, z) ∈ D

}
corresponds to a unique solution

{
Py,z, (y, z) ∈

D
}

to the (a, b)-martingale problem on (Ω,F ).

Let (Yt, Zt) be the solution corresponding to the measure
{
P̂y,z, (y, z) ∈ D

}
, then

it satisfies the following SDE system for t ∈ [0, τ∆]:

dYt = −(λ̂+ Zt)Ytdt+
√

2YtdWt,

dZt = (Yt − γZt)dt.

Recall that the process approaches ∆ when one or both of Yt and Zt approaches

0 or ∞.

Firstly, notice the solution (Yt∧τ∆ , Zt∧τ∆) with (y, z) ∈ D satisfies

Zt∧τ∆ =

∫ t∧τ∆

0

e−γ(t∧τ∆−s)Ysds+ e−γ(t∧τ∆)z.

Hence inf{t : Yt = 0} < inf{t : Zt = 0} and inf{t : Yt = ∞} ≤ inf{t : Zt = ∞}.
It follows that the only possible scenarios are either τ∆ = inf{t : Yt = 0} or τ∆ =

inf{t : Yt =∞}.
Secondly, we show that in fact inf{t : Yt =∞} =∞.

Since Zt − e−γtz is a strictly increasing function of t given {t ≤ τ∆}, all ω ∈ Ω̂D

belong to exactly one of the following two events:

1. Zt− ze−γt < |λ̂| for all t ∈ [0, τ∆), in which case Y must have reached 0 before

reaching infinity;

2. There exists τ(ω) < τ∆(ω) such that τ = inf{t : Zt − e−γtz ≥ |λ̂|}, in which

case λ̂ + Zτ+t ≥ 0 for all t > 0 and Yτ+t will have a non-positive drift and
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the same diffusion coefficient as a squared Bessel process. By Comparison

Theorem 3.15, Yτ+t is stochastically dominated by 1
2
BESQ1(2y), as defined in

Definition 5.5, while the latter absorbs at 0 almost surely (p.314, [42]). Hence

Yt reaches 0 almost surely.

In either event, (Y, Z) is non-explosive, and we can conclude τ∆ = inf{t : Yt = 0}.
Finally, notice that the (a, b)-martingale problem with initial state (0, z), z > 0

has a unique trivial solution

Yt = 0, Zt = e−γtz > 0.

For any B̂ ⊂ Ω̂D that is not a null event of P̂y,z, we can find a set B ⊂ Ω such

that Py,z(B) = P̂y,z(B̂) by replacing the trajectory (Yτ∆+t, Zτ∆+t) = ∆, t ≥ 0 in B̂

to be (Yτ∆+t, Zτ∆+t) = (0, e−γtZτ∆).

The infinitesimal generator G has the same diffusion part as a well-studied family

of processes, namely the squared Bessel process. It is helpful to introduce the basic

properties of the squared Bessel process. See [42] for a nice survey of this topic.

Definition 5.5 (Squared Bessel process). For every δ ≥ 0 and x0 ≥ 0, the unique

strong solution to the equation

Xt = x0 + δt+ 2

∫ t

0

√
|Xs|dWs

is called the δ-dimensional squared Bessel process starting at x0 and is denoted by

BESQδ(x0).

Denote for u > 0 the transition density function of Xt ∼ BESQ0 from u to

m > 0 as qBESQt (u,m). We have (see Appendix A.2, [42])

qBESQt (u,m) =
1

2t
u1/2m−1/2e−(u+m)/2tI1

(
m1/2u1/2

t

)
,

for m > 0, where I1(·) is the modified Bessel function of the first kind of index 1,

and

Pu [Xt = 0] = exp
{
− u

2t

}
. (5.6)
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It is also useful to note that Xt will reach absorption at 0 almost surely.

Definition 5.6 (Modified Bessel function of the first kind, Iα, pp.375-377, [43]).

The modified Bessel function of the first kind of index α is defined as

Iα(x) :=
∞∑
m=0

1

m! Γ(m+ α + 1)

(x
2

)2m+α

. (5.7)

We have the properties

Iα(x) ∼ 1

Γ(α + 1)

(x
2

)α
, x ↓ 0, (5.8)

and

Iα(x) ∼ ex√
2πx

, x→∞. (5.9)

Theorem 5.7. Let (1 − λo(N))N1/3 → λ̂ ∈ R, γ := limN→∞ γo(N)N1/3 ≥ 0 and

Y N
0 → y0 > 0, ZN

0 → z0 > 0. Then the process (Y N , ZN) converges in distribution

to (Y, Z) in D([0,∞),R2), where (Y, Z) is the unique weak solution to the stochastic

differential equation system

dY = −(λ̂+ Z)Y ds+
√

2Y dW,

dZ = (Y − γZ)ds, (5.10)

with initial conditions Y0 = y0, Z0 = z0.

Proof. The system (5.10) corresponds to the infinitesimal generator

Gf(y, z) = −(λ̂+ z)y∂yf + (y − γz)∂zf + y∂yyf, f ∈ C2
c (R2).

The well-posedness of the G-martingale problem implies the existence and unique-

ness of a weak solution to (5.10). To prove the weak convergence to the diffusion

limit, it remains to check that all the assumptions in Theorem 3.9 are satisfied.
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Firstly, for each y,

bN1 (y) = y(−λ̂N−1/3 −N1/3−1y −N2/3−1z + λ̂yN1/3−1−1/3 + λ̂zN2/3−1−1/3)N1/3

→ y(−λ̂− z),

bN2 (y) =
(
N1/3−2/3y − γN−1/3z

)
N1/3 → y − γz,

and

aN(y) =

(
N−2/3 −N−1

−N−1 N−4/3

)
N2/3y +

(
0 0

0 N−4/3

)
N2/3γz

+

(
N−2/3 0

0 0

)
N2/3y

(
1−N1/3−1y −N2/3−1z

) (
1− λ̂N−1/3

)
→

(
2y 0

0 0

)
.

Secondly, the maximum jump size (under Euclidean norm) is bounded by (N−2/3+

N−4/3)1/2 → 0, and lastly, the convergence of the initial state is assumed. The weak

convergence then follows.

Denote the extinction time of the diffusion limit as

T := inf{t : Yt = 0}.

Next, we want to prove that TN weakly converges to T , given the initial states

converge.

The weak convergence to the diffusion limit is not sufficient for concluding the

weak convergence of the extinction times. Essentially, we would also need the family

{XN}N∈N to have a tendency of moving downward.

Theorem 5.8. Let (Y N
0 , ZN

0 ) = (uN , vN) and (Y0, Z0) = (u, v). If (uN , vN) →
(u, v) ∈ R2

+, then TN ⇒ T .

Our proof of Theorem 5.8 is inspired by [6], in which an analogous statement

was proved in one dimension.
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Proof. Let the probability measure Pu,v be the solution to the (G, C∞c (R2
+))-martingale

problem with initial state (u, v).

For y ≥ 0, define τy(f) := inf{t : (f(t))1 ≤ y} for càdlàg f ∈ D([0,∞),R2) with

the topology of uniform convergence on compacts (ucc), where (f(t))1 denotes the

first component of f(t).

We first show that for small y > 0, τy is a.s. continuous at (Y, Z).

For each sample path ω, taking any sequence {fn}n∈N ⊂ D([0,∞),R2) such that

ucc − limn→∞ fn = f := (Y (ω), Z(ω)), we have that the following two statements

are true:

1. For small y > 0, lim infn→∞ τy(fn) ≥ τy(f).

2. For small y > 0, lim supn→∞ τy(fn) ≤ τy(f).

Item 1 is in fact true for all f ∈ D([0,∞),R2). Otherwise, i.e., if lim infn→∞ τy(fn) <

τy(f), then there exist s such that

lim inf
n→∞

τy(fn) < s < τy(f),

and a subsequence {fni}i∈N satisfying limi→∞ τy(fni) < s. This contradicts to

ucc− limi→∞ fni = f , since inf{(f(t))1 : t ≤ s} > y.

Item 2 requires a little more work.

It is sufficient to prove that for all

y ∈

(0,∞), λ̂ ≥ 0,

(0, |4λ̂|−1), λ̂ < 0,
(5.11)

we have

lim sup
n→∞

τy(fn) ≤ τy(f).

Consider (Y (ω), Z(ω)) after time τy(f). We claim that for any ε > 0, the path

of Y a.s. intersects [0, y) by time τy(f) + ε.

Let τ ε := inf{t : Yt ≥ 2y}∧ε. It is sufficient to show that for any (Y0, Z0) = (y, z),
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z ≥ 0, the following holds almost surely:

inf
t∈(0,τε)

Yt < y.

From the second equation of (5.10), we have

Zt∧τε =

∫ t∧τε

0

e−γ(t∧τε−s)Ysds+ e−γ(t∧τε)z

≤ 2yγ−1 + (z − 2yγ−1)e−γ(t∧τε) =: z̄(t),

and z̄(t) is bounded on t ∈ (0, τ ε].

Our choice of y guarantees that the drift term of Yt∧τε is bounded for t ∈ (0, τ ε]

regardless of the sign of λ̂:

• if λ̂ ≥ 0, then 0 ≥ −(λ̂+ Zt)Yt ≥ −2y(λ̂+ z̄(t)); and

• if λ̂ < 0, then 1/2 ≥ −(λ̂+ Zt)Yt ≥ −2yz̄(t).

For t ≤ τ ε, by comparison theorem 3.15, 2Yt is stochastically dominated byBESQ1(2y),

which can also be seen as the square of Wiener process W̃t, i.e., 2Yt is stochastically

dominated by (W̃t +
√

2y)2. For any ε′ > 0 and δ > 0,

Py,z
[

inf
s≤ε′

Ys ≤ y − δ
∣∣∣ε′ < τ ε

]
≥ P

[
inf
s≤ε′

(W̃s +
√

2y)2 ≤ 2(y − δ)
]

= P
[
sup
s≤ε′

W̃s ≥
√

2y −
√

2(y − δ)
]

= 2P
[
W̃ε′ ≥

√
2y −

√
2y − 2δ

]
,

where the first equality above uses the fact that W̃ and −W̃ have the same dis-

tribution, and the second equality follows from the reflection principle of Wiener

processes. It follows that

Py,z
[

inf
s≤ε′

Ys < y
∣∣∣ε′ < τ ε

]
= lim

δ↓0
Py,z

[
inf
s≤ε

Ys ≤ y − δ
∣∣∣ε′ < τ ε

]
= 1,

Since Py,z [τ ε ∈ (0, ε]] = 1, we can take any positive sequence {εn}n∈N converging to
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0 and have

Py,z
[

inf
s≤τε

Ys < y

]
= Py,z

[⋃
n∈N

{
inf
s≤εn

Ys < y and εn < τ ε
}]

= lim
ε′↓0

Py,z
[

inf
s≤ε′

Ys < y
∣∣∣τ ε > ε′

]
Py,z [τ ε > ε′] = 1.

For each sample path ω, take any sequence {fn}n∈N converging to (Y (ω), Z(ω))

uniformly on compacts, sufficiently small y > 0 in the sense of (5.11), and any ε > 0,

we have τy(fn) < τy(f) + ε for all sufficiently large n.

Combining (1) and (2) above, for y ∈ (0, |4λ̂|−1), we have τy a.s. continuous at

(Y, Z).

Given the weak convergence (Y N , ZN)⇒ (Y, Z), the Skorokhod Representation

Theorem suggests that it is possible to choose a sample space in which (Y N , ZN)→
(Y, Z) almost surely in the Skorokhod topology. Moreover, since (Y, Z) is continuous,

it follows that ucc − limN→∞(Y N , ZN) = (Y, Z) almost surely. By the continuous

mapping theorem, for y ∈ (0, |4λ̂|−1),

τy((Y
N , ZN))⇒ τy((Y, Z)). (5.12)

Our goal is to show that

lim
N→∞

PNuN ,vN
[
TN ≤ t

]
= Pu,v [T ≤ t] ,

at all continuous points t of the RHS. This breaks down to showing the following

lim sup
N→∞

PNuN ,vN
[
TN < t

]
≤ Pu,v [T < t] , (5.13)

lim inf
N→∞

PNuN ,vN
[
TN < t

]
≥ Pu,v [T < t] . (5.14)

Since (Y, Z) is continuous, limy↓0 τy((Y, Z)) = T almost surely, which implies

lim
y↓0

Pu,v [τy((Y, Z)) < t] = Pu,v [T < t] . (5.15)
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We also have limy↓0 τy((Y
N , ZN)) ≤ TN , which implies

lim sup
N→∞

PNuN ,vN
[
TN < t

]
≤ lim sup

y↓0
lim
N→∞

PuN ,vN
[
τy((Y

N , ZN)) < t
]
. (5.16)

The inequality (5.13) follows from (5.15) and(5.16).

For the opposite direction, consider any large N and denote SY := {nN−1/3 :

n ∈ [N ]} and SZ := {nN−2/3 : n ∈ [N ]}, which are the state space of Y N and ZN

respectively. For any ε ∈ (0, t) and a ∈ (0, uN) ∩ SY , we have

PNuN ,vN
[
TN < t

]
≥ PNuN ,vN

[
τa((Y

N , ZN)) < t− ε
]

inf
b∈SZ

PNa,b
[
TN < ε

]
.

For each given initial state, τy((Y
N , ZN))(ω) is a non-increasing function of suf-

ficiently small y.

If for each ε > 0,we can find a = aε > 0 such that PNa,b
[
TN < ε

]
> 1 − ε for all

b > 0, then

lim inf
N→∞

PNuN ,vN
[
TN < t

]
≥ lim inf

N→∞
PNuN ,vN

[
τa((Y

N , ZN)) < t− ε
]

(1− ε)

= Pu,v [τa((Y, Z)) < t− ε] (1− ε) ≥ Pu,v [T < t− ε] (1− ε),

where the equality follows from (5.12).

Since Pu,v [T < t− ε] (1− ε) monotonically increases as ε ↓ 0, we have

lim inf
N→∞

PNuN ,vN
[
TN < t

]
≥ Pu,v [T < t] . (5.17)

In fact, it suffices to take any a = aε satisfying

aε <

 − log(1− ε) |e
λ̂ε−1|
|λ̂| ∧

∣∣∣4λ̂∣∣∣−1

, λ̂ 6= 0,

−ε log(1− ε), λ̂ = 0.

To see this, assuming we take such aε, we first look at the case when λ̂ 6= 0. Recall

that

PNa,b
[
TN < ε

]
= PNa,b

[
TNo < N1/3ε

]
,

where TNo denotes the extinction time of IN with initial state (IN0 , R
N
0 ) = (N1/3a,N2/3b).
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It is obvious that IN is stochastically dominated by a linear birth-death chain

LN with birth rate λo = λo(N), death rate 1 and initial state LN0 = N1/3a, satis-

fying LN0 (1 − λo) → aλ̂. Stochastic dominance between the processes implies that

TNo is stochastically dominated by the extinction time of LN . We have the exact

expression (4.3) of the distribution of the latter when λ̂ 6= 0. Notice that this bound

is independent of the status of RN .

For any

0 < aε ≤ −

∣∣∣eλ̂ε − 1
∣∣∣

|λ̂|
log(1− ε),

the following statement is true for all sufficiently large N :

aε ≤ −

∣∣∣eλ̂ε − 1
∣∣∣

|λ̂|
log(1− ε) ≤ − log(1− ε)N−1/3 log−1

1 +
|λ̂|N−1/3∣∣∣eλ̂ε − 1

∣∣∣
 ,

since the last term above is a monotonically decreasing function of N , tending to

the limit − log(1− ε) |e
λ̂ε−1|
|λ̂| . It follows that

PNa,b
[
TN < ε

]
≥ PN

[
TNbdp < N1/3ε

∣∣∣LN0 = N1/3a
]

=

(
1 +

λ̂N−1/3

eελ̂ − 1

)−aN1/3

≥ 1− ε,

The case of λ̂ = 0 can be treated in the same way. For any

0 < aε < −ε log(1− ε),

the following statement is true for all sufficiently large N :

aε ≤ − log(1− ε)N−1/3 log−1

1 +
λ̂N−1/3

exp
{
λ̂ε
}
− 1


= − log(1− ε)N−1/3 log−1

(
1 +N−1/3ε−1

)
→ −ε log(1− ε).

The exact expression of the extinction time of LN with equal birth and death rates
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can be derived, e.g., taking the limit in (4.3) as λN −µN → 0. Similar to the above,

PNa,b
[
TN < ε

]
≥ PN

[
TNbdp < N1/3ε

∣∣∣LN0 = N1/3aε

]
=

(
N1/3ε

N1/3ε+ 1

)aεN1/3

≥ 1− ε.

With both (5.13) and (5.14), we conclude TN ⇒ T when initial state (uN , vN)→
(u, v) and thus prove the theorem.

5.5 Distribution of the extinction time T of the

limit diffusion

First, we transform the problem of obtaining the distribution of the hitting time

to solving a second-order PDE.

Define U(u, v, t) := P
[
Yt0 > 0

∣∣∣Yt = u, Zt = v
]

= P
[
T > t0 − t

∣∣∣(Y0, Z0) = (u, v)
]

on the domain R2
+ × [0, t0].

By the Feynman-Kac formula, U(u, v, s) is the solution to the following PDE:

∂U

∂t
= −u∂

2U

∂u2
+ (λ̂+ v)u

∂U

∂u
− (u− γv)

∂U

∂v
, (5.18)

with the end condition U(u, v, t0) = 1R2
+

(u, v), and the boundary condition

lim
u↓0

U(u, v, t) = 0, t ∈ [0, t0),

where 1A denotes the indicator function of set A.

Consider the Banach space of bounded continuous functions which have continu-

ous extensions to [0,∞)2, equipped with the uniform norm, denoted as (B̂C(R2
+), ‖·‖).

Theorem 5.9. Let V (t) be a bounded linear operator on B̂C(R2
+) for each t > 0,

such that

V (t)f(u, v) :=

∫ ∞
0

g(t, ue−(λ̂+v)t;m)f(m, ve−γt + ut) dm,
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for t ≥ 0 and f ∈ B̂C(R2
+), where

g(t, u;m) =
1

t
u1/2m−1/2e−(u+m)/tI1

(
2m1/2u1/2

t

)
,m, u, t > 0,

and I1(·) is defined as (5.7). Define

Un(u, v, t) :=

(
V

(
t

n

))n
1R2

+
(u, v).

The tail distribution of T , i.e. P
[
T > t

∣∣∣(Y0, Z0) = (u, v)
]
, for each t > 0, is the

limit of Un(u, v, t) as n→∞, for (u, v) ∈ R2
+ uniformly on compacts.

Define linear operators L,H on f ∈ C2(R2
+), the space of twice differentiable

functions on R2
+, as

L := u
∂2

∂u2
and H := −(λ̂+ v)u

∂

∂u
+ (u− γv)

∂

∂v
.

Recalling the definition of the squared Bessel process in Definition 5.5, we see that

2L is the infinitesimal generator of BESQ0(u). This motivates us to construct a

solution analogous to the Lie-Trotter product.

The Lie-Trotter product formula [44] is an extension to generators of strongly

continuous semigroups on Banach spaces of the following result for n × n matrices

A and B:

et(A+B) = lim
n→∞

(
etA/netB/n

)n
.

The Lie-Trotter product formula can be seen as a consequence of the Chernoff prod-

uct formula [45,46] below.

Theorem 5.10. Let (F (t))t≥0 be a family of bounded linear operators on a Banach

space X. Assume that

1. F (0) = I,

2.
∥∥F k(t)

∥∥ ≤Mewkt for some M ≥ 1, some w > 0, all k ∈ N and all t ≥ 0,

3. the limit Af := limt↓0
F (t)−I

t
f for all f ∈ D, where D and (α−A)D are dense

subspaces in X for some α > w.
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Then the closure (A,Dom (A)) of (A, D) w.r.t. graph norm generates a strongly

continuous semigroup (Rt)t≥0 given by

Rtf = lim
n→∞

(F (t/n))n f.

The problem is, the generator we are interested in does not generate a strongly

continuous semigroup on B̂C(R2
+). In order to prove Theorem 5.9, we adopt the the-

ory of bi-continuous semigroups established in [7]. It allows us to obtain the Chernoff

product formula w.r.t. an appropriately chosen topology. The basic definitions and

important theorems are introduced in Section 3.3.

5.5.1 Chernoff approximation of extinction times in the crit-

ical regime

In this section, we apply Theorem 3.26 to our problem.

The underlying topological space

Let Φ = B̂C(R2
+) and endow B̂C(R2

+) with the uniform on compacts topology

(ucc), which is induced by the set of seminorms {‖·‖K}K⊂R2
+

, defined as

‖f‖K := sup
(u,v)∈K

|f(u, v)|,

for every compact set K ⊂ R2
+.

Following standard theorems, we can verify that (B̂C(R2
+), ucc) satisfies Assump-

tion 3.18. The details of verification is included below for completeness.

Item 2 of Assumption 3.18 follows from the fact that the Banach space (B̂C(R2
+), ‖·‖)

is continuously embedded in (B̂C(R2
+), ucc) (denoted in symbol as(B̂C(R2

+), ‖·‖) ↪−→
(B̂C(R2

+), ucc)). We can see this because for each K ⊂ R2
+,

‖f‖K ≤ ‖f‖.

Item 1 of Assumption 3.18 is satisfied due to the following lemma.
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Lemma 5.11. The space (B̂C(R2
+), ucc) is sequentially complete on ‖·‖-bounded

sets.

Proof. Any ‖·‖-bounded ucc-Cauchy sequence {fn}n∈N ⊂ B̂C(R2
+) has a limit coin-

ciding with the pointwise limit

f(u, v) := lim
n→∞

fn(u, v), (u, v) ∈ R2
+.

It is easy to check that such f belongs to B̂C(R2
+).

Item 3 is true since the topological dual of (B̂C(R2
+), ucc) is the set of Radon mea-

sures with compact support, which contains the Dirac measures. Hence (B̂C(R2
+), ucc)′

is norming for (B̂C(R2
+), ‖·‖).

Lemma 5.12. The space Cc(R2
+) is bi-dense in B̂C(R2

+).

Proof. For each f ∈ B̂C(R2
+), we can take an arbitrary exhaustion of R2

+ denoted as

{Dn}n∈N and find a sequence of functions fn(u, v) := f(u, v)ιn(u, v) ∈ Cc(R2
+), n ∈

N, where ιn is defined as (5.5). The sequence {fn}n∈N is ‖·‖-bounded by ‖f‖ and

converges uniformly on compacts to f .

The second-order problem associated with L = u ∂2

∂u2

We will now examine the operator L = u ∂2

∂u2 . Luckily, we are able to describe

the semigroup generated by L precisely.

Definition 5.13 (Green’s function, p.82, [47]). The solution y(x, t) = G(t, x;x0) of

the following PDE

∂y

∂t
= Ay

on domain D × [0, T ], with initial condition limt↓0 y(x, t) = δ(x − x0), x ∈ D and

boundary condition y(x, t) = 0, x ∈ ∂D× (0, T ] is called the Green’s function of the

operator ∂t −A.

Consider the process (Xt)t≥0 such that 2Xt is a squared Bessel process with

2X0 = 2u > 0 below.
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Lemma 5.14. The Green’s function of the parabolic operator ∂t +L can be written

as

g(t0−t, u;u0) =
1

t0 − t
u1/2u

−1/2
0 e−(u+u0)/(t0−t)I1

(
2u

1/2
0 u1/2

t0 − t

)
, (u, u0) ∈ R2

+, t ∈ [0, t0),

where I1(·) is the modified Bessel function of the first kind of index 1.

Proof. The Green’s function g(t0 − t, u;u0) of ∂t + L should satisfy

(∂t + L)g(t0 − t, u;u0) = 0, t ∈ [0, t0), (5.19)

lim
t↑t0

g(t0 − t, u;u0) = δ(u− u0),

g(t0 − t, 0;u0) = 0, t ∈ [0, t0).

To solve (5.19), we notice that it is the Kolmogorov backward equation of a process

Xt where 2Xt ∼ BESQ0(2u), and has the solution

g(t0 − t, u;u0) = 2qBESQt (2u, 2u0) =
1

t0 − t
u1/2u

−1/2
0 e−(u+u0)/(t0−t)I1

(
2u

1/2
0 u1/2

t0 − t

)
.

It is easy to verify that g(t0 − t, u;u0) satisfies the initial and boundary conditions.

Define for each t ≥ 0, a family of operators St ∈ L (B̂C(R2
+)) as

Stf(u, v) :=


∫∞

0
g(t, u;m)f(m, v)dm, t > 0,

f(u, v), t = 0,
(5.20)

where g is defined in Lemma 5.14. We should also note that the definition of St can

be extended to bounded measurable functions on R2
+.

From the probability interpretation used in the proof of Lemma 5.14, it is easy

to check that (St)t≥0 relates to the squared Bessel process Xt defined above in the

following sense: for f ∈ B̂C(R2
+), denote τX := inf{t : Xt = 0}, then

Stf(u, v) = Eu [f(Xt, v)]− f(0, v)Pu
[
τX ≤ t

]
= Eu

[
f(Xt, v), t < τX

]
.
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Proposition 5.15. The family of operators (St)t≥0 is a bi-continuous contraction

semigroup on (B̂C(R2
+), ucc). The generator of (St)t≥0 restricted to C∞c (R2

+) coin-

cides with L.

Proof. It is straightforward to see that S0 = I, SsSt = Ss+t, and ‖Stf‖ ≤ ‖f‖.
Next we check that (St)t≥0 is locally bi-equicontinuous. Let K ⊂ R2

+ be compact,

t0 > 0 and ε > 0. By (A.23)–(A.26), we can find a compact interval K1
ε ⊂ R+ such

that, uniformly for t ∈ (0, t0],∫
R+\K1

ε

g(t, u;m)dm <
ε

2 supn∈N ‖fn‖

for all (u, v) ∈ K.

Denote Kε := (K1
ε × R+) ∩K ⊂ R2

+.

Given ε and Kε as above, for any ‖·‖-bounded sequence {fn}n∈N ucc-converging

to 0, we can find some n0 ∈ N such that ‖fn‖Kε < ε/2 for all n > n0.

‖Stfn‖K ≤ sup
(u,v)∈K

∫
K1
ε

g(t, u;m)|fn(m, v)|dm+

∫
R+\K1

ε

g(t, u;m)|fn(m, v)|dm

< ε.

Hence (St)t≥0 is locally bi-equicontinuous w.r.t. ucc-topology.

Thirdly we check that (St)t≥0 is bi-continuous. We will prove this using the

property of the Green’s function g.

Let f ∈ B̂C(R2
+), K ⊂ R2

+ be compact, and ε > 0. By local bi-equicontinuity,

there exists f0 ∈ C0(R2
+) satisfying ‖f0 − f‖K < ε and ‖St(f0 − f)‖K < ε.

Consider f̂ : [0.1]2 → R such that f̂(e−u, e−v) = f0(u, v) for all (u, v) ∈ R2
+.

It is known that as a continuous function on compact domain, f̂ can be uniformly

approximated by a sequence of Berstein Polynomials (see e.g. [48]). In other words,

there exists positive integer n0 and a sequence of polynomials of degree n w.r.t. both

x and y, denoted as ĥn(x, y), n ∈ N, such that for all n > n0,

sup
(u,v)∈R2

+

∣∣∣f̂(e−u, e−v)− ĥn(e−u, e−v)
∣∣∣ = sup

(x,y)∈[0,1]2

∣∣∣f̂(x, y)− ĥn(x, y)
∣∣∣ < ε.
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We have

‖Stf − f‖K ≤ ‖St(f0 − f)‖K + ‖Stf0 − f0‖K + ‖f − f0‖K .

For all (u, v) ∈ K,

|Stf0(u, v)− f0(u, v)|

≤
∫
R+

g(t, u;m)
∣∣∣f0(m, v)− ĥn(e−m, e−v)

∣∣∣dm
+
∣∣∣f0(u, v)− ĥn(e−u, e−v)

∣∣∣+

∣∣∣∣∫
R+

g(t, u;m)ĥn(e−m, e−v)dm− ĥn(e−u, e−v)

∣∣∣∣
≤2ε+

∣∣∣∣∫
R+

g(t, u;m)ĥn(e−m, e−v)dm− ĥn(e−u, e−v)

∣∣∣∣. (5.21)

Each ĥn is a linear combination of {e−ju−kv, j, k = 1, 2, · · · , n}. Notice that by using

Berstein Polynomials, we have made sure that j, k 6= 0. This is because f0 vanishes

at infinity, and hence f̂ vanishes when one or both components are 0.

By Lemma A.6, for each (u, v) ∈ K,∣∣∣∣∫
R+

g(t, u;m)ĥn(e−m, e−v)dm− ĥn(e−u, e−v)

∣∣∣∣
≤

∑
1≤j,k≤n

|ajk|e−kv
∣∣∣∣∫

R+

g(t, u;m)e−jm dm− e−ju
∣∣∣∣

=
∑

1≤j,k≤n

|ajk|e−kv
∣∣∣∣exp

{
− u

t+ j−1

}
− exp

{
−u
t

}
− exp{−uj}

∣∣∣∣→ 0 as t ↓ 0.

Together with (5.21) and our definition of f0, we can conclude that there exists

tε > 0 such that

‖Stf − f‖K ≤ 5ε.

For each v ∈ R+, let fv(u) := f(u, v) ∈ C0(R+), then Stfv(u) = Eu [f(Xt, v)]

where 2Xt is a 0-dimensional squared Bessel process. The generator of the semigroup

associated with a one-dimensional diffusion can be fully characterised (see Chapter

8.1, [16]), from which we have (St)t≥0 is strong continuous on C0(R+) with the
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domain {f ∈ C0(R+) : Lf ∈ C0(R+)} ⊃ C∞c (R+). This can also be proved by

approximation by linear combinations of {e−ju−kv, j, k ∈ N} similar to our argument

above. By the dominated convergence theorem, St preserves the limit at v ↓ 0 and

v → ∞. Hence (St)t≥0 is strongly continuous on C0(R2
+). Since L does not act on

component v, we also have the corresponding domain contains C∞c (R2
+).

This concludes the proof.

We denote by Ci,j(R2
+) the subspace of B̂C(R2

+) with continuous partial deriva-

tives up to order i w.r.t. the first component and up to order j w.r.t. the second

component. We denote by B̂C
i,j

(R2
+) the subspace of Ci,j(R2

+) whose partial deriva-

tives above are also bounded and has a continuous extension to [0,∞)2.

The first-order problem associated with H = −(λ̂+ v)u ∂
∂u

+ (u− γv) ∂
∂v

We now shift our attention to the first order operator H and the semigroup

(Tt)t≥0 it generates. Consider the solution F = F (u, v, t) to the first-order PDE

∂F

∂t
= −HF, (5.22)

F (u, v, 0) = f(u, v) ∈ C1,1(R2
+), (5.23)

lim
u↓0

F (u, v, t) = 0, t > 0.

Denote characteristics parametrised by s ≥ 0 as (t(s), u(c1, c2, s), v(c1, c2, s)),

where

dt

ds
= 1,

du

ds
= −(λ̂+ v)u, (5.24)

dv

ds
= u− γv,

and u(c1, c2, 0) = c1, v(c1, c2, 0) = c2, t(0) = 0. By the Inverse function theorem,

96



calculating the Jacobian determinant at any (c1, c2, 0), we find that

det


∂u
∂c1
, ∂u

∂c2
, ∂u

∂s
∂v
∂c1
, ∂v

∂c2
, ∂v

∂s

0, 0, ∂t
∂s

 ≡ 1,

and therefore we can represent c1, c2, s as functions of u, v, t for all u, v and small t.

We can construct a solution to (5.22) as

F (u, v, t) = f(c1(u, v, t), c2(u, v, t)).

Alternatively, we can denote x1(u0, v0, t), x2(u0, v0, t) as the solution to the char-

acteristic equations (5.24) given initial state (u0, v0). Then we can define a shift

operator Tt ∈ L (B̂C(R2
+)) such that

Ttf(u, v) = f(x1(u, v, t), x2(u, v, t)), f ∈ B̂C(R2
+).

The fixed points of the system (5.24) are (0, 0) and (−γλ̂,−λ̂). The Jacobian

matrix at (u, v) is

J(u, v) =

(
− (λ̂+ v) −u

1 −γ

)
.

The eigenvalues of J(0, 0) are −λ̂ and −γ, whereas the eigenvalues of J(−γλ̂,−λ̂)

are 1
2

(
−γ ±

√
γ2 + 4λ̂γ

)
. It follows that the region [0,∞)2 is an invariant set, and

regardless of the value of (λ̂, γ), the characteristics will not hit u = 0 in finite time.

This ensures that the solutions with our boundary conditions exists.

With simple manipulation of the characteristic equations, we have

u(t) = u(0)e−λ̂t exp

{
−
∫ t

0

v(s)ds

}
≤ u(0)e|λ̂|t (5.25)

and

v(t) = e−γt
∫ t

0

eγsu(s)ds+ e−γtv(0).

Lemma 5.16. The family of operators (Tt)t≥0 is a bi-continuous semigroup w.r.t.

ucc-topology.
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Proof. Firstly, it is easy to see that Tt+s = TtTs, T0 = I and ‖Tt‖ = 1.

Next, we prove the local bi-equicontinuity.

Taking any constant t0 > 0, any compact set K ⊂ R2
+, we can always find

M > 0 such that K ⊂ [0, γM ] × [0,M ]. It is easy to check that for any x > 0,

the characteristic curve does not cross the boundary [0, γx] × {x} in the direction

toward +∞. Recall that by (5.25), the solution to the characteristic equations has

the following property:

Since u(t) ≤ u(0)e|λ̂|t0 , for t ∈ [0, t0], we can define compact set

K0 = [0, γMe|λ̂|t0 ]× [0,Me|λ̂|t0 ],

and the characteristics initiated in K will remain in K0 up to time t0. It follows

that

‖Ttf‖K ≤ ‖f‖K0
, t ∈ [0, t0], f ∈ B̂C(R2

+). (5.26)

Thirdly, we prove the bi-continuity property of the semigroup (Tt)t≥0.

For every f ∈ C∞c (R2
+), t ∈ [0, t0],

‖(Tt − I)f‖ = sup
(u,v)∈R2

+

∣∣∣f(x1(u, v, t), x2(u, v, t))− f(u, v)
∣∣∣

= sup
(u,v)∈R2

+

∣∣∣f (1,0)(u, v)(x1 − u) + f (0,1)(u, v)(x2 − v)

+
1

2

(
f (2,0)(u1, v1)(x1 − u)2 + f (0,2)(u1, v1)(x2 − v)2 + 2f (1,1)(u1, v1)(x1 − u)(x2 − v)

) ∣∣∣
= sup

(u,v)∈R2
+

t
∣∣∣− f (1,0)(u, v)(λ̂+ v2)u2 + f (0,1)(u, v)(u3 − γv3)

+
1

2
t

(
f (2,0)(u1, v1)

(
−(λ̂+ v2)u2

)2

+ f (0,2)(u1, v1) (u3 − γv3)2 (5.27)

−2f (1,1)(u1, v1)(λ̂+ v2)u2(u3 − γv3)
) ∣∣∣,

where (ui, vi) = ai(u, v) + (1 − ai)(x1(u, v, h), x2(u, v, h)) for some ai ∈ (0, 1), i =

1, 2, 3, are taken according to the Lagrange’s form of Taylor expansion: the second

order remainder of the expansion of f , and the first order remainders of the expansion

of x1 and x2 respectively.
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Since f ∈ C∞c (R2
+), the supremum in the last line of (5.27) is finite, and

((Tt − I)f)t≥0 is uniformly ‖·‖-bounded by 2‖f‖. Hence

ucc− lim
t↓0

(Tt − I)f = 0. (5.28)

Recall that C∞c (R2
+) is ‖·‖-dense in Cc(R2

+) and thus is bi-dense in B̂C(R2
+) by

Lemma 5.12. For any f ∈ B̂C(R2
+) and any K ⊂ R2

+, the local bi-equicontinuity

ensures that we can find for every ε > 0 an fc ∈ C∞c (R2
+) such that ‖f − fc‖K ∨

‖Tt(f − fc)‖K < ε. By (5.28), we can also find tε > 0 such that for all t ∈ [0, tε],

‖(Tt − I)fc‖K < ε.

It follows that for t ≤ tε

‖(Tt − I)f‖K ≤ ‖Tt(f − fc)‖K + ‖(Tt − I)fc‖K + ‖f − fc‖K < 3ε,

and hence the bi-continuity of (Tt)t≥0 on B̂C(R2
+) is proved.

It is not possible to solve the characteristic equations and derive an explicit

expression of Tt. Since the Chernoff product formula only uses the property of Tt
when t is small, we will work with an approximation of (Tt)t≥0 instead.

Define the mapping ξ : (t, u, v) 7→ (ξ1
t (u, v), ξ2

t (u, v)) from [0,∞) × R2
+ → R2

+,

where

ξ1
t (u, v) := ue−(λ̂+v)t, ξ2

t (u, v) := ve−γt + ut.

Define operator W : [0,∞)→ L (B̂C(R2
+)) such that

W (t)f(u, v) := f(ξ1
t (u, v), ξ2

t (u, v)) = f(ue−(λ̂+v)t, ve−γt + ut). (5.29)

Lemma 5.17. The family of operators (W (t))t≥0 is locally bi-equicontinuous and

bi-continuous w.r.t. ucc-topology.

Proof. First we prove the local bi-equicontinuity. Let t0 > 0 and K ⊂ R2
+ be any

compact set. Define u = max{u : (u, v) ∈ K} and u = min{u : (u, v) ∈ K}.
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Similarly, we can define v, v. Then we have for all t ∈ [0, t0], (u, v) ∈ K,

ξ2
t (u, v) ∈

[
ve−γt0 , ut0 + v

]
,

ξ1
t (u, v) ∈

[
ue−(|λ̂|+ut0+v)t0 , ue|λ̂|t0

]
.

We can always find compact set K0 ⊂ R2
+ such that

K0 ⊃
[
ue−(|λ̂|+ut0+v)t0 , ue|λ̂|t0

]
×
[
ve−γt0 , ut0 + v

]
.

Then for all t ∈ [0, t0],

‖W (t)f‖K ≤ ‖f‖K0
,

which implies local bi-equicontinuity.

For bi-continuity, we notice that for any compact set K ⊂ R2
+, each f ∈ B̂C(R2

+)

is uniformly continuous on K, i.e., for each ε > 0, there exists δ > 0 depending only

on ε, such that sup|u−u′|∨|v−v′|<δ |f(u, v)−f(u′, v′)| < ε. For each K, there also exists

tδ > 0 such that

sup
t∈[0,tδ]

sup
(u,v)∈K

|ue−(λ̂+v)t − u| ∨ |ve−γt + ut− v| < δ,

from which we conclude ucc− limt↓0(W (t)− I)f = 0. The proof of bi-continuity is

then concluded since supt≥0 ‖(W (t)− I)f‖ ≤ 2‖f‖.

Lemma 5.18. For all f ∈ C∞c (R2
+),

ucc− lim
t↓0

W (t)− I
t

f = Hf.
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Proof. For f ∈ C∞c (R2
+), t > 0, and (u, v) ∈ R2

+,

W (t)− I
t

f(u, v)−Hf(u, v)

=f (1,0)(u, v)
ue−(λ̂+v)t − u

t
+ f (0,1)(u, v)

ve−γt + ut− v
t

+
1

2
f (2,0)(u1, v1)

(ue−(λ̂+v)t − u)2

t
+ f (1,1)(u1, v1)

(ue−(λ̂+v)t − u)(ve−γt + ut− v)

t

+
1

2
f (0,2)(u1, v1)

(ve−γt + ut− v)2

t
−Hf

=f (1,0)(u, v)
1

2
u(λ̂+ v2)2t+ f (0,1)(u, v)

1

2
vγ2

2t+
1

2
f (2,0)(u1, v1)u2(λ̂+ v3)2t

+ f (1,1)(u1, v1)u(λ̂+ v3)(−γ3 + u)t+
1

2
f (0,2)(u1, v1)(−γ3 + u)2t,

where we use Lagrange’s form of the remainder to choose all the variables (u1, v1)

and (vi, γi), i = 2, 3, such that:

f(ξ1
t (u, v), ξ2

t (u, v)) = f(u, v) + f (1,0)(u, v)(ξ1
t (u, v)− u) + f (0,1)(u, v)(ξ2

t (u, v)− v)

+
1

2
f (2,0)(u1, v1)(ξ1

t (u, v)− u)2 +
1

2
f (1,1)(u1, v1)(ξ1

t (u, v)− u)(ξ2
t (u, v)− v)

+
1

2
f (0,2)(u1, v1)(ξ2

t (u, v)− v)2,

and

e−(λ̂+v)t = 1− (λ̂+ v3)t = 1− (λ̂+ v)t+
1

2
(λ̂+ v2)2t2,

e−γt = 1− γ3t = 1− γt+
1

2
γ2

2t
2.

Since f ∈ C∞c (R2
+), we have supt∈(0,1]

∥∥∥W (t)−I
t

f
∥∥∥ < ∞, and for any compact set

K ⊂ R2
+, there exists constant Cf,K > 0 such that∥∥∥∥W (t)− I

t
f −Hf

∥∥∥∥
K

≤ tCf,K → 0, t ↓ 0.

Hence the proof is concluded.
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5.5.2 Main result

Theorem 5.19. Let (St)t≥0 be the bi-continuous semigroup on B̂C(R2
+) defined in

(5.20), and (W (t))t≥0 as defined in (5.29).

The bi-closure of (L+H, C∞c (R2
+)) generates a bi-continuous semigroup Ut given

by the Chernoff product formula, i.e.,

Utf = ρ− lim
n→∞

(
W

(
t

n

)
S t
n

)n
f, f ∈ B̂C(R2

+),

uniformly for t in compact intervals in [0,∞).

Proof. Let

V (t) := W (t)St, t ≥ 0.

We shall check that V satisfies the conditions in Theorem 3.26.

Firstly, by definition, V (0) = I.∥∥∥(V (t))k
∥∥∥ ≤ ‖W (t)‖k‖St‖k ≤ 1.

Secondly, we check that for each f ∈ C∞c (R2
+),

ucc− lim
t↓0

V (t)f − f
t

− Lf −Hf = 0.

We have for each t > 0,

V (t)f − f
t

− Lf −Hf =
W (t)Stf − f

t
− Lf −Hf

=

(
W (t)− I

t
f −Hf

)
+W (t)

(
St − I
t

f − Lf
)

+ (W (t)− I)Lf.

Notice that Lf ∈ B̂C(R2
+), and hence the first and the third term above ucc-converge

to 0 following Lemma 5.18, and the second term ucc-converges to 0 following Propo-

sition 5.15.
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Thirdly, for each (u, v) ∈ R2
+, let mn = u. Then

|(V (t))n f(mn, v)|

≤
∫
R+

g
(
t, ξ1

t (mn, v);mn−1

) ∫
R+

g
(
t, ξ1

t (mn−1, ξ
2
t (mn, v));mn−2

)
∫
R+

g
(
t, ξ1

t (mn−2, ξ
2
t (mn−1, ξ

2
t (mn, v)));mn−3

)
· · ·
∫
R+

g
(
t, ξ1

t (m1,Ξ
2→n(v));m0

) ∣∣∣f(m0,Ξ
1→n(v))

∣∣∣ dm0 · · · dmn−1,

where we use the shorthand notation Ξk→l(v) to represent ξ2
t (mk, ξ

2
t (mk+1, · · · ξ2

t (ml, v))

for each k, l ∈ N, k < l.

To prove the local bi-equicontinuity, we take any K ⊂ R2
+, t0 > 0 and ε > 0.

Recall that ξ1
t (u, v) ≤ ue|λ̂|t for any v, and then

|(V (t))n f(u, v)| ≤
∫
R+

g
(
t, ξ1

t (mn, v);mn−1

) ∫
R+

g
(
t, ξ1

t (mn−1, ξ
2
t (mn, v));mn−2

)
· · ·
∫
R+

g
(
t, ξ1

t (m1,Ξ
2→n(v));m0

) ∣∣∣f(m0,Ξ
1→n(v))

∣∣∣ dm0 · · · dmn−1,

=

∫
R+

g
(
t, ξ1

t (mn, v);mn−1

) ∫
R+

g
(
t, ξ1

t (mn−1, ξ
2
t (mn, v));mn−2

)
· · ·
∫
R+

g
(
t, ξ1

t (m1,Ξ
2→n(v));m0

)
(1 +m0 + v)

∣∣∣f(m0,Ξ
1→n(v))

∣∣∣
1 +m0 + v

dm0 · · · dmn−1,

≤ sup
(u,v)∈R2

+

|f(u, v)|
1 + u+ v

∫
R+

g
(
t, ξ1

t (mn, v);mn−1

) ∫
R+

g
(
t, ξ1

t (mn−1, ξ
2
t (mn, v));mn−2

)
· · ·
∫
R+

g
(
t, ξ1

t (m2,Ξ
3→n(v));m1

) (
1 + ξ1

t (m1,Ξ
2→n(v)) + v

)
dm1 · · · dmn−1

≤ sup
(u,v)∈R2

+

|f(u, v)|
1 + u+ v

e|λ̂|t
∫
R+

g
(
t, ξ1

t (mn, v);mn−1

) ∫
R+

g
(
t, ξ1

t (mn−1, ξ
2
t (mn, v));mn−2

)
· · ·
∫
R+

g
(
t, ξ1

t (m2,Ξ
3→n(v));m1

)
m1 dm1 · · · dmn−1 + (1 + v) sup

(u,v)∈R2
+

|f(u, v)|
1 + u+ v

.
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Iterate this procedure and we have∣∣∣(e−|λ̂|tV (t)
)n
f(u, v)

∣∣∣ ≤u sup
(u′,v′)∈R2

+

|f(u′, v′)|
1 + u′ + v′

+ (1 + v) sup
(u′,v′)∈R2

+

|f(u′, v′)|
1 + u′ + v′

.

For any ‖·‖-bounded sequence {fj}j∈N ⊂ B̂C(R2
+) ucc-converging to 0, let M >

2 supj∈N ‖fj‖. We can decompose each fj as fj = hj + f̂j where f̂j(u, v) vanishes

when one or both components tend to 0, and

hj(u, v) ≤M(1− x−1
j u)1u∈(0,x−1

j ] +M(1− x−1
j v)1v∈(0,x−1

j ],

with {xj}j∈N being a sequence of positive constants tending to 0.

Similar to the previous argument,

M−1|(V (t))n hj(u, v)| ≤ (1− x−1
j v)1v∈(0,x−1

j ]

+

∫
R+

g
(
t, ξ1

t (mn, v);mn−1

) ∫
R+

g
(
t, ξ1

t (mn−1, ξ
2
t (mn, v));mn−2

)
· · ·
∫
R+

g
(
t, ξ1

t (m1,Ξ
2→n(v));m0

)
(1− x−1

j m0)1m0∈(0,x−1
j ] dm0 · · · dmn−1.

By the estimation (A.27), for t > 0, we can find j0 such that for all j > j0,

(R+ × (0, x−1
j ]) ∩K = ((0, x−1

j ]× R+) ∩K = ∅,

and for (u, v) ∈ K,

M−1|(V (t))n hj(u, v)| ≤(1− x−1
j v)1v∈(0,x−1

j ] + sup
(u,v)∈R2

+

∫ xj

0

g (t, u;m) (1− x−1
j m) dm

< sup
u∈R+

I2

(
2
√
uxj

t

)
e−u/t < ε/M,

‖(V (t))n hj(u, v)‖K <ε.

In addition, by bi-continuity of both W (t) and St, and the ‖·‖-boundedness of
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(V (t))n, we have

lim
t↓0
‖(V (t))n hj‖K = ‖hj‖K = 0,

for all sufficiently small xj. Together, we can choose such j0 uniformly for t on

compact intervals.

Now, since f̂j vanishes as one or both components tend to 0, and ucc−limj→∞ f̂j =

0, we can find j1 such that for all j > j1,

sup
(u,v)∈R2

+

∣∣∣f̂j(u, v)
∣∣∣

1 + u+ v
< ε.

It follows that for all j > j0 ∨ j1, and each (u, v) ∈ K,∣∣∣(e−|λ̂|tV (t)
)n
fj(u, v)

∣∣∣ ≤ |(V (t))n hj(u, v)|+
∣∣∣(e−|λ̂|tV (t)

)n
f̂j(u, v)

∣∣∣ < ε+ (1 + u+ v)ε,∥∥∥(e−|λ̂|tV (t)
)n
fj

∥∥∥
K
< (2 + ‖u+ v‖K)ε.

This concludes the local bi-equicontinuity.

In the next part, we show that both C∞c (R2
+) and (α − L − H)C∞c (R2

+) are

bi-dense subsets of B̂C(R2
+).

The first half of the statement is true because, by Lemma 5.12, Cc(R2
+) is bi-dense

in B̂C(R2
+), and it is well-known that C∞c (R2

+) is ‖·‖-dense in Cc(R2
+).

By Proposition 3.25, (St)t≥0 and (Tt)t≥0 restricted to C0(R2
+) are strongly con-

tinuous semigroups, and their generators are extension of operators (L, C∞c (R2
+))

and (H, C∞c (R2
+)). By Theorem 2.12, [16], (L, C∞c (R2

+)) and (H, C∞c (R2
+)) are dis-

sipative. By Theorem 3.14 (iii), [49], (L+H, C∞c (R2
+)) is also dissipative.

In Proposition 5.4, we showed that the (L+H, C∞c (R2
+))-martingale problem is

well-posed. By Theorem 8.1.1, [50] and Proposition 3.4, [16], the closure of (L +

H, C∞c (R2
+)), denoted as

(
L+H,Dom

(
L+H

))
, generates a strongly continuous

contraction semigroup on C0(R2
+).

By Proposition 2.1, [16], for all α > 0, (α−L+H) is a one-to-one mapping from

Dom
(
L+H

)
to C0(R2

+). From the property of the domain of strongly continuous
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semigroups, we also know that

Dom
(
L+H

)
⊂ {f ∈ C2,1(R2

+) : ‖(L+H)f‖ <∞}.

Let K ⊂ R2
+ be compact, α > 0 and ε > 0. Since (α − L+H)Dom

(
L+H

)
=

C0(R2
+) is bi-dense in B̂C(R2

+). For each h ∈ B̂C(R2
+), we can find a ‖·‖-bounded

sequence {hn}n∈N ⊂ C0(R2
+) and some n0 such that for all n > n0, ‖hn − h‖K < 1

3
ε.

Let fn = (α − L+H)−1hn ∈ Dom
(
L+H

)
. Let {Mm}m∈N be an exhaustion

of R2
+. For each n ∈ N, we can construct a ‖·‖-bounded sequence {fnm}m∈N ⊂

C∞c (R2
+) ⊂ D satisfying fnm = fn on Mm . Since fn ∈ C0(R2

+), such {fnm}m∈N has

the property ‖·‖ − limm→∞ fnm = fn, and ‖·‖ − limm→∞(L+H)fnm = L+Hfn for

each n.

For any ε > 0, there exist n0 ∈ N such that for all n > n0,

‖(α− L−H)fnn − h‖K ≤
∥∥(α− L+H)fn − h

∥∥
K

+ α‖fn − fnn‖K
+
∥∥L+H(fn − fnn)

∥∥
K

<
1

3
ε+

1

3
ε+

∥∥L+H(fn − fnn)
∥∥
K
< ε.

The uniform boundedness of {(α−L−H)fnn}n∈N follows from the uniform bound-

edness of {hn}n∈N. Hence ucc − limn→∞(α − L − H)fnn = h, which suggests that

(α− L−H)C∞c (R2
+) is bi-dense in B̂C(R2

+).

It is easy to check the uniform boundedness on C∞c (R2
+):

sup
t∈(0,1]

∥∥∥∥V (t)f − f
t

∥∥∥∥ ≤ sup
t∈(0,1]

‖W (t)‖
∥∥∥∥St − It f

∥∥∥∥+ sup
t∈(0,1]

∥∥∥∥W (t)− I
t

f

∥∥∥∥ <∞.
As all four conditions in Theorem 3.26 are met, we can conclude that the bi-

closure of (L+H, C∞c (R2
+)) generates a bi-continuous semigroup (Ut)t≥0 given by

Utf = ρ− lim
n→∞

(
V

(
t

n

))n
f = lim

n→∞

(
W

(
t

n

)
S t
n

)n
f,

for all f ∈ B̂C(R2
+) and uniformly for t in compact intervals in [0,∞).
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Proof of Theorem 5.9. The main theorem 5.9 follows from Theorem 5.19. Since

1R2
+
∈ B̂C(R2

+), U(u, v, t0 − t) = Ut1R2
+

(u, v) is the unique mild solution of (5.18)

(Proposition 6.4, [51]). From the standard probability interpretation of the solution,

we have

U(u, v, t0 − t) = Eu,v
[
1R2

+
(Yt∧τ∆ , Zt∧τ∆)

]
,

where τ∆ is the stopping time of one of Yt and Zt first hits {0,∞}. The boundary

condition at u ↓ 0 alone suffices to define a unique solution because as we have

shown in the proof of Proposition 5.4, τ∆ = inf{t : Yt = 0} almost surely.

5.6 A closer look at the approximation

When the first-order operator H is simple enough, (Tt)t≥0 can be written explic-

itly and we can take W (t) = Tt. Notice in our proof, apart from having smooth

coefficients, we only require the following:

Condition 1: For each t0 > 0, we can find compact sets in [0,∞)2 such that

the characteristics (analogous to the solution of (5.24)) initiated in K will remain

in K0 up to time t0.

Under Condition 1, the exact solution of the PDE associated with L+H and the

same domain and boundary conditions, can be expressed in terms of the Chernoff

product formula.

In the following example, we are able to find the closed-form expression of the

Chernoff product formula through deduction. For straightforward comparison, we

use the same notations as our main problem, and only change the definition of H.

Example 5.20.

∂U

∂t
= −u∂

2U

∂u2
+ auv

∂U

∂u
+ bv

∂U

∂v
,

U(u, v, t0) = 1R2
+

(u, v), lim
u↓0

U(u, v, t) = 0 for t ∈ [0, t0),

where parameters a, b ∈ R.
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The characteristic equation of the first-order problem is

du

dt
= −auv, dv

dt
= −bv,

whose behaviour at t → ∞ is (u, v) → (u0 exp{−av0b
−1}, 0). The solution of the

characteristic equation is

u(t) = u0 exp
{
−ab−1v0(1− e−bt)

}
, v(t) = v0e

−bt,

and therefore we can write Ttf(u, v) = f(u exp
{
avb−1(e−bt − 1)

}
, ve−bt).

Condition 1 is satisfied, since for each compact set K, we can find K ⊂ [0, x]2

for some x > 0, and let K0 = [0, x]× [0, xebt0 ]. Hence, the solution to the PDE can

be expressed in the form of the Lie-Trotter product.

We calculate the first few terms in the Lie-Trotter product sequence, and deduce

that

(ShTh)n1R2
+

(u, v) = 1− exp

−u
(
n−1∑
j=0

h exp
{
rv(1− e−jbh)

})−1


→ 1− exp

{
− u∫ t

0
exp{ab−1v(1− e−bx)}dx

}
,

as h = t/n and n→∞.

We can verify that

U(u, v, t) = Ut0−t1R2
+

(u, v) = 1− exp

{
− u∫ t0−t

0
exp{ab−1v(1− e−bx)}dx

}

is indeed a solution.

108



Proof. We denote exp

{
− u∫ t0−t

0 exp{ab−1v(1−e−bx)}dx

}
as exp{·} in the following proof.

∂U

∂t
= exp{·}u exp

{
ab−1v(1− e−b(t0−t))

}(∫ t0−t

0

exp
{
ab−1v(1− e−bx)

}
dx

)−2

,

∂U

∂u
= exp{·}

(∫ t0−t

0

exp
{
ab−1v(1− e−bx)

}
dx

)−1

,

∂2U

∂u2
= − exp{·}

(∫ t0−t

0

exp
{
ab−1v(1− e−bx)

}
dx

)−2

,

∂U

∂v
= − exp{·}u

(∫ t0−t

0

exp
{
ab−1v(1− e−bx)

}
dx

)−2

·
∫ t0−t

0

exp
{
ab−1v(1− e−bx)

}
ab−1(1− e−bx)dx.

It follows that

∂U

∂t
−
(
−u∂

2U

∂u2
+ auv

∂U

∂u
+ bv

∂U

∂v

)
=u exp{·}

(∫ t0−t

0

exp
{
ab−1v(1− e−bx)

}
dx

)−2

(
exp
{
ab−1v(1− e−b(t0−t))

}
− 1 + av

∫ t0−t

0

exp
{
ab−1v(1− e−bx)

}
(1− e−bx)dx

−av
∫ t0−t

0

exp
{
ab−1v(1− e−bx)

}
dx

)
= 0,

where in the last step, we use the following results derived through integration by

parts:∫ t0−t

0

exp
{
ab−1v(1− e−bx)

}
(−e−bx)dx = −(av)−1(exp

{
ab−1v(1− e−b(t0−t))

}
− 1).
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Chapter 6

The subcritical parameter regime

In this chapter, we discuss the cases where the initial size of infection is not small

enough for us to apply Theorem 4.6 in Chapter 4.

The stochastic SIRS model is significantly more complicated comparing to SIS

and SIR models. This is because the SIS model is one-dimensional, and although

the SIR model is two-dimensional, one of its components monotonically increases

almost surely.

In this chapter, we focus on two types of initial states:

• Large initial size of the infected populations, i.e., I0 � N : we find that in this

case, if we also have that λo(N) ≤ 1 and γo(N) tend to 0 faster than some

negative power of N , then the behaviour of the extinction time is similar to

the stochastic SIR model. This is discussed in Section 6.2.

Notice that this case covers the half of the critical parameter regime satisfying

λo ≤ 1.

• Medium initial size of the infected and immune populations: In this case,

we can approximate the stochastic SIRS model under critical scaling by the

corresponding deterministic model, until INt reaches a state sufficiently small

for Theorem 4.6 to be applicable. This is discussed in Section 6.3.

As we will show in Section 6.4, when the parameters are both bounded away from

the criticality, i.e., limN→∞ λo(N) = λlim < 1 and limN→∞ γo(N) = γlim > 0, the
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conditions for the medium and the large initial size of the infected and immune

populations overlap.

6.1 Introduction

The paradigm of this chapter is to compare the long-term behaviour of a Markov

chain with deterministic equations. The important result in this area is Kurtz’s law

of large numbers and can be found in [16]. It says that density dependent Markov

chains can be well approximated up to a fixed constant time by the solution of

the corresponding ODE, which describes their average drift. We briefly mentioned

the concept of density dependent processes in Chapter 2. By Kurtz’s definition, a

sequence of Markov chains {XN}N∈N is density dependent if Markov chains X̃N :=

N−1XN , N ∈ N, has jump rates depending only on the state of X̃N .

There is a large volume of literature proving Kurtz’s law of large numbers, with

various extensions with respect to different types of convergence and estimates of the

rate of convergence. Among those, we pay particular attention to the exponential

martingale estimate approach of [12], which is introduced in details in Section 3.1.1.

Mathematically, the extinction time problem of subcritical and near-critical epi-

demic models is related to the long-term behaviour of Markov chains near the stable

fixed point of their corresponding ODEs. More specifically, it requires that we ex-

tend the classical result to over a time interval that grows with N . The available

approaches are fundamentally related, and the key is to use the negative linear drift

of Markov chains near the stable fixed point. Barbour et al. [52] discuss a fairly

general set of models using integration by parts and exponential martingale esti-

mate of ODEs. However, as pointed out by [32], the results obtained in [52] contain

non-explicit constants, and their estimations are too weak to investigate near-critical

phenomena. Following a similar idea, the authors of [8] and [32] study specific one-

dimensional and two-dimensional epidemic models respectively. In their problem,

they can explicitly bound the non-linear part of the drift near the stable fixed point,

and thus obtain a much refined estimate. Alternatively, Foxall [6] solves the problem

by applying the ODE approximation to Markov chains under critical scaling (space

and time, e.g., as in Chapter 4 for SIRS models), instead of average scaling (N−1
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in space). His argument uses a drift barrier estimate derived to solve problems in

a more general setting [53], and uses L2-estimate instead of exponential estimate,

which is a weaker bound according to [12].

Our approach combines the advantages of both. By applying the integration

by parts to the critically-scaled Markov chains and then applying the exponential

martingale estimate of ODEs, we avoid the argument of martingale transform in [32]

and significantly reduce the algebraic work.

6.2 Large initial sizes of infection and immunity

In this section, we consider the case when limN→∞ λo ≤ 1, and there exists εγ > 0

such that γo = o (N−εγ ), with initial states

lim
N→∞

IN0 /N > 0, lim
N→∞

RN
0 /N ≥ 0.

Before we state the main result of this section, we first introduce the following

lemma, which obtains the time it takes for the deterministic SIR model to travel

between two states. This will allow us to express our main result in a more concise

form.

Recall the deterministic SIR model (2.3) with parameter λo > 0. In this subsec-

tion, (x1, x2, x3) represents the solution of the following deterministic SIR model:

dx1

dt
= −λox1x2,

dx2

dt
= λox1x2 − x2 = λox2(1− x2 − x3)− x2,

dx3

dt
= x2. (6.1)

Here, as well as for the deterministic SIRS model in the next section, we state

all three components, since we will use both representations (x1, x2) and (x2, x3)

of the solution. We use variables xi, i = 1, 2, 3, since we have used (y, z) for the

deterministic model under critical scaling in Chapter 4.
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For each N , let (xN1 (t), xN2 (t)) be the solution of (6.1) with

(xN1 (0), xN2 (0)) = (xN0 , y
N
0 ).

Let tNSIR (a→ b) be the time taken for xN1 to travel from a to b.

Recall our discussion in Lemma 2.3, where for each y ∈ [0, yN0 ), θ = θN(y) is the

solution of

xN0 + yN0 +
log
(
θ/xN0

)
λo

− θ = y. (6.2)

Let θ∗,N := θ∗(xN0 , y
N
0 ;λo) = lima↓0 θ

N(a).

Lemma 6.1 (Elapsed time of the deterministic SIR model). For each N , 0 < θ∗,N <

b(N) < a(N) ≤ xN0 , we have

tNSIR (a→ b) =

∫ a

b

u−1

(
xN0 + yN0 +

log
(
u/xN0

)
λo

− u

)−1

du. (6.3)

Also, there exists constant kSIR such that for any a = a(N) ↓ 0 as N →∞,

kSIR = kSIR(xN0 , y
N
0 ;λo) = lim

N→∞
− log a−1 + (1− λoθ∗,N)tNSIR

(
xN0 → θN(a)

)
.

Remark 6.2. When λo is independent of N , the statement on tNSIR (a→ b) and θ

above is consistent with J(b, a) and function θ defined in [1].

Proof. See Appendix A.1.

Our main result below suggests that when γo tends to 0 sufficiently fast, and the

initial size of infection is of order N , the behaviour of the stochastic SIRS model

resembles the stochastic SIR model, as studied by [1].

Theorem 6.3. Consider the stochastic SIRS model defined in (2.5) with parameters

limN→∞ λo(N) =: λlim ≤ 1 and γo = o (N−εγ ) for some εγ > 0, and initial states

lim
N→∞

IN0 /N > 0, lim
N→∞

RN
0 /N ≥ 0.
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Then we have

P
[
(1− λlimθ∗lim)TNo − kSIR − logN − log(1− λlimθ∗lim) ≤ w

]
→ e−e

−w
.

where θ∗lim = limN→∞ θ
∗(xN0 , y

N
0 ;λo), and kSIR = kSIR

(
N−I0−R0

N
, I0
N

;λo
)

are defined

in Lemma 6.1.

The idea behind the proof of Theorem 6.3 is that we can approximate the stochas-

tic SIRS model by the deterministic SIR model until INt is sufficiently small, and then

we can apply the extinction time result for small initial infections in Theorem 4.6.

We refer to the part of the stochastic SIRS model that closely resembles a de-

terministic SIR model as the ‘initial phase’ of the epidemic.

Lemma 6.4 (Initial phase). Under the same assumptions as in Theorem 6.3, define

XN,1
t = INt /N, X

N,2
t = RN

t /N,

then we have for any t1(N) ≤ 1
8
εγ logN + c1, c1 ∈ R,

P
[
sup
s≤t1

∣∣XN,1
s − xN2 (s)

∣∣+
∣∣XN,2

s − xN3 (s)
∣∣ ≥ N−2εγ

]
→ 0, N →∞,

where (xN2 , x
N
3 ) is the solution of the corresponding ODE system (6.1) with initial

condition

(xN2 (0), xN3 (0)) = (IN0 /N,R
N
0 /N).

Proof. We use the ODE approximation argument introduced in Section 3.1.

As stated in Section 3.1, XN has the following decomposition

XN,1
t = XN,1

0 +

∫ t

0

λo
(
1−XN,1

s −XN,2
s

)
XN,1
s −XN,1

s ds+MN,1
t ,

XN,2
t = XN,2

0 +

∫ t

0

XN,1
s − γoXN,2

s ds+MN,2
t ,

where MN,i, i = 1, 2, are zero-mean martingales.
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It follows that∣∣∣XN,1
t − xN2 (t)

∣∣∣ ≤|XN,1
0 − xN2 (0)|+

∫ t

0

(1 + λo)
∣∣XN,1

s − xN2 (s)
∣∣+ λo

∣∣XN,2
s − xN3 (s)

∣∣ds
+
∣∣∣MN,1

t

∣∣∣,
|XN,2

t − xN3 (t)| ≤|XN,2
0 − xN3 (0)|+

∫ t

0

∣∣XN,1
s − xN2 (s)

∣∣+ γoX
N,2
s ds+

∣∣∣MN,2
t

∣∣∣.
We combine the two and obtain for each N ,

sup
s≤t1

∣∣XN,1
s − xN2 (s)

∣∣+
∣∣XN,2

s − xN3 (s)
∣∣+

γo
3
≤
∣∣∣XN,1

0 − xN2 (0)
∣∣∣+
∣∣∣XN,2

0 − xN3 (0)
∣∣∣

+ 3

∫ t1

0

(
sup
u≤s

∣∣XN,1
u − xN2 (u)

∣∣+
∣∣XN,2

u − xN3 (u)
∣∣+

γo
3

)
ds

+ sup
s≤t1

(∣∣MN,1
s

∣∣+
∣∣MN,2

s

∣∣+
γo
3

)
.

By Gronwall’s inequality,

sup
s≤t1

∣∣XN,1
s − xN2 (s)

∣∣+
∣∣XN,2

s − xN3 (s)
∣∣+

γo
3

(6.4)

≤
(∣∣∣XN,1

0 − xN2 (0)
∣∣∣+
∣∣∣XN,2

0 − xN3 (0)
∣∣∣+ sup

s≤t1

∣∣MN,1
s

∣∣+
∣∣MN,2

s

∣∣+
γo
3

)
e3t1 .

Applying Proposition 3.2 where we choose ā(N) = t1(λo(N) + 1)/N when i = 1 and

ā(N) = t1(γo(N) + 1)/N when i = 2, we have

P
[
sup
s≤t1

∣∣MN,1
s

∣∣+
∣∣MN,2

s

∣∣ > 2N−εγ
]
≤ P

[
sup
s≤t1

∣∣MN,1
s

∣∣ > N−εγ
]

+ P
[
sup
s≤t1

∣∣MN,2
s

∣∣ > N−εγ
]

≤2 exp

{
− N1−2εγ

4(1 + λo)t1

}
+ 2 exp

{
− N1−2εγ

4(1 + γo)t1

}
= o(1).
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By (6.4),

P
[
sup
s≤t1

∣∣XN,1
s − xN2 (s)

∣∣+
∣∣XN,2

s − xN3 (s)
∣∣ > N−

1
2
εγ

]
≤P

[
sup
s≤t1

∣∣XN,1
s − xN2 (s)

∣∣+
∣∣XN,2

s − xN3 (s)
∣∣ > (2N−εγ +

γo
3

)
e3t1

]
≤P

[
sup
s≤t1

∣∣MN,1
s

∣∣+
∣∣MN,2

s

∣∣ > 2N−εγ
]

= o(1).

where we use the fact that(
2N−εγ +

γo
3

)
e3t1 ≤ 7

3
N−εγec1N

3
8
εγ = o

(
N−

1
2
εγ
)
.

Now we are ready to prove the main result of this section.

Proof of Theorem 6.3. We write for shorthand the following quantities in Lemma 6.1:

θ∗(N) := θ∗
(
N − I0 −R0

N
,
I0

N
;λo

)
, kSIR := kSIR

(
N − I0 −R0

N
,
I0

N
;λo

)
.

First, we note that

lim
N→∞

(
λ−1
o − θ∗

(
N − I0 −R0

N
,
I0

N
;λo

))
= (λ−1

lim − θ
∗
lim) > 0.

For each N , let

t1(N) = (1− λoθ∗)−1kSIR +
λo
8
εγ logN.

For ε = εγ(1 − λlimθ∗lim), by the definition of kSIR in Lemma 6.1, we have xN2 (t1) =

N−
1
8
ε and xN3 (t1) ∼ 1− θ∗ > 0.

By Lemma 6.4, with probability tending to 1,
∣∣∣XN,1

t1 − xN2 (t1)
∣∣∣ and

∣∣∣XN,2
t1 − xN3 (t1)

∣∣∣
are smaller or equal to N−

1
2
εγ .

Since INt1 ≤ N1−ε/8 + 2N1−εγ/2 with probability tending to 1, it suggests that,
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starting from time t1, we can apply Case 2.2 of Theorem 4.6 and have

P
[
(1− λlimθ∗lim)(TNo − t1)− log(1− λlimθ∗lim)INt1 ≤ w

]
→ e−e

−w
,

where θ∗lim := limN→∞ θ
∗(N).

(1− λlimθ∗lim)TNo −
1− λlimθ∗lim

1− λoθ∗
kSIR −

1

8
εγ(1− λlimθ∗lim) logN

− logN1− 1
8
ε − log

(
XN,1
t1 N

1
8
ε
)
− log(1− λlimθ∗lim)

=(1− λlimθ∗lim)TNo − kSIR − logN − log(1− λlimθ∗lim) + o(1),

It follows from Lemma A.4 that

P
[
(1− λlimθ∗lim)TNo − kSIR − logN − log(1− λlimθ∗lim) ≤ w

]
→ e−e

−w
.

6.3 Medium initial sizes of infection and immu-

nity

In this section, we assume that the parameters satisfy (1 − λo)N1/3 = λ̂ → ∞
and γoN

1/3 = γ →∞.

1
3

1
2

1 ∞

1
3

1

∞

−〈1− λo〉 = 1+〈γo〉
2

−〈1− λo〉

−〈γo〉

Figure 6.1: Parameter regime: the shaded area represents the regime of interest.
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Similar to the previous section, this section starts with the necessary variables

to represent the elapsed time of the deterministic model, before we proceed to the

statement of the main theorem.

Recall the deterministic SIRS model defined in (2.6). To avoid ambiguity in nota-

tion, we will denote the solution of the deterministic SIRS model as (x1(t), x2(t), x3(t)):

dx1

dt
= γo(1− x1 − x2)− λox1x2 (6.5)

dx2

dt
= λox1x2 − x2 = λo(1− x2 − x3)x2 − x2,

dx3

dt
= x2 − γox3,

Lemma 6.5 (Elapsed time of the deterministic SIRS model). Let (x1(t), x2(t)) be

the solution of (6.5) with (x1(0), x2(0)) = (s0, i0). Let tSIRS (m→ n) be the time it

takes for x2 to travel from m to n, 0 < n < m ≤ i0. Then

tSIRS (m→ n) =

∫ m

n

v(y)

y
dy, (6.6)

where v(y) is the solution of differential equation

dv

dy
= −v2

(
λo +

γo
y

)
+ v3

(
λo + λoγo +

γo − λoγo
y

)
, y ∈ (0, i0],

with the end condition v(i0) = 1
1−λos0 .

Proof. The proof is a simple manipulation of (6.5), see Appendix A.2.

Remark 6.6. When the initial states and parameters depend on N , tSIRS (m→ n)

is defined for all sufficiently large N .

When γo = 0, for each N ,

tSIRS (m→ n) = tNSIR (θ(m)→ θ(n)) .

Now we are ready to state the main result of this section.

Theorem 6.7. Consider the stochastic SIRS model defined in (2.5) with parameters

λo = λo(N) ↑ 1 and γo = γo(N) ↓ 0, satisfying (1 − λo)N1/3 → ∞, γoN
1/3 → ∞,
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and limN→∞
1−λo
γo
6= 1. If γo � 1− λo, we in addition require that there exists some

small εp > 0 such that N
εp
3 γ

1+εp
o � 1− λo.

Suppose the initial states of the model satisfy for some constants cy, dy, cz > 0

the conditions

IN0 = I0(N) ≤
[
dy

N(1− λo)γo
log(N1/3(1− λo))

, cy(1− λo)γoN
]
,

RN
0 = R0(N) ≤

czNγ
1+εp
o , if γo � 1− λo,

cz(1− λo)N, otherwise.

Then

P
[
(1− λo)TNo − (1− λo)tSIRS

(
I0N

−1 → a
)
− log a− logN(1− λo) ≤ w

]
→ e−e

−w
,

where a = a(N) ≥ N−1 can be chosen arbitrarily, as long as a = o((1− λo)γo). The

asymptotic distribution above is independent of the choice of a.

Remark 6.8. We do not have a result for the exact asymptotics of

(1− λo)tSIRS

(
I0N

−1 → a
)

+ log a

under the assumptions of Theorem 6.7, besides that it is O(logN). We know this

because I0N
−1 ≤ 1 and a(N) ≥ N−1, and we know that x2(t) decays as fast as

e−(1−λo)t.

However, we do have the exact asymptotics of this quantity when λo < 1 and

γo > 0 have limits bounded away from the criticality, which allows us to give a more

accurate description of the asymptotic distribution for some special cases. This is

discussed in Section 6.4.

For our purpose, it is easier to work with a change of variables. Therefore, in the

first subsection below, we introduce the change of variables and the integration by

parts transformation to the scaled SIRS model (Y N , ZN) defined as in (5.2). In the

second subsection, we will state the precise form of the main result and complete

the proof.
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6.3.1 Transformation to (Y N , ZN)

Recall the scaled parameters (5.1) and the scaled process (5.2):

λ̂(N) := (1− λo)N1/3, γ(N) := γoN
1/3,

Y N
t :=

IN
N1/3t

N1/3
, ZN

t :=
RN
N1/3t

N2/3
.

In the case when λ̂ 6= γ for all N ∈ N, we can perform a helpful change of

variables so that the stable manifolds of the corresponding ODE are tangent to the

axes at the origin. For the case where λ̂ = γ for some N ∈ N, we expect that we

can perform a different change of variables analogous to [8], and the treatment will

be the same in principle. Since our focus is on the scaling of the parameters, we will

only discuss the case when λ̂ 6= γ for all N ∈ N.

Similar to above, we introduce the notations

(λ̂ ∨ γ)(N) := λ̂(N) ∨ γ(N), (λ̂ ∧ γ)(N) := λ̂(N) ∧ γ(N).

To avoid too many variables, we will recycle the definition of the stochastic processes

XN , MN and V N from previous chapters.

Introduce the change of variables to the scaled stochastic SIRS model (Y N , ZN)

defined in (5.2) as the follows:(
Ỹ N

Z̃N

)
:=

(
1 0

(λ̂− γ)−1 1

)(
Y N

ZN

)
. (6.7)

The process (Ỹ N , Z̃N) has the following transition rates at state (y, z):

(y, z)→
(
y +N−1/3, z +

N−1/3

λ̂− γ

)
, at rate

N2/3(1− λ̂N−1/3)

(
1 + y

(
N−1/3

λ̂− γ
−N−2/3

)
− zN−1/3

)
y,

(y, z)→
(
y, z −N−2/3

)
, at rate N2/3γ(−(λ̂− γ)−1y + z), (6.8)

(y, z)→
(
y −N−1/3, z − N−1/3

λ̂− γ
+N−2/3

)
, at rate N2/3y.
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It has the drift coefficients

µ(Ỹ N) = −λ̂Ỹ N + λo

(
(Ỹ N)2((λ̂− γ)−1 −N−1/3)− Ỹ N Z̃N

)
,

µ(Z̃N) = −γZ̃N +
1− λ̂N−1/3

λ̂− γ
(Ỹ N)2((λ̂− γ)−1 −N−1/3)− Ỹ N Z̃N

= −γZ̃N +
λo

λ̂− γ

(
(Ỹ N)2((λ̂− γ)−1 −N−1/3)− Ỹ N Z̃N

)
,

and the diffusion coefficients

σ2(Ỹ N) =Ỹ N
(

2− λ̂N−1/3 + λoN
−1/3

(
Ỹ N((λ̂− γ)−1 −N−1/3)− Z̃N

))
,

σ2(Z̃N) =Ỹ N(λ̂− γ)−2
(
λo +N−1/3λo

(
Ỹ N((λ̂− γ)−1 −N−1/3)− Z̃N

)
+((λ̂− γ)N−1/3 − 1)2

)
+N−2/3γ

(
−Ỹ N(λ̂− γ)−1 + Z̃N

)
.

By the properties of the continuous Markov chains, we have the standard decom-

position

Ỹ N
t = Ỹ N

0 −
∫ t

0

λ̂Ỹ N
s ds− λoỸ N

s

(
(N−1/3 − (λ̂− γ)−1)Ỹ N

s + Z̃N
s

)
ds+MN,1

t , (6.9)

Z̃N
t = Z̃N

0 −
∫ t

0

γZ̃N
s ds−

λo

λ̂− γ
Ỹ N
s

(
(N−1/3 − (λ̂− γ)−1)Ỹ N

s + Z̃N
s

)
ds+MN,2

t ,

where MN,i
t , i = 1, 2, are zero-mean martingales.

The mean value ODE for each N is(
dỹ/dt

dz̃/dt

)
:=

(
−λ̂ 0

0 −γ

)(
ỹ

z̃

)
− λoỹ

(
(N−1/3 − (λ̂− γ)−1)ỹ + z̃

)( 1

(λ̂− γ)−1

)
,

(ỹ(0), z̃(0)) = (Ỹ N
0 , Z̃N

0 ), (6.10)

whose solution is denoted as (ỹN , z̃N).

We introduce the function fN(y, z) := y(N−1/3 − (λ̂ − γ)−1) + z. Performing
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integration by parts on (6.10), we have

ỹN(t) = e−λ̂tỹN(0)− λo
∫ t

0

e−λ̂(t−s)ỹN(s)fN(ỹN(s), z̃N(s))ds, (6.11)

z̃N(t) = e−γtz̃N(0)− λo(λ̂− γ)−1

∫ t

0

e−γ(t−s)ỹN(s)fN(ỹN(s), z̃N(s))ds. (6.12)

There is a corresponding representation of continuous-time Markov chain (Ỹ N , Z̃N),

according to Lemma 4.1, [54].

Ỹ N
t = e−λ̂tỸ N

0 − λo
∫ t

0

e−λ̂(t−s)Ỹ N
s f

N(Ỹ N
s , Z̃

N
s )ds+ e−λ̂tV N,1

t , (6.13)

Z̃N
t = e−γtZ̃N

0 −
λo

λ̂− γ

∫ t

0

e−γ(t−s)Ỹ N
s f

N(Ỹ N
s , Z̃

N
s )ds+ e−γtV N,2

t , (6.14)

where

V N,1
t :=

∫ t

0

eλ̂sdMN,1
s , (6.15)

V N,2
t :=

∫ t

0

eγsdMN,2
s . (6.16)

To find fluctuation bounds for V N,i, we define

XN,1
t =

∫ t

0

eb1sdỸ N
s , (6.17)

XN,2
t =

∫ t

0

eb2sdZ̃N
s ,

where b1 = λ̂ and b2 = γ.

Let JN and qN((Ỹ N , Z̃N), j), j ∈ JN , be the set of possible jumps and the

corresponding transition rates of (Ỹ N , Z̃N). Then for i = 1, 2,

V N,i
t = XN,i

t −XN,i
0 −

∫ t

0

∑
j∈JN

qN((Ỹ N
s , Z̃

N
s ), j)ebisjids,

where ji is the i-th component of j.

We will discuss the fluctuation under different parameter regimes below, and
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prove the ODE approximation respectively.

6.3.2 Proof of Theorem 6.7

The idea behind the proof is that under the assumptions above, the scaled,

transformed stochastic SIRS model (Ỹ N , Z̃N) can be well-approximated by the cor-

responding ODE (6.10), up until INt = N1/3Y N
t and RN

t = N2/3ZN
t are small enough

for us to apply Theorem 4.6.

Proposition 6.9 (Initial phase). Consider for each N ∈ N the Markov chain

(Ỹ N , Z̃N) defined in (6.8), with parameters λ̂ = (1 − λo)N
1/3 → ∞ and γ =

γoN
1/3 →∞, and initial states satisfying Ỹ N

0 ∈ [y∗, y
∗] and Z̃N

0 = O
(
λ̂ ∧ γ

)
where

y∗ = cyλ̂γ for some cy > 0 and y∗ = λ̂1−εγ for some sufficiently small constant

ε > 0.

Let (ỹN , z̃N) be the solution to (6.10) with (ỹN(0), z̃N(0)) = (Ỹ N
0 , Z̃N

0 ). For any

constant t > 0 independent of N , we have as N →∞,

P
[
sup
s≤t

∣∣∣Ỹ N
s − ỹN(s)

∣∣∣ > (λ̂ ∨ γ)1−2ε and sup
s≤t

∣∣∣Z̃N
s − z̃N(s)

∣∣∣ > 3

2
(λ̂ ∨ γ)−2ε

]
= o(1).

To prove this, we first need to introduce some new variables.

Define t∗ := inf{t : ỹN(t) ≤ y∗}, δỸ N
t := Ỹ N

t − ỹN(t) and δZ̃N
t := Z̃N

t − z̃N(t).

Define the stopping times

τNX := inf

{
t :
∣∣∣δỸ N

t

∣∣∣ ≥ (λ̂ ∨ γ)1−2ε or
∣∣∣δZ̃N

t

∣∣∣ ≥ 3

2
(λ̂ ∨ γ)−2ε

}
,

τN2,X := inf

{
t :
∣∣∣δỸ N

t

∣∣∣ ≥ 2(λ̂ ∨ γ)1−2ε or
∣∣∣δZ̃N

t

∣∣∣ ≥ 2(λ̂ ∨ γ)−2ε

}
,

and

τNV := inf

{
t :
∣∣∣V N,1
t

∣∣∣ ∨ λ̂∣∣∣V N,2
t

∣∣∣ ≥ (λ̂ ∨ γ)1−3ε

}
.

Clearly τNX ≤ τN2,X -a.s.

We can derive estimations for ỹN(t) and z̃N(t) from (6.10).
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Firstly, it is easy to see that ỹN monotonically decreases. Multiplying (6.11) by

(λ̂− γ)−1 and subtracting it from (6.12), we have

∣∣z̃N(t)
∣∣ =
∣∣∣e−γtz̃N(0) + ỹN(t)(λ̂− γ)−1 − e−λ̂tỹN(0)(λ̂− γ)−1

∣∣∣
≤2ỹN(0)

∣∣∣λ̂− γ∣∣∣−1

+
∣∣z̃N(0)

∣∣ = O(λ̂ ∧ γ). (6.18)

Returning to the original variables (yN(t), zN(t)), we have

dyN/dt = −λ̂yN − λoy(N−1/3yN + zN) ≤ −λ̂yN ,

and therefore

ỹN(t) = yN(t) ≤ yN(0)e−λ̂t. (6.19)

Furthermore,∫ t

0

∣∣∣fN (ỹN(s), z̃N(s)
) ∣∣∣ds =

∫ t

0

∣∣∣ (N−1/3 − (λ̂− γ)−1
)
ỹN(s) + z̃N(s)

∣∣∣ds
=

∫ t

0

∣∣∣N−1/3ỹN(s) + e−γsz̃N(0)− e−λ̂sỹN(0)(λ̂− γ)−1
∣∣∣ds

≤
∫ t

0

(
N−1/3ỹN(0)e−λ̂s + e−γs

∣∣z̃N(0)
∣∣+
∣∣∣λ̂− γ∣∣∣−1

ỹN(0)e−λ̂s
)
ds

≤
(
N−1/3 +

∣∣∣λ̂− γ∣∣∣−1
)
ỹN(0)

λ̂
+

∣∣z̃N(0)
∣∣

γ
= O(1).

The next lemma gives us the bound for V N .

Lemma 6.10. For any t0 > 0, ε < 1
7
,

P

[
sup

s≤t0∧τN2,X

∣∣V N,1
s

∣∣ > e2λ̂t0(λ̂ ∨ γ)1−3ε

]
→ 0,

P

[
sup

s≤t0∧τN2,X

∣∣V N,2
s

∣∣ > e2γt0(λ̂ ∨ γ)−3ε

]
→ 0,

as N →∞.
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Proof. The proof is an application of Proposition 3.2 to the process XN defined in

(6.17).

In the following, we use the fact that

Z̃N ≥ Ỹ N(λ̂− γ)−1,

and therefore almost surely

1 + Ỹ N

(
N−1/3

λ̂− γ
−N−2/3

)
− Z̃NN−1/3 ∈ (0, 1). (6.20)

For all sufficiently large N , conditioning on the event {t ≤ τN2,X}, we can apply (6.20)

to the diffusion coefficient σ2
(
Ỹ N
s

)
and have for i = 1,

∫ t

0

∑
j∈JN

qN(XN
s−, j)(e

λ̂sji)
2ds ≤ 2

∫ t

0

e2λ̂sỸ N
s ds

≤2
e2λ̂t − 1

2λ̂

(
cyλ̂γ + 2(λ̂ ∨ γ)1−2ε

)
≤e2λ̂t(λ̂ ∨ γ)1+ε.

We can choose δ = e2λ̂t0(λ̂ ∨ γ)1−3ε, and then by Proposition 3.2,

P

[
sup

s≤t0∧τN2,X

∣∣V N,1
s

∣∣ > e2λ̂t0(λ̂ ∨ γ)1−3ε

]
≤ 2 exp

{
−e

4λ̂t0(λ̂ ∨ γ)2−6ε

e2λ̂t0(λ̂ ∨ γ)1+ε

}
→ 0, N →∞.

Similarly, for i = 2,∫ t

0

∑
j∈JN

qN(XN
s−, j)(e

γsji)
2ds

≤e
2γt − 1

2γ

[
(λ̂− γ)−2

(
λ̂γ + 2(λ̂ ∨ γ)1−2ε

)
+N−2/3γ(2(λ̂ ∨ γ)−2ε + z̃N(0))

+

(
N−2/3 + (λ̂− γ)−2 + 2N−1/3

∣∣∣λ̂− γ∣∣∣−1
)(

λ̂γ + 2(λ̂ ∨ γ)1−2ε
)]

≤e2γt(λ̂ ∨ γ)−1+ε.
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For any t0 > 0, we can choose δ = e2γt0(λ̂∨γ)−3ε, and then by Proposition 3.2, when

constant ε > 0 is chosen to be sufficiently small,

P

[
sup

s≤t0∧τN2,X

∣∣V N,2
s

∣∣ > e2γt0(λ̂ ∨ γ)−3ε

]
≤ 2 exp

{
− e4γt0(λ̂ ∨ γ)−6ε

e2γt0(λ̂ ∨ γ)−1+ε

}
→ 0, N →∞.

Proof of Proposition 6.9. Subtract (6.11) from (6.13), we have

eλ̂tδỸ N
t =δỸ N

0 − λo
∫ t

0

eλ̂s
(
Ỹ N
s f

N(Ỹ N
s , Z̃

N
s )− ỹN(s)fN(ỹN(s), z̃N(s))

)
ds+ eλ̂tV N,1

t .

(6.21)

Taking absolute value on both sides and then the supremum over time interval [0, t],

we have

eλ̂t sup
s∈[0,t]

∣∣∣δỸ N
s

∣∣∣ ≤∣∣∣δỸ N
0

∣∣∣+

∫ t

0

eλ̂s sup
u∈[0,s]

∣∣∣δỸ N
u

∣∣∣∣∣∣fN(ỹN(s), z̃N(s))
∣∣∣ds

+

∫ t

0

eλ̂s sup
u∈[0,s]

∣∣∣δỸ N
u

∣∣∣∣∣∣fN(Ỹ N
s , Z̃

N
s )− fN(ỹN(s), z̃N(s))

∣∣∣ds
+

∫ t

0

eλ̂sỹN(s)
∣∣∣fN(Ỹ N

s , Z̃
N
s )− fN(ỹN(s), z̃N(s))

∣∣∣ds+ eλ̂t sup
s∈[0,t]

∣∣V N,1
s

∣∣,
eλ̂t sup

s∈[0,t]

∣∣∣δỸ N
s

∣∣∣ ≤∣∣∣δỸ N
0

∣∣∣+

∫ t

0

eλ̂s sup
u∈[0,s]

∣∣∣δỸ N
u

∣∣∣∣∣∣fN(ỹN(s), z̃N(s))
∣∣∣ds

+

∫ t

0

eλ̂s sup
u∈[0,s]

∣∣∣δỸ N
u

∣∣∣((N−1/3 +
∣∣∣λ̂− γ∣∣∣−1

)
sup
u∈[0,s]

∣∣∣δỸ N
u

∣∣∣+ sup
u∈[0,s]

∣∣∣δZ̃N
u

∣∣∣) ds
+

∫ t

0

eλ̂sỹN(0)e−λ̂s

((
N−1/3 +

∣∣∣λ̂− γ∣∣∣−1
)

sup
u∈[0,s]

∣∣∣δỸ N
u

∣∣∣+ sup
u∈[0,s]

∣∣∣δZ̃N
u

∣∣∣) ds
+ eλ̂t sup

s∈[0,t]

∣∣V N,1
s

∣∣,
where we use

fN(Ỹ N
s , Z̃

N
s )− fN(ỹN(s), z̃N(s)) = (N−1/3 − (λ̂− γ)−1)δỸ N

s + δZ̃N
s .
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By Gronwall’s inequality (Theorem 3.3), we have for t ≤ τN2,X ∧ τNV ,

eλ̂t sup
s∈[0,t]

∣∣∣δỸ N
s

∣∣∣ ≤ (∣∣∣δỸ N
0

∣∣∣+ eλ̂t
∣∣∣V N,1
t

∣∣∣+ sup
s∈[0,t]

∣∣∣δZ̃N
s

∣∣∣ỹN(0)t

)

exp

{∫ t

0

∣∣∣fN(ỹN(s), z̃N(s))
∣∣∣+

(
N−1/3 +

∣∣∣λ̂− γ∣∣∣−1
)
ỹN(0)e−λ̂sds

}
exp

{
2

(
N−1/3 +

∣∣∣λ̂− γ∣∣∣−1
)

(λ̂ ∨ γ)1−2εt+ 2(λ̂ ∨ γ)−2εt

}
≤

(∣∣∣δỸ N
0

∣∣∣+ eλ̂t
∣∣∣V N,1
t

∣∣∣+ sup
u∈[0,s]

∣∣∣δZ̃N
u

∣∣∣ỹN(0)t

)
exp

{
2

(
N−1/3 +

∣∣∣λ̂− γ∣∣∣−1
)
ỹN(0)

λ̂
+
z̃N(0)

γ

}
exp

{
2(λ̂ ∨ γ)−2εt

((
N−1/3 +

∣∣∣λ̂− γ∣∣∣−1
)

(λ̂ ∨ γ) + 1

)}
.

Hence, for constant t ≤ τN2,X ∧ τNV , given our assumptions to ỹN(0) and z̃N(0), there

exists a constant c0 > 0 such that for sufficiently large N ,

eλ̂t sup
s∈[0,t]

∣∣∣δỸ N
s

∣∣∣ ≤ (∣∣∣δỸ N
0

∣∣∣+ eλ̂t
∣∣∣V N,1
t

∣∣∣+ sup
u∈[0,t]

∣∣∣δZ̃N
u

∣∣∣ỹN(0)t

)
ec0 ,

sup
s∈[0,t]

∣∣∣δỸ N
s

∣∣∣ ≤ (∣∣∣V N,1
t

∣∣∣+ sup
u∈[0,t]

∣∣∣δZ̃N
u

∣∣∣ỹN(0)e−λ̂tt

)
ec0 ≤ (λ̂ ∨ γ)1−2ε. (6.22)

Similarly, from (6.12) and (6.14) we have

δZ̃N
t =δZ̃N

0 −
λo

λ̂− γ

∫ t

0

e−γ(t−s)
(
Ỹ N
s f

N(Ỹ N
s , Z̃

N
s )− ỹN(s)fN(ỹN(s), z̃N(s))

)
ds+ V N,2

t

=δZ̃N
0 − (λ̂− γ)−1δỸ N

0 + (λ̂− γ)−1δỸ N
t − (λ̂− γ)−1V N,1

t + V N,2
t .

The fluctuation of Z̃N can be bounded by a combination of the fluctuation of Ỹ N
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and martingales V N,i, i = 1, 2:

sup
s∈[0,t]

∣∣∣δZ̃N
s

∣∣∣ ≤∣∣∣δZ̃N
0

∣∣∣+
∣∣∣λ̂− γ∣∣∣−1∣∣∣δỸ N

0

∣∣∣+
∣∣∣λ̂− γ∣∣∣−1

sup
s∈[0,t]

∣∣∣δỸ N
s

∣∣∣
+
∣∣∣λ̂− γ∣∣∣−1

sup
s∈[0,t]

∣∣V N,1
s

∣∣+ sup
s∈[0,t]

∣∣V N,2
s

∣∣,
sup
s∈[0,t]

∣∣∣δZ̃N
s

∣∣∣ ≤∣∣∣λ̂− γ∣∣∣−1

(λ̂ ∨ γ)1−2ε +
∣∣∣λ̂− γ∣∣∣−1

(λ̂ ∨ γ)1−3ε + (λ̂ ∨ γ)−3ε (6.23)

≤3

2
(λ̂ ∨ γ)−2ε.

Together with (6.22) and (6.23), we can see that τN2,X ∧ τNV ≤ τNX almost surely.

Combining with τNX ≤ τN2,X almost surely, we have for any constant t > 0,

P
[
τNX ≤ t

]
≤ P

[
τNV ≤ t

]
,

and the statement follows from Lemma 6.10.

Proof of Theorem 6.7. Under the assumptions in Theorem 6.7,

Ỹ N
0 = IN0 N

−1/3 ∈

[
dy

λ̂γ

log λ̂
, cyλ̂γ

]
, Z̃N

0 � λ̂γ
∣∣∣λ̂− γ∣∣∣−1

+ λ̂ ∧ γ = O(λ̂ ∧ γ),

which satisfies the conditions of the initial states in Proposition 6.9.

Take a sufficiently small constant ε > 0. The time it takes for ỹN to reach

y∗ = λ̂1−εγ, denoted as tini, equals to N−1/3tSIRS (I0/N → (1− λo)1−εγo).

By (6.19), tini � log λ̂

λ̂
= o(1).

It is sufficient to take t = 1 in Proposition 6.9, and we have that, as N →∞,

P
[
sup
s≤1

∣∣∣Ỹ N
s − ỹN(s)

∣∣∣ > (λ̂ ∨ γ)1−2ε and sup
s≤1

∣∣∣Z̃N
s − z̃N(s)

∣∣∣ > 3

2
(λ̂ ∨ γ)−2ε

]
= o(1).

With probability tending to 1, the event{∣∣∣Ỹ N
tini
− ỹN(tini)

∣∣∣ ≤ (λ̂ ∨ γ)1−2ε and
∣∣∣Z̃N

tini
− z̃N(tini)

∣∣∣ ≤ 3

2
(λ̂ ∨ γ)−2ε

}
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happens. Conditioned on this event,

INN1/3tini
= N1/3Ỹ N

tini
≤ N1/3λ̂1−εγ

(
1 + λ̂−ε + γ−2ε

)
= N(1− λo)1−εγo

(
1 + λ̂−ε + γ−2ε

)
,

RN
N1/3tini

= N2/3ZN
tini
� N2/3

(
zN(tini) + (λ̂ ∨ γ)−2ε

)
,

where zN(tini) is the solution of the ODE system before transformation:

zN(tini) = z̃N(tini)− (λ̂− γ)−1ỹN(tini) = e−γtinizN(0) + (λ̂− γ)−1yN(0)(e−γtini − e−λ̂tini)

=

 O(γ), γ � λ̂,

O
(
λ̂1− γ

λ̂

)
, otherwise.

It is easy to check that this satisfies the conditions of Case 1.3, Theorem 4.6,

and therefore

lim
N→∞

P
[
(1− λo)(TNo −N1/3tini)− log(1− λo)aN ≤ w

]
= lim

N→∞
P
[
(1− λo)TNo − (1− λo)tSIRS (I0/N → a)− log a− log(1− λo)N ≤ w

]
=e−e

−w
,

where a = (1− λo)1−εγo.

The asymptotic distribution should be independent of the choice of a. This

is indeed the case when a is sufficiently small. Consider 0 < a1(N) < a2(N) =

o((1− λo)γo). By (A.12),

φN(a) = xN3 (tini) = O
(
xN3 (0) + xN2 (0)|1− λo − γo|−1) = o(γo).

Then we can apply Lemma A.3 and have

(1− λo)TNo − (1− λo)tSIRS (I0/N → a2)− (1− λo)tSIRS (a2 → a1)− log a1

− log(1− λo)N

=(1− λo)TNo − (1− λo)tSIRS (I0/N → a2)− log a2 − log(1− λo)N + o(1).

The statement of Theorem 6.7 follows from Lemma A.4.
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6.4 A special case of Theorem 6.7: strongly sub-

critical

In general, we do not know the asymptotics of tSIRS (m→ n) when m,n are

functions of N and λo = λo(N) ↑ 1. However, we do know that when λo is bounded

away from 1, tSIRS (m→ n) is the sum of a constant and a term of order logN .

More precisely:

Lemma 6.11. Consider tSIRS (m→ n) defined in Lemma 6.5. When

lim
N→∞

λo = λlim < 1, lim
N→∞

γo = γlim > 0, λo(N) + γo(N) 6= 1,

and

lim
N→∞

IN0
N

> 0, lim
N→∞

RN
0

N
> 0.

Then there exists a constant kSIRS such that for any a = a(N)→ 0,

kSIRS = lim
N→∞

log a+ (1− λo)tSIRS

(
IN0 /N → a

)
.

Proof. See Appendix A.2.

Theorem 6.12. Suppose limN→∞ λo(N) = λlim < 1 and limN→∞ γo(N) = γlim > 0

are constants independent of N , λlim +γlim 6= 1, and λo(N) +γo(N) 6= 1 for N ∈ N.

Suppose further that the initial condition satisfies

lim
N→∞

IN0
N

> 0, lim
N→∞

RN
0

N
> 0.

Then we have as N →∞,

P
[
(1− λo)TNo − (kSIRS + logN + log(1− λo))

]
→ e−e

−w
,

where kSIRS is defined as in Lemma 6.11.

Proof. Notice that the proof of Theorem 6.7 up to the derivation of the asymptotic

distribution containing a covers the case where 1−λo and γo are bounded away from

0. Therefore, we can apply the same proof with cy = i0 and cz = r0 and sufficiently
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small a = N−ε, ε > 0, and obtain the asymptotic distribution

lim
N→∞

P
[
(1− λo)TNo − (1− λo)tSIRS

(
IN0 → a

)
− log a− log(1− λo)N ≤ w

]
= e−e

−w
.

What is different here is that instead of Lemma A.3, we will use Lemma 6.11 and

have

lim
N→∞

P
[
(1− λo)TNo − kSIRS − log(1− λo)N ≤ w

]
= lim

N→∞
P
[
(1− λo)TNo − (1− λo)tSIRS

(
IN0 → a

)
− log a− log(1− λo)N ≤ w

]
= e−e

−w
.
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Chapter 7

Numerical experiments

7.1 Method options

In general, there are two groups of methods to simulate the extinction time of

the stochastic epidemic models.

The first group of methods are designed to approximate the solution to the

Kolmogorov equation. In particular, to simulate the distribution of the extinction

time, we need to obtain the probability vector of the model at multiple time points.

One of the advantages of this type of method is that the error is easily controlled

by choosing appropriate step size.

Among the methods we are aware of in the first group, we find that the implicit

Euler method [55] is the most efficient. Even so, the time cost to approximate

the extinction time of a stochastic SIRS model at N = 108 is too much (roughly

25 days by estimation). Other well-known methods include the Krylov subspace

approximation (KSA) method (MATLAB Package expokit.m) [56], the finite state

projection (FSP) approach and its variations [57], etc. We find through testing that

KSA methods are not sufficiently efficient for our purposes, and FSP-based methods

are not suitable for large population cases.

It is worth mentioning that, according to [55], the implicit Euler method is es-

pecially efficient for the models where the population process and its embedded

counting process has a one-to-one mapping (e.g., SIR model). Such a model allows
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us to solve the Kolmogorov equation of the embedded counting process instead, and

benefit from the fact that the transition matrix is lower triangular after appropriate

reordering. However, neither the SIS nor the SIRS model has this property, which

makes it difficult to further simplify the algorithm.

The other group of methods aims to simulate the paths of Markov chains. The

naive method, known as the stochastic simulation algorithm (SSA or Gillespie),

simulates the sojourn time between consecutive jumps, and then simulates the type

of jump that takes place (See [58] for the description of the algorithm). It is often

regarded as ‘mathematically exact’, in the sense that the sample paths it generates

follow the same distribution as the Kolmogorov equation. The SSA method is

computationally expensive when we simulate a large population until its extinction.

Therefore, various methods are developed to approximate the SSA method, among

which we choose the modified Poisson τ -leaping method proposed by [58].

The idea behind Poisson τ -leaping is that, instead of generating a random so-

journ time as in the SSA, we preselect a sequence of time increments during which

the transition rates are not expected to change significantly, and simulate the num-

ber of jumps in each time increment by Poisson random variables. The criteria of

‘significant change’ is controlled by the parameter ε.

However, since a Poisson random variable can take arbitrarily large values, there

is positive probability that this method will generate samples with negative states.

To avoid this, Cao, Gillespie and Petzold [58] propose the modified Poisson τ -leaping

method. The intuition behind this modification is that we set a number nc, and

whenever a component of the model reaches a value below nc, we simulate this

component by the SSA method. When nc = ∞, the modified Poisson τ -leaping

algorithm is reduced to the SSA method; and when nc = 0, the modified Poisson

τ -leaping algorithm is reduced to the Poisson τ -leaping method.

We find that, in terms of computation time, it is infeasible to use the SSA method

to simulate stochastic SIRS model with N > 107, especially for near-critical cases,

and introducing the τ -leaping method significantly reduces the computation time.
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7.2 Our implementation

We implement the simulation of stochastic SIRS models in MATLAB (R2019b)

using both the SSA method and the modified τ -leaping. The modified τ -leaping

method is used in near-critical cases where the convergence is slower and the com-

putation time for large N is very long. In general, we find that it is feasible to

simulate up to N = 105 for very near-critical cases. For comparison purposes, for

each result using the SSA method, we always present the counterpart result from

the modified τ -leaping simulation.

The modified τ -leaping method is an approximation to the SSA method. As

previously explained, the discrepancy between the SSA and the τ -leaping can be

tuned through nc. We set the parameters of the modified τ -leaping to be nc =

200, ε = 0.02.

The value of tSIRS (m→ n) defined in Lemma 6.5 is obtained entirely numeri-

cally. Firstly, we obtain v(y) using MATLAB ODE solver ode45, which is based on

an explicit Runge-Kutta (4,5) formula named ‘the Dormand-Prince pair’. Secondly,

we use MATLAB trapz to perform trapezoidal numerical integration following (6.6)

to obtain tSIRS (m→ n). The step size in our numerical integration is determined by

the ode45 solver. We find that in MATLAB, tSIRS (m→ n) with γo = 0 converges

faster than tNSIR (θ(m)→ θ(n)) as defined in (6.3). This is particularly obvious when

θ(m) is small. This is why we use the former when we plot the conclusion of Theo-

rem 6.3.

For each case, determined by (λo(N), γo(N)) and (I0(N), R0(N)), we run 700

simulations for a set of N of different orders. For each case, the results are presented

in three sub-figures. The time axes presented are always scaled according to the

scaling of the asymptotic distribution.

The lines representing different N are colour-coded by a gradient from dark red to

yellow, where the closer to yellow, the larger the corresponding value of N . In all of

our figures, the dashed lines represent the simulation done by the modified τ -leaping

method and the solid lines represent the simulation done by the SSA method.

For each N , we randomly choose a simulation and present its sample paths as

follows: in each figure, we present in sub-figure (a) the log-scaled sample paths
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logN(INt ) (in the thicker lines) and logN(RN
t ) (in the thinner lines) over the scaled

time.

In sub-figure (b), we present the histogram of extinction times for different N ,

normalised so that the sum of the bar areas is less than or equal to 1 (i.e., sub-figure

(b) is a simulation for the probability density function of the extinction time). Sub-

figure (c) presents the histogram of extinction times for different N , normalised so

that the height of the last bar is less than or equal to 1 (i.e., sub-figure (c) is a

simulation for the cumulative distribution function of the extinction time). In (c),

the blue line represents the asymptotic distribution we have derived through anal-

ysis, and in (b) the blue line represents the first-order derivative of the asymptotic

distribution function.

7.3 Results

The figures below each present an example of one of the cases we analysed. We

can see that all our asymptotic results provide fairly good approximations.

Consistent with intuition, the strongly subcritical cases converge faster than

near-critical cases and the theoretical result reflects the simulation data well for N

as small as 105.

For near-critical cases, the use of τ -leaping method significantly reduced the

running time. The discrepancy between the exact method (SSA) and τ -leaping also

appears to be small enough to justify using the latter.
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Figure 7.1: Verification of Case 1.1 (λo(N) < 1), Theorem 4.6
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Figure 7.2: Verification of Case 1.1 (λo(N) > 1), Theorem 4.6
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Figure 7.3: Verification of Case 1.2, Theorem 4.6
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Figure 7.4: Verification of Case 1.3, Theorem 4.6
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Figure 7.5: Verification of Case 2.1, Theorem 4.6
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Figure 7.7: Verification of Theorem 6.3
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Appendix A

Appendix

A.1 The elapsed time of the deterministic SIR

model

Lemma A.1. For b > 0, ∫ b

0

log y−1dy = b log b−1 + b.

Proof. For any b > 0,

0 ≤ lim
a↓0

∫ b

a

log y−1dy = lim
a↓0
−y log y + y

∣∣∣b
a

= lim
a↓0

(b− a) log b−1 + a log(a/b) + b− a

= b log b−1 + b. (A.1)

Proof of Lemma 6.1. For each N ∈ N, let (xN1 (t), xN2 (t)) be the solution to:

dx1

dt
= −λox1x2,

dx2

dt
= λox1x2 − x2,

(x1(0), x2(0)) = (xN0 , y
N
0 ) ∈ [0, 1)× (0, 1],
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then for a = a(N), θN(a) = xN1 ◦ (xN2 )−1(a) is the solution of the following:

xN0 + yN0 +
log
(
θN/xN0

)
λo

− θN = a. (A.2)

From the first equation of the ODE system above,

tNSIR (a→ b) (N) =

∫ a

b

λ−1
o u−1

(
xN0 + yN0 +

log
(
u/xN0

)
λo

− u

)−1

du. (A.3)

Take the derivative with respect to a on both sides of (A.2) and we have

dθN

da
=

θN(a)

λ−1
o − θN(a)

> 0.

For sufficiently large N , a(N) ∈ [0, yN0 ], define D
(
θN(a)

)
:= λot

N
SIR

(
xN0 → θN(a)

)
,

and substitute u in (A.3) for θN(a):

D(θN(a)) =

∫ xN0

θN (a)

u−1

(
xN0 + yN0 +

log
(
u/xN0

)
λO

− u

)−1

du =

∫ yN0

a

θN(y)−1y−1dθN(y)

=

∫ yN0

a

θN(y)−1y−1dθ
N

dy
dy =

∫ yN0

a

(θN)−1 θN

λ−1
o − θ

d log y

= (λ−1
o − θN(y))−1 log y

∣∣∣yN0
a
−
∫ yN0

a

log y d(λ−1
o − θN)−1

= (λ−1
o − xN0 )−1 log yN0 + (λ−1

o − θN(a))−1 log a−1

+

∫ yN0

a

(λ−1
o − θN(y))−3θN(y) log y−1dy.

The last term
∫ yN0
a

(λ−1
o − θ(y))−3θ(y) log y−1dy is non-negative and converges to a

finite constant, since

θ∗,N(λ−1
o − θ∗)−3 ≤ θN(y)(λ−1

o − θN(y))−3 ≤ xN0 (λ−1
o − xN0 )−3, for all y ∈ [0, yN0 ],

where θ∗,N = θ∗(xN0 , y
N
0 ;λo), and both ends of the inequality above have a positive

limit as N →∞.
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By Lemma A.1, as N →∞, yN0 → i0,∫ i0

a

(λ−1
o − θN(y))−3θN(y) log y−1dy

increases and is bounded above, and therefore converges. In other words, let λlim :=

limN→∞ λo and θ∗lim := limN→∞ θ
∗,N , then

(λ−1
lim − θ

∗
lim) lim

N→∞

(
D(θ(a))− (λ−1

o − θN(a))−1 log a−1
)

exists, which we denote as kSIR.

Hence, as a ↓ 0,

− log a−1 + (1− λoθ∗,N)tNSIR

(
xN0 → θN(a)

)
=(λ−1

o − θ∗,N)
[
D
(
θN(a)

)
−
(
λ−1
o − θN(a)

)−1

log a−1
]

+
θN(a)− θ∗,N

λ−1
o − θN(a)

log a−1

=
λ−1
o − θ∗,N

λ−1
lim − θ∗lim

(λ−1
lim − θ

∗
lim)
[
D
(
θN(a)

)
−
(
λ−1
o − θN(a)

)−1

log a−1
]

+
λ−1
o log

(
θN(a)/θ∗,N

)
− a

λ−1
o − θN(a)

log a−1

→kSIR.

where the second equality is due to (A.2).

A.2 The elapsed time of the deterministic SIRS

model

Proof of Lemma 6.5. In this proof we use the notations x′i = dxi/dt, i = 1, 2.

Rearranging the second equation in (6.5) and differentiating by t, we have

λox1 =
x′2 + x2

x2

, (A.4)

λox
′
1 =

x′′2x2 − (x′2)2

x2
2

. (A.5)
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Insert (A.4) into the first equation in the deterministic SIRS model,

x′1 = −(λox2 + γo)x1 + γo(1− x2) = −λox2 + γo
λo

x′2 + x2

x2

+ γo(1− x2).

Together with (A.5),

−(λox2 + γo)
x′2 + x2

x2

+ λoγo(1− x2) =
x′′2x2 − (x′2)2

x2
2

,

x′′2x2 − (x′2)2 = −x′2(λox
2
2 + γox2)− x3

2(λo + λoγo) + x2
2(λoγo − γo). (A.6)

Since x2 : [0,∞)→ (0, i0] is an injection, we can define for y ∈ (0, i0],

v : y 7→ y

−x′2 ◦ x−1
2 (y)

,

then

dv

dx2

= −dv(x2(t))

dt
/
dx2

dt
= −(x′2)2 − x2x

′′
2

(x′2)3
. (A.7)

By (A.6), we have

dv

dx2

=
−x′2(λox

2
2 + γox2)− x3

2(λo + λoγo) + x2
2(λoγo − γo)

(x′2)3
(A.8)

=v3(λo + λoγo −
λoγo − γo

x2

)− v2(λo +
γo
x2

). (A.9)

Recall by definition

v(x2(t)) = −x2(t)

dx2

dt,

dt =
v(x2(t))

x2(t)
d(−x2).

Then for 0 < n < m ≤ i0,

tSIRS (m→ n) =

∫ m

n

v(x2)

x2

dx2.

144



Lemma A.2. Let (x2, x3) be the second and third components of the deterministic

SIRS model (6.5) with parameters λo ∈ (0, 1), γo > 0. Then the following inequalities

hold:

c2e
−(1−λo+λox3(0))t ≤ x2(t) ≤ x2(0)e−(1−λo)t, (A.10)

x3(t) ≤ x3(0) + x2(0)
e−(1−λo)t − e−γot

λo + γo − 1
, (A.11)

x3(t) ≤
(
x3(0) + x2(0)|1− λo − γo|−1) e−γot. (A.12)

for some constant c2 depending only on x2(0), λo and γo.

Proof. It is easy to see

x2(t) ≤ x2(0)e−(1−λo)t,

and

x3(t) = e−γotx3(0) +

∫ t

0

e−γo(t−s)x2(s)ds ≤ x3(0) + e−γotx2(0)

∫ t

0

e(γo−1+λo)sds

= x3(0) + x2(0)
e−(1−λo)t − e−γot

λo + γo − 1
.

We also have

eγotx3(t) = x3(0) +

∫ t

0

eγosx2(s)ds ≤ x3(0) +

∫ t

0

e−(1−λo−γo)sx2(0)ds

≤ x3(0) + x2(0)|1− λo − γo|−1,

and (A.12) follows.

Applying the bound of x3 to the second equation of the deterministic SIRS model,
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we have

x2(t) =x2(0) exp

{
−(1− λo)t− λo

∫ t

0

x2(s) + x3(s)ds

}
≥x2(0) exp

{
−(1− λo)t− λo

∫ t

0

x2(0)e−(1−λo)s + x3(0) + x2(0)
e−(1−λo)s − e−γos

λo + γo − 1
ds

}
=x2(0) exp

{
x2(0)

λo + γo
λo + γo − 1

(
1− e−(1−λo)t

1− λo
− 1− e−γt

γo(λo + γo)

)}
· exp{−(1− λo + λox3(0))t}

≥c2 exp{−(1− λo + λox3(0))t},

for positive constant c2 = x2(0) exp
{

−1
γo(λo+γo−1)

}
.

Lemma A.3. Let (xN2 , x
N
3 ) be the second and third component of the deterministic

SIRS model (6.5), and let φN : a 7→ xN3 ◦ (xN2 )−1(a) map the value xN2 (t) = a to the

value of xN3 (t) for all t ≥ 0.

For two states n(N) < m(N) = o ((1− λo)γo) for all N ∈ N, if φN(m) = o(γo),

then

(1− λo)tSIRS (m→ n)− log
m

n
= o(1), N →∞.

Proof. For the ODE expression, we have

de(1−λo)txN2 (t)

dt
= −λoe(1−λo)txN2 (t)

(
xN2 (t) + xN3 (t)

)
.

Consider xN2 (0) = m(N) and xN3 (0) = o(γo) and apply the bounds in Lemma A.2,

∣∣e(1−λo)txN2 (t)− xN2 (0)
∣∣

=λo

∫ t

0

e(1−λo)sxN2 (s)
(
xN2 (s) + xN3 (s)

)
ds

≤λo
∫ t

0

xN2 (0)
(
xN2 (0)e−(1−λo)s + xN3 (0)e−γos + xN2 (0)|1− λo − γo|−1e−γos

)
ds

≤λoxN2 (0)
(
xN2 (0)(1− λo)−1 + xN2 (0)|1− λo − γo|−1γ−1

o + xN3 (0)γ−1
o

)
=xN2 (0)o(1).
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It follows that

(1− λo)tSIRS (m→ n) = log
m(1 + o(1))

n
= log

m

n
+ o(1).

Proof of Lemma 6.11. To simplify the notation, we rename the variables λlim and

γlim as λ and γ respectively.

Firstly, given (xN2 (0), xN3 (0))→ (x2(0), x3(0)) ∈ (0, 1]× [0, 1], according to (A.10)

and (A.12),

xN3 (t)

(xN2 (t))γo/(2+2γlim)
≤

(
xN3 (0) + xN2 (0)|1− λo − γo|−1) e−γot

c
γo/(2+2γlim)
2 exp{−2(1 + γlim)t · γo/(2 + 2γlim)}

=
xN3 (0) + xN2 (0)|1− λo − γo|−1

c
γo/(2+2γlim)
2

= O(1), (A.13)

Next, we prove that for any a = a(N) ↓ 0,

lim
N→∞

(
a+ φN(a)

)
log a−1 = 0, (A.14)

where φN is defined in Lemma A.3. By (A.13), there exists constant b1 > 0 inde-

pendent of N such that

(
a+ φN(a)

)
log a−1 =

φN(a)

aγo/(2+2γlim)

log a−1

a−γo/(2+2γlim)
+

log a−1

a−1

≤ b1
log a−1

a−γo/(2+2γlim)
+

log a−1

a−1
.

Now we are ready to deal with the main problem.

For each sufficiently large N , applying integration by parts, we have

(1− λo)tSIRS

(
xN2 (0)→ a

)
= (1− λo)

∫ xN2 (0)

a

v(y)

y
dy

=(1− λo)v(xN2 (0)) log xN2 (0)− (1− λo)v(a) log a− (1− λo)
∫ xN2 (0)

a

log y
dv

dy
dy.
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The first term above is independent of a, and the second term is

(1− λo)v(a) log a (A.15)

=− (1− λo)
1− λo + λo(a+ φN(a))

log a−1 (A.16)

=− log a−1 + λo
a+ φN(a)

1− λo + λo(a+ φN(a))
log a−1 = − log a−1 + o(1),

since by (A.14) as N →∞,

λo
a+ φN(a)

1− λo + λo(a+ φN(a))
log a−1 ≤ λo

1− λo
(a+ φN(a)) log a−1 = o(1).

What remains to prove is that the third term above is O(1).

−
∫ xN2 (0)

a

log y
dv

dy
dy (A.17)

=λo

∫ xN2 (0)

a

(1− λo + λo(y + φN(y)))−3 log y−1λo(1− y − φN(y))y − γoφN(y)

−y
dy

≤λ2
o(1− λo)−3

∫ xN2 (0)

a

log y−1dy + (1− λo)−3λoγo

∫ xN2 (0)

a

log y−1φ
N(y)

y
dy. (A.18)

By Lemma A.1, the first term of (A.18) is of order O(1).

For the second term above,∫ xN2 (0)

a

φN(y)

y
log y−1dy =

∫ xN2 (0)

a

φN(y)

yγo/(2+2γlim)

log y−1

y1−γo/(2+2γlim)
dy

≤ b1

∫ xN2 (0)

a

log y−1

y1−γo/(2+2γlim)
dy.

The last line above is of order O(1) because for any 0 < k < 1, n > 0

lim
m↓0

∫ n

m

log(y−1)

yk
dy = lim

m↓0
−y

1−k log y

1− k
+

y1−k

(1− k)2

∣∣∣n
y=m

= −n
1−k log n

1− k
+

n1−k

(1− k)2
,

and is bounded.
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Hence we can see that indeed
∫ xN2 (0)

a
log y dv

dy
dy = O(1) and thus we can define

kSIRS := lim
N→∞

(1− λo)
(
tSIRS

(
xN2 (0)→ a

)
− v(a) log a−1

)
.

From (A.16), we have

kSIRS = lim
N→∞

(1− λo)tSIRS

(
xN2 (0)→ a

)
− log a−1,

which is useful when we state our main result.

Lemma A.4 (Taking the limit of the scaling). Let a(N), b(N) be functions of N

tending to either a positive constant or infinity and εa(N), εb(N)→ 0 as N →∞. A

sequence of continuous random variables {TN}N∈N has the asymptotic distribution

P
[
(a(N) + εa(N))TN ≤ w + b(N) + εb(N)

]
→ F (w), N →∞.

Then

P
[
a(N)TN ≤ w + b(N)

]
→ F (w)

if and only if bεa/a→ 0.

Proof.

P
[
aTN ≤ w + b

]
= P

[
(a+ εa)T

N − b− εb ≤ w +
bεa
a

+
wεa
a
− εb

]
.

A.3 Estimation of Stf for special functions f

Definition A.5 (Dirac δ-function). The Dirac δ-function has the following heuristic

characteristics:

δa(x) =

∞ x 6= a,

0 x = a,
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and ∫ ∞
−∞

δa(x)dx = 1.

It can be defined as the pointwise limit of a sequence of normal distributions {δε0(x)}
as ε ↓ 0, defined as

δε0(x) =
1√
2πε

e−
x2

2ε2 .

The Dirac δ-function has the property∫ ∞
−∞

f(x)δ
(n)
0 (x)dx = (−1)nf (n)(0), f ∈ C∞0 (R).

We are able to obtain the exact value of Stf for a set of special functions f .

Lemma A.6 (Special integrals with g as kernel). Let

Rk(t, s, u) := St
(
uk exp{−u/s}

)
=

∫ ∞
0

g(t, u;m)mk exp{−m/s} dm.

We have

R0(t, s, u) = exp

{
− u

t+ s

}
− exp

{
−u
t

}
, (A.19)

and

Rk(t, s, u) =
k∑

n=1

une−u/(s+t)
(
k

n

)
(k − 1)!

(n− 1)!
(1 + t/s)−k−ntk−n. (A.20)

Proof of Lemma A.6 . Let Xt ∼ BESQ0(u) and recall the notations in Definition

5.5, we have that the Laplace transform of g(t, u;m) is

(Lg)(ρ) =

∫ ∞
0

g(t, u;m)e−ρm dm

= exp

{
− ρ

1 + ρt
u

}∫ ∞
0

g
(
t(1 + ρt)−1, u(1 + ρt)−2;m

)
dm

= exp

{
− ρu

1 + ρt

}
− exp

{
−u
t

}
,
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and

R0(s1, s2, u) = Lg(1/s2).

For the second result, we consider the inverse Laplace transform of fk(t
−1) =

mke−m/t, which is (L−1fk) (ρ) = δ(k)(ρ− t−1). Let

Rk(t, s, u) =

∫ ∞
0

g(t, u;m)fk(s
−1) dm

=

∫ ∞
0

(
exp

{
− ρ

1 + ρs1

u

}
− exp

{
−u
t

})
δ(k)(ρ− s−1) dλ

=(−1)k
dk(Lg)

dρk
(s−1). (A.21)

To evaluate dk(Lg)
dρk

, we use Faà di Bruno’s formula.

Let h(x) = e−xu, l(ρ) = ρ
1+ρt

, then

h(k)(x) = (−u)ke−ux, l(k)(ρ) = (−1)k−1k!(1 + ρt)−(k+1)tk−1.

By Faà di Bruno’s formula [59],

(−1)k
dk(Rg)

dρk
(ρ) = (−1)k

dkh(l(ρ))

dρk

= (−1)k
k∑

n=1

h(n)(l(ρ))Bk,n

(
l(1)(ρ), · · · , l(k−n+1)(ρ)

)
, (A.22)

where Bk,n denotes the partial or incomplete exponential Bell polynomials. It is

known that

Bk,n(x1, x2, . . . , xk−n+1)

=
∑ k!

m1!m2! · · ·mk−n+1!

(x1

1!

)m1
(x2

2!

)m2

· · ·
(

xk−n+1

(k − n+ 1)!

)mk−n+1

,

where the sum is taken over all sequences mk−n+1 := {m1, · · · ,mk−n+1} of non-
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negative integers such that the following two conditions are satisfied:

m1 +m2 + · · ·+mk−n+1 = n,

m1 + 2m2 + 3m3 + · · ·+ (k − n+ 1)mk−n+1 = k.

Continue with (A.22),

(−1)k
dk(Lg)

dρk
(ρ) = (−1)k

k∑
n=1

(−u)ne−ul(ρ)
∑

mk−n+1

[
k!

m1! · · ·mk−n+1!

(
1!(1 + ρt)−2

1!

)m1

· · ·
(

(−1)k−n(k − n+ 1)!(1 + ρt)−(k−n+2)tk−n

(k − n+ 1)!

)mk−n+1
]

= (−1)k
k∑

n=1

(−u)ne−ul(ρ)
∑

mk−n+1

k!

m1!...mk−n+1!
(−1)k−n(1 + ρt)−k−ntk−n

=
k∑

n=1

une−ul(ρ)
∑

mk−n+1

k!

m1!...mk−n+1!
(1 + ρt)−k−ntk−n

By p.135, [60], we see that

∑
mk−n+1

k!

m1!...mk−n+1!
= Bk,n(1!, 2!, · · · , (k − n+ 1)!) =

(
k − 1

n− 1

)
k!

n!
=

(
k

n

)
(k − 1)!

(n− 1)!
.

It follows that

Rk(t, s, u) =
k∑

n=1

une−u/(s+t)
(
k

n

)
(k − 1)!

(n− 1)!
(1 + t/s)−k−ntk−n.

The following tail estimate based on the first and second moments of X turns

out to be useful.

Recall our notation for the squared Bessel process Xt generated by the semigroup

St, with X0 = u. We have from Lemma A.6,

E [Xt] = u, E
[
X2
t

]
= 2ut+ u2.
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By Chebyshev’s inequality, for u < M < K,

P [Xt > K] ≤ P [|Xt − E [Xt] | > K − u] ≤ Var (Xt)

(K − u)2
=

2u

(K − u)2
t

<
2M

(K −M)2
t. (A.23)

It follows that

Eu
[
Xt1Xt∈[A,B]

]
=

∫ ∞
0

P
[
Xt1Xt∈[A,B] > x

]
dx

=

∫ A

0

P [Xt ∈ [A,B]] dx+

∫ B

A

P [Xt ∈ [x,B]] dx

≤ A
2ut

(A− u)2
+

∫ B

A

2ut

(x− u)2
dx

= 2ut

(
A

(A− u)2
+

1

A− u
− 1

B − u

)
. (A.24)

Now we prove the second statement.

In Definition 5.6, we state the properties that the power expansion of the modified

Bessel functions of the first kind Iα(x), α ∈ N, is

Iα(x) =
∞∑
j=0

(x/2)2j+α

j!(j + α)!
.

The asymptotic expansion of Iα(x) at infinity is

Iα(x) =
ex√
2πx

(1 +O(x−1)), α ∈ N, x→∞.
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By the Monotone convergence theorem, for each u ∈ R+ and t > 0,

P [Xt < x] =

∫ x

0

g(t, u;m)dm = lim
n→∞

∫ x

0

1

t
u1/2m−1/2e−(u+m)/t

√
um

t

n∑
j=0

(um/t2)j

j!(j + 1)!
dm

= lim
n→∞

t−2ue−u/t
n∑
j=0

(u/t2)j

j!(j + 1)!

∫ x

0

e−m/tmj dm

≤ lim
n→∞

e−u/t
n∑
j=0

(ux/t2)j+1

(j + 1)!(j + 1)!

=e−u/t
(
I0

(
2
√
ux

t

)
− 1

)
.

For given u > 0 and x < u/4, as t ↓ 0,

e−u/t
(
I0

(
2
√
ux

t

)
− 1

)
∼ 1√

2π
exp

{
−u/t+

2
√
ux

t

}(
2
√
ux

t

)−1/2

→ 0. (A.25)

For given u, t > 0,

e−u/t
(
I0

(
2
√
ux

t

)
− 1

)
∼ x

u

t2
e−u/t. (A.26)

Using a similar method, we also have∫ x

0

g(t, u;m)(1−m/x)dm

= lim
n→∞

∫ x

0

1

t
u1/2m−1/2e−(u+m)/t

√
um

t

n∑
j=0

(um/t2)j

j!(j + 1)!
(1−m/x)dm

= lim
n→∞

t−2ue−u/t
n∑
j=0

(u/t2)j

j!(j + 1)!

∫ x

0

e−m/tmj(1−m/x) dm

≤ lim
n→∞

e−u/t
n∑
j=0

(ux/t2)j+1

(j + 1)!(j + 1)!
− lim

n→∞
e−u/t

n∑
j=0

(ux/t2)j+1

j!(j + 2)!

=e−u/t
(
I0

(
2
√
ux

t

)
− 1− I2

(
2
√
ux

t

))
= e−u/t

(
I1

(
2
√
ux

t

)
/

(√
ux

t

)
− 1

)
<e−u/tI2

(
2
√
ux

t

)
. (A.27)
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