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ABSTRACT

Existing logo detection methods mostly rely on supervised learning with a large quantity of labelled
training data in limited classes. This restricts their scalability to a large number of logo classes subject
to limited labelling budget. In this work, we consider a more scalable open logo detection problem
where only a fraction of logo classes are fully labelled whilst the remaining classes are only annotated
with a clean icon image (e.g. 1-shot icon supervised). To generalise and transfer knowledge of fully
supervised logo classes to other 1-shot icon supervised classes, we propose a Multi-Perspective Cross–
Class (MPCC) domain adaptation method. In a data augmentation principle, MPCC conducts feature
distribution alignment in two perspectives. Specifically, we align the feature distribution between
synthetic logo images of 1-shot icon supervised classes and genuine logo images of fully supervised
classes, and that between logo images and non-logo images, concurrently. This allows for mitigating
the domain shift problem between model training and testing on 1-shot icon supervised logo classes,
simultaneously reducing the model overfitting towards fully labelled logo classes. Extensive com-
parative experiments show the advantage of MPCC over existing state-of-the-art competitors on the
challenging QMUL-OpenLogo benchmark (Su et al., 2018).

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Logo detection is a long-standing computer vision problem
(Doermann et al., 1993) with significant real-world applica-
tions ranging from brand trend prediction in smart business
(Romberg et al., 2011; Romberg and Lienhart, 2013) to vehi-
cle recognition in intelligent transportation (Pan et al., 2013)
and document image logo retrieval (Pham, 2003). It is inher-
ently challenging due to no clear definition of what makes a
logo. The difficulty is further amplified by the presence of un-
constrained contexts and varying logo instance scales (Fig. 1).

Existing logo detection methods have made progress on
recognising a limited number of logo classes in most cases.
They often exploit state-of-the-art object detection models such
as Fast (Girshick, 2015) and Faster R-CNN (Ren et al., 2015),
or YOLO (Redmon and Farhadi, 2017) that require supervised
learning from large labelled training data per class. There have
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Fig. 1: Illustration of logo detection challenges.
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Table 1: Statistics of logo detection datasets in the literature.

Dataset Classes Images Availability
BelgaLogos (Joly and Buisson, 2009) 37 1,321
FlickrLogos-27 (Kalantidis et al., 2011) 27 810
FlickrLogos-32 (Romberg et al., 2011) 32 2,240
Logo32plus (Bianco et al., 2017) 32 7,830
Logo-In-The-Wild (Tzk. et al., 2018) 1196 9,393
SportsLogo (Liao et al., 2017) 20 1,978
MICC-Logos (Sahbi et al., 2012) 13 720
LOGO-NET (Hoi et al., 2015) 160 73,414
OpenLogo (Su et al., 2018) 352 27,083

been a number of logo detection datasets developed in the liter-
ature (Joly and Buisson, 2009; Kalantidis et al., 2011; Romberg
et al., 2011; Bianco et al., 2017; Tzk. et al., 2018; Liao et al.,
2017; Sahbi et al., 2012; Hoi et al., 2015; Su et al., 2018) (Ta-
ble 1). However, their scaling ability is limited in terms of both
class and image, due to the high cost of collecting and labelling
in-the-wild logo images.

There are a few attempts of tackling the scalability limitation
in learning a logo detection model. For example, web logo im-
age collection and annotation are explored in (Su et al., 2017a).
The resulting dataset contains a high proportion of noisy la-
bels and negative images with severe class imbalance. More
recently, a new open logo detection setting is introduced (Su
et al., 2018) where only a fraction of logo classes are associated
with fully labelled training data and the objective is to train a
detection model generalisable to 1-shot icon supervised logo
classes. To this end, Su et al. (2018) develop a data augmenta-
tion method to generate context-consistent training images for
1-shot icon supervised logo classes that are weakly supervised
by only a clean per-class icon image. This method directly han-
dles the problem of lacking training data. However, it still suf-
fers the domain shift problem between the synthetic training
and genuine test images of unlabelled logos, despite improved
consistency between logo objects and background context. This
leads to model performance degradation.

In this work, we address the aforementioned limitation of
open logo detection. Similar as (Su et al., 2018), we retain the
use of synthetic training data for 1-shot icon supervised logo
classes. Importantly, we further introduce a Multi-Perspective
Cross-Class (MPCC) domain adaptation method. Specifically,
MPCC takes as input the genuine training images of labelled
classes, synthetic training images of 1-shot icon supervised
classes, and auxiliary non-logo object detection images (e.g.
MS COCO) simultaneously in model training. The aim is
to transfer supervision information of labelled logo and non-
logo instances in genuine scenes to 1-shot icon supervised logo
classes by joint domain adaptation, whilst alleviating the un-
derlying risk of model overfitting towards labelled logo classes.
Unlike the conventional domain adaptation, this task focuses
on cross-class knowledge transfer between genuine labelled im-
ages of logos and non-logo objects, as well as the synthetic im-
ages of 1-shot icon supervised logos.

The contributions of this work are: (1) We address the prob-

lem of domain shift between synthetic images of 1-shot icon
supervised logo classes and genuine images of fully supervised
logo classes in model training for open logo detection. This is
the first attempt of addressing a cross-class domain shift prob-
lem for open logo detection. To this end, we provide a theoret-
ical analysis of this cross-class domain shift problem in a prob-
abilistic viewpoint, in order to achieve model learning for gen-
eralising to 1-shot icon supervised logo classes given a limited
training set of labelled logo classes. (2) We formulate a Multi-
Perspective Cross-Class (MPCC) domain adaptation method.
By exploring unsupervised domain adaptation, MPCC aligns
the feature distribution among synthetic logo images, genuine
logo images, and non-logo object images in a joint model learn-
ing process. Extensive experiments show the performance ad-
vantage of the proposed MPCC method for open logo detec-
tion over state-of-the-art alternative approaches on the public
QMUL-OpenLogo benchmark.

2. Related Work

Logo Detection. Most earlier methods for logo detection ex-
ploit hand-crafted visual features in sliding window localisa-
tion scheme. For example, SIFT features are often used for
logo retrieval (Joly and Buisson, 2009), vehicle brand recog-
nition (Psyllos et al., 2010) and brand logo matching (Sahbi
et al., 2012). Common alternative representation options in-
clude bag-of-visual-word (Boia et al., 2014; Kalantidis et al.,
2011; Revaud et al., 2012; Romberg and Lienhart, 2013), trian-
gulation geometry representation (Kalantidis et al., 2011), and
Histograms of Oriented Gradient (HOG) (Li et al., 2014). Due
to remarkable success of deep learning (Nanni et al., 2017), re-
cent state-of-the-art logo detection methods leverage generic
object detection networks (Girshick, 2015; Ren et al., 2015;
Redmon and Farhadi, 2017). For instance, Iandola et al. (2015)
and Liao et al. (2017) exploit Fast R-CNN. Later on, Faster R-
CNN are often selected (Hoi et al., 2015; Su et al., 2017b) due to
the superior efficiency and performance. Universal logo char-
acteristics is explored by considering a binary logo detection
problem (Tzk. et al., 2018; Fehérvári and Appalaraju, 2019).
To alleviate the training data labelling effort, web logo images
with noisy annotation are mined for training detection (Su et al.,
2017a). Commonly, these methods focus on supervised learn-
ing with the need for accurately labelling fine-grained object-
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(a) Fully Supervised           (b) 1-Shot Icons and unlabelled images                      (c) Synthetic

Fig. 2: Examples of (a) fully supervised logo classes, (b) 1-shot icon supervised logo classes, and (c) synthetic logo images from QMUL-OpenLogo.

level bounding box on the training data per logo class. They are
therefore not scalable because it is time-consuming for collect-
ing such training data annotation particularly considering the
existence of many logo classes in real-world applications.

To scale up the learning algorithms, Su et al. (2017a) pro-
pose to leverage the rich web information from the online In-
ternet multimedia data streams that contain weak but noisy la-
bel information. Whilst being highly noisy, this method can
easily acquire a massive number of in-the-wild images with-
out manual labelling efforts therefore scalable and facilitating
the training of deep neural network models. One weakness
of using web data is the low quality of supervision with se-
vere class imbalance which dramatically increases the model
learning difficulty. Elaborative logo image synthesis pipeline is
also proposed (Montserrat et al., 2018) by depth estimation on
background image for generating more realistic synthetic data.
However, this method is computationally expensive, reducing
its usability in large scale learning scenarios. How to use the
already labelled logo detection data in a scalable manner seems
a promising approach. To this end, an open logo detection set-
ting is introduced (Su et al., 2018) where only a proportion of
logo classes are associated with labelled training images. The
goal is to learn a detection model that can be deploy to detect
1-shot icon supervised logo classes.

Image synthesising is an effective approach to solving scarce
logo training data. Eggert et al. (2015) applied synthetic data
to train SVM models for company logo detection. Gupta et al.
(2016) and Jaderberg et al. (2016) generated scene-text images
for learning text recognition models, a problem very similar to
logo detection. Montserrat et al. (2017) employed synthetic
images with both brand logo and toy classes. Letessier et al.
(2012) created a synthetic dataset FlickrBelgaLogos by pasting
logo instances to background web images. Generative Adver-
sarial Networks were also used to generate clean logo images
Sage et al. (2017), which however are not suitable for logo de-
tection on in-the-wild images with complex background. The
recent work CAL (Su et al., 2018) attempts to address this prob-
lem by synthesising context coherent training images for 1-shot

icon supervised logo classes. However, it is extremely chal-
lenging to achieve this due to the difficulty of simulating the
genuine logo instance contexts in real-world scenes.

We tackle this same challenge from a different modelling per-
spective – cross-class domain adaptation. Beyond using the
synthetic training images, we further address the feature dis-
tribution discrepancy between fully supervised and 1-shot icon
supervised classes for better optimising the model detection ca-
pability. We additionally leverage less relevant auxiliary object
images for reducing the model overfitting risk towards fully la-
belled logo classes.

Zero-Shot Object Detection. Open logo detection is concep-
tually similar to the notion of zero-shot object detection where
no labelled training data are available for test classes. It is ex-
tended from the zero-shot classification problem with the aim of
enabling the machines to detect objects visually unseen before
(Xian et al., 2017). These methods often rely on the semantic
relationships between seen and unseen classes via manually la-
belling mid-level attributes (Lampert et al., 2009) and/or learn-
ing text vector embeddings from large scale corpus (Mikolov
et al., 2013). However, such side information is hard and time-
consuming to obtain and currently unavailable for open logo
detection, which renders all the corresponding methods inap-
plicable. Besides, existing methods are not designed to work
with clean icon images as in this context.

Unsupervised Domain Adaptation. In the literature, most un-
supervised domain adaptation methods are focused on the clas-
sification problem (Wang and Deng, 2018; Sun and Saenko,
2016; Tzeng et al., 2017). More recently, this has been studied
for object detection in various settings by several works (Hattori
et al., 2015; Xu et al., 2014; Chen et al., 2018). In particular,
Chen et al. (2018) modify the state-of-the-art Faster R-CNN
model with domain adaptation layers for transferring knowl-
edge between synthetic and real image domains. However, this
study is limited to the closed-class setting where both domain
share the same classes. All other existing methods make the
same closed-set class assumption. In contrast, we investigate a
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more challenging and practical problem of cross-class logo de-
tection adaptation. Specifically, we do not assume the availabil-
ity of real training data for the target logo classes. This avoids
the expense of collecting labelled training data which is often
costly or even unavailable in many cases. As such, a feasible
solution is to leverage synthetic training data. This leads to a
further need for domain adaptation from synthetic data to real
data for the unsupervised target logo classes. Besides, we con-
sider multi-perspective domain adaptation by concurrently ex-
ploiting both synthetic and less-relevant auxiliary imagery data
for further improving the cross-class model generalisation ca-
pability in end-to-end model optimisation.

3. Method

Problem definition. In open logo detection, we have access to
a training set L of fully supervised logo classes and a training
set U of 1-shot icon supervised logo classes. For fully super-
vised logo classes, the training data contain both category and
bounding box labels; Therefore, state-of-the-art object detec-
tion methods (Ren et al., 2015; Redmon and Farhadi, 2017; Lin
et al., 2017) can be applied to train their detector models. For
each 1-shot icon supervised logo class, however, only a single
exemplar icon image (Fig 2) is available. An exemplar icon
image is necessary to specify how a target logo class appears
visually. The underlying reason is due to the man-made nature
– logo class names cannot reflect the corresponding visual ap-
pearance in most cases.

In the standard object detection perspective, such exemplar
icon images are not appropriate training data. They come with-
out any scene context and bounding box annotations. The ob-
jective of open logo detection is to learn a logo model discrim-
inative for 1-shot icon supervised logo classes, using both fully
labelled training data L and 1-shot icon dataU.

Limitation of existing approach. An intuitive and effective
approach for open logo detection is to leverage synthetic train-
ing data of 1-shot icon supervised logo classes (Su et al., 2018).
Synthetic samples are usually generated by placing a clean logo
icon at random positions in background scene images, and im-
portantly the logo bounding box and class label supervision can
be freely obtained. An attractive merit is that, a potentially in-
finite number of synthetic images can be produced. This pre-
vious method, however, suffers from a domain shift problem –
synthetic training images differ from realistic testing imagery
in distribution. It leads to significant degradation in model per-
formance (Pan and Yang, 2010). Solving this training-testing
domain shift problem is critical, particularly for improving the
model performance on 1-shot icon supervised logo classes.

3.1. Multi-Perspective Cross-Class Alignment

To address the aforementioned problem, we introduce a
Multi-Perspective Cross-Class (MPCC) alignment method.
The high-level idea is to transfer the knowledge of fully su-
pervised logo classes to 1-shot icon supervised logo classes.
Designed as a generic plug module, it can be integrated into
existing object detection networks.

Training data. Three types of training data are considered
in MPCC: (1) Genuine training data of fully supervised logo
classes including both scene images and bounding box anno-
tations. They can be used to train a conventional logo object
detection model. (2) Synthetic logo training images for 1-shot
icon supervised logo classes, due to the lacking of standard
training data. The labels of logo instances can be obtained
during synthesis and used for model supervised training. (3)
Non-logo object detection training images to augment the ap-
pearance distribution of genuine object instances.

It is non-trivial to train an effective model using such het-
erogeneous training data with different distributions. MPCC
solves this problem from a domain adaption perspective, with
an overview depicted in Fig 3.

3.1.1. Model Architecture
Overall, we adopt the two-stage model design for logo detec-

tion (Ren et al., 2015). Taking as input a specific training im-
age, we compute feature maps, predict region proposals, extract
feature vectors, and perform classification and box regression.
This method assumes that all the training data are drawn from
the same distribution as the test data, which however is not the
case in open logo detection. In particular, this assumption does
not hold for 1-shot icon supervised logo classes. We introduce
two feature alignment components to mitigate this problem.

3.1.2. Alignment between Genuine and Synthetic Images
We propose cross-class distribution alignment between fully

supervised and 1-shot icon supervised logo classes. This aims
to address the conventional model learning bias towards the dis-
tribution of synthetic training data of 1-shot icon supervised
logo classes. We consider this problem as a domain adap-
tion problem. Concretely, we regard genuine fully supervised
classes and synthetic 1-shot icon supervised classes as two dis-
tinctive domains.

In design, we exploit the idea of adversarial gradient learning
(Ganin and Lempitsky, 2015) due to its simplicity and good
efficacy. We introduce a domain classifier that aligns the feature
distributions of genuine and synthetic logo object instances. It
can be implemented with a fully connected layer.

We create a genuine-synthetic domain alignment problem as
follows. We start by assigning the genuine logo instances of
fully supervised classes with domain label “1”, and the syn-
thetic ones of 1-shot supervised logo classes with label “0”. We
then want to train such the model that yields a feature repre-
sentation space in which an optimal domain classifier cannot
distinguish between genuine and synthetic instances. This pro-
cess is conducted in every mini-batch training. In doing so,
aligning the distributions of the two types of logo objects can
be well achieved. Consequently, the trained detection model is
supposed to have minimal bias towards synthetic logo objects
and become more generalisable when applied to the genuine
images of 1-shot icon supervised classes.

Loss design. We adopt the softmax based cross-entropy loss
function in training. Formally, given an object instance xi, we
start by predicting the domain class posterior probability pgenu

i
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Fig. 3: Overview of the proposed Multi-Perspective Cross-Class (MPCC) domain alignment method. MPCC takes as input (a) genuine logo and non-logo object
scene images, as well as synthetic logo images of 1-shot icon supervised classes. (b) The baseline detection model (e.g. Faster R-CNN) then extracts feature maps,
detects region proposals, and compute feature representations for each proposal. Along with the conventional classification and bounding box regression loss, two
domain alignment loss functions are further introduced: (c) one for aligning genuine and synthetic object instances, (d) and the other for aligning logo and non-logo
object instances.

on the ground-truth domain class label yi ∈ {0, 1} using the soft-
max function as:

pgenu
i =

exp(w⊤yi
xi)∑

k∈{0,1} exp(w⊤k xi)
(1)

where wk specifies the classifier parameters of domain class k ∈
{0, 1}. The cross-entropy loss for a mini-batch of nb training
objects is then defined as:

Lgenu
ad = −

nb∑
i=1

log(pgenu
i ) (2)

Interestingly, we still minimise the Lgenu
ad loss as in standard

training. To achieve the effect that the detection model can-
not distinguish genuine objects from synthetic ones, we insert
a gradient reversal layer before the genuine-synthetic domain
classifier.

3.1.3. Alignment between Logo and Non-Logo Images
As the size of fully supervised logo images is limited due

to high labelling cost, we propose to leverage auxiliary non-
logo object imagery to further enrich the distribution of gen-
uine instances and improve the effectiveness of feature align-
ment. However, this may introduce some negative distracting
effect due to the intrinsic difference between logo and non-logo
objects in appearance. To achieve a consistent solution, we con-
sider again this problem from domain adaptation perspective.

Together with genuine-synthetic domain setup, we further
introduce logo-nonlogo domain alignment. Same as genuine-
synthetic domain alignment, we employ the adversarial gradi-
ent concept. Differently, in this alignment we design the do-
main label based on if an object instance belongs to logo or not.
Specifically, we assign logo instances by domain label “1” and
non-logo instance by “0”. We then leverage these domain la-
bels to align the feature distribution across logo and non-logo
instances. Conceptually, this scheme can be understood as a
soft regularisation constraint that encourages the model to se-
lectively learn information particularly useful for logo object
detection in an implicit manner.

Loss design. The same softmax based cross-entropy loss
function is used as above. We first estimate the domain class

probability plogo
i of an object instance xi on the ground-truth

domain label y′i ∈ {0, 1} as:

plogo
i =

exp(w̄⊤y′i xi)∑
k∈{0,1} exp(w̄⊤k xi)

(3)

where w̄k denotes the classifier parameters of domain class k ∈
{0, 1}. The cross-entropy loss is then computed as:

Llogo
ad = −

nb∑
i=1

log(plogo
i ) (4)

where nb is the batch-size. To realise adversarial gradient learn-
ing, we similarly deploy a gradient reversal layer before classi-
fication.

3.1.4. Objective Loss Function
Combining the two alignment constraints with the conven-

tional object detection loss Ldet, we obtain the MPCC objective
loss function as:

Lmpcc = Ldet + λ1Llogo
ad + λ2Lgenu

ad (5)

where the hyper-parameters λ1 and λ2 control the relative im-
portance ratio of the two adaptation loss terms. Note that, Ldet
typically consists of a classification loss and a regression loss.
As a model-agnostic design, Eq. (5) can be integrated in exist-
ing detection models to boost open logo detection performance.

3.2. Model Implementation

In implementing our MPCC method, we adopt a ResNet-101
based Faster R-CNN (Ren et al., 2015) as the base detection
model. The final objective function is an additive aggregation of
Faster R-CNN detection loss and our MPCC loss (Eq. (5)). The
model can be trained end-to-end by stochastic gradient descent.
Other alternative models (Redmon and Farhadi, 2017; Lin et al.,
2017) can be similarly considered.

We used the same method as (Su et al., 2018) to synthesise
training images for 1-shot icon supervised logo classes (see ex-
amples in Fig. 2). To better generalise the detection model to
1-shot icon supervised logo classes, we formulate the objective
of RPN as binary (logo and non-logo) classification. This is
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Table 2: Open logo detection setting and data statistics.

Split Classes Train images Val images Test images
Fully supervised logo 176 10,586 1,561 3,121

1-shot icon supervised logo 176 0 0 3,649

inspired by the idea of universal logo detection (Tzk. et al.,
2018; Fehérvári and Appalaraju, 2019) – class agnostic local-
ization models can learn the generic characteristics of logo ob-
jects more strongly. Note that, we only use the manually la-
belled bounding boxes to minimise the loss of region proposal
net. The intuition is that, synthetic instances are with unrealis-
tic background context which may mislead model optimisation.
This is verified in our evaluation (see Table 7).

3.3. Computational Complexity Analysis

We analyse the computational complexity of MPCC on top of
the baseline method CAL (Su et al., 2018). As a model training
strategy, MPCC does not increase the inference cost for logo
detection on test images. It maintains the same inference cost
as the base detection model. MPCC does increase the cost of
model training by 2.3 times, due to more training data used.
However, this should not be a big limitation, since training takes
place only once.

4. Experiments

Dataset and setting. To evaluate the proposed MPCC model,
we utilised the public QMUL-OpenLogo1 detection dataset (Su
et al., 2018). It contains a total of 27,083 images from 352
logo classes, established by combining and refining seven pre-
vious logo datasets. To facilitate model training, we adopted
the second benchmark setting where 176 logo classes are fully
supervised and the remaining 176 are 1-shot icon supervised.
Fig. 2 shows example scene images and logo icons. It is noted
that, in open logo detection, we focus more on the performance
evaluation of 1-shot icon supervised logo classes. The statistics
for train/val/test image sets are summarised in Table 2.

Performance metrics. For the performance evaluation of logo
detection models, we used the common Average Precision (AP)
for individual logo classes, and the mean Average Precision
(mAP) over all classes (Everingham et al., 2010). We consid-
ered a logo detection as being correct if the Intersection over
Union (IoU) between the detected and ground-truth boxes ex-
ceeds 50%.

Implementation details. For model optimisation, we adopted
the Adam solver (Kingma and Ba, 2014). We set the learn-
ing rate of 0.0002, the batch size of 2, the max epoch number
of 5. Following (Su et al., 2018), we generated 100 synthetic
images for each of 352 logo classes, resulting in 35,200 syn-
thetic logo images. Three types of training data were involved:
10,586 genuine logo images from QMUL-OpenLogo, 35,200

1QMUL-OpenLogo: https://qmul-openlogo.github.io/

synthetic logo images by synthetic data generation with back-
ground images from FlickrLogo-32 (Romberg et al., 2011), and
82,081 non-logo data from COCO 2014 benchmark (Lin et al.,
2014). The size ratio corresponds to 1.0:3.3:7.8. We also tested
different proportion configurations to verify their effect (Table
8). The model hyper-parameters were setting as λ1 = 0.1, and
λ2 = 0.1 for Eq. (5) by cross-validation on the validation set.
Concretely, we first cross-validated λ1 and λ2 on the validation
set; Once the hyper-parameters were estimated, we merged the
validation and training sets to train the final model.

4.1. Comparisons to the State-of-the-Art Methods

Competitors. We compared the MPCC with two synthetic data
generation methods SCL (Su et al., 2017b) and CAL (Su et al.,
2018) in conjunction with two strong object detection mod-
els YOLOv2 (Redmon and Farhadi, 2017) and Faster R-CNN
(Ren et al., 2015). Moreover, we further compared to a fea-
ture manipulation method (Sage et al., 2017) based on Faster
R-CNN. This method quantifies the latent visual attribute dis-
crepancy between genuine and synthetic logo object instances
for improving the representation quality of synthetic logo ob-
ject instances by algebraic addition and subtraction vector op-
erations. The key idea is to represent the logo instances by
latent attributes that can be manipulated such that the corre-
sponding instances are accordingly transformed. Specifically,
a general logo detector was first trained with both genuine and
synthetic logo data to learn logo localisation. Second, a multi-
label classifier is trained to classify both the logo classes and
genuine/synthetic labels of the logo instances, thus the gen-
uine/synthetic feature boundary was modelled. Third, the gen-
uine and synthetic data of the supervised logo classes were fed
into the model to extract their latent features which are used
to obtain their mean difference. In the evaluation stage, this
genuine-synthetic instance difference was transferred to the un-
supervised logo classes to bridge the gap of synthetic training
data and genuine test data. This model can be considered as a
feature domain alignment strategy in contrast to the adversarial
learned MPCC method for imagery pixel alignment. All these
competitors were trained on the same training data (if possible
by design) for a fair comparison.
Quantitative evaluation. From Table 3, we conclude that:

1. CAL (Su et al., 2018) is superior to SCL (Su et al., 2017b)
by generating context more coherent synthetic images.
This superiority is consistent over two detectors. Both
methods aim to address the cross-class detection challenge
by training data synthesis. Despite random context sam-
pling and rendering, the domain mismatch between the
genuine and synthetic images still remain at large.

2. YOLOv2 (Redmon and Farhadi, 2017) is shown as a
weaker architecture than Faster R-CNN (Ren et al., 2015)

https://qmul-openlogo.github.io/
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Table 3: Open logo detection performance by MPCC and state-of-the-art methods. Metric: mAP.

Classes 1-shot supervised Fully supervised All
YOLOv2 (Redmon and Farhadi, 2017) + SCL (Su et al., 2017b) 12.75% 47.36% 30.06%
YOLOv2 (Redmon and Farhadi, 2017) + CAL (Su et al., 2018) 13.72% 46.60% 30.16%

Faster R-CNN (Ren et al., 2015) + SCL (Su et al., 2017b) 18.63% 49.16% 33.89%
Faster R-CNN (Ren et al., 2015) + CAL (Su et al., 2018) 20.31% 48.19% 34.25%

Faster R-CNN + SCL + Feature Manipulation (Sage et al., 2017) 19.95% 46.90% 33.43%
Faster R-CNN + CAL + Feature Manipulation (Sage et al., 2017) 21.09% 46.72% 33.91%

Faster R-CNN + SCL + MPCC (Ours) 23.40% 48.60% 36.00%
Faster R-CNN+ CAL + MPCC (Ours) 24.53% 49.41% 36.97%

for open logo detection. The potential reason is that logo
object instances vary significantly in size, which makes the
region proposal estimation more necessary.

3. Feature manipulation (Sage et al., 2017) further improves
the performance, e.g. a mAP gain of 1.32% (19.95-18.63)
with SCL and 0.78% (21.09-20.31) with CAL. This sug-
gests the efficacy of such feature level alignment between
synthetic and genuine data.

4. MPCC achieves the best performance, indicating the over-
all result superiority of our method thanks to the principled
domain adaptation between classes for supervision knowl-
edge transfer from both labelled logo classes and generic
non-logo objects in realistic context. This also reduces
the necessity of rendering logo context as implied by the
smaller difference between using SCL and CAL in MPCC.

Qualitative evaluation. To visually assess the model perfor-
mance, we compared MPCC (w/ CAL) with the best alternative
model Feature Manipulation (w/ CAL) (Sage et al., 2017) in
Fig 4. We observed similar performance comparisons as the nu-
merical evaluation above. Moreover, we also compared the fea-
ture distributions of genuine and synthetic logo images from the
MasterCard class using two models trained with and without
the MPCC. Fig 5 shows that MPCC can bring about a more im-
mersed single overlapping region from the distributions of the
genuine and synthetic logo data whilst “without MPCC” their
distributions are in two more separable regions. This demon-
strates that “with MPCC” the synthetic data are more effective
for model training.

4.2. Model Component Analysis

Genuine and synthetic domain adaptation. We examined
the effect of domain adaptation between genuine and synthetic
training images. Table 4 shows that it brings clear mAP gain to
the models. This suggests the significance of aligning the syn-
thetic towards the genuine logo training data, which is mainly
caused by unrealistic image synthesis in terms of both logo in-
stance appearance and background context.

Table 4: Effect of genuine and synthetic domain adaptation.

Lgenu
ad mAP

21.47%(SCL) / 23.24%(CAL)
23.40%(SCL) / 24.53%(CAL)

Logo and non-logo domain adaptation. We tested the benefits
of using non-logo object detection images (COCO) in a domain
adaptation manner. Table 5 shows a positive impact of this com-
ponent in model performance. This validates our design consid-
eration of transferring generic object instance supervision for
enlarging the training data and reducing the model overfit incli-
nation towards the 1-shot icon supervised logo classes.

Table 5: Effect of logo and non-logo domain adaptation.

Non-logo data Llogo
ad mAP

21.62%(SCL) / 21.82%(CAL)
21.01%(SCL) / 22.00%(CAL)

23.40%(SCL) / 24.53%(CAL)

Non-logo object image source. We evaluated the impact of
non-logo object image with two sources: 9,963 PASCAL VOC
2007 images (Everingham et al., 2015) vs. 82,081 MS COCO
2014 images (Lin et al., 2014). Table 6 suggests that COCO
serves as a better data source as expected. The plausible rea-
son is the availability of more labelled genuine object detection
images with richer contexts.

Table 6: Effect of non-logo object image source.

Non-logo image source mAP
PASCAL VOC 2007 22.02%(SCL) / 23.15%(CAL)

MS COCO 2014 23.40%(SCL) / 24.53%(CAL)

Synthetic box supervision. Recall that we deliberately ignore
the synthetic bounding box supervision of 1-shot icon super-
vised logo classes in training the RPN function. We tested this
design. Table 7 shows that using synthetic bounding box la-
bels leads to a small model performance decrease. A plausible
reason is due to less realistic context within synthetic logo in-
stances.

Table 7: Effect of synthetic box supervision (SBS).

SBS mAP
23.11%(SCL) / 24.22%(CAL)

23.40%(SCL) / 24.53%(CAL)
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Lacoste 

Ferrari 

Lacoste 

(a) (b) (c) (e) (d) 

Fig. 4: Five qualitative logo detection examples by Feature Manipulation (FM) (Sage et al., 2017) (2nd row) and MPCC (3rd row) along with the ground-truth (1st

row). (a) Both models correctly detect the logo instance; In (b) FM misses the target; In (c) FM produces a miss classification, whist MPCC succeeds; (d) FM fails
to identify two “Lacoste” logo instances, while MPCC misses the hard instance with significantly varied appearance on the bottom left; (e) Both models find the
correct logo instance whilst making a false positive detection.

Fig. 5: A visualisation of the t-SNE feature distributions of genuine (red circles)
and synthetic (blue stars) logo images from the ‘MasterCard’ class with (left)
and without (right) the proposed MPCC method. It is evident that MPCC can
bring about a more immersed single overlapping region from the distributions
of the genuine and synthetic logo data whilst “without MPCC” their distribu-
tions are in two more separable regions. This demonstrates that “with MPCC”
the synthetic data are more effective for model training.

Training data configuration. Recall that we used three dif-
ferent training sets, including genuine logo images, synthetic
logo images and non-logo images, to train our model, with a
proportion of 1.0:3.3:7.8. To evaluate the effect of different
data combinations, we further tested three more proportional
configurations by halving one of the three training sets, indi-
vidually. Table 8 shows that reducing the amount of any type
of training data would negatively affect the model performance.
In particular, genuine data and non-logo data are most and least
important, respectively.

5. Conclusion

We presented a Multi-Perspective Cross-Class (MPCC) do-
main adaptation method for overcoming the domain shift prob-
lem of open logo detection so that synthetic training images

Table 8: Effect of training data configuration.

Data configuration mAP
Default 23.40%(SCL) / 24.53%(CAL)
50% synthetic data 22.34%(SCL)/ 22.50%(CAL)
50% non-logo data 22.40%(SCL)/ 23.04%(CAL)
50% genuine logo data 20.71%(SCL) / 21.36%(CAL)

of 1-shot icon supervised logo classes can be more discrimina-
tively leveraged. This method scales up existing logo detection
models that rely on conventional supervised learning due to no
need for large labelled training data per class. Compared to pre-
vious alternative methods, it solves the largely ignored domain
mismatch problem between synthetic and genuine logo images.
MPCC also leverages large auxiliary non-logo object detection
images for further improving the model generalisation capabil-
ity on 1-shot icon supervised logo classes. Empirical evalua-
tions show the performance advantages of our MPCC method
over the state-of-the-art competing methods on the standard
QMUL-OpenLogo benchmark. We provided component anal-
yses to give insights on the design considerations of our model.
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