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Abstract

Existing person search methods typically focus on improving person detection

accuracy. This ignores the model inference efficiency, which however is funda-

mentally significant for real-world applications. In this work, we address this

limitation by investigating the scalability problem of person search involving

both model accuracy and inference efficiency simultaneously. Specifically, we

formulate a Hierarchical Distillation Learning (HDL) approach. With HDL,

we aim to comprehensively distil the knowledge of a strong teacher model with

strong learning capability to a lightweight student model with weak learning ca-

pability. To facilitate the HDL process, we design a simple and powerful teacher

model for joint learning of person detection and person re-identification match-

ing in unconstrained scene images. Extensive experiments show the modelling

advantages and cost-effectiveness superiority of HDL over the state-of-the-art

person search methods on three large person search benchmarks: CUHK-SYSU,

PRW, and DukeMTMC-PS.
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Figure 1: The significance of scalability in person search. Both sets of query persons and

scene imagery are of large scale.

1. Introduction

Person search considers the problems of person detection and person re-

identification (re-id) simultaneously [? ? ]. It is valid and necessary due to

that the practical application of person re-id relies heavily on person detection.

The detection quality of persons on the surveillance scene images affects the5

re-id performance largely. For example, missing detection causes the inability of

person re-id on the corresponding person instance, and misalignment introduces

noise or information loss to person re-id.

In addition to person matching accuracy, this task joining by person search

also expands the scope for model efficiency considerations. Conventionally, per-10

son search efficiency is mostly considered in person re-id model design, since

person bounding boxes are assumed already available. This breaks the con-

nection between person re-id and person detection, therefore, losing their joint

computing opportunity for improving model efficiency. This issue is naturally

solved in the person search problem setting.15

Model efficiency is fundamentally crucial for scalable person search, due to

the intrinsic large scale search requirement in real-world deployment (Figure

??). The efficiency problem was initially investigated in the introduction of
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person search [? ], followed by a few followup joint learning model designs [?

? ? ]. However, all these existing methods are significantly outperformed by20

independent learning competitors [? ? ]. Moreover, some of the joint learning

methods [? ? ? ] are even not necessarily more efficient than independent

learning, because of their query-specific search design nature. That is, the model

needs to conduct an independent search process in every whole scene image for

every query person, with the search cost proportional to the quadratic pairwise25

combination (i.e. multiplication) of the query and gallery samples. This implies

potentially even more inefficient solutions than simpler independent learning [?

? ], totally opposite to their original efficiency objective.

In the literature, only the OIM method [? ] makes an initial attempt for

efficient person search. The key idea is that person detection and person re-id30

can share a large proportion of computing cost by jointly using the low-level

feature network layers. This is analogous to the core idea of Faster R-CNN [? ].

After the OIM model is trained, person detection and re-id feature extraction

can be conducted jointly on the gallery data by a single network. It is a one-off

process, independent to the size of query images therefore much more scalable35

than query-specific search models. However, the main focus of OIM is on how to

exploit unlabelled person instances for improving re-id matching. This method

does not fully investigate the significant model efficiency problem. This is partly

due to that its performance is somewhat weak, e.g. significantly inferior to

the current state-of-the-art methods [? ? ]. Overall, the scalability problem40

including both model accuracy and inference efficiency for person search remains

largely under-studied, despite its significant practical importance.

In this work, we investigate the scalability problem for person search. We

explore the potential of knowledge distillation [? ] by developing a Hierarchi-

cal Attention Learning (HDL) method. The core idea behind the HDL is to45

transfer the person search knowledge of a heavy teacher model that can be opti-

mised more discriminatively with stronger learning capability into a lightweight

student model with weaker learning capability. Whilst knowledge distillation

has been previously studied mostly in single label image classification [? ? ?
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? ], it has not been explored for the more complex person search problem50

with two different tasks involved. To this end, we design a novel approach for

distilling comprehensive knowledge in the teacher network hierarchy including

feature representation, attention, and prediction. To facilitate distillation, we

further develop a strong joint learning teacher model for ensuring the knowl-

edge quality which is lacking in the literature, and a structurally consistent and55

computationally efficient student model.

We make three contributions in this work: (1) We investigate for the first

time the scalability problem involved in person search. This is a fundamentally

significant problem to be solved for scaling up the deep learning solutions to

person search in the real-world applications. (2) We formulate a Hierarchi-60

cal Distillation Learning approach for more discriminating knowledge transfer

from a stronger teacher model into an efficient student model. (3) We design

a simple and effective teacher model for joint learning of person search, which

largely facilitates the knowledge distillation by avoiding knowledge transfer be-

tween structure inconsistent teacher and student models. Extensive experiments65

show the model cost-effectiveness and performance advantages of our HDL over

the state-of-the-art alternative approaches on three person search benchmarks:

CUHK-SYSU [? ], PRW [? ], and DukeMTMC-PS [? ].

2. Related Work

Person Re-Identification. Person re-identification (re-id) [? ? ? ? ] is part70

of person search. Typically, re-id assumes the availability of person bounding

boxes across the supervised [? ? ? ? ? ? ? ? ], unsupervised [? ? ? ?

? ? ], and domain adaptation [? ? ? ? ? ? ? ] settings. This overlooks

the opportunity for interacting person re-id and person detection. From the

system deployment viewpoint, this is an incomplete problem design. Moreover,75

the existing re-id studies often ignore the correlation between person detection

and re-id matching. For example, missing detection can cause a deemed failure

of person re-id therefore affecting the final search result. Poor person detection
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may negatively affect the re-id matching accuracy. Such considerations however

are totally missing in the current person re-id benchmark datasets [? ? ? ].80

The recent introduction of person search benchmarks [? ? ] aims to solve these

issues by jointly considering person detection along with re-id matching in a

single problem setting.

Person Search. Due to a more comprehensive problem formulation, person

search has gained increasingly more attention and research efforts [? ? ? ? ? ]85

since its establishment [? ? ? ]. Existing methods are generally fallen into two

groups: (1) independent learning (IL) [? ? ] and (2) joint learning (JL) [? ? ?

? ? ? ] based models.

Thus far, the independent learning based person search methods achieve the

state-of-the-art performance [? ? ? ]. They separate person detection and re-id90

matching by designing independent network models. Strong and computation-

ally expensive CNN models [? ] are often selected in such designs for maximising

the search accuracy. One of the major disadvantages for these methods is costly

deployment and slow execution. The model inference efficiency can be further

reduced due to the addition of auxiliary components such as foreground seg-95

mentation and multi-branch fusion [? ]. Although reaching good performance,

this group of methods are less scalable computationally therefore unsuitable for

large scale deployments typically required in real applications.

The joint learning based person search methods have been developed with

one of the main objectives as solving the above efficiency limitation [? ? ?100

? ? ? ]. The methods in [? ? ] improve the model inference speed by

taking advantages of the Faster R-CNN design. The key idea is to make person

detection and re-id tasks share the low-level feature computation. NPSM [? ],

RCAA [? ] and QEEPS [? ] suggest query-specific person search strategies.

CGPS [? ] learns contextual graph representations via coupling the targets105

and the background contexts. Opposite to their design objectives for efficiency

gain, these existing models all suffer from another scalability limitation: every

query-gallery pair needs to be processed independently. This means that the
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detection cost is proportional to the combination of query and gallery samples.

Instead, person detection on all gallery images is conducted one-off in [? ? ],110

therefore independent and scalable to any sizes of query tasks. The efficiency

of NPSM [? ] is also significantly limited by the need of generating region

proposals, e.g. EdgeBox [? ]. Besides, all these models are often less powerful

than the IL counterparts.

In contrast to all the existing methods, we consider the scalability and cost-115

effectiveness problem of person search including both model accuracy and in-

ference efficiency. None of the previous methods are designed to address this

problem, lacking sufficient model generalisation and/or inference efficiency. To

this end, we explore the idea of knowledge distillation [? ]. We also develop

a simple and strong joint learning model that reaches the performance of the120

state-of-the-art independent learning method. This layouts a very competitive

baseline method and inspires novel ideas to the future works.

3. Hierarchical Distillation Learning

For model training, we often collect m training scene images I = {Ii}mi=1

captured from multiple camera views. The annotation includes person bounding125

boxes Ybox and identity labels Yid = {yi}ni=1 on a total of nid training people,

i.e. yi ∈ {1, · · · , nid}. A single unconstrained scene image may contain multiple

(varying) person instances. The objective is to learn an efficient person search

model for simultaneous person detection and re-id matching. To this end, we

formulate a Hierarchical Distillation Learning (HDL) approach featured130

with comprehensive knowledge distillation and joint learning of person detection

and person re-id (i.e. person search) in unconstrained surveillance scene imagery

data. An architectural overview of the proposed HDL method is depicted in

Figure ??.

3.1. HDL Overview135

In design, the proposed HDL model takes the advantages of knowledge distil-

lation [? ]. Specifically, HDL consists of three components: (1) A teacher model
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Figure 2: Overview of the proposed Hierarchical Distillation Learning (HDL) approach. The

HDL process consists of two steps: (1) We first train the heavy teacher model (Sec ??). See

the details in Sec ??. (2) We then train the lightweight student model (Sec ??) by knowledge

distillation from the teacher model. In test, we deploy the efficient student model for scalable

person search. The symbols cjT and cjS (j ∈ {0, 1, 2, 3}) denote channel dimensions in the

corresponding j-th block of the teacher and student models. The first layers and standard

detection loss functions in both teacher and student models are omitted for simplicity. T:

Teacher; S: Student; PDN: Person Detection Network; ARM: Attention Residual Module;

FD: Feature Distillation; AD: Attention Distillation; PD: Prediction Distillation.

with a large size and great learning capability, designed to realise a strong person

search network (Section ??). (2) A student model with a small size and inferior

learning capability, developed for superior inference efficiency in deployment140

(Section ??). (3) A hierarchical distillation learning strategy, formulated for

comprehensive knowledge transfer from the stronger teacher model to the stu-

dent model (Section ??). This addresses the hard-to-learn problem in training

the small student model.

By deploying the student network as the final model in test time, we are145

able to achieve both superior model generalisation capacity and model inference

speed, i.e. higher cost-effectiveness during deployment.

3.2. A Strong Joint Learning Teacher Model

By the means of knowledge distillation, the performance of the final (student)

model relies heavily on the strength of the teacher model. That is, weaker150

teacher, weaker student. It is therefore critical and necessary to formulate a

strong teacher model. To ease the distillation of person search knowledge, it is
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also desired that the teacher model can share a similar structure of the student

model functionally with the ability to jointly conduct both person detection and

re-id matching. This avoids distilling the knowledge from two separate teacher155

networks (one for person detection, one for person re-id) to a single joint leaning

student network, which is much more difficult.

Nonetheless, the only existing joint learning teacher model, OIM [? ], is

significantly inferior to the two-stage followup models [? ? ]. Therefore, using

the OIM model as the teacher model will lead to a similarly weak student model.160

To address this issue, we formulate a stronger yet simpler joint learning teacher

model.

Teacher Model Architecture. Our teacher model is based on the design idea

of Faster R-CNN [? ] with person search specific modification. Specifically, it

consists of three parts: (i) feature subnet, (ii) person detection subnet, and165

(iii) person re-id subnet. For design flexibility, any standard deep convolutional

networks [? ? ] can be used as the stem network. In the follows, we detail the

three parts.

(I) Feature Subnet. To build the feature subnet, we use the lower part of

the stem network starting from the first layer to the intermediate layer with 1
r170

down-sampling ratio. This subnet takes as input the scene image I ∈ RH×W×3

(H and W as image height and width), and outputs the image-level features

Xf ∈ R
H
r ×

W
r ×cf (cf feature channels). The output features are for both person

detection and re-identification tasks simultaneously. This model structure shar-

ing reduces the overall computational costs with only a single unified forward175

pass needed.

(II) Person Detection Subnet. We subsequently build a person detection

subnet (e.g. region proposal net) on top of the output features for detecting

candidates in a given scene image. The details are as follows. With a 512×3×3

conv layer, we first make the features discriminating for person appearance. The180

followed is the anchor layer for per-feature-location person detection. To make

it more effective for person class specifically rather than generic object classes,
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we use eleven different anchor-box scales and only one aspect ratio ( h
w = 2.44) as

[? ]. Finally, we remove the redundant detections by applying a Non-Maximum

Suppression process. In training, the person detection is optimised jointly by a185

softmax cross-entropy classification loss and a spatial location regression loss.

(III) Person Re-Id Subnet. We utilise the rest layers of the stem network

to build person re-id subnet. It is based on the outputs of both feature and

detection subnets. Specifically, we first use RoIAlign [? ] at a spatial scale of

7× 7 to crop the detection regions from the output of the feature subnet. This

yields the detection-level features Xp ∈ R7×7×cf . Xp is first processed by batch

normalisation, then used as the input of the person re-id subnet to produce

the identity discriminative features X
′

p ∈ R3×3×cp , where cp is the feature

dimensions of the last layer in the stem network. To obtain the re-id feature

xp ∈ Rcp , we globally pool X
′

p followed by batch normalisation. In training, we

introduce a softmax cross-entropy identity classification loss function for re-id

discriminative learning defined as:

LID = − 1

Np

Np∑
i=1

log(p̄i), (1)

where Np specifies the number of persons detected in the current mini-batch

training data. p̄i is the posterior probability of the i-th training person instance

on the ground-truth identity class. Specifically, it is written as:

p̄i =
exp (pi)∑

i∈Yid
exp (pi)

, (2)

where pi is the identity class logits predicted by the identity classification layer.

In person search on unconstrained scene images, person detection is often

imperfect with inevitable false alarms and misalignment [? ]. To mitigate this

issue, we further impose a detection refinement loss same as the person detection190

subnet, in conjugate with the above re-id loss function. This refines the person

localisation and suppresses the wrong detections.

Remarks. In this study, we aim for a simple but powerful teacher model.

This is in contrast to most existing models that often become more complex
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making the model analysis and comparison increasingly difficult. For instance,195

comparison between different models is mostly at the system level therefore less

informative. By this simple teacher model we attempt to discourage this trend

and answer a question that how well a simple person search method can perform

in a proper design, which is unfortunately lacking in the literature. Interestingly,

the proposed teacher model is surprisingly effective although being simple. In200

comparison, our method has a couple of significant merits: (1) More training

friendly; (2) Potentially inspire new research ideas for developing novel joint

learning person search models.

3.3. An Efficient Joint Learning Student Model

One major weakness of using the standard CNN architecture in the teacher205

model (e.g. ResNet-50) is the high cost of model inference cost. Whilst facilitat-

ing to learn the discriminating feature representations, this is not desirable for

large scale deployments. There is hence a need for developing a computationally

more efficient student model.

To that end, we design a lightweight building block based on depth-wise210

separable convolutions, inspired by efficient CNN models such as MobileNets [?

? ]. The details of the student’s building block are shown in Fig ??. To build

the entire student network, we just simply replace all levels of blocks of the

teacher network by the proposed efficient blocks. This means that the student

model adopts the teacher’s overall structure.215

Remarks. An important advantage of such a design is that, the teacher and

student models are structurally consistent. This brings significant convenience

for knowledge distillation, as described in the follows.

3.4. Hierarchical Distillation Learning

Smaller networks are typically inferior for discriminating training. To facil-220

itate the learning of our student model, we propose a hierarchical distillation

learning (HDL) strategy that can transfer comprehensively the teacher’s knowl-

edge for helping the student’s training.
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Figure 3: (a) A student’s building block contains three modules. Each module (b) in such

a block consists of two conv layers. Layer type is indicated by background colour: grey for

normal conv, and orange for depthwise separable conv layers. The three items in the bracket

of a conv layer are: filter number, filter shape, and stride. BN: Batch Normalisation. ReLU:

Rectified Linear Unit.

Specifically, our HDL method considers three levels of knowledge during dis-

tillation: feature, attention, and prediction. For enabling attention distillation,225

we need an attention learning mechanism for both the teacher and student mod-

els. In order to learn and transfer richer attention knowledge distributed across

different layers, we consider a module-wise attention design. That is, multiple

selected building blocks can be attended in a pyramid structure (Fig ??). As

a side benefit, this may also assist the feature representation learning of both230

models concurrently.

Attention Residual Module. Formally, the input to an attention module is a 3-D

tensor Xj ∈ Rh×w×c where h, w, and c denote the height, width, and channel

dimensions, respectively; And j indicates the block level of this module in the

entire network. The essence of attention learning is to estimate a salience weight
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Figure 4: Attention residual module in knowledge distillation.

map Aj ∈ Rh×w×c of the same size as Xj . In this work, we adopt the Attention

Residual Module (ARM) design [? ] due to its superior learning capability. It

is formulated (see Fig ??) as:

Hj = (1 + Aj) ∗Xj , (3)

where Hj ∈Rh×w×c and Xj ∈Rh×w×c represent the modulated and original

features, respectively. To further improve cost-effectiveness, we separate the

spatial and channel attention learning as [? ? ].

(I) Feature Distillation. Feature distillation encourages the student to imi-

tate the teacher’s representation knowledge. Formally, we denote Xj
S/T as the

feature maps at the j-th block level of the teacher (Xj
T ) or student (Xj

S) net-

work. For efficiency gain, the student network often has fewer feature channels.

As a result, Xj
S and Xj

T are not aligned in channel dimension, which disables

channel-to-channel distillation. To address this issue, we consider a 2-D spatial

collective distillation scheme by discarding the channel dimension. Specifically,
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we first accumulate the feature tensor along the channel dimension as:

f(Xj
S/T ) =

∑
i

|Xj
S/T (·, ·, i)|

2, (4)

where Xj
S/T (·, ·, i) is the i-th feature channel of Xj

S/T . We then obtain feature

vectors by vectorisation:

xj
S/T = vec(f(Xj

S/T ))

We finally design the feature distillation loss as:

LFD(ΘS) =
1

2

∑
j∈J
‖

xj
S

‖xj
S‖2
−

xj
T

‖xj
T ‖2
‖2 (5)

where ΘS denotes the parameters of the student model, and J the set of all235

block levels involved.

(II) Attention Distillation. Attention distillation aims for salience knowl-

edge transfer. Specifically, we have the 3-D attention maps Aj
S and Aj

T from

the student and teacher models at the j-th level. Similar to feature distillation,

we first perform a channel-dimensional accumulation and vectorisation by com-

puting aj
S/T = vec(f(Aj

S/T )), then formulate the attention distillation loss as:

LAD(ΘS) =
1

2

∑
j∈J
‖

aj
S

‖aj
S‖2
−

aj
T

‖aj
T ‖2
‖2, (6)

This essentially constrains the student model to mimic the attending behaviour

optimised by the teacher model.

(III) Prediction Distillation. By prediction distillation, the student model

attempts to simulate the high-level classification actions of the teacher model.

Since the class space is the same for both models, their predictions are struc-

turally consistent therefore allowing element-wise alignment. Formally, we de-

sign the prediction distillation loss as:

LPD(ΘS) = t2
∑
i∈Yid

p̃i
S log

p̃i
S

p̃i
T

(7)

which minimises the Kullback-Leibler divergence between the softened per-

identity predictions p̃i
S (by student) and p̃i

T (by teacher). The temperature
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parameter t controls the softening degree as:

p̃i
S/T =

exp (pi
S/T /t)∑

i∈Yid
exp (pi

S/T /t)
(8)

where pi
S/T is the identity class logits predicted by the student or teacher model.

As the gradient magnitudes produced by the soft targets p̃i
S/T are scaled by 1

t2 ,240

we multiply this loss term by a factor t2. This is to ensure that the relative

contributions of the ground-truth and teacher probability distributions remain

approximately unchanged.

Remarks. The proposed HDL method is based on existing distillation tech-

niques that have been explored in varying context and problems [? ? ? ? ].245

However, they are rarely jointly modelled in a unified model. Therefore, their

complementary effects remain largely unknown. Moreover, the efficiency issue in

person search is under-studied significantly, let alone exploiting the knowledge

distillation notion. One main reason is that existing joint learning person search

models [? ] are dramatically inferior, therefore lacking a strong teacher model250

to enable the knowledge distillation. We overcome this obstacle to person search

and further explore the potential of three fundamental distillation algorithms

jointly for addressing the ignored and realistically significant scalability issue.

3.5. Model Training

As the conventional knowledge distillation, we start with training the teacher255

model, followed by student training using the proposed HDL algorithm.

Teacher Model. By joint learning person search, the loss function for the

teacher network ΘT is formulated as:

L(ΘT ) = LID(ΘT ) + LDET (ΘT ), (9)

where LID() is the cross-entropy loss for person identity classification, and

LDET () the person detection loss including box regression and binary-class clas-

sification.

Student Model. To train the student model, we also exploit the HDL loss

functions in addition to the joint learning person search loss that same as Eq
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(??). This aims to transfer the already-trained teacher’s knowledge. Formally,

the loss function of the student model ΘS is designed as:

L(ΘS) =(1− λ0) ∗ LID(ΘS) + λ0 ∗ LPD(ΘS)+

λ1 ∗ LAD(ΘS) + λ2 ∗ LFD(ΘS)+

LDET (ΘS),

(10)

where λ0/1/2 are three loss weighing hyper-parameters, estimated by cross-260

validation.

3.6. Network Architecture Details

In this section , we provide the details of HDL network architecture.

Teacher Model. We adopt a ResNet50 [? ] as the stem network for the teacher

model. It consists of four blocks (named conv2 x to conv5 x) each containing265

3, 4, 6, 3 residual units. In particular, we choose the first layer (conv1 x, i.e.

64× 7× 7 conv layer) to the third block (conv4 x) as feature sub-network, and

conv5 x as person re-id sub-network. The person detection sub-network is built

on conv4 x. The channel dimensions for the four blocks (Fig ??) are c0T = 256,

c1T = 512, c2T = 1, 024, and c3T = 2, 048, respectively.270

Student Model. For the student model, we use a 32 × 3 × 3 conv layer

with stride 2 as the input layer. To achieve a good balance between efficiency

and accuracy, we construct the corresponding four blocks by setting c0S = 128,

c1S = 256, c2S = 384, and c3S = 512. In each building block (Figure ??), we set

the strides as s1 = s2 = 1 and s3 = 2.275

Attention Module. For both teacher and student models, we introduce a

ARM unit at the end of each block (Fig ??). This forms an attention pyramid

for richer salience learning.

4. Experiments

Datasets. To evaluate the proposed HDL model, we used three person search280

benchmarks: CUHK-SYSU [? ], PRW [? ], and DukeMTMC-PS which is newly
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(a) (b) (c)

Figure 5: Example query and unconstrained scene images from (a) CUHK-SYSU [? ], (b)

PRW [? ], and (c) DukeMTMC-PS [? ].

Table 1: Data statistics of person search datasets.

Dataset IDs Images
ID Split Image Split

Train Test Train Test

CUHK-SYSU 8,432 18,184 5,532 2,900 11,206 6,978

PRW 932 11,816 482 450 5,704 6,112

DukeMTMC-PS 1,404 35,543 702 702 16,362 17,350

introduced based on the DukeMTMC tracking dataset [? ]. Example images are

shown in Fig ??. We adopted the standard evaluation setting of CUHK-SYSU

and PRW (Table ??). We re-purposed the DukeMTMC data into a person

search benchmark DukeMTMC-PS. The train/test ID split follows the person285

re-id counterpart [? ]. This dataset provides much more training and test scene

images than CUHK-SYSU and PRW, representing a more realistic and more

challenging person search scenario. We will publicly release the DukeMTMC-

PS dataset.

Performance Metrics. For person detection, a bounding box was considered290

as correct if the overlap with the ground truth is over 50% [? ? ]. For person

re-id, we used the Cumulative Matching Characteristic (CMC) and mean Av-

erage Precision (mAP). To evaluate the model inference efficiency, we adopted

the common measurement of floating point operations (FLOPs) consumed by

processing one typical scene image and one person bounding box.295

Competitors. For model performance comparisons, we considered six state-

of-the-art deep learning person search methods, including four joint learning

model (OIM [? ], RCAA [? ], IAN [? ], NPSM [? ]) and two independent

learning models (MGTS [? ], CLSA [? ]). We did not include other signif-

icantly inferior hand-crafted feature based alternative approaches in terms of300
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both model performance and inference efficiency.

Implementation Details. We conducted the experiments in the PyTorch

framework. For model training, we adopted the SGD algorithm with the mo-

mentum set to 0.9, the weight decay to 0.0005. We set batch size to 8 for

CUHK-SYSU with input size of 800× 800 and 4 for PRW and DukeMTMC-PS305

with input size of 1920 × 1080. Mean value padding was used for organising

images into batches. For teacher model training, we set the epoch number to

60 and initialised the learning rate at 0.005, with a decay factor of 10 at 50-th

epoch. For student model training, we set the epoch number to 150 and ini-

tialised the learning rate at 0.005, with a decay factor of 5 every 50 epochs.310

We set the weights λ0 = 0.9, λ1 = 2 × 104, λ2 = 2 × 103 (Eq (??)), and the

temperature t = 4 (Eq (??)) by cross-validation for all the experiments. The

L2 normalisation was applied before computing the pairwise cosine similarity

for re-id matching.

4.1. Comparisons to State-of-the-Art Methods315

Evaluation on CUHK-SYSU. We reported the person search performance

on CUHK-SYSU with the standard gallery size of 100 scene images in Table ??.

We made the following observations: (1) Our teacher model HDL(T) achieves

the second best rank-1 rate and mAP among all competitors. In particular, the

margin of HDL(T) over all existing joint learning competitors are consistently320

significant. This suggests that the joint learning strategy is not necessarily in-

ferior to independent learning, even without adopting sophisticated techniques

like attention inference [? ] and reinforcement learning [? ]. (2) By the pro-

posed distillation method, our student model HDL(S) can achieve very compet-

itive performance, e.g. matching the state-of-the-art CGPS [? ] and surpassing325

all other existing joint learning methods and one independent learning model

MGTS [? ]. This indicates the efficacy of the proposed distilling method in

transferring the teacher’s knowledge. (3) The proposed HDL(S) reaches the

best model inference efficiency, i.e. the superior cost-effectiveness benefits over

all the alternative solutions. Note, we do not evaluate the model inference cost330
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for NPSM [? ], RCAA [? ] and QEEPS [? ] due to their query-specific search

design, a less scalable strategy than query-independent search by all the other

methods. (4) HDL(S) is over one order of magnitude more efficient than all

existing methods, which facilitates large scale and cost-effective deployments.

Table 2: Performance evaluation on CUHK-SYSU. The gallery size is 100. IL: Independent

Learning; JL: Joint Learning; T: Teacher; S: Student; R101: ResNet-101; G: GFLOPs (1 ×

109); M: MFLOPs (1× 106).

Type Metric (%) Rank-1 mAP Cost (scene/person)

IL
MGTS [? ] 83.7 83.0 >1725.6G/52.8G

CLSA [? ] 88.5 87.2 >410.7G/26.4G

JL

OIM [? ] 78.7 75.5 410.7G/2.0G

IAN(R101) [? ] 80.5 77.2 1146.2G/2.0G

NPSM [? ] 81.2 77.9 -

RCAA [? ] 81.3 79.3 -

QEEPS [? ] 84.4 84.4 -

CGPS [? ] 86.5 84.1 410.7G/2.0G

HDL(T) 87.3 86.0 427.5G/2.1G

HDL(S) 86.2 84.6 37.5G/76.4M

We further tested the model performance with the full gallery size at 6,978.335

This allows to evaluate larger scale search performance. Following the previous

works, we compared the mAP results. Figure ?? shows similar observations as in

Table ??, suggesting that the model performance advantages of HDL generalise

to large scale search.

Evaluation on PRW. We compared the model performance on the PRW340

benchmark. Overall, we obtained similar comparison observations that our

teacher model HDL(T) achieves the second best performance in both rank-1 and

mAP rates. HDL(S) similarly approaches the accuracy levels of HDL(T) whilst

significantly outperforming all existing joint learning competitors in addition

to a great model efficiency advantage. This consistently indicates the cost-345
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Figure 6: Test mAP of varying gallery sizes on CUHK-SYSU.

effectiveness and scalability superiority of our model over the existing person

search methods in a more challenging application scenario.

Evaluation on DukeMTMC-PS. We further evaluated the performance of

our HDL model on the newly introduced DukeMTMC-PS benchmark. Com-

pared to CUHK-SYSU and PRW, test scene images from this benchmark are350

more than two times larger, therefore presenting a more challenging person

search task. We compared with the only scalable joint learning competitor

OIM and an independent learning baseline using Faster R-CNN+ResNet-50.

The results in Table ?? show the consistent performance and efficiency superi-

ority of HDL and the knowledge distillation efficacy from the stronger teacher355

model to the lightweight student model. Encouragingly, HDL(S) even surpasses

the independent learning model, Faster R-CNN+ResNet50, by 2.9% (71.8-68.9)

in Rank-1 and 2.8% (45.5-42.7) in mAP, in addition to more than one order of

magnitude inference efficiency advantage.
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Table 3: Performance evaluation on PRW. IL: Independent Learning; JL: Joint Learning; T:

Teacher; S: Student; R101: ResNet-101; G: GFLOPs (1× 109); M: MFLOPs (1× 106).

Type Metric (%) Rank-1 mAP Cost (scene/person)

IL
MGTS [? ] 72.1 32.6 >1725.6G/52.8G

CLSA [? ] 65.0 38.7 >1330.7G/26.4G

JL

OIM [? ] 49.9 21.3 1330.7G/2.0G

IAN(R101) [? ] 61.9 23.0 3713.7G/2.0G

NPSM [? ] 53.1 24.2 -

HDL(T) 69.2 33.6 1381.6G/2.1G

HDL(S) 64.4 28.2 121.4G/76.4M

Table 4: Performance evaluation on DukeMTMC-PS. IL: Independent Learning; JL: Joint

Learning; T: Teacher; S: Student; FRCNN+R50: Faster R-CNN + ResNet-50; G: GFLOPs

(1× 109); M: MFLOPs (1× 106).

Type Metric (%) Rank-1 mAP Cost (scene/person)

IL FRCNN+R50 68.9 42.7 >1330.7/26.4G

JL

OIM [? ] 50.5 34.5 1330.7G/2.0G

HDL(T) 74.3 50.0 1381.6G/2.1G

HDL(S) 71.8 45.5 121.4G/76.4M

4.2. Further Analysis and Discussions360

Attention Learning. We evaluated the benefits of our attention learning

design. It is evident from Table ?? that, both the teacher and student models

benefit significantly. In particular, our attention learning not only improves

the quality of teacher’s knowledge, but also facilitates the knowledge transfer

process given that the student acquires more gains in most cases. This verifies365

our design consideration of integrating attention with feature and prediction in

HDL.

Knowledge Distillation. We examined the effect of different distillation and

their combinations on CUHK-SYSU. Table ?? reveals a couple of observations:

(1) Each distillation alone brings about model improvements, with prediction370
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Table 5: Evaluating attention (A) learning. T: Teacher; S: Student. Setting: The gallery size

for CUHK-SYSU is 6,978.

Dataset CUHK PRW Duke

Metric (%) Rank-1 mAP Rank-1 mAP Rank-1 mAP

T(w/o A) 68.5 63.8 62.1 26.3 69.9 44.3

T(w/ A) 73.2 69.7 69.2 33.6 74.3 50.0

Gain +4.7 +5.9 +7.1 +7.3 +4.4 +5.7

S(w/o A) 42.6 38.6 50.6 16.8 56.5 26.2

S(w/ A) 49.5 45.1 59.1 22.8 61.4 33.4

Gain +6.9 +6.5 +8.5 +6.0 +4.9 +7.2

distillation contributing the most. This is because as the model output the

prediction encodes the most discriminative abstraction information. (2) As

the low-level knowledge, transferring attention and feature further enhances

model learning on top of high-level prediction distillation. This verifies the

complementary benefits of exploiting different model knowledge in HDL design.375

5. Conclusion

In this work, we present a novel Hierarchical Distillation Learning (HDL)

method for person search in unconstrained surveillance scene images. This

method is designed particularly for addressing the largely ignored scalability

problem in person search. It is in contrast to existing alternative methods380

that typically focus on model performance improvement alone. Specifically,

we formulate a comprehensive knowledge distillation method for transferring

feature representation, attention map, and class prediction from a strong and

heavy teacher model to a weak and lightweight student model. This addresses

the hard-to-optimise challenge for small models. We also contribute a simple385

and powerful joint learning teacher model, potentially motivating the further

development of new models of its kind. Extensive comparative evaluations have

been conducted on three large person search benchmarks. The results validate
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Table 6: Evaluating different distillation. T: Teacher; S: Student. FD: Feature Distillation;

AD: Attention Distillation; PD: Prediction Distillation. Setting: The gallery size for CUHK-

SYSU is 6,978.

Distillation CUHK-SYSU

FD AD PD Rank-1 mAP

1 - - - 49.5 45.1

2 X - - 58.1 54.1

3 - X - 52.0 47.8

4 - - X 65.8 62.6

5 X X - 59.4 55.8

6 X - X 66.4 63.0

7 - X X 68.2 65.4

8 X X X 70.0 66.4

the scalability advantages of our HDL model over a variety of state-of-the-art

person search methods. We provide in-depth component analysis to give the390

insights on model performance gain and design rationale.
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