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Abstract 

Metabolic dysfunction, and its associated muscle atrophy, remains the most common 

complication of critical care. At the centre of this is mitochondrial dysfunction, secondary to 

hypoxia and systemic inflammation. This leads to a bioenergetic crisis, with decreased 

intramuscular adenosine tri-phosphate content and a reduction in the highly energy 

dependent process of protein synthesis. 

Numerous methods have been studied to try and reduce these effects, with only limited 

success. Trials investigating the use of increased calorie and protein administration have 

instead found a decrease in relative lean body mass, and a potential increase in morbidity 

and mortality.  

Ketone bodies have been proposed as alternative substrates for metabolism in critical 

illness, with promising results seen in animal models. They are currently being investigated 

in critical care patients in the Alternative Substrates in the Critically Ill Subjects trial. 

The evidence to date suggests that individualised feeding regimens may be key in the 

nutritional approach to critical illness. Consideration of individual patient factors will need 

to be combined with personalised protein content, total energy load received, and the 

timings of such feeds. 

This review covers mitochondrial dysfunction in critical illness, and how it contributes to 

muscle wasting and the resultant morbidity and mortality and the scientific basis of why 

current nutritional approaches to date have not been successful in negating this effect. 



These two factors underpin the need for consideration of alternative nutritional strategies 

in the critically ill patient.  

Introduction 

Metabolic dysfunction, and its resultant muscle atrophy, remains one of the most common 

complications of critical illness.1,2 The combination of systemic inflammation and hypoxia 

leads to disrupted mitochondrial function, reduced ATP function, and an anti-anabolic 

state.2,3 

Feeding regimens in the critically ill remain a point of contention. Whilst several nutritional 

approaches have been attempted, none have been shown to improve metabolic function or 

reduce intensive care associated muscle wasting.4 Some of these approaches may in fact 

have detrimental effects on patient outcome.5 

In this review we will describe aspects of mitochondrial function that are altered in critical illness, 

and are of interest to us as potential targets for intervention. Other aspects of mitochondrial biology 

that are relevant to critical illness in general, but not actively being investigated by ourselves are not 

addressed. 

Normal mitochondrial function 

Adenosine Tri-Phosphate production 

In normal health mitochondria are the predominant source of cellular energy through the 

production of adenosine triphosphate (ATP).6–8 These organelles have retained their own 

genome which reveals their evolutionary origin as a bacterium that developed a symbiotic 

relationship with eukaryotic cells.8 



Mitochondria enable production of ATP from carbohydrates, lipids, and proteins through 

the Krebs cycle and its substrates.6–8 They are each metabolised to Acetyl CoA (alongside 

other intermediates) which can then enter the Krebs cycle.6–8 The result is the production of 

ATP through the formation of nicotinamide adenine dinucleotide (NADH), flavin adenine 

dinucleotide (FADH2), and guanosine-5'-triphosphate (GTP) (See figure 1).7–9 

The Krebs cycle occurs within the mitochondrial matrix and acts as a common pathway for 

the metabolism of fats, proteins, and carbohydrates. Its intermediates provide substrates 

for ketogenesis, gluconeogenesis, and other metabolic pathways.7,10–12 

The three NADH and one FADH2 produced by the Krebs cycle can be utilised to produce ATP 

via the electron transport chain within the inner mitochondrial membrane. In health, the 

electron transport chain is the site of oxidative phosphorylation, the most efficient means of 

energy production.7,10 It consists of five protein complexes in the inner membrane of the 

mitochondria. NADH and FADH2 donate their electrons to the first two of these complexes, 

these electrons are then passed down the electron chain generating energy that pumps H+ 

ions out of the mitochondrial cytoplasm. The resultant electrochemical gradient allows 

transmembrane H+ influx via the ATP synthase complex (V) and thus the phosphorylation of 

ADP to ATP.7 NADH results in the formation of three ATP molecules, and FADH2 in the 

production of two, so each acetyl-CoA produces 11 ATP from one Krebs cycle (See figure 

2).7,8,10 

Amino acid catabolism 

Ammonia is produced as a toxic waste product of amino acid catabolism and nitrogenous 

bases. Its elimination is controlled through the urea cycle, the Cori cycle, and transport 

intermediates such as glutamine.13 The Krebs cycle intermediate α-ketoglutarate can be 



used to produce glutamate, which is then combined with ammonia to form glutamine and 

phosphate, however this process depletes the Krebs cycle of its metabolites 

(cataplerosis).11,12,14 Glutamine is then transported to the liver where it is converted back to 

glutamate by glutaminase, releasing ammonia to enter the urea cycle.15 The mitochondrial 

enzyme carbamoyl phosphate synthetase I acts to catalyse the reaction between ammonia 

and carbon dioxide and produce carbamoyl phosphate, which can then enter the urea cycle 

and be excreted via the kidneys as urea.16,17 

Effect of critical illness on mitochondrial function 

Critical illness has a number of deleterious effects on metabolism and mitochondrial 

function.3,18–21 This is likely the result of several physiological insults, most notably systemic 

inflammation, and tissue hypoxia.3 

Glucose is a major fuel source, and in the fed state glucose is virtually the sole energy 

provider for the brain. In health, the Pasteur effect results in the inhibition of anaerobic 

metabolism, ensuring efficient glucose metabolism via the citric acid cycle.22 Inflammation 

and hypoxia disrupt the Pasteur effect, inhibiting pyruvate dehydrogenase.3,22 As a result, 

the cell is unable to convert pyruvate to acetyl-CoA, instead converting it into ethanol, 

carbon dioxide, and lactic acid.2,19,23,24 This disrupted system results in the net production of 

only two ATP molecules (in contrast to the 38 produced through aerobic respiration), and 

the accumulation of harmful waste products.2,23,24 

In health fats are metabolised via beta-oxidation, generating acetyl-CoA which enters the 

Krebs cycle.14 Each oxidation cycle results in the production of approximately 14 ATP, with 

the oxidation of long chain fatty acids therefore able to generate more than 100 ATP.25 Early 

critical illness is associated with impaired beta-oxidation and reduced enzyme 



concentrations and thus an inability to effectively utilise fat.3,19 This is associated with 

decreased mitochondrial biogenesis and a compromised bioenergetic status.19,26  

The combination of the mitochondrial dysfunction mentioned above may result in a 

bioenergetics crisis (noted by an increase in tissue pAMPK concentrations), with decreased 

intramuscular ATP content and a reduction in the highly energy dependent process of 

protein synthesis.3 This could then contribute to critical illness associated muscle wasting, 

with an associated increase in morbidity and mortality. 

Does increased calorie delivery help? 

Numerous methods have been theorised and trialled in attempts to counteract the 

mitochondrial dysfunction and energy deficient state that accompanies critical illness. One 

such approach is increased calorie delivery in the form of excess dietary carbohydrates and 

lipids.  

The underlying theory is that the administration of more substrate will help overcome to 

relative energy deficient state. Arguably the biggest flaw in such an approach is that simply 

increasing the delivery of fuel does not necessarily increase its availability. Further, 

substrate delivery and utilisation are not always linked, as described above. An increased 

calorie intake does not address the underlying components driving the mitochondrial 

dysfunction and will therefore be unable to restore normal metabolic function. 2,5,29,30 

The initiation of early, high calorie feeds in critical illness has shown no effect on reducing 

muscle wasting in early critical illness.31 This approach instead resulted in an increase in 

adipose tissue within muscle compartments, a relative decrease in lean muscle mass, no 

improvement in outcomes and a potential increase in mortality.32,33 Increased calorie intake 



has also shown to have no effect on patient function, length of hospital admission, or 

quality of life at six months.34 

Does increased protein delivery help? 

A further hypothesis being tested is that the provision of excess amino acids may result in 

improved metabolic function and muscle protein synthesis. Spikes in amino acid 

concentration, specifically leucine, have been identified as an anabolic stimulus in normal 

health and possibly in critical illness.30,35,36 However, this does not appear to be effective for 

several reasons.  

The “muscle full effect” describes the phenomena whereby protein delivery beyond a set 

threshold does not result in increased muscle protein synthesis (MPS).37 Thus, the simple 

administration of excess amino acids will not reduce muscle wasting. Energy is also required 

for protein turnover and MPS, the provision of which is insufficient due to mitochondrial 

dysfunction.3,38–40 

Excess protein administration may have detrimental effects. Amino acids are metabolised to 

ammonia, which is then converted to urea via the urea cycle.16,17 Raised ammonia 

concentrations are toxic to mitochondrial function, protein synthesis and muscle 

function.36,41,42 

Hyperammonaemia is associated with a reduction in muscle function and quality of muscle 

architecture, both of which have been observed in critical illness.41,43,44  Previous work has 

demonstrated that supplementary glutamine administration in critical illness is associated 

with increased inpatient and six-month mortality. 45  



Hyperammonaemia also depletes critical Kreb cycle intermediates and thus significantly 

effects mitochondrial function.43,46 This is associated with reduced skeletal muscle aerobic 

respiration, electron transport chain complex dysfunction, and a lower NAD+/NADH ratio 

and ATP content.46 It also causes increased muscle autophagy with resultant sarcopenia.47 

Urea is a by-product of amino acid metabolism. Recent work looking into urea as a catabolic 

marker in critical illness (in the form of the urea-to-creatinine ratio [UCR]) has demonstrated 

a significant association between a raised UCR and persistent critical illness. Patients with 

the highest UCR required the longest intensive care admissions and had an increased 

mortality.17,48,49  

Thus, given the first principal of the Hippocratic Oath is to “do no harm”, consideration 

should be given not only to the potential lack of benefit in excess protein feeds, but also the 

potential harm it may cause our patients. Calorie and protein restricted diets to have a 

potentially protective effect on mitochondrial function, improving the disrupted autophagy 

seen in critical illness.50 

What are the alternatives? 

Ketone bodies have been suggested as alternative substrates for metabolism in critically ill 

patients as they are known to provide a significant proportion of energy in fasted states.12 

The ketone bodies acetoacetate and beta-hydroxybutyrate are produced from acetyl-CoA in 

hepatic mitochondria for use in brain and skeletal muscle.11,12,51 Metabolism of beta-

hydroxybutyrate reduces one NAD to NADH to produce acetoacetate, which itself can be 

metabolised to two acetyl-CoA.11,12 This returns acetyl-CoA to the Krebs cycle bypassing 

metabolic bottlenecks such as pyruvate dehydrogenase, which may be restricted in critical 



illness. 52  The clinical benefits of this may however be limited by altered citric acid cycle and 

oxidative phosphorylation function in the critically ill.27 

In animal models ketogenic diets are associated with improved blood glucose control and 

reduced markers of inflammation when compared to carbohydrate rich diets.53,54 Ketogenic 

feeds are currently being investigated in critical care patients as an alternative regimen in 

the Alternative Substrates in the Critically Ill Subjects trial (ASICS [NCT04101071]). 

The importance of individualised feeding regimens 

Given the evidence to date, it seems that individualised feeding regimens may be key in the 

nutritional approach to critical illness, although this is yet to be supported by randomised 

control trials. Consideration of individual patient factors will enable us to intelligently guide 

patient feeding in terms of protein content, total energy load received, and the timings of 

such feeds.  

With regards to protein volume required, important factors to consider should include 

patient age, their exercise capacity, and markers of metabolism such as UCR.  When 

considering overall energy requirements, the use of indirect calorimetry may be aligned 

with exercise capacity and the patient’s physical characteristics to help guide intake. An 

ideal intervention would be guided by individual patient’s ability to metabolise different 

substrates at different time points. Unfortunately, this is current impossible to do in vivo at 

the patient’s bedside. 

The precise timing of feeds remains up for debate. Whilst historically nasogastric feeding 

regimens on intensive care have been given continuously, recent work has questioned 

whether this is the best approach.49,55 In normal health food is consumed intermittently in 



the form of separate meals, this leads to anabolic spikes in amino acid concentration and 

the stimulation of MPS. A recent phase II trial of intermittent feeding did not find it to be 

associated with an attenuation of muscle wasting (as measure by rectus femoris 

ultrasound).55 However, intermittent feeding has been shown to significantly improve the 

ability to reach nutritional goals and significantly effect metabolic signals such as UCR.55  

Conclusion 

Effective mitochondrial function is vital to metabolism in normal health. Early critical illness 

is associated with mitochondrial dysfunction, with multiple detrimental effects. Several 

strategies have been trialled to mitigate the metabolic effects of critical illness, with limited 

success. Rather than a generic, non-personalised, approach to nutrition in critical illness, the 

future may instead lie in the utilisation of alternative metabolic substrates and 

individualised feeding regimens. 

 

 

 

 

 

Figure legends: 

Figure 1: Tricarboxylic Acid Cycle 



 

Figure 2: Biochemical pathways of normal mitochondrial function 

ATP – Adenosine Tri-Phosphate; FADH2 - reduced flavin adenine dinucleotide; NADH – reduced nicotinamide 
adenine dinucleotide; FFA – free fatty acids 
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