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Abstract

In this work we establish sharp kernel conditions ensuring that the corresponding integral operators

belong to Schatten-von Neumann classes. The conditions are given in terms of the spectral prop-

erties of operators acting on the kernel. As applications we establish several criteria in terms of

different types of differential operators and their spectral asymptotics in different settings: com-

pact manifolds, operators on lattices, domains in Rn of finite measure, and conditions for ope-

rators on Rn given in terms of anharmonic oscillators. We also give examples in the settings of

compact sub-Riemannian manifolds, contact manifolds, strictly pseudo-convex CR manifolds, and

(sub-)Laplacians on compact Lie groups.
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1. Introduction

Let (Ωj ,Mj , µj) (j = 1, 2) be measure spaces respectively endowed with a σ-finite measure µj

on a σ-algebra Mj of subsets of Ωj . We denote L2(µj) := L2(Ωj , µj) the complex Hilbert space

of square integrable functions on Ωj . In this paper we give sharp sufficient conditions on integral

kernels K = K(x, y) in order to ensure that the corresponding integral operators

Tf(x) =

∫
Ω1

K(x, y)f(y)dµ1(y) (1.1)

from L2(µ1) into L2(µ2) belong to different Schatten-von Neumann classes and in particular to the

trace class when (Ω1,M1, µ1) = (Ω2,M2, µ2). When Ω = Ω1 = Ω2 possesses a Borel topological15

structure a trace formula in terms of the diagonal of the kernel can be deduced. If additionally

Ω has a smooth manifold structure some sharp sufficient conditions on integral kernels K(x, y) for

Schatten-von Neumann classes can be formulated in terms of the regularity of a certain order in

either x or y, or both, and in terms of decay conditions at infinity.

To briefly explain the approach of this paper, we can summarise it as follows:20

If we know spectral properties of an operator E and we known how it acts on the integral kernel of

an integral operator T , we can draw conclusions about the spectral properties of T .

More specifically, let (E2)x and (E1)y be operators acting on x and y variables, respectively, and

suppose we know that

(E2)x(E1)yK ∈ L2(µ2 ⊗ µ1), (1.2)

or, more generally, belongs to mixed Lebesgue spaces. In this paper we give spectral conditions on

E2 and E1 ensuring that the integral operator T in (1.1) belongs to the Schatten-von Neumann

class Sr(L
2(µ1), L2(µ2)), 0 < r <∞. Such spectral conditions on E2 and E1 will be given:25

• in terms of membership of their inverses in Schatten-von Neumann classes;

• or in terms of their spectral asymptotics,

i.e. conditions that can be verified in practice. As an application we present several tests in terms

of different types of operators in different settings. While the knowledge of the spectral asymptotics

of an operator E implies also the Schatten-von Neumann properties for its inverse, the advantage30

of knowing the spectral asymptotics will be in a possibility to obtain refined properties of the decay

of the singular numbers of the integral operator T .

The problem of finding such criteria on different kinds of domains is classical and has been

much studied, e.g. the paper [1] by Birman and Solomyak is a good introduction to the subject.

In particular, it is well known that the smoothness of the kernel is related to the behaviour of35

the singular numbers. In a recent paper [2] the authors have established sufficient sharp kernel

conditions for operators on L2(M) for a compact manifold M .
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In order to obtain criteria for general Schatten-von Neumann classes we will use the well-known

method of factorisation introduced by Gohberg and Krein (cf. [3, Chap. 3, Section 10]). Some

applications of this method have been developed by O’Brien in [4] and in [5] for applications to40

trace formulae of Schrödinger operators. The factorisation method has also been applied by the

authors in [2] in order to obtain Sobolev regularity conditions for kernels on closed manifolds. The

main result of [2] has been recently applied in [6] for the study of the distribution of eigenvalues for

the double layer potential on flat curves and its relation with isoperimetrical inequalities.

There is an extensive literature on Schatten-von Neumann properties for specific integral ope-45

rators. A characterisation of the membership in Schatten-von Neumann classes for Hardy operators

has been established by Nowak in [7]. Lower bounds for the Schatten-von Neumann norms for

Volterra integral operators have been obtained in [8], [9]. Schatten-von Neumann classes of pseudo-

differential operators in the setting of the Weyl-Hörmander calculus have been considered in [10],

[11], [12]. Schatten-von Neumann classes on compact Lie groups and s-nuclear operators on Lp50

spaces from the point of view of symbols have been respectively studied by the authors in [13] and

[14].

In the subsequent part of the present paper we establish a characterisation of Schatten-von

Neumann classes for operators from L2(µ1) into L2(µ2) for general integral operators on general

measure spaces.55

The role of the smoothness of the kernel in the investigation of Schatten-von Neumann properties

can be illustrated with the following example. In his classical book [15, Prop 3.5, page 174] Mitsuo

Sugiura gives a trace class criterion for integral operators on L2(T1) with C2-kernels. More precisely,

the theorem asserts that every kernel in C2(T2) begets a trace class operator on L2(T1): if K(θ, φ)

is a C2-function on T2, then the integral operator L on L2(T1) defined by

(Lf)(θ) =

∫ 2π

0

K(θ, φ)f(φ)dφ, (1.3)

is trace class and has the trace

Tr(L) =

∫ 2π

0

K(θ, θ)dθ. (1.4)

The proof of this result relies on the connection between the absolute convergence of Fourier co-

efficients of the kernel and the trace class property (traceability) of the corresponding operator.

This result has been extended by the authors under sharp smoothness assumptions to the setting of

compact manifolds in [2]. The authors have weakened the known assumptions on the kernel for the

operator to be trace class and for the trace formula (1.4) to hold. The present paper significantly60

extends the main results contained in [2] in different ways.

To formulate the notions more precisely, let H1, H2 be complex Hilbert spaces and let T : H1 →

H2 be a compact operator. Then T ∗T : H1 → H1 is compact, self-adjoint, and non-negative.

Hence, we can define the absolute value of T by the equality |T | = (T ∗T )
1
2 : H1 → H1. Let (ψk)k
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be an orthonormal basis for H1 consisting of eigenvectors of |T |, and let sk(T ) be the eigenvalue65

corresponding to the eigenvector ψk, k = 1, 2, . . . . The numbers s1(T ) ≥ s2(T ) ≥ · · · ≥ sn(T ) ≥

· · · ≥ 0, are called the singular values of T : H1 → H2.

If 0 < p < ∞ and the sequence of singular values is `p-summable, then T is said to belong to

the Schatten-von Neumann class Sp(H1, H2). If 1 ≤ p <∞, a norm is associated to Sp(H1, H2) by

‖T‖Sp :=

( ∞∑
k=1

(sk(T ))p

) 1
p

.

If 1 ≤ p < ∞ the class Sp(H1, H2) becomes a Banach space endowed with the norm ‖T‖Sp . If

p =∞ we define S∞(H1, H2) to be the class of compact operators from H1 into H2 endowed with the

operator norm ‖T‖S∞ := ‖T‖op. In the case 0 < p < 1 the quantity ‖T‖Sp only defines a quasinorm,70

and Sp(H1, H2) is also complete. If H1 = H2 = H we will simply write Sp(H,H) = Sp(H).

The Schatten-von Neumann classes are nested, with

Sp ⊂ Sq, if 0 < p < q ≤ ∞, (1.5)

and satisfy the important multiplication property (cf. [16], [17], [3])

SqSp ⊂ Sr, (1.6)

where
1

r
=

1

p
+

1

q
, 0 < p < q ≤ ∞. (1.7)

The inclusion (1.6) should be understood in the following sense: If B ∈ Sp(H,H1) and A ∈

Sq(H1, H2) then AB ∈ Sr(H,H2) provided that (1.7) holds. Moreover, one has

‖AB‖Sr(H,H2) ≤ ‖A‖Sq(H1,H2)‖B‖Sp(H,H1). (1.8)

The inequality (1.8) can be obtained from Theorem 7.8 (c) of [16], and a diagonalisation argument

for A and B.

A relationship between the singular values sn(T ) and the eigenvalues λn(T ) in the case H =

H1 = H2 for an operator T ∈ S∞(H) was established by Hermann Weyl (cf. [18]):75

∞∑
n=1

|λn(T )|p ≤
∞∑
n=1

sn(T )p, p > 0.

We will apply (1.6) for factorising our operators T in the form T = AB with A ∈ Sq and B ∈ Sp,

and from this we deduce that T ∈ Sr. We refer the reader to [16, Chapter 7] for more details on the

Schatten-von Neumann classes for operators acting on different Hilbert spaces H1, H2. Standard

references for the special case H1 = H2 are [3], [19], [17], [20]. If H = H1 = H2 and T ∈ S1(H)

then T is said to be in the trace class S1. If the singular values are square-summable T is called a80
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Hilbert-Schmidt operator. It is clear that every trace class operator is a Hilbert-Schmidt operator.

A nice basic introduction to the study of the trace class is contained in the book [21] by Peter Lax.

If Hj = L2(Ωj ,Mj , µj) (j = 1, 2), it is well known that T is a Hilbert-Schmidt operator from

L2(Ω1,M1, µ1) into L2(Ω2,M2, µ2) if and only if T can be represented by an integral kernel K =

K(x, y) ∈ L2(Ω2 × Ω1, µ2 ⊗ µ1).85

We note that in view of (1.5) the condition K ∈ L2(Ω2 × Ω1) implies that T ∈ Sp for all p ≥ 2.

The situation for Schatten-von Neumann classes Sp for p > 2 is indeed simpler and, in fact, similar

to that of p = 2. In particular, B. Russo has proved in [22] that for µ1 = µ2 = µ on Ω: If 1 < p < 2,

1
p + 1

p′ = 1 and K ∈ L2(Ω× Ω) then for the corresponding integral operator T one has

‖T‖Sp′ ≤ (‖K‖p,p′‖K∗‖p,p′)
1
2 , (1.9)

where ‖ · ‖p,q denotes the mixed-norm:

‖K‖p,q =

(∫
Ω

(∫
Ω

|K(x, y)|pdµ(x)

) q
p

dµ(y)

) 1
q

, (1.10)

and K∗(x, y) = K(y, x). The condition K ∈ L2(Ω×Ω) in the above statement can be removed, see

Goffeng [23]. Namely, even without such assumption, (1.9) still holds as long as its right hand side

is finite. See also the discussion of such topics around [24, Theorem 2.3].

For p < 2, the situation is much more subtle, and the Schatten-von Neumann class Sp(L
2(µ1), L2(µ2))

cannot be characterised as in the case p = 2 by a property analogous to the square integrability of

integral kernels. This is a crucial fact that we now briefly describe. A classical result of Carleman

[25] from 1916 gives the construction of a periodic continuous function κ(x) =
∞∑

k=−∞
cke

2πikx for

which the Fourier coefficients ck satisfy

∞∑
k=−∞

|ck|p =∞ for any p < 2. (1.11)

Now, using this and considering the normal operator

Tf = f ∗ κ (1.12)

acting on L2(T1) one obtains that the sequence (ck)k forms a complete system of eigenvalues of this

operator corresponding to the complete orthonormal system

φk(x) = e2πikx, Tφk = ckφk.

The system φk is also complete for T ∗, T ∗φk = ckφk, so that the singular values of T are given by

sk(T ) = |ck|, and hence by (1.11) we have

∞∑
k=−∞

sk(T )p =∞ for any p < 2.
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In other words, in contrast to the case of the class S2 of Hilbert-Schmidt operators which is char-

acterised by the square integrability of the kernel, Carleman’s result shows that below the index

p = 2 the class of kernels generating operators in the Schatten-von Neumann class Sp cannot be

characterised by criteria of the type∫∫
|F (K(x, y))|dxdy <∞,

for any continuous function F since the kernel K(x, y) = κ(x−y) of the operator T in (1.12) satisfies

any kind of integral condition of such form due to the boundedness of κ.90

This example demonstrates the relevance of obtaining criteria for operators to belong to Schatten-

von Neumann classes for p < 2 and, in particular, motivates the results in this paper. Among other

things, we may also note that the continuity of the kernel (as in the above example) also does not

guarantee that the operator would belong to any of the Schatten-von Neumann classes Sp with

p < 2. Therefore, it is natural to ask what regularity imposed on the kernel would guarantee95

such inclusions (for example, the C2 condition in Sugiura’s result mentioned earlier does imply the

traceability on T1). Thus, these questions will be the main interest of the present paper.

The main result for operators to belong to Schatten-von Neumann classes Sp for 0 < p < 2,

is given in Theorem 2.2. In this work we allow singularities in the kernel so that the formula

(1.4) would need to be modified in order for the integral over the diagonal to make sense. In such

case, in order to calculate the trace of an integral operator using a non-continuous kernel along the

diagonal, one idea is to average it to obtain an integrable function. Such an averaging process has

been introduced by Weidmann [26] in the Euclidean setting, and applied by Brislawn in [27], [28]

for integral operators on L2(Rn) and on L2(Ω,M, µ), respectively, where Ω is a second countable

topological space endowed with a σ-finite Borel measure. The corresponding extensions to the Lp

setting have been established in [29] and [30]. The L2 regularity of such an averaging process is a

consequence of the L2-boundedness of the martingale maximal function. Denoting by K̃(x, x) the

pointwise values of this averaging process, Brislawn [28] proved the following formula for a trace

class operator T on L2(µ), for the extension to Lp see [29]:

Tr(T ) =

∫
Ω

K̃(x, x)dµ(x). (1.13)

In Section 2 we establish our criteria for Schatten-von Neumann classes on measure spaces, and

the special case of the trace class is treated in Section 3. For this, we briefly recall the definition

of the averaging process involved in formula (1.13). In Section 4 we present further criteria in100

terms of operators for which the distribution of eigenvalues is known in terms of the asymptotics of

the eigenvalue counting functions. In Section 5 we give applications of the obtained conditions in

different settings.

The authors would like to thank Alberto Parmeggiani for a discussion.
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2. Schatten-von Neumann classes on L2-spaces105

In this section we present our results in the setting of L2-spaces which is not restrictive in terms

of the general theory of Hilbert spaces. Before stating our first result, we point out that a look at

the proof of the trace formula (1.4) in [15, Prop 3.5] shows that statement can be already improved

in the following way:

Proposition 2.1. Let ∆ = ∂2

∂θ2 + ∂2

∂φ2 be the Laplacian on T2. Let K(θ, φ) be a measurable function

on T2 and suppose that there exists an integer q > 1 such that ∆
q
2K ∈ L2(T1 × T1). Then the

integral operator L on L2(T1) defined by

(Lf)(θ) =

∫ 2π

0

K(θ, φ)f(φ)dφ,

is trace class and has the trace

Tr(L) =

∫ 2π

0

K̃(θ, θ)dθ,

where K̃ stands for the averaging process described in Section 3.110

We observe that for K ∈ L2(µ2 ⊗ µ1), we have

‖K‖2L2(µ2⊗µ1) =

∫
Ω2×Ω1

|K(x, y)|2dµ2(x)µ1(y) =

∫
Ω1

(∫
Ω2

|K(x, y)|2dµ2(x)

)
dµ1(y),

or we can also write

K ∈ L2(µ2 ⊗ µ1) ⇐⇒ K ∈ L2
y(µ1, L

2
x(µ2)).

In particular, this also means that Ky defined by Ky(x) = K(x, y) is well-defined for almost every

y ∈ Ω1 as a function in L2
x(µ2). For an operator E from L2(µ1) into L2(µ1) we will use the notation

ExK(x, y) to emphasize that the operator E is acting on the x-variable. Analogously, we will also

use the notation EyK(x, y) for an operator E from L2(µ2) into L2(µ2) acting on the y-variable.

In this paper we will only consider linear operators. We will now give our main criteria for115

Schatten-von Neumann classes where we note that we do not have to assume the operators E1, E2

to be self-adjoint nor bounded, i.e. they are considered to be densely defined without further

explanations. For a densely defined operator E on a Hilbert, it is well known that, E has a bounded

inverse if and only if E is closed and bijective. Henceforth, an invertible operator is understood

as an operator with bounded inverse. An unbounded operator is understood as a densely defined120

operator.

Theorem 2.2. Let (Ωj ,Mj , µj) (j = 1, 2) be σ-finite measure spaces. Let Ej (j = 1, 2) be

unbounded invertible operators on L2(µj) such that E−1
j ∈ Spj (L

2(µj)) for some pj > 0. Let

K ∈ L2(µ2 ⊗ µ1) and let T be the integral operator from L2(µ1) to L2(µ2) defined by

(Tf)(x) =

∫
Ω1

K(x, y)f(y)dµ1(y).

Then the following holds:
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(i) If (E2)x(E1)yK ∈ L2(µ2⊗µ1), then T belongs to the Schatten-von Neumann classes Sr(L
2(µ1), L2(µ2))

for all 0 < r <∞ such that
1

r
≤ 1

2
+

1

p1
+

1

p2
.

Moreover,

‖T‖Sr ≤ ‖E−1
1 ‖Sp1 ‖E

−1
2 ‖Sp2‖(E2)x(E1)yK‖L2(µ2⊗µ1). (2.1)

(ii) If (E2)xK ∈ L2(µ2⊗µ1), then T belongs to the Schatten-von Neumann classes Sr(L
2(µ1), L2(µ2))

for all 0 < r <∞ such that
1

r
≤ 1

2
+

1

p2
.

Moreover,

‖T‖Sr ≤ ‖E−1
2 ‖Sp2 ‖(E2)xK‖L2(µ2⊗µ1). (2.2)

(iii) If (E1)yK ∈ L2(µ2⊗µ1), then T belongs to the Schatten-von Neumann classes Sr(L
2(µ1), L2(µ2))

for all 0 < r <∞ such that
1

r
≤ 1

2
+

1

p1
.

Moreover,

‖T‖Sr ≤ ‖E−1
1 ‖Sp1‖(E1)yK‖L2(µ2⊗µ1). (2.3)

Remark 2.3. The condition that K ∈ L2(µ2 ⊗ µ1) in Theorem 2.2 is not restrictive. Indeed,

conditions for T ∈ Sr(L2(µ1), L2(µ2)) for r > 2 do not require regularity of K and are given, for

example, in (1.9). The case 0 < r < 2 is much more subtle (as the classes become smaller), but125

if T ∈ Sr(L2(µ1), L2(µ2)) for 0 < r < 2 then, in particular, T is a Hilbert-Schmidt operator, and

hence the condition K ∈ L2(µ2 ⊗ µ1) is actually necessary.

The statement of Theorem 2.2 covers precisely the case 0 < r < 2. Indeed, for example in Part

(i), we have r = 2p1p2
p1p2+2(p1+p2) and hence we have 0 < r < 2 since in general 0 < p1, p2 <∞. Thus,

Theorem 2.2 provides a sufficient condition for Schatten-von Neumann classes Sr for 0 < r < 2.130

Proof of Theorem 2.2. (i) For the sake of simplicity, sometimes we will abbreviate the notation also

in integrals by writing E1 = (E1)y and E2 = (E2)x.

We now consider the operator A with kernel

A(x, y) = (E2)x(E1)yK ∈ L2(µ2 ⊗ µ1).

One can see that

A = E2 ◦ T ◦ E∗1 . (2.4)

Since A ∈ S2(L2(µ1), L2(µ2)) and using the fact that (E∗1 )−1 ∈ Sp1(L2(µ1)) if and only if E−1
1 ∈ Sp1

with equal norms, we obtain

T = E−1
2 ◦A ◦ (E∗1 )−1 ∈ Sp2 ◦ S2 ◦ Sp1 ⊂ Sr,

8



provided
1

r
≤ 1

2
+

1

p1
+

1

p2
,

by (1.7).

Moreover, for the estimation of the Schatten-von Neumann norm ‖T‖Sr , according to (1.8) we135

obtain:

‖T‖Sr = ‖E−1
2 ◦A ◦ (E∗1 )−1‖Sr ≤ ‖E−1

1 ‖Sp1 ‖E
−1
2 ‖Sp2‖(E2)x(E1)yK‖L2(µ2⊗µ1),

and this concludes the proof of (i).

(ii) Just consider E2 in the proof of (i).

140

(iii) Just consider E1 in the proof of (i).

Remark 2.4. (i) In the general setting of a separable Hilbert spaces H one can construct operators

E satisfying the assumptions in the above theorem. Let 0 < p < ∞ and (sn)n a sequence in `p,

with sn > 0 for all n. Let {φn : n = 1, 2, . . . } be an orthonormal basis of H.

145

We define

D := {f ∈ H :

∞∑
n=1

|(f, φn)H |2s2p
n < +∞}.

Since Span({φn : n = 1, 2, . . . }) ⊂ D, then D is dense in H. We define Eφn = s−pn φn. By using

Cauchy-Schwarz inequality, we can see that E can be extended to D by Ef =
∞∑
n=1

(f, φn)Hs
p
nφn. It

is clear that E has a bounded inverse determined by E−1φn = spnφn and E−1 ∈ Sp(H). We also

note that since limn s
p
n = 0, we have limn s

−p
n = +∞ and the operator E is not bounded.

150

In more specific cases, we will consider more concrete operators for the applications.

(ii) We point out that a converse statement also holds for the multiplication property (1.6) (cf.

[16, Theorem 7.9]): Let 0 < p, q, r <∞ and T ∈ Sr(H,H2) with

1

r
=

1

p
+

1

q
. (2.5)

Then there exist operators B ∈ Sp(H,H1) and A ∈ Sq(H1, H2) (with some Hilbert space H1) for

which T = AB; the operators A,B can be chosen such that ‖T‖Sr(H,H2) = ‖A‖Sq(H1,H2)‖B‖Sp(H,H1).

Remark 2.5. Under conditions of Theorem 2.2, in the proof of its Part (i) the main point was to

obtain the factorisation

T = E−1
2 A(E∗1 )−1, (2.6)

9



where A : L2(µ1)→ L2(µ2) is the integral operator with the integral kernel A(x, y) = E2E1K(x, y).

This factorisation has other consequences. For example, the combination of (2.6), the condition

(1.9) and the multiplication property imply the following extension of Theorem 2.2 in the case

µ1 = µ2 = µ on Ω, where we will denote by Lq
′
(Ω, Lq(Ω)) the space defined by the mixed norm

(1.10), that is, by

‖K‖Lq′ (Ω,Lq(Ω)) =

∫
Ω

(∫
Ω

|K(x, y)|qdµ(x)

) q′
q

dµ(y)

 1
q′

<∞. (2.7)

We also use the notation K∗(x, y) := K(y, x).155

Corollary 2.6. Let (Ω,M, µ) be a σ-finite measure space. Let T be a bounded integral operator on

L2(Ω), defined by

(Tf)(x) =

∫
Ω

K(x, y)f(y)dµ(y).

Let 1 < q ≤ 2 and 1
q + 1

q′ = 1. Then the following holds:

(i) Let E1, E2 be unbounded invertible operators on L2(Ω) such that E−1
j ∈ Spj (L2(Ω)) for some

pj > 0, (j = 1, 2). If (E2)x(E1)yK and ((E2)x(E1)yK)∗ ∈ Lq′(Ω, Lq(Ω)), then T belongs to

the Schatten-von Neumann classes Sr(L
2(Ω)) for all 0 < r <∞ such that

1

r
≤ 1

q′
+

1

p1
+

1

p2
.

Moreover,

‖T‖Sr ≤ ‖E−1
1 ‖Sp1 ‖E

−1
2 ‖Sp2×

×
(
‖(E2)x(E1)yK‖Lq′ (Ω,Lq(Ω))‖((E2)x(E1)yK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2

. (2.8)

(ii) Let E be an unbounded invertible operator on L2(Ω) such that E−1 ∈ Sp(L
2(Ω)) for some

p > 0. If ExK, (ExK)∗ ∈ Lq′(Ω, Lq(Ω)) or EyK, (EyK)∗ ∈ Lq′(Ω, Lq(Ω)), then T belongs to

the Schatten-von Neumann classes Sr(L
2(Ω)) for all 0 < r <∞ such that

1

r
≤ 1

q′
+

1

p
.

Moreover, respectively one has

‖T‖Sr ≤ ‖E−1‖Sp
(
‖ExK‖Lq′ (Ω,Lq(Ω))‖(ExK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2

, (2.9)

or

‖T‖Sr ≤ ‖E−1‖Sp
(
‖EyK‖Lq′ (Ω,Lq(Ω))‖(EyK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2

, (2.10)

respectively.
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Since L2(Ω, L2(Ω)) = L2(Ω×Ω), Corollary 2.6 indeed is an extension of Theorem 2.2 in the case

of operators acting on the same space L2(Ω).160

Remark 2.7. We note that following the remarks after (1.10) we do not need to assume in Corollary

2.6 that K ∈ L2(Ω× Ω). Consequently, compared with the sufficient condition (1.9) by Russo and

with Theorem 2.2, the Schatten-von Neumann class index in Corollary 2.6 can be larger than 2.

Indeed, compared with the argument in Remark 2.3, the condition on r in Corollary 2.6 becomes

0 < r < p1p2
p1+p2

in Part (i) and 0 < r < p in Part (ii), respectively. Therefore, even for Schatten-von165

Neumann classes Sr with r > 2, Corollary 2.6 extends the sufficient condition (1.9) by Russo in the

following sense: For an integral operator to belong to the Schatten-von Neumann classes Sr with

r > 2, the ‘size’ condition (1.9) can be relaxed if we know that the integral kernel of an integral

operator has additional ‘regularity’ properties.

3. Trace class operators and their traces170

In this section we consider the important case of the trace class operators. We start by deducing

a corollary of Theorem 2.2 in this special case. In order to establish a formula for the trace we will

require an additional topological structure on Ω. We will now briefly recall the averaging process

which is required for the study of trace formulae for kernels with discontinuities along the diagonal.

We start by defining the martingale maximal function. Let (Ω,M, µ) be a σ-finite measure space

and let {Mj}j be a sequence of sub-σ-algebras such that

Mj ⊂Mj+1 and M =
⋃
j

Mj .

In order to define conditional expectations we assume that µ is σ-finite on each Mj . In that case,

if f ∈ Lp(µ), then E(f |Mn) exists. We say that a sequence {fj}j of functions on Ω is a martingale

if each fj is Mj-measurable and

E(fj |Mk) = fk for k < j. (3.1)

In order to obtain a generalisation of the Hardy-Littlewood maximal function we consider the

particular case of martingales generated by a single M-measurable function f . The martingale

maximal function is defined by

Mf(x) := sup
j
E(|f | |Mj)(x). (3.2)

This martingale can be defined, in particular, when the σ-algebra M is countably generated and it

will allow to study the trace by mean of an averaging process on the diagonal of the kernel. However,

this process is most effective for the computations in the case of a σ-algebra of Borel sets for a second

countable topological space. Henceforth we will assume that Ω is a second countable topological
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space, M is the σ-algebra of Borel sets and µ is a σ-finite Borel measure. For our purposes in175

the study of the kernel the sequence of σ-algebras is constructed from a corresponding increasing

sequence of partitions Pj × Pj of Ω× Ω.

Now, for each (x, y) ∈ Ω×Ω there is a unique Cj(x)×Cj(y) ∈ Pj ×Pj containing (x, y). Those

sets Cj(x) replace the cubes in Rn in the definition of the classical Hardy-Littlewood maximal func-

tion. We refer to Doob [31] for more details on the martingale maximal function and its properties.180

We denote by A
(2)
j the averaging operators on Ω× Ω: Let K ∈ L1

loc(µ⊗ µ), then the averaging

A
(2)
j is defined µ⊗ µ-almost everywhere (cf. [28]) by

A
(2)
j K(x, y) :=

1

µ(Cj(x))µ(Cj(y))

∫
Cj(x)

∫
Cj(y)

K(s, t)dµ(t)dµ(s). (3.3)

The averaging process will be applied to the kernels K(x, y) of our operators. As a consequence

of the fundamental properties of the martingale maximal function it can be deduced that

K̃(x, y) := lim
j→∞

A
(2)
j K(x, y) (3.4)

is defined almost everywhere and that it agrees with K(x, y) in the points of continuity. We observe

that if K(x, y) is the integral kernel of a trace class operator, then K(x, y) is, in particular, square

integrable on Ω× Ω. A classical example with a discontinuous kernel is the Volterra operator V on

L2(I) where I = [0, 1]. Its kernel is given by

K(x, y) =

 1 ; y ≤ x,

0 ; x < y.

By averaging on cubes one can see that K̃(x, x) = 1
2 for 0 < x < 1. However, it is well known that

its singular values are sn = 2(π(2n+ 1))−1, hence V is not a trace class operator.

In the sequel in this section, we can always assume that K ∈ L2(µ⊗µ) since it is not restrictive185

because the trace class is included in the Hilbert-Schmidt class, and the square integrability of the

kernel is then a necessary condition.

As usual, we are using the notation L2(µ) ≡ L2(Ω).

Corollary 3.1. Let (Ω,M, µ) be a measure space endowed with a σ-finite measure µ. Let Ej

(j = 1, 2) be unbounded invertible operators on L2(Ω) such that E−1
j ∈ Spj (L2(Ω)) for some pj > 0.

Let K ∈ L2(Ω× Ω) and let T be the integral operator from L2(Ω) to L2(Ω) defined by

(Tf)(x) =

∫
Ω

K(x, y)f(y)dµ(y).

Let 1 < q ≤ 2 and 1
q + 1

q′ = 1.
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(i) If (E2)x(E1)yK and ((E2)x(E1)yK)∗ ∈ Lq
′
(Ω, Lq(Ω)), then T belongs to the trace class

S1(L2(µ)) provided that

1 ≤ 1

q′
+

1

p1
+

1

p2
.

Moreover, we have

‖T‖S1
≤ ‖E−1

1 ‖Sp1‖E
−1
2 ‖Sp2×

×
(
‖(E2)x(E1)yK‖Lq′ (Ω,Lq(Ω))‖((E2)x(E1)yK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2

. (3.5)

In particular, if (E2)x(E1)yK ∈ L2(Ω × Ω), then T belongs to the trace class S1(L2(Ω))190

provided that 1
2 = 1

p1
+ 1

p2
.

(ii) Let E be an unbounded invertible operator on L2(Ω) such that E−1 ∈ Sp(L
2(Ω)) for some

p > 0. If ExK, (ExK)∗ ∈ Lq′(Ω, Lq(Ω)) or EyK, (EyK)∗ ∈ Lq′(Ω, Lq(Ω)), then T belongs to

the trace class S1(L2(µ)) provided that

1 ≤ 1

q′
+

1

p
.

Moreover, respectively one has

‖T‖S1
≤ ‖E−1‖Sp

(
‖ExK‖Lq′ (Ω,Lq(Ω))‖(ExK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2

, (3.6)

or

‖T‖S1
≤ ‖E−1‖Sp

(
‖EyK‖Lq′ (Ω,Lq(Ω))‖(EyK)∗‖Lq′ (Ω,Lq(Ω))

) 1
2

. (3.7)

In particular, if E is an unbounded invertible operator on L2(Ω) such that E−1 ∈ S2(L2(Ω))

and either EyK ∈ L2(Ω×Ω) or ExK ∈ L2(Ω×Ω), then T belongs to the trace class S1(L2(Ω)).

(iii) Moreover, assume additionally that Ω is a second countable topological space and (Ω,M, µ) is

a measure space endowed with a σ-finite Borel measure µ. Then under any of the assumptions

(i) or (ii), the operator T is trace class on L2(µ) and its trace is given by

Tr(T ) =

∫
Ω

K̃(x, x)dµ(x). (3.8)

In particular, if K is continuous on the diagonal one has

Tr(T ) =

∫
Ω

K(x, x)dµ(x). (3.9)

Proof. By taking r = 1 in the corresponding assumptions in Corollary 2.6 one can deduce (i) and

(ii). For (iii) the fact that T is trace class follows from the corresponding assumption (i) or (ii), and195

the trace formula comes from (1.13), with K̃ given by (3.4). The last part, follows since K̃ agrees

with K in the points of continuity.
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Remark 3.2. (a) Combining the statement of Part (iii) of Corollary 3.1 with the celebrated Lidskii

formula [32] we can extend the trace formula (3.8) in Part (iii) by

Tr(T ) =

∫
Ω

K̃(x, x)dµ(x) =
∑
j

λj , (3.10)

where λj are the eigenvalues of the operator T counted with multiplicities.

(b) The additional assumption on Ω to be a second countable topological space is only required in200

order to obtain the additional formula (3.9). This requirement is enough general for the applications

we will consider in this work.

(c) If Ω is a second topological space and K ∈ L2(µ⊗µ) we have K̃(x, y) = K(x, y) for the points of

continuity of K. Hence any continuous kernel on the diagonal provides an example where this limit205

can be obtained just as the pointwise value K(x, x). An example of relevance in spectral geometry

is provided in Remark 5.2 (b) with the kernel of the double layer potential for a C2 bounded region

Ω in R2. Indeed, it is known from two dimensional potential theory that this kernel is continuous

and K(x, x) = − 1
2κ(x) where κ(x) is the curvature of ∂Ω at x.

4. Conditions in terms of spectral asymptotics210

The typical application of the results above may come from the observation that knowing the

spectral asymptotics of E1 and E2 implies conclusions about the membership in Schatten-von Neu-

mann classes for their inverses. However, in the case when the spectral asymptotics of operators E1

and E2 are available, the spectral conclusions for the integral operators can be sharpened further in

terms of the decay rates of their singular numbers.215

As further examples, in Section 5 we will consider different kinds of domains and operators to

test the membership in the Schatten-von Neumann classes.

The following conditions are based on the knowledge of the behaviour of the eigenvalue counting

function of the operators E1, E2. We recall that for a self-adjoint operator E with discrete spectrum

{λj}j its eigenvalue counting function is defined by

N(λ) := #{j : λj ≤ λ},

where λj ’s are counted with their respective multiplicities. The conditions that we will impose can

be effectively verified as we will shown in the subsequent subsections.

Theorem 4.1. Let (Ωi,Mi, µi) (i = 1, 2) be σ-finite measure spaces. For each i = 1, 2, let Ei

be an essentially self-adjoint operator on L2(µi) such that the spectrum of its closure consists of a

sequence of discrete and strictly positive eigenvalues 0 < λ1,i ≤ λ2,i ≤ · · · , whose eigenvectors are a
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basis of L2(µi). Assume that for the eigenvalue counting function Ni(λ) of Ei (i = 1, 2) there exist

constants Ci, pi > 0 such that

Ni(λ) ≤ Ci(1 + λ)pi for all λ > 0. (4.1)

Let K ∈ L2(µ2 ⊗ µ1) and let T be the integral operator from L2(µ1) to L2(µ2) defined by

(Tf)(x) =

∫
Ω1

K(x, y)f(y)dµ1(y).

Then the following holds:220

(i) If (E2)x(E1)yK ∈ L2(µ2⊗µ1), then T belongs to the Schatten-von Neumann class Sr(L
2(µ1), L2(µ2))

for all 0 < r <∞ such that
1

r
<

1

2
+

1

p1
+

1

p2
,

and (2.1) holds.

Moreover, the sequence of singular values (sk(T ))k satisfies the following estimate for the rate

of decay:

sk(T ) = o(k
−
(

1
2 + 1

p1
+ 1
p2

)
).

(ii) Let E be an unbounded invertible operator on L2 as above such that its spectrum satisfies (4.1)

for some p > 0. If either EyK ∈ L2(µ2 ⊗ µ1) or ExK ∈ L2(µ2 ⊗ µ1), then T belongs to the

Schatten-von Neumann class Sr(L
2(µ1), L2(µ2)) for all 0 < r <∞ such that

1

r
<

1

2
+

1

p
,

and respectively (2.2) or (2.3) holds.

Moreover, the sequence of singular values (sk(T ))k satisfies the following estimate for the rate

of decay:

sk(T ) = o(k−( 1
2 + 1

p )).

Proof. (i) We note that the assumptions on Ni for i = 1, 2, imply that

k = N(λk,i) ≤ Ciλpik,i.

Hence

k
1
pi λ−1

k,i ≤ C
′
i (4.2)

and thus also
∞∑
k=1

λ−qiki
<∞, for all qi > pi. (4.3)
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Thus E−1
i is a compact operator and its singular values are sk(E−1

i ) = λ−1
k,i and E−1

i ∈ Sqi(L2(µi))

for all qi > pi. Now, for qi > pi the fact that T ∈ Sr(L2(µ1), L2(µ2)) can now be deduced from

Theorem 2.2 and
1

2
+

1

q1
+

1

q2
=

1

r
<

1

2
+

1

p1
+

1

p2
.

In order to get the estimate for the rate of decay of the singular values we will use the following

Fan’s inequality (cf. [33], [17]) for the singular values of the composition of two compact operators:

sk+l−1(BC) ≤ sk(B)sl(C), (4.4)

for all k, l ≥ 1.225

We will apply (4.4) to the factorisation T = E−1
2 A(E∗1 )−1 obtained in the proof of Theorem 2.2.

By using (4.4) with l +m− 1 instead of l we get

sk+l+m−2(T ) ≤ sk(E−1
2 )sl+m−1(A(E∗1 )−1) ≤ sk(E−1

2 )sl(A)sm(E−1
1 ),

for k, l,m ≥ 1.

Thus, with k = l = m we obtain

s3k−2(T ) ≤ sk(E−1
2 )sk(A)sk(E−1

1 ).

Hence and by (4.2) we have

∞∑
k=1

k2( 1
p1

+ 1
p2

)s3k−2(T )2 ≤
∞∑
k=1

k
2
p2 sk(E−1

2 )2sk(A)2k
2
p1 sk(E−1

1 )2

≤(C1C2)2
∞∑
k=1

sk(A)2 <∞.

Since (sk(T ))k is a non-increasing sequence, then s3k(T ), s3k−1(T ) ≤ s3k−2(T ) and

∞∑
k=1

k2( 1
p1

+ 1
p2

)sk(T )2 <∞.

Therefore

sk(T ) = o(k−
1
τ ),

where τ = ( 1
2 + 1

p1
+ 1

p2
)−1. This concludes the proof of (i).

The proof of (ii) follows in a similar way by considering the factorisation T = E−1A so we can

omit the details.

Remark 4.2. If Ω1 = Ω2 = Ω and µ1 = µ2 = µ, the statement of Theorem 4.1 can be extended230

by using Corollary 2.6 instead of Theorem 2.2. More precisely, assume that E1 and E2 satisfy the

assumptions of Theorem 4.1. Let 1 < q ≤ 2 and 1
q + 1

q′ = 1. Then the following holds:
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(i) If (E2)x(E1)yK and ((E2)x(E1)yK)∗ ∈ Lq
′
(Ω, Lq(Ω)), then T belongs to the Schatten-von

Neumann class Sr(L
2(Ω)) for all 0 < r <∞ such that

1

r
<

1

q′
+

1

p1
+

1

p2
,

and (2.8) holds.

Moreover, the sequence of singular values (sk(T ))k satisfies the following estimate for the rate

of decay:

sk(T ) = o(k
−
(

1
q′ + 1

p1
+ 1
p2

)
).

(ii) Let E be an unbounded invertible operator on L2 as above such that its spectrum satisfies

(4.1) for some p > 0. If ExK, (ExK)∗ ∈ Lq′(Ω, Lq(Ω)) or EyK, (EyK)∗ ∈ Lq′(Ω, Lq(Ω)), then

T belongs to the Schatten-von Neumann class Sr(L
2(Ω)) for all 0 < r <∞ such that

1

r
<

1

q′
+

1

p
,

and respectively (2.9) or (2.10) holds.235

Moreover, the sequence of singular values (sk(T ))k satisfies the following estimate for the rate

of decay:

sk(T ) = o(k
−
(

1
q′ + 1

p

)
).

5. Applications

In this section we will describe several example situations where one can apply the obtained

results:

• compact manifolds: taking E1, E2 to be elliptic pseudo-differential operators one obtains con-240

ditions in terms of the regularity of the kernel;

• lattices: here the regularity of the kernel becomes irrelevant; however, due to non-compactness

the conditions are formulated in terms of the behaviour of the integral kernel at infinity;

• Rn: for domains which are not necessarily bounded but have finite Lebesgue measure in Section

5.2 we obtain conditions still only in terms of the regularity of the kernel;245

• Rn: in general, due to non-boundedness the regularity of the kernel by itself is not sufficient to

ensure the compactness of the operator, and the regularity assumptions should be combined

with decay conditions at infinity. It is convenient to formulate such conditions in terms of

the action of harmonic or anharmonic oscillators on the kernel; in particular, it shows that

different combinations of regularity and decay may ensure the membership in the Schatten-von250

Neumann classes on Rn;
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• sub-Riemannian settings: here is may be natural to formulate the conditions in terms of the

operators associated to the sub-Riemannian structure (such as the sub-Laplacian). In Section

5.6 we briefly discuss the implications for general compact sub-Riemannian manifolds, contact

manifolds, strictly pseudo-convex CR manifolds, and (sub-)Laplacians on compact Lie groups.255

Thus, in the following subsections we consider several applications of Theorem 2.2, Corollary 3.1

and Theorem 4.1.

In the case when the operators act on the same space we also have natural extensions of the

statements below by using mixed Lq
′
(Ω, Lq(Ω)) norms as in Corollary 2.6 and Remark 4.2 instead.

For simplicity, we mostly restrict to the L2-case since the extensions to the Lq
′
(Ω, Lq(Ω)) setting260

are rather straightforward.

5.1. Operators on closed manifolds

In this section we will consider the case of integral operators on a compact manifold without

boundary.

Thus, let M be a smooth compact manifold without boundary of dimension n endowed with a265

volume element dx. We denote by Ψν
+e(M) the class of positive elliptic pseudo-differential operators

of order ν ∈ R, i.e. positive operators which in every coordinate chart are operators in Hörmander

classes on Rn with elliptic symbols in Sν1,0, see e.g. [34].

We note that for any positive elliptic operator P ∈ Ψν
+e(M) the standard Sobolev space Hµ(M)

defined in local coordinates can be characterised as the space of all distributions f ∈ D′(M) such270

that (I + P )
µ
ν f ∈ L2(M).

Let now M1,M2 be closed manifolds and Pi ∈ Ψνi
+e(Mi) (i = 1, 2) with νi > 0. Consequently, the

following mixed regularity Sobolev space Hµ2,µ1
x,y (M2 ×M1) of mixed regularity µ1, µ2 ≥ 0, defined

by

K ∈ Hµ2,µ1
x,y (M2 ×M1)⇐⇒ (I + P2)

µ2
ν2
x (I + P1)

µ1
ν1
y K ∈ L2(M2 ×M1), (5.1)

is independent of the choice of operators P1, P2.

The relation between these mixed Sobolev spaces and the standard Sobolev spaces Hµ(M2×M1)

on the manifold M2 ×M1 is given by

Hµ1+µ2(M2 ×M1) ⊂ Hµ2,µ1
x,y (M2 ×M1) ⊂ Hmin(µ1,µ2)(M2 ×M1), (5.2)

for all µ1, µ2 ≥ 0. This can be readily seen by an extension of an argument in [2, Proposition 4.3]

where this was shown to hold in the case of M1 = M2.

Then we have the following statement. We will write Ei = (I + Pi)
µi
νi for i = 1, 2.275

Corollary 5.1. Let M1,M2 be closed manifolds of dimensions n1, n2, respectively, and let µ1, µ2 ≥

0. Let K ∈ L2(M2 ×M1) be such that K ∈ Hµ2,µ1
x,y (M2 ×M1). Then the integral operator T from
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L2(M1) to L2(M2) defined by

(Tf)(x) =

∫
M1

K(x, y)f(y)dy,

is in the Schatten-von Neumann classes Sr(L
2(M1), L2(M2)) for

1

r
<

1

2
+
µ1

n1
+
µ2

n2
. (5.3)

Moreover, its singular numbers satisfy

sj(T ) = o(j
−
(

1
2 +

µ1
n1

+
µ2
n2

)
). (5.4)

In particular, for M = M1 = M2, n = n1 = n2:

(i) If K ∈ L2(M ×M) is such that K ∈ Hµ(M ×M) for µ > n
2 , then T is trace class on L2(M)

and its trace is given by (3.8).

(ii) If K ∈ C`1x C`2y (M ×M) for some even integers `1, `2 ∈ 2N0 such that `1 + `2 >
n
2 , then T is

trace class on L2(M) and its trace is given by

Tr(T ) =

∫
M

K(x, x)dx. (5.5)

Proof. In order to prove that T belongs to Sr(L
2(M1), L2(M2)) with r satisfying (5.3) we first recall

the following fact: if P ∈ Ψν
+e(M) is a positive elliptic pseudo-differential operator of order ν > 0

on a closed manifold M of dimension n and 0 < p <∞ then

(I + P )−α ∈ Sp(L2(M)) if and only if α >
n

pν
, (5.6)

see [2, Proposition 3.3]. Consequently, condition (5.3) follows from Theorem 2.2 with Ej = (I+Pj)
µj
νj

for any Pj ∈ Ψ
νj
+e(Mj), (j = 1, 2). Indeed, since (I +P1)

µ1
ν1
y ∈ Sp1 for p1 >

n1

µ1
and (I +P2)

µ2
ν2
x ∈ Sp2280

for p2 > n2

µ2
, we have that T belongs to Sr(L

2(M1), L2(M2)) for r > 0 as in (5.3). The rate of

decay (5.4) is now a consequence of Theorem 4.1 and the spectral asymptotics for elliptic pseudo-

differential operators on compact manifolds. Furthermore, Part (i) is obtained by letting r = 1 in

(5.3), and Part (ii) follows from Part (i) and formula (3.9).

This corollary refines the results by the authors in [2] where the statement (5.3) was obtained in285

the case M1 = M2. Now this and the refinement of the decay rate in (5.4) have been obtained as

corollaries of Theorem 2.2 and Theorem 4.1.

Remark 5.2. (a) We can note that the index n
2 in Part (ii) of Corollary 5.1 is in general sharp. For

example, for M = Tn being the torus of even dimension n, there exist a function χ of class C
n
2

such that the series of its Fourier coefficients diverges (see [35, Ch. VII] or [36]). By considering the290

convolution kernel K(x, y) = χ(x − y), the singular values of the operator T given by Tf = f ∗ χ
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agree with the absolute values of the Fourier coefficients of χ. Hence, T /∈ S1(L2(Tn)) but K ∈

C
n
2 (M ×M). Thus, we see that Part (ii) of Corollary 5.1 with `1 = 0 and `2 = n

2 is sharp.

This, in turn, justifies the sharpness, in general, for all the results in this paper.

295

(b) An example that arises in spectral geometry is given by the two dimensional double layer

potential. Let Ω be a Ck bounded region in R2 with k ≥ 2. Let E(x, y) = 1
π log 1

|x−y| , the double

layer potential K : L2(∂Ω)→ L2(∂Ω) is defined as the operator

Kf(x) =

∫
∂Ω

∂νyE(x, y)f(y)dS(y),

where ∂νy denotes is the outer normal derivative. The kernel K(x, y) is continuous on ∂Ω × ∂Ω,

by studying its regularity depending on k as has been applied in [6] and using the results for closed

manifolds, in this case for ∂Ω one can determine the rate of decay for the eigenvalues of the double

layer potential from the corresponding membership of the double layer potential to a Schatten-von

Neumann class. In particular, one can also deduce trace class properties. We refer to [6] for the300

details on this important example.

5.2. Operators on domains with finite measure

In Section 5.1 we considered the case of compact domains. We now discuss the situation when

the domains may be unbounded but still have finite measure.

Let Ω ⊂ Rn be a measurable set with finite non-zero Lebesgue measure. Let us define

εα,n(z) := cα,n|z|α−n,

with cα,n = 2α−nπ−n/2 Γ(α/2)
Γ((n−α)/2) . Then for 0 < α < n and x ∈ Ω the Riesz potential operator is

defined by

(Rα,Ωf)(x) :=

∫
Ω

εα,n(x− y)f(y)dy. (5.7)

Such operators arise naturally as Green functions for boundary value problems for fractional Lapla-

cians on Rn in view of the relations

(−∆y)α/2εα,n(x− y) = δx. (5.8)

It was shown in [24, Proposition 2.1] that the operator Rα,Ω is non-negative, that is, all of its

eigenvalues are non-negative, and satisfies the estimate

λk(Rα,Ω) = sk(Rα,Ω) ≤ C|Ω|αn k−αn . (5.9)

Indeed, once one shows that the operatorRα,Ω is non-negative, the estimate (5.9) follows by applying305

an estimate of Cwikel [37] to the ‘square root’ of the operator Rα,Ω. The constant C = C(α, n) in

20



(5.9) depends only on α and n, and its value can be calculated explicitly, see [24, Remark 2.2]. If Ω

is bounded such results go back to Birman and Solomyak [38].

As a consequence of (5.9) one readily sees that operators Rα,Ω are compact and satisfy

Rα,Ω ∈ Sp(L2(Ω)) for p >
n

α
. (5.10)

Isoperimetric inequalities for operators Rα,Ω from the point of view of the dependence on Ω were

investigated in [24].310

In view of the relation (5.8) we can write (−∆Ω)α/2 := R−1
α,Ω.

Applying Theorem 2.2 with Riesz potential operators, we obtain the analogue of Corollary 5.1

in domains in Rn with boundaries.

Corollary 5.3. Let Ωi ⊂ Rni , i = (1, 2), be measurable sets with finite non-zero Lebesgue measure

and let 0 < αi < ni. Let K ∈ L2(Ω2 × Ω1) be such that we have (−∆Ω2
)α2/2(−∆Ω1

)α1/2K ∈

L2(Ω2 × Ω1). Then the integral operator T from L2(Ω1) to L2(Ω2) defined by

(Tf)(x) =

∫
Ω1

K(x, y)f(y)dy,

is in the Schatten classes Sr(L
2(Ω1), L2(Ω2)) for

1

r
<

1

2
+
α1

n1
+
α2

n2
. (5.11)

Moreover,

‖T‖Sr ≤ ‖(−∆Ω1
)−

α1
2 ‖Sn1

α1

‖(−∆Ω2
)−

α2
2 ‖Sn2

α2

×

× ‖(−∆Ω2
)α2/2(−∆Ω1

)α1/2K‖L2(Ω2×Ω1). (5.12)

In particular, for Ω = Ω1 = Ω2, n = n1 = n2:

(i) If K ∈ L2(Ω×Ω) is such that K ∈ Hα(Ω×Ω) for α > n
2 , then T is trace class on L2(Ω) and315

its trace is given by (3.8).

(ii) If K ∈ C`1x C`2y (Ω × Ω) for some even integers `1, `2 ∈ 2N0 such that `1 + `2 >
n
2 , then T is

trace class on L2(Ω) and its trace is given by

Tr(T ) =

∫
Ω

K(x, x)dx. (5.13)

We note that Corollary 5.3 applies to domains that do not have to be bounded but have finite

measure. If the measure of the domain is infinite the regularity of the kernel may not be enough

and should be complemented by decay conditions at infinity. Such situations will be considered in

Section 5.4 and Section 5.5.320
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Applications of Theorem 4.1 to obtain further refinements on the decay rate of singular numbers

of T are possible, however, the spectral asymptotics required for its use for fractional Laplacians in

Ω could in general depend on properties of the boundary and boundary conditions, and thus would

require further assumptions.

5.3. Operators on lattices325

In this section we consider operators acting on functions on the integer lattice Zn. Compared

to Section 5.1, here the decay conditions at infinity are important while the regularity of the kernel

becomes irrelevant (as regularity of a pointwise defined function on a discrete lattice).

We note that as before, Part (i) of the following statement is a special case of Part (ii) with

q = 2, but in the case of n = m, i.e. when the integral operator is acting on the same space. It will

be useful to employ the operator

Eαf(k) := (1 + |k|)αf(k), k ∈ Zn. (5.14)

In cases when there are several variables, we will also write Eαk for Eα to emphasise that the operator

is acting in the variable k.330

Corollary 5.4. Let n,m ∈ N. Let K : Zn × Zm → C be a function and let T be the operator,

bounded from `2(Zm) to `2(Zn), defined by

(Tf)(k) =
∑
l∈Zm

K(k, l)f(l).

Then we have the following properties.

(i) Assume that for some α, β ≥ 0 we have

‖K‖2α,β :=
∑
k∈Zn

∑
l∈Zm

(1 + |k|)2α(1 + |l|)2β |K(k, l)|2 <∞. (5.15)

Then T ∈ Sr(`2(Zm), `2(Zn)) for all 0 < r <∞ such that

1

r
<

1

2
+
α

n
+
β

m
. (5.16)

Moreover,

‖T‖Sr ≤ ‖E−α1‖Sn1
α1

‖E−α2‖Sn2
α2

‖K‖α,β . (5.17)

The sequence of singular values (sj(T ))j satisfies the following estimate for the rate of decay:

sj(T ) = o(j−( 1
2 +α

n+ β
m )). (5.18)

In particular, for n = m, if α, β ≥ 0 are such that

α+ β >
n

2
,
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then the operator T is trace class on `2(Zn) and its trace is given by

Tr(T ) =
∑
k∈Zn

K(k, k) =
∑
j

λj , (5.19)

where λj are the eigenvalues of the operator T counted with multiplicities.

(ii) In the case m = n, let 1 < q ≤ 2 and 1
q + 1

q′ = 1. Assume that for some α, β ≥ 0 we have

∑
l∈Zn

(1 + |l|)βq
′

(∑
k∈Zn

(1 + |k|)αq|K(k, l)|q
) q′

q

<∞ (5.20)

and ∑
k∈Zn

(1 + |k|)αq
′

(∑
l∈Zn

(1 + |l|)βq|K(k, l)|q
) q′

q

<∞. (5.21)

Then T ∈ Sr(`2(Zn)) for all 0 < r <∞ such that

1

r
<

1

q′
+
α+ β

n
. (5.22)

Moreover, the sequence of singular values (sj(T ))j satisfies the following estimate for the rate

of decay:

sj(T ) = o(j
−
(

1
q′ +α+β

n

)
). (5.23)

In particular, if α, β ≥ 0 are such that α+β > n
q , then T is trace class on `2(Zn) and its trace

is given by (5.19).

Proof. Part (i). We observe that the assumption (5.15) of Corollary 5.4 can be formulated as

EαkE
β
l K ∈ `

2(Zn × Zm). (5.24)

In order to apply Theorem 4.1 we first note that the Kronecker’s delta δk is an eigenfunction of Eα

with the eigenvalue (1 + |k|)α. Consequently, for α > 0 we have

NEα(λ) = #{k : (1 + |k|)α ≤ λ} . #{k : |k| ≤ λ1/α} = λn/α,

for the operator Eα acting on Zn. Consequently, by Theorem 4.1, Part (i) and condition (5.24) we

get that T ∈ Sr(`2(Zm), `2(Zn)) provided that

1

r
<

1

2
+

1

m/β
+

1

n/α
,

implying (5.16) for β, α > 0. Otherwise, (5.16) follows by Part (ii) of Theorem 4.1. The decay rate335

(5.18) is another consequence of Theorem 4.1.

Finally, the trace class condition follows from this by taking r = 1, in view of Corollary 3.1 and

Remark 3.2.

Part (ii) follows by the same argument but employing Corollary 2.6 and Remark 4.2 instead.
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We note that integral operators on lattices can be also considered as pseudo-difference operators,340

which is an analogue of pseudo-differential operators on the lattice Zn. Conditions for the mem-

bership of such operators in Schatten-von Neumann classes in terms of their symbols were given in

[39].

5.4. Conditions in terms of anharmonic oscillators

In Corollary 5.3 we considered the case of domains of Rn of finite measure. We now discuss345

the case the whole space Rn when the regularity of the kernel should be complemented by decay

conditions at infinity.

For this, we consider a test with the anharmonic oscillator on L2(Rn), i.e., the operator

Ea = −∆ + |x|a

on L2(Rn) for a > 0. For a = 2, the operator E2 = −∆ + |x|2 is the usual harmonic oscillator.

The study of the harmonic oscillator has been a very active field of research. For the spectral

theory of non-commutative versions of the harmonic oscillator we refer to the interesting work of350

Parmeggiani et al [40], [41], [42], [43], [44], [45] and [46].

Since for operators on Rn both the regularity and decay of the kernel at infinity are relevant it

is natural to try to measure these properties of the kernel by the action of harmonic or anharmonic

oscillators. The tests with anharmonic oscillators appear to be more natural when compared to the355

harmonic oscillator, since the orders of regularity and decay do not have to be the same. Moreover,

it is natural to consider their fractional powers since the regularity or decay orders do not have to

be integers.

Thus, as a consequence of the results of this paper we get the following conditions.

Corollary 5.5. Let Ea = −∆ + |x|a on Rn, Eb = −∆ + |x|b on Rm with a, b > 0. Let K ∈

L2(Rm × Rn) and let T be the integral operator from L2(Rn) to L2(Rm) defined by

(Tf)(x) =

∫
Rn
K(x, y)f(y)dy.

(i) Let α, β ≥ 0. If (Eb)
β
x(Ea)αyK ∈ L2(Rm × Rn), then T belongs to the Schatten-von Neumann

class Sr(L
2(Rn), L2(Rm)) for all 0 < r <∞ such that

1

r
<

1

2
+
α

pa
+
β

pb
,

where pa = n( 1
a + 1

2 ) and pb = m( 1
b + 1

2 ). Moreover,

‖T‖Sr ≤ ‖E−1
a ‖S pa

α

‖E−1
b ‖S pb

β

‖(Eb)βx(Ea)αyK‖L2(Rm×Rn). (5.25)

The sequence of singular values (sk(T ))k satisfies the following estimate for the rate of decay:

sk(T ) = o(k
−( 1

2 + α
pa

+ β
pb

)
).
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(ii) Let α, β ≥ 0. If m = n, (Eb)
β
x(Ea)αyK ∈ L2(Rn×Rn), and 1

2 <
α
pa

+ β
pb

, then T belongs to the

trace class S1(L2(Rn)) and its trace is given by

Tr(T ) =

∫
Rn
K̃(x, x)dx. (5.26)

Proof. The distribution of eigenvalues of Ea and other second order differential operators has been

investigated by E. C. Titchmarsh in [47]. In particular, Titchmarsh considered operators of the form

−∆ + V (x) with V (x)→∞ as |x| → ∞ and V (x) ultimately non-decreasing on every straight line

radiating from the origin. If N(λ) denotes the number of eigenvalues less than λ, then he showed

in [47, Section 17.8] that

N(λ) ∼ 1

2nπ
n
2 Γ(n2 + 1)

∫
V <λ

{λ− V (x)}n2 dx, as λ→∞.

In particular if V (x) = |x|a we have

∫
|x|a<λ

{λ− |x|a}n2 dx = C

λ
1
a∫

0

(λ− ra)
n
2 rn−1dr ≤ C

λ
1
a∫

0

r
na
2 +n−1dr.

Since
λ

1
a∫

0

r
na
2 +n−1dr =

λn( 1
a+ 1

2 )

n( 1
a + 1

2 )
.

We obtain

N(λ) ∼ Cλpa as λ→∞,

where pa = n( 1
a + 1

2 ).360

Now, since λ is an eigenvalue of Ea if and only if λα is an eigenvalue of (Ea)α, we obtain

N(Ea)α(λ) = NEa(λ
1
α ) ≤ Cλ

pa
α , (5.27)

where NP denotes the counting eigenvalue function for the operator P . Then we have

∞∑
k=1

λ−αqk <∞, for all q >
pa
α
.

The singular values of (Eαa )−1 are sk((Eαa )−1) = λ−αk and (Eαa )−1 ∈ Sq(L2(Rn)) for all q > pa
α . In

a similar way we also have (Eβb )−1 ∈ Sq′(L2(Rm)) for all q′ > pb
β .

As a consequence of Theorem 2.2 we obtain

T ∈ Sr(L2(Rn), L2(Rm))

for
1

r
<

1

2
+
α

pa
+
β

pb
.

The rate of decay and Part (ii) now follow from Theorem 4.1.
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Example 5.6. Let us give a simple example for Corollary 5.5: let T : L2(Rn)→ L2(Rn) be an integral365

operator with kernel K(x, y). Assume that 1 ≤ n ≤ 3 and that ∆xK, (1 + |x|b)K ∈ L2(Rn × Rn).

Then T is a trace class operator provided that b > 2n
4−n .

This statement follows immediately from Part (ii) of Corollary 5.5 by taking α = 0, β = 1,

implying that T is trace class provided that pb = n( 1
b + 1

2 ) < 2.

5.5. Higher order anharmonic oscillators370

One can also get a number of similar tests based on the estimation of N(λ) for different ope-

rators and the arguments in Corollary 5.5. Here we will consider different examples of anharmonic

oscillators however restricting to integer orders of derivatives and weights.

More specifically, let us consider the operator

E = (−∆)k + |x|2`

on Rn, n ≥ 1, where k, ` are integers ≥ 1.

It is well known that such E has a discrete spectrum (see [34]) and it was also shown in [48,

Theorem 3.2] that for large λ the eigenvalue counting function N(λ) is bounded by C
∫
a(x,ξ)<λ

dxdξ,

where a(x, ξ) is the Weyl symbol of the partial differential operator E. By the change of variables

ξ = λ1/2kξ′ and x = λ1/2`x′, we can estimate for large λ that

N(λ) .
∫∫
|ξ|2k+|x|2`<λ

dxdξ = λn( 1
2k+ 1

2` )

∫∫
|ξ′|2k+|x′|2`<1

dx′dξ′ . λn( 1
2k+ 1

2` ). (5.28)

We note that refined estimates for the remainder in the spectral asymptotics for N(λ) were also375

studied by Helffer and Robert in [49, Theorem 6 and Corollary 2.7] in the case k = `, and in [50]

for different k and ` in the case n = 1.

Moreover, all the results remain unchanged if we add lower order terms to the operator E.

Consequently, from Theorem 4.1 and arguing similarly as in the proof of Corollary 5.5 we obtain:

Corollary 5.7. Let Ei = (−∆)ki + |x|2`i be operators on Rni , where ni, ki, `i are integers ≥ 1 for380

i = 1, 2. Let us set pi := n
2 ( 1

ki
+ 1

`i
), i = 1, 2.

Let K ∈ L2(Rn2 × Rn1) and let T be the integral operator from L2(Rn1) to L2(Rn2) defined by

(Tf)(x) =

∫
Rn1

K(x, y)f(y)dy.

Let α, β ≥ 0 and suppose that (E2)βx(E1)αyK ∈ L2(Rn2 × Rn1). Then T belongs to the Schatten-von

Neumann class Sr(L
2(Rn1), L2(Rn2)) for all 0 < r <∞ such that

1

r
<

1

2
+
α

p1
+
β

p2
.

Moreover,

‖T‖Sr ≤ ‖E−α1 ‖S p1
α

‖E−β2 ‖S p2
β

‖(E2)βx(E1)αyK‖L2(Rn2×Rn1 ). (5.29)
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The sequence of singular values (sj(T ))j satisfies the following estimate for the rate of decay:

sj(T ) = o(j−( 1
2 + α

p1
+ β
p2

)).

Example 5.8. Let us give a simple example for Corollary 5.7: let T : L2(R)→ L2(R) be an integral

operator with kernel K(x, y). Assume that k, l ∈ N and that K, d
2k

dx2kK,x
2lK ∈ L2(R × R). Then

T ∈ Sr(L2(R)) provided that 1
r <

1
2 + 2kl

k+l . In particular, under the above assumptions T is always

a trace class operator.385

This statement follows immediately from Corollary 5.7 by taking α = 0 and β = 1.

Remark 5.9. We would like now to consider the special case of a negative order and negative

potential, more precisely the case of the hydrogen atom, i.e. an operator of the form H = −∆−c|x|−1

on R3 with c > 0. It is well known that the energy levels are of the form

En = − C
n2

where C is a positive constant. In this case we can take E−1 = H which belongs to the class Sp

with p > 1
2 . Therefore, one can obtain a similar result to Corollary 5.5 in terms of the operator E

with an index p > 1
2 .

5.6. Subelliptic conditions on sub-Riemannian manifolds390

In general, once the upper bound for the eigenvalue counting function of a certain operator is

obtained, it can be used in Theorem 4.1. In particular, in some situations is may be convenient to use

operators respecting certain geometric structures. Rather general results on the spectral asymptotics

for self-adjoint subelliptic operators have been obtained by Fefferman and Phong [51, 52] as well

as for operators with double characteristics by Menikoff and Sjöstrand [53], see also an overview395

on spectral asymptotics for rather general hypoelliptic operators by Sjöstrand [54] and more recent

extensions by Ponge [55] and Hassannezhad and Kokarev [56]. We can also refer to [57] for subelliptic

analysis on nilpotent groups and to [58] for the potential theory for the sub-Laplacians.

Let us formulate several examples but first we briefly recall a few definitions. Let M be a

connected closed manifold and let H ⊂ TM be a smooth sub-bundle of the tangent bundle satisfying400

the Hörmander condition. we recall that the sub-bundle H satisfies the Hörmander condition if for

any point x ∈ M and any local frame {Xi} of H around x, the iterated Lie brackets [Xi, Xj ],

[[Xi, Xj ], Xk], [Xi, [...[Xj , Xk]...]] at x together with the vectors {Xi(x)} span the tangent space

TxM . The length of the Lie bracket above is understood as the number of vector fields involved.

The sub-bundle H is called regular if the dimensions of the strata in the stratification of TxM by405

commutators do not depend on x ∈M . Let g be a smooth metric on H and let Q be the Hausdorff

dimension of M with respect to the Carnot-Caratheodory distance associated to the sub-Riemannian

manifold (M,H, g).
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We recall that the eigenvalue counting function of the sub-Laplacian on compact regular sub-

Riemannian manifolds is estimated by N(λ) ≤ CλQ/2, see e.g. [56]. Consequently, Theorem 4.1410

immediately implies:

Corollary 5.10. Let (Mi, Hi, gi) (i = 1, 2) be compact regular sub-Riemannian manifolds and let

∆i be the sub-Laplacians associated to Hi. Let Qi denote the Hausdorff dimensions of Mi with

respect to the respective Carnot-Caratheodory distances.

Let K ∈ L2(M2 ×M1) and let T be the integral operator from L2(M1) to L2(M2) defined by

(Tf)(x) =

∫
M1

K(x, y)f(y)dy.

Let α, β ≥ 0 and assume that (∆2)βx(∆1)αyK ∈ L2(M2 ×M1). Then T belongs to the Schatten-von

Neumann class Sr(L
2(M1), L2(M2)) for all 0 < r <∞ such that

1

r
<

1

2
+

2α

Q1
+

2β

Q2
,

Moreover

‖T‖Sr ≤ ‖∆−α1 ‖SQ1
2α

‖∆−β2 ‖SQ2
2β

‖(∆2)βx(∆1)αyK‖L2(M2×M1). (5.30)

The sequence of singular values (sj(T ))j satisfies the following estimate for the rate of decay:

sj(T ) = o(j−( 1
2 + 2α

Q1
+ 2β
Q2

)).

Let us briefly record two examples that are of particular importance: of compact contact mani-415

folds and of compact Lie groups.

We recall that a contact manifold is a smooth manifold M of odd dimension 2n + 1 equipped

with an 1-form θ such that θ ∧ (dθ)n is a volume form on M . The canonically induced bundle

Hx := {X ∈ TxM : θ(X) = 0} is regular and satisfies Hörmander’s condition since 2-form dθ

is non-degenerate on H. This will be the setting (C1) in the following statement. The setting420

(C2) concerns sub-Laplacians on compact Lie groups in which case the canonical sub-bundle is also

regular due to the left-invariance.

Corollary 5.11. Let us consider the following situations:

(C1) Let Ωi be a compact contact metric manifold of dimension 2ni + 1, (i = 1, 2). Let Ei :=

(I + ∆i)
αi for i = 1, 2, where ∆i is the canonical positive sub-Laplacian on Ωi. Let pi :=425

ni + 1, i = 1, 2.

(C2) Let Ωi be a compact Lie group with left-invariant positive sub-Laplacian Li, and let Qi be the

Hausdorff dimension of the induced control distance. Let Ei := (I+Li)αi and let pi := Qi
2 , i =

1, 2.
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Let K ∈ L2(Ω2 × Ω1) and let T be the integral operator from L2(Ω1) to L2(Ω2) defined by

(Tf)(x) =

∫
Ω1

K(x, y)f(y)dµ1(y).

Let α, β ≥ 0 and suppose that (E2)βx(E1)αyK ∈ L2(Ω2 × Ω1) under the corresponding assumptions

either (C1) or (C2). Then T belongs to the Schatten-von Neumann class Sr(L
2(Ω1), L2(Ω2)) for all

0 < r <∞ such that
1

r
<

1

2
+
α1

p1
+
α2

p2
.

Moreover, the sequence of singular values (sj(T ))j satisfies the following estimate for the rate of

decay:

sj(T ) = o(j−( 1
2 +

α1
p1

+
α2
p2

)).

Again, Corollary 5.11 is an immediate consequence of Theorem 4.1 and the corresponding spectral430

asymptotics results.

Let us mention two further important special cases of the settings (C1) and (C2) of Corollary

5.11:

(C1) In particular, the result of the setting (C1) also holds with the same indices if any of the

manifolds Mi is a connected orientable compact strictly pseudo-convex CR manifold of dimension435

2n+ 1. For the required spectral asymptotics see, e.g. [59]. In this case one considers asymptotics

for the counting function of a sub-Laplacian corresponding to a pseudo-Hermitian structure.

(C2) If Li is not the sub-Laplacian but a Laplacian (Casimir element) on a compact Lie group

Ωi of dimension ni then we have Qi = ni. In the setting of operators on a compact Lie group G

conditions for the membership in Schatten-von Neumann classes were given in [13] also in terms of440

global matrix symbols on G × Ĝ. We can refer to [60, 61] for the corresponding analysis and its

relations to the representation theory of compact Lie groups.

In analogy to (5.1), the above conditions on the kernel can be also formulated in terms of the

(mixed) Sobolev spaces associated to the sub-Laplacians. The embeddings between these Sobolev

spaces and the usual ones can be obtained from a suitable S(m, g) calculus when available. However,445

we can note that already for the Sobolev spaces associated to harmonic oscillators, those Sobolev

spaces take into account also decay properties at infinity, while the usual Sobolev spaces do not. So,

one can compare these spaces locally (but there terms like |x|2 do not play any role), but globally

there may be embeddings only in one directions.
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