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Abstract 

Previous studies have shown that face-voice matching is more consistently above 

chance for dynamic (i.e. speaking) faces than for static faces. This suggests that 

dynamic information can play an important role in informing matching decisions. We 

initially asked whether this advantage for dynamic stimuli is due to shared information 

across modalities that is encoded in articulatory mouth movements. Participants 

completed a sequential face-voice matching task with (1) static images of faces, (2) 

dynamic videos of faces, (3) dynamic videos where only the mouth was visible, and 

(4) dynamic videos where the mouth was occluded, in a well-controlled stimulus set. 

Surprisingly, after accounting for random variation in the data due to design choices, 

accuracy for all 4 conditions was at chance. Crucially, however, exploratory analyses 

revealed that participants were not responding randomly, with different patterns of 

response biases being apparent for different conditions. Our findings suggest that 

face-voice identity matching may not be possible with above-chance accuracy but that 

analyses of response biases can shed light upon how people attempt face-voice 

matching. We discuss these findings with reference to the differential functional roles 

for faces and voices recently proposed for multimodal person perception. 
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Introduction 

Faces and voices provide a wealth of information about a person. If some of the 

information about a person provided by faces and voices is redundant across the 

auditory and visual modalities (Collins & Missing, 2003; Saxton, Caryl & Roberts, 

2006; Smith, Dunn, Baguley & Stacey, 2016a; Yehia, Kuratate, & Vatikiotis-Bateson, 

2002), it follows that it should be possible to match a face to a voice, even when a 

person is unfamiliar. Recent models of person perception emphasise the parallel and 

integrated nature of auditory and visual pathways, which interact as faces and voices 

are both processed for information about identity, speech and emotion (Belin, 2017; 

Belin, Fecteau, & Bedard, 2004; Young, Frühholz, & Schweinberger, 2020). The 

investigation of face-voice identity matching can thus shed light on how information 

from faces and voices is combined during multimodal person perception.  

 

Previous studies have shown that face-voice identity matching is consistently above 

chance with dynamic (i.e. speaking) facial stimuli, but that performance is less likely 

to be above chance using static faces: For studies contrasting face-voice matching 

accuracy for dynamic and static faces, some have found that only dynamic face-voice 

matching is above chance level (Kamachi, Lander, & Vatikiotis-Bateson., 2013; Lachs 

& Pisoni, 2004a). Others have shown that face-voice matching using static faces is 

also above chance (Mavica & Barenholtz, 2013; Krauss, Freyberg, & Morsella, 2002; 

Stevenage et al., 2017), particularly when matching procedures have a low memory 

load (Smith et al., 2016b). Such studies have observed numerical (but not statistical) 

disadvantages for static faces when compared to matching accuracy for dynamic 

faces (Smith et al., 2016a, 2016b Experiment 3; Huestegge, 2019). Thus, while static 

images might be at times sufficient for accurate identity matching, overall the ability is 
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fragile, and information included in dynamic faces may be key for reliable above-

chance face-voice identity matching.  

 

Dynamic faces uniquely convey information about articulatory mouth movements, 

which may be a cross-modal cue to identity, providing perceivers with a crucial link 

between the auditory and visual modalities. Previous research has established that 

dynamic articulatory cues can be mapped from one modality to another: For example, 

when a point-light technique is used to isolate articulatory mouth movements, 

participants are indeed able to match the dynamic light displays to auditory 

presentations of the same utterances (Rosenblum, Smith, Nichols, Hale, & Lee, 2006). 

Going beyond utterance matching, face-voice identity matching studies have 

furthermore indicated that it is possible to match a dynamic face to a voice saying a 

different sentence (Huestegge, 2019; Kamachi et al., 2003; Lander, Hill, Kamachi, & 

Vatikiotis-Bateson, 2007; Smith et al., 2016a, 2016b). These studies may suggest that, 

independent of the specific words they are saying, visual information about how a 

person speaks may be sufficient to match faces to voices: For example, if a person 

sounds like they are speaking very clearly or sounds like they are mumbling, this 

should be reflected in their mouth movements. Lander, Bruce and Hill (2001) suggest 

that individual faces have ‘characteristic motion signatures’, which provide additional 

identity cues which in turn support identity perception. The availability of idiosyncratic 

articulatory mouth movement cues might also explain the higher accuracy usually 

observed for dynamic face-voice identity matching. 

 

In this study, we initially set out to examine whether mouth movements can explain 

the advantage observed for dynamic face-voice matching over static face-voice 
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matching. For this purpose, we conducted a face-voice matching experiment using a 

same-different procedure (see Smith et al. (2016a), which has a low memory load, 

and supports static and dynamic face-voice matching to a greater extent than other 

procedures (Smith et al., 2016b). We had two initial hypotheses: 

 

Hypothesis 1: Dynamic information in faces leads to above chance face-voice 

matching accuracy 

In an effort to replicate the findings of a dynamic face-voice matching advantage from 

the previous literature, we presented participants with voices paired with dynamic 

videos or static images of faces. We predicted above-chance accuracy for dynamic 

face-voice matching when the whole face is visible, which would indicate that shared 

information is available across modalities to support identity matching. Based on the 

previous literature, it was unclear whether this advantage would also hold for matching 

between voices and static faces.  

 

Hypothesis 2: Mouth movements are essential to the advantage of dynamic face-voice 

matching, although other parts of the face still include relevant information. 

Building on Hypothesis 1, we included two additional dynamic stimulus conditions 

(created from the video used in the dynamic whole face condition) to examine the 

specific role of mouth movements in face-voice identity matching. In one condition, the 

articulating mouth was occluded – this allowed us to test whether identity matching is 

mediated by the perception and integration of speech articulations across modalities, 

as has been shown for speech comprehension (e.g. McGettigan, Faulkner, Altarelli, 

Obleser, Baverstock & Scott, 2012). In the other condition, only the articulating mouth 

was visible, with the remainder of the image masked – this allowed us to test whether 
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some part of the dynamic advantage reported in previous studies may be due in part 

to non-speech cues, for example to attractiveness or masculinity/femininity (Collins & 

Missing, 2003; Saxton et al., 2006; Smith et al., 2016a). We predicted higher accuracy 

for dynamic stimuli including mouth movements compared to the stimuli which did not 

include mouth movements. At the same time, we predicted lower accuracy for videos 

only showing the mouth region compared to dynamic faces showing the whole face, 

as much information about the face is lost when only showing the mouth. 

 

To test these hypotheses, we used a highly controlled stimulus set, removing 

peripheral visual cues (hair and clothes), such that participants had to rely solely on 

facial cues during the matching task. We furthermore tested participants using more 

trials than previous studies (here 112, vs 16 in Smith et al., 2016a), and more stimulus 

identities in order to overcome potential sampling issues at the stimulus level 

(Stevenage, Hamlin & Ford, 2017). We combined this highly controlled stimulus set 

with statistical analyses using generalised linear mixed models (GLMMs) to account 

for the random variation in the data introduced by design choices, different stimuli and 

participants.  

 

Surprisingly, as reported in detail in the sections below, accuracy for all four conditions 

was no different from chance after accounting for random variation in the data, 

although above chance performance was apparent when not accounting for this 

variation. Similarly, there was no difference in accuracy between any of the conditions. 

Crucially, however, chance-level accuracy does not indicate that participants were 

responding randomly in our task. Having employed a same-different procedure rather 

than a two-alternative-forced-choice procedure, we were able to explore how response 
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bias operates in face-voice matching. Distinct profiles of response behaviour were 

apparent in our data – a significant interaction of trial type (same vs different) by 

condition indicated that participants were showing systematic response biases that 

varied by condition. Such response biases have been reported in previous face-voice 

matching studies employing a same-different procedure (Smith et al., 2016a, 2016c; 

Stevenage et al., 2017), where it has been observed that participants have an overall 

tendency to accept face-voice pairings as belonging to the same identity. Here, we 

therefore asked a second research question, addressed in an additional set of 

exploratory analyses: Beyond mouth movements, how are participants’ face-voice 

matching responses for static and dynamic faces affected by experimental design 

choices? 

 

The study was pre-registered on the Open Science Framework (https://osf.io/4g25r). 

In the sections that follow, we describe the methodology for the study, presenting pre-

registered and exploratory analyses of accuracy (correct/incorrect), and exploratory 

analyses of response biases (same identity/different identity). We conclude that 

existing reports of face-voice identity matching may reflect, at best, a fragile ability in 

humans. Matching performance appears to be vulnerable to stimulus effects and is 

underpinned by distinct patterns of responses dependent on the nature of the visual 

stimuli. These responses may consequently manifest as above-chance performance 

only when considering raw accuracy scores. 
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Methods 

Participants 

109 participants were recruited via the online recruitment platform Prolific.co. All 

participants were aged between 18 and 40 years (mean age = 28.9 years, SD = 6.45, 

56 female), were native speakers of English, who had no reported hearing difficulties, 

and had a high approval rate on Prolific (> 90%). Ethical approval was given by the 

local ethics committee (Project ID number: SHaPS-2019-CM-029). One participant 

was excluded as they missed more than 20% of the catch trials (see Procedure). Each 

participant was paid £3.40 for 27 minutes of participation. For this final sample of 108 

participants, 27 participants were randomly assigned to each of the four conditions 

(Whole Face (static), Whole Face (dynamic), Mouth Only (dynamic), Mouth Occluded 

(dynamic)). 

 

Materials 

The face and voice stimuli were sourced from the GRID audio-visual sentence corpus 

(Cooke, Barker, Cunningham, & Shao, 2016). This corpus contains high-quality audio-

visual recordings of 1000 sentences spoken by 34 talkers (18 male, 16 female; Cooke 

et al., 2006). Each sentence has the same structure: (1) command, (2) colour, (3) 

preposition, (4) letter, (5) digit, and (6) adverb, such as ‘put red at G9 now’. To avoid 

any confounding effect of ethnicity, we excluded two non-White male identities from 

the experiment. A further two male identities were used in practice trials, leaving 14 

white male identities for use in the main experiment. For the experimental stimulus 

set, we randomly selected four videos and four audio clips from each of these 14 white 

male speakers, as well as 14 white female speakers from the corpus – all items were 
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unique, i.e. none of the sentences used was repeated within the experiment, either 

within or across modalities. Audio tracks were converted to MP3.   

 

To create the face stimuli, we first pre-processed the audio-visual stimuli. In the 

original audio-visual recordings, there was some variability in the position of recorded 

individuals in relation to the camera. We therefore first centred the faces in all videos 

and scaled the size of the faces to be similar across the individuals portrayed. From 

these centred and scaled videos, we then created muted videos for our four visual 

conditions. Examples of the stimuli per condition are shown in Figure 1. 

 

For the Whole Face (dynamic) condition, we used Adobe Premiere CC 2018 (version 

12.0) to remove the hair, clothing, and background information from the videos, thus 

including only information about the face in our stimuli. From the Whole Face 

(dynamic) stimuli, we extracted individual frames to create the Whole Face (static) 

stimuli. These frames were selected to include a relatively neutral facial expression, 

avoiding speech-related movements. For the Mouth Occluded (dynamic) stimuli, we 

masked the mouth of each speaker with a rectangle of their average skin colour. The 

size of mask was manually adjusted to ensure that the mouth was fully covered for all 

individuals. For this condition, all information about the dynamic mouth movements 

was therefore excluded. Finally, we created stimuli for the Mouth Only (dynamic) 

condition, in which we only included the information from the small rectangular area 

including the mouth (i.e. the opposite of the Mouth Occluded condition), with the rest 

of the video blacked out. This condition therefore included only information about the 

mouth movements. All videos were muted and exported at a 720 pixels x 576 pixels 

resolution (4:3 ratio) with a sample rate of 25 frames per second. All videos were 3 
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seconds in length (Cooke et al., 2006). In the task, static images were shown for 2 

seconds as a viewing time of 3 seconds made the task appear slow-moving during 

pilot testing. 

 

 

Figure 1 An illustration of the four visual conditions included in the study. 

 
Procedure 

The task was completed in the Gorilla Online Experiment Builder (gorilla.sc, Anwyl-

Irvine, Massonnié, Flitton, Kirkham, & Evershed, 2019). After giving informed consent, 

participants completed a headphones screening (Woods, Siegel, Traer & McDermott, 

2017). Condition was manipulated between-subjects, such that participants were 

randomly assigned to complete a face-voice matching task including one of the 4 

visual conditions. For the face-voice matching tasks, participants were presented with 

a pair of stimuli, including one voice recording and one muted dynamic video or static 

image, one after the other. Half of the pairs featured the same identity, the other half 

featured two different identities. The order of modalities was counterbalanced and 

participants were cued as to whether the current trial would start with a voice recording 

or a muted video. After the stimulus presentation, participants were then prompted to 

judge whether the two stimuli showed the same person or two different people via a 

mouse click on response buttons labelled “Same Person” and “Different Person”, 

respectively (see Figure 2). Before completing the main task, participants completed 

three practice trials to familiarise themselves with the task. In the main task, we 
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furthermore included 12 vigilance trials (see exclusion criteria) at random intervals. In 

these vigilance trials, participants were either asked via text appearing on the screen 

to “please follow the instruction in the audio channel” or via a voice recording to “please 

follow the instruction in the following image”. They were asked to either respond by 

clicking the ‘same person’ or ‘different person’ button. In this way, we could ensure 

that participants would attend to both modalities in every trial. In total there were 124 

trials, including the 12 vigilance trials. To counterbalance identities across the different 

pairs of identity, we made 4 versions of the task, each including different identities 

pairs for the different-identity trials (e.g. one participant would encounter ID1 paired 

with either ID2 or ID3 in the different-identity trials, while another might encounter ID1 

paired with either ID4 or ID5). Although pairings were not exhaustive, these pairings 

were created in this systematic way to ensure that as many identity pairs as possible 

were sampled in our study (across participants). The 4 versions were counterbalanced 

across participants. We furthermore ensured that the same identity was not presented 

in consecutive trials. After the main task, participants were asked to complete a brief 

questionnaire about their experience of the experiment. The data from this 

questionnaire were part of a student research project and are not analysed for the 

purpose of this paper. 
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Figure 2 Overview of the trial structure for the experiment: The upper and lower rows illustrate trials 
in which the order of stimuli was face-then-voice (‘face first’) and voice-then-face (‘voice-first’), 
respectively. 
 
 
Results 

Research Question 1: Do mouth movements contribute to accuracy in identity 

matching for faces and voices? 

 

Hypothesis 1: Dynamic information in faces leads to above chance face-voice 

matching accuracy  

Based on the previous literature (Kamachi et al., 2003; Lachs & Pisoni, 2004a; Lander 

et al., 2007), we predicted that accuracy for face-voice matching with dynamic stimuli 

showing the whole face would be above chance, while we had no specific predictions 

as to whether we would also find above-chance performance for matching of static 

faces or the remaining dynamic conditions. 

 

Mean accuracy, averages across “same identity” and “different” identity was low 

across all conditions (52%-57% accurate), which appears to be broadly in line with 

other reports in the literature. 
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Figure 3 a) Mean accuracy per participant in percent for the 4 conditions. b) Mean accuracy per 
participant in percent for the 4 conditions plotted by trial type. Chance performance is at 50% 
(dashed line). Boxes show 95% confidence intervals. * indicate p < .05 for the one-sample t-tests 
comparing accuracy against chance. Note that the accuracy is, however, not above chance in our 
exploratory analysis using GLMMs. 
 

In a confirmatory analysis, we entered each participant’s overall mean accuracy into 

one-sample t-tests against chance (50% correct) for each of the four conditions (Whole 

face (static), Whole face (dynamic), Mouth only (dynamic), Mouth occluded 

(dynamic)). These t-test showed that for all conditions, accuracy was significantly 

above chance (all ts(26) > 3.5, all ps < .003). Means per condition are plotted in Figure 

3a. Crucially, however, a shortcoming of this statistical analysis is that one-sample t-

tests cannot simultaneously account for stimulus- and participant effects (see Wells, 

Baguley, Sergeant & Dunn, 2013; Smith et al., 2016a), even though participants are 

likely to vary in their ability to match faces and voices, and some stimuli or identities 

are likely to be easier to match to one another than others. Random variance due to 

one or more of these factors may therefore affect the results of the t-tests. 

 

To account for this kind of random variation, we ran a Generalised Linear Mixed Model 

(GLMM) using the lme4 package (Bates, Mächler, Bolker & Walker, 2015) in the R 
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environment to further assess whether accuracy for these conditions is truly above 

chance, even after accounting for such random effects. In this GLMM, we entered 

condition as a fixed effect. Participant, trial type (same or different identity), the voice 

stimulus nested within identity, as well as the face stimulus nested within identity, were 

entered as random effects. Other random effects, such as presentation order (face-

first/voice-first) were not included as they led to singular fits or issues with model 

convergence. 

 

We obtained 95% confidence intervals by simulating the posterior distributions of the 

cell means in R (arm package, version 1.6; Gelman & Su, 2013) to assess whether 

accuracy was above chance. Confidence intervals for all conditions included chance 

performance (50%; all CIs [<.50; >.59]), indicating that the accuracy for all of the 

conditions is in fact not significantly different from chance.  

 

The above-chance performance found in the one-sample t-tests seems to therefore 

be largely driven by the stimulus effects accounted for by the random effects structure 

of the GLMM. These results are therefore not in line with our prediction that videos of 

dynamic faces would result in above-chance accuracy in this face-voice matching task. 

 

Hypothesis 2: Mouth movements are essential to account for an advantage of dynamic 

face-voice matching, although other parts of the face still include relevant information 

We also hypothesised that the information encoded in mouth movements drives 

differences in accuracy between the different conditions. We therefore predicted lower 

accuracy for dynamic stimuli with no information about mouth movements compared 

to dynamic stimuli including mouth movements. Given that much information about a 
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face is lost in stimuli only showing the mouth, we additionally predicted that accuracy 

would be lower for videos only showing the mouth region compared to dynamic faces 

showing the entire face. Mean accuracy per condition and trial type are plotted in 

Figure 3b. 

 

To address our predictions in a confirmatory analysis, we ran another GLMM to 

contrast accuracy for the different conditions with each other – split by trial type. Trial-

wise accuracy was the outcome variable, condition was entered as a fixed factor. We 

now also included trial type (same or different identity) and an interaction of trial type 

and condition fixed effects based on previous studies showing differences in accuracy 

varying along these two factors (Smith et al. 2016a, c; Stevenage et al., 2017). The 

random effects structure was the same as described above for the exploratory 

analysis, with only trial type having been moved into the fixed effects as it now became 

an effect of interest. This random effects structure differs from the preregistered 

random effects structure due to issues with singular fits and model convergence. 

Significance of the main effects and interactions was established via log-likelihood 

tests by dropping effects of interest from the appropriate model. For example, to test 

for the significance of the two-way interactions we dropped the interaction term from 

a model that included all main effects. 
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Table 1 Coefficients and standard errors (reported on a log-odds scale) for the GLMM for the 
analysis of the effects of condition and trial type on accuracy.1  

Predictors 
Log-

Odds 

Standard 

Error 

(Intercept) -0.28 0.09 

Main effect of Trial Type 
  

Trial Type (Same) 1.13 0.08 

Main effect of Condition 
  

Condition (Whole Face (Dynamic)) 0.65 0.11 

Condition (Mouth Only (Dynamic)) 0.34 0.11 

Condition (Mouth Occluded (Dynamic)) 0.26 0.1 

Interaction of Trial Type and Condition 
  

Trial Type (Same) * Condition (Whole Face (Dynamic)) -1.51 0.11 

Trial Type (Same) * Condition (Mouth Only (Dynamic)) -1.01 0.11 

Trial Type (Same) * Condition (Mouth Occluded (Dynamic)) -0.68 0.11  

 

The model output is shown in Table 1. We found a significant interaction between 

condition and trial type (c2[3] = 192.01, p < .001). In the presence of an interaction, 

main effects are of limited interpretability and were therefore not tested. A visual 

inspection of Figure 3a and b, however, shows that although trial type and condition 

interact, there are neither clear condition-wise advantages for dynamic relative to static 

faces, nor did occluding the mouth have an obviously detrimental effect on accuracy. 

From these analyses, we can therefore conclude that there is no evidence in our data 

that face-voice matching is driven or influenced by shared information encoded in 

mouth movements. This lack of a difference in accuracy by condition is likely linked to 

 
1 The reference category for Trial Type is the “different” trials. The reference category for Condition is 
Whole Mouth (Static).  
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our previous finding that overall accuracy was not significantly different from chance 

for any of the conditions. 

 

Although accuracy on all four conditions was no different from chance, the two-way 

interaction indicates that substantial biases in participant responses are apparent 

across trial types for some of the conditions (see Figure 4). The existing literature on 

face-voice matching has reported on the presence of similar response biases in 

relation to trial types and stimulus order (Smith et al., 2016a, 2016c; Stevenage et al., 

2017). In a set of exploratory analyses, we therefore set out to formally examine how 

participants’ responses are affected by different aspects (trial type, stimulus order) of 

our experimental design.  

 

Research Question 2: How are participants’ responses to dynamic and static faces 

affected by trial type and stimulus order? 

For the following exploratory analyses, we dropped the Mouth Only (dynamic) and 

Mouth Occluded (dynamic) conditions from our analyses, focussing on the static and 

dynamic Whole Face conditions. We did this as the Mouth Occluded and Mouth Only 

conditions were originally included to explore the effects of mouth movements on 

accuracy in face-voice matching, a question that was no longer relevant for these 

exploratory analyses. Furthermore, while accuracy was our measure of interest in the 

previous set of analyses, we now analysed the raw same/different responses per 

participant to facilitate analyses of biases. The proportion of ‘same identity’ responses 

is plotted by trial type (same/different), stimulus order (voice first/face first), and 

condition (static image/dynamic video) in Figure 3b. 
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Figure 4 Proportion of ‘same identity’ responses per participant for the dynamic and dynamic 
Whole Face conditions, split by trial type. The left-hand plot shows the data for trials where the 
voice was presented first, the right-hand plot shows the data for trials where the face was presented 
first. Boxes show 95% confidence intervals. Asterisks indicate that the proportion of ‘same identity’ 
responses is different from 0.5 
 

Exploratory analysis 1: How does participants' response behaviour relate to chance 

performance for different trial types and orders? 

We assessed the response biases by comparing the proportion of ‘same’ responses 

to 0.5 (equal proportion of ‘same identity’ and ‘different identity’ responses). For this 

purpose, we ran a no-intercept GLMM to examine the effects of stimulus order, trial 

type and condition on participants’ responses (raw ‘same’ or ‘different’ responses). We 

modelled all interactions and included the same random effects structure as described 

above. We then again obtained 95% confidence intervals by simulating the posterior 

distributions of the cell means in R. All confidence intervals including 0.5 indicate that 

participants gave a similar proportion of ‘same identity’ and ‘different identity’ 

responses for the relevant condition. 
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For static images of faces, participants are overall biased to perceive face-voice pairs 

as the same identity (see Figure 4). As would be expected for accurate matching, 

participants gave more ‘same identity’ responses for ‘same identity’ trials, for both 

stimulus orders (voice first: CIs [0.66; 0.79]; face first: CIs [0.64; 0.77]). However, for 

‘different identity’ trials there was no corresponding preference to give ‘different 

identity’ responses: For trials in which the face was presented first, ‘same identity’ and 

‘different identity’ responses were equivocal, with the confidence interval including 0.5 

(CIs [0.48; 0.63]). Intriguingly, for ‘different identity’ trials in which the voice was 

presented first, participants gave a higher proportion of ‘same identity’ response (CIs 

[0.52; 0.66]).  

 

For dynamic videos of faces a different pattern of biases emerges: Participants more 

frequently perceive face-voice pairs as different identities compared to responses for 

static faces, an effect that is particularly pronounced for trials where the voice was 

presented first. Specifically, for ‘same identity’ trials, participants’ responses were not 

significantly different from 0.5 for both stimulus orders (voice first: CIs [0.36; 0.50]; face 

first: CIs [0.49: 0.63]), indicating that ‘same identity’ and ‘different identity’ responses 

were equivocal. For ‘different identity’ trials, there were more ‘different identity’ 

responses when the voice was presented first (CIs [0.25; 0.38]), but when the face 

was presented first the ‘same identity’ and ‘different identity’ responses were equivocal 

(CIs [0.41; 0.56]). Response biases therefore appear to differ both by condition and 

stimulus order. 
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Exploratory analysis 2: How do stimulus order, trial type, and condition affect response 

behaviour? 

We ran another intercept-only GLMM with the same structure as above to explore how 

stimulus order, trial type and condition affect response behaviour. 

 

Table 2 Coefficients and standard errors (reported on a log-odds scale) for the full GLMM 

including the 3-way interaction for the analysis of the effects of condition, trial type, and order on 

response behaviour.2  

Predictors 
Log-

Odds 

Standard 

Error 

(Intercept) 0.4 0.16 

Main effect of Trial Type 
  

Trial Type (Same) 0.58 0.12 

Main effect of Condition 
  

Condition (Whole Face (Dynamic)) -1.18 0.22 

Main effect of Order 
  

Order (Face First) -0.17 0.12 

Interaction of Trial Type and Condition 
  

Trial Type (Same) * Condition (Whole Face (Dynamic)) -0.08 0.17 

Interaction of Trial Type and Order 
  

Trial Type (Same) * Order (Face First) 0.06 0.17 

Interaction of Condition and Order 
  

Condition (Whole Face (Dynamic)) * Order (Face First) 0.89 0.17 

Interaction of Trial Type, Condition, and Order 
  

Trial Type (Same) * Condition (Whole Face (Dynamic)) * Order (Face First) -0.26 0.24 

 

 
2 The reference category is ‘different identity’ trials for Trial Type, Whole Mouth (Static) for Condition, 
and Voice First for Order.  
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Neither the three-way interaction (c2[1] = 1.17, p = .280), nor the two-way interaction 

of trial type and condition (c2[1] = 3.49, p = .067), nor the two-way interaction of trial 

type and order (c2[1] = .305, p = .581) were significant. There was, however, a 

significant two-way interaction for condition and stimulus order (c2[1] = 42.46, p < 

.001). This interaction can be explained by the findings from Exploratory Analysis 1 

above: Dynamic face-voice pairs are more often perceived as different identities when 

the voice is presented first. In contrast, participants’ bias to respond ‘same identity’ for 

static faces is largely independent of the stimulus order 

 

Since trial type did not interact with any of the remaining factors, we also tested for 

this main effect. This showed that, despite the overall chance-level performance, 

participants indeed gave more ‘same identity’ responses for trials that included the 

same identity than for ‘different identity’ trials (c2 = 73.33, p < .001).  

 

Discussion 

In this study, we used a same-different face-voice matching paradigm to address two 

main hypotheses. First, we aimed to test whether accuracy for face-voice matching 

would be above chance for dynamic faces in a same-different task. Second, we tested 

the proposal that dynamic face-voice matching might be explained, partly or in full, by 

the perception and integration of articulatory cues across the two modalities. However, 

the matching accuracy analysis revealed no evidence for above-chance performance 

in any of the conditions, nor did we find any differences in accuracy between 

conditions. We therefore do not replicate the frequently reported above-chance 

accuracy for dynamic face-voice matching (Kamachi et al., 2013; Lachs & Pisoni, 
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2004a; Smith et al., 2016a, b) and were therefore not able to directly explore whether 

mouth movements can explain such an advantage. Nevertheless, our overall results 

provide important insights into the cognitive processes underpinning face-voice 

matching decisions.  

 

In follow-up exploratory analyses of response biases – specifically, the probability of 

participants responding ‘same’ to face-voice pairings across condition, trial type, and 

stimulus order – we found evidence for differential response biases when face stimuli 

were dynamic versus static. These response biases indicate that participants were by 

no means making random matching decisions, as may be concluded from the chance-

level accuracy. Participants’ responses were systematically affected by aspects of the 

experimental design. Overall, our findings therefore suggest that humans struggle to 

accurately map identity representations between unfamiliar face and voice stimuli, but 

that their decision-making is affected systematically by task and stimulus properties. 

 

Face-voice matching accuracy 

Our finding that participants cannot match identity across (dynamic or static) faces and 

voices with above-chance accuracy partially conflicts with the extant literature. We 

note, however, that the current study differs from previous work in several key ways, 

which may explain these discrepant results. We implemented a number of design and 

analysis choices to support and focus in on the detection of face-voice matching ability 

within a tightly controlled experiment. To this end: 1) We used a larger number of trials 

and identities than some of the previous studies to test the generalisability of matching 

performance; 2) We minimised identity cues extraneous to the face by masking out of 

hair and other non-facial features, as well as standardising the size and position of 
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images onscreen; 3) We modelled aspects of the design as random effects in our 

statistical analyses (see also Wells et al., 2013; Smith et al., 2016a). Crucially, simple 

t-tests indicated that face-voice matching accuracy in our study was above chance 

level. However, when modelling random effects of participant, identity, and stimulus to 

avoid Type 1 error inflation (Baguley, 2012; Clark, 1973; Judd, Westfall, & Kenny, 

2012), confidence intervals for accuracy crossed chance-level performance in all 

conditions. Previous work has shown that accuracy on face-voice matching varies 

substantially depending on the talker identity or specific stimuli (Mavica & Barenholz, 

2003; Smith et al., 2016a, 2016b, 2016c; Stevenage et al., 2017). Taking this 

observation and our findings together, we suggest that some studies reporting above-

chance accuracy may indeed be strongly influenced by stimulus effects (although we 

do not rule out that other design and stimulus choices may affect accuracy). Thus, 

while there may be diagnostic cues to identity that are perceptible across modalities 

for some talkers, this does not appear to be the case for all identities. While previous 

studies have accounted for such stimulus variability in their statistical analyses and 

have observed above-chance face-voice matching accuracy (Smith et al., 2016a, 

2016b), issues relating to stimulus variability are still likely to account for the 

discrepancy with our set of results: We used a larger set of stimuli and implemented 

substantially more trials than Smith et al. (2016a, 2016b).  

 

The effect of stimulus variability is unsurprising: Studies that have attempted to 

pinpoint salient visual and auditory identity cues have reported that the weight of these 

cues might vary across perceivers and listening/viewing situations (Mathias & von 

Kriegstein, 2014; Kreiman & Sidtis, 2011; Burton, Kramer, Ritchie & Jenkins, 2016). 

For example, while cues to masculinity may be correlated across the face and voice 
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(Smith et al., 2016a), these might only support face-voice matching in more extreme 

cases (e.g. a voice with very low pitch is likely to match a face with a pronounced brow 

ridge). In contrast, identities closer to the norm in terms of masculinity might display 

less redundant information across modalities, such that there are fewer sexually 

dimorphic cues available to predict how the acoustic patterns in that person’s speech 

might map onto a view of their face. Whether or not visual cues to masculinity were 

accessible from the identities in our study, removing information about the hair and 

clothes may have removed additional cues and could thus have contributed to 

lowering accuracy to chance level, even for the dynamic videos showing the whole 

face. This may further explain why our results appear inconsistent with previous 

studies. While Mavica and Barenholtz (2012) observed above-chance static face-

voice matching with hair and clothing cues removed, their analyses did not include 

stimulus as a random effect. Descriptively speaking, accuracy was higher when hair 

and clothing were included.   

 

Response biases in face-voice matching 

Beyond our research question of the contribution of mouth movements, we found an 

interactive effect of face condition (static vs dynamic) and stimulus order (i.e. face first 

vs. voice first) on task responses, as revealed by a set of exploratory analyses. We 

found that the responses were biased towards responding ‘same’ for static trials, 

irrespective of the stimulus order. Additionally, we found responses to be equivocal or 

biased toward ‘different’ responses for dynamic stimuli. These results are broadly 

aligned with recent studies that have used a same-different procedure (Smith et al., 

2016a, 2016c; Stevenage et al., 2017) to explore response biases in face-voice 

matching. The results of Smith et al. (2016a) point to an overall bias to respond ‘same’ 
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in sequential same-different tasks, with participants reported to be more accurate at 

detecting a ‘match’ than a ‘mismatch’ for both dynamic and static faces. Similarly, 

Stevenage et al. (2017) applied a signal detection analysis to simultaneous same-

different judgements from a static face-voice matching task, also revealing a significant 

bias to respond ‘same’. Furthermore, previous same-different face-voice matching 

tasks report effects of stimulus order: Accuracy has been reported to differ according 

to order, with results suggesting that the bias to respond ‘same’ is most pronounced 

when the face is presented before the voice (Smith et al., 2016a, 2016c). 

 

We speculate that these response biases can illuminate how information from faces 

and voices interact during identity perception. While face and voice perception might 

be integrated processes, they are not identical (Stevenage & Neil, 2014): Voice 

perception contributes more to speech analysis, and face perception arguably 

contributes more to identity analysis (see Young et al., 2020). On this basis, how may 

our observed interaction between condition and order relate to the varying functional 

role of faces and voices in everyday life, as described by Young et al. (2020)? Identity 

perception accuracy is higher for faces than voices (Hanley & Damjanovic, 2009; 

Stevenage, Howland, & Tippelt, 2011). This has been proposed to be because of 

differential link strength in the face and voice perception pathways (Damjanovic & 

Hanley, 2007; Stevenage, Hugill, & Lewis, 2012), and because mental representations 

of voice identity are weakly encoded in comparison to face identity (Stevenage et al., 

2011; Stevenage, Neil, Barlow, Dyson, Eaton-Brown & Parsons, 2013). In a same-

different matching task, if we rely on the face to indicate identity, then identity 

representations perceived from the accompanying voice might be ill-formed and non-

specific. A voice might therefore be typically accepted as coming from the same 
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identity as the face if identity information rather than speech information is being used 

to inform the matching decision.  

 

In keeping with this explanation, the bias to respond ‘same’ was only apparent when 

participants viewed static faces in our study. When responding to a voice followed by 

a dynamic face, participants exhibited a bias to respond ‘different’. While voices are 

relatively weak signals to identity, they provide reliable speech information, and thus 

share a role with dynamic articulating faces. The additional information provided by 

dynamic compared to static faces influences the direction of the bias: It enables 

participants to use speech information to inform their decision, increasing the 

specificity and utility of the voice representation. This perhaps makes participants 

believe that they now have sufficient information to inform a ‘mismatch’ decision.  

 

We suggest that some part of what is observed here could be partially driven by 

linguistic cues, despite participants being told that the linguistic content of the 

sentences does not matter. In our study, each sentence used in the experiment was 

unique and thus the linguistic content was never matched across the face and voice 

stimuli within a trial. Speech is readily comprehensible from audio clips, yet – for 

hearing participants – it is minimally intelligible from silent videos. Consequently, when 

hearing a voice first, the participant perceives a highly intelligible sentence that can in 

principle be compared with the movements on the lips in the following video. When 

the face produces a different sentence, and in the absence of the ability to integrate 

(non-speech) identity cues across modalities, the participant may be more inclined to 

give a ‘different identity’ response. This bias would, in contrast, be less pronounced 

for face-first trials where visual speech cues are less reliable and hence less 
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constraining, and altogether absent for static images where speech cues were not 

present. Although participants were made aware that sentences did not repeat, and 

thus matching the linguistic content was not an appropriate strategy, they may well 

have allowed this to influence their decisions. Furthermore, we also do not claim that 

participants were using speech cues to build accurate perceptual models of a talker’s 

identity: Our analyses of overall accuracy show clearly that participants showed no 

above-chance accuracy, whether the mouth dynamics were visible or not. Whether 

linguistic or speech movement related cues can indeed modulate participants’ 

response biases could be empirically addressed in future work: For example, 

participants could be instructed to either pay attention to the linguistic speech content 

of the voice stimuli or could be asked to ignore it (as was the case in this experiment). 

If each sentence used in the study is unique, such that the linguistic content is different 

between the voice and dynamic face stimulus, response biases to say ‘different’ 

should be exaggerated for the condition when participants are encouraged to process 

the speech. Similarly, if a condition was introduced in which the sentences used for 

the face and voice stimuli are linguistically the same, then response biases to say 

‘same’ should be exaggerated in the condition in which participants are encouraged 

to process speech. 

 

Conclusion 

In sum, our data suggest that accurate face-voice matching of unfamiliar identities may 

not be possible at all times. However, this does not mean that face-voice matching is 

impossible under all circumstances – several reports of above-chance performance 

for dynamic face-voice matching exist in the literature (e.g. Kamachi et al., 2013; Lachs 

& Pisoni, 2004a; Smith et al., 2016a, b). We would argue that our results suggest that 
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this ability is likely to be weak and not generalisable across all identities. Our results 

also indicate that even though speech cues are shared across both modalities, they 

are not used effectively to inform face-voice matching decisions. Nevertheless, we 

present evidence that face and voice processing do interact: Intriguingly, our results 

suggest that despite chance-level performance, participant responses are far from 

random. We reveal significant differences in how people attempt face-voice matching 

across different conditions through an analysis of response bias. While people might 

infer information about one modality from the other, the information is not necessarily 

reliable or accurate when the face and voice are presented in isolation.  

 

Declarations 

Funding: This work was supported by a Research Leadership Award from the 

Leverhulme Trust (RL-2016-013) awarded to Carolyn McGettigan. 

Conflicts of interest: None 

Ethics approval: Ethical approval was obtained from the local ethics committee, see 
Methods. 

Consent to participate: Participants consented to participate prior to taking part in 
the study, see Methods. 

Consent for publication: Participants consented to their data being used in 
publications prior to taking part in the study, see Methods. 

Availability of data and materials: Data and materials are available from the 
researchers upon reasonable request. 

Code availability: Analysis code is available from the authors upon reasonable 
request. 

Authors' contributions: CM, NL and LJ designed the study, LJ collected the data, 
NL and HS analysed the data, CM, NL and HS drafted the paper. 

Open Practices: The study was preregistered on the Open Science Framework 9 

(https://osf.io/4g25r). 



Mouth movements and face-voice matching 

 29 

References 

Anwyl-Irvine, A., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. (2018). Gorilla 

in our Midst: An online behavioral experiment builder. Behavioural Research 

Methods. 52(1), 388–407. https://doi.org/10.3758/s13428-019-01237-x 

Baguley, T. (2012). Calculating and graphing within-subject confidence intervals for 

ANOVA. Behavior Research Methods, 44, 158–175. 

https://doi.org/10.3758/s13428-011-0123-7 

Bates, D., Maechler, M., Bolker, B., Walker, S., & Haubo Bojesen Christensen, R. 

(2015). lme4: Linear mixed-effects models using Eigen and S4. 

Belin, P. (2017). Similarities in face and voice cerebral processing. Visual 

Cognition, 25(4-6), 658-665. https://doi.org/10.1080/13506285.2017.1339156 

Belin, P., Fecteau, S., & Bedard, C. (2004). Thinking the voice: Neural correlates of 

voice perception. Trends in Cognitive Sciences, 8(3), 129-135. 

https://doi.org/10.1016/j.tics.2004.01.008 

Burton, A. M., Kramer, R. S., Ritchie, K. L., & Jenkins, R. (2016). Identity from 

variation: Representations of faces derived from multiple instances. Cognitive 

Science, 40(1), 202-223. https://doi.org/10.1111/cogs.12231 

Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language 

statistics in psychological research. Journal of Verbal Learning and Verbal 

Behavior, 12, 335–359. https://doi.org/10.1016/S0022- 5371(73)80014-3 

Collins, S. A., & Missing, C. (2003). Vocal and visual attractiveness are related in 

women. Animal Behaviour, 65, 997–1004. 

https://doi.org/10.1006/anbe.2003.2123 

Cooke, M., Barker, J., Cunningham, S., & Shao, X. (2006). An audiovisual corpus for 

speech perception and automatic speech recognition. The Journal of the 



Mouth movements and face-voice matching 

 30 

Acoustical Society of America, 120, 2421–2424. 

https://doi.org/10.1121/1.2229005 

Damjanovic, L., & Hanley, J. R. (2007). Recalling episodic and semantic information 

about famous faces and voices. Memory & Cognition, 35(6), 1205-1210. 

https://doi.org/10.3758/bf03193594 

Gelman, A., & Su, Y. S. (2013). Arm: data analysis using regression and 

multilevel/hierarchical models. R package version 1.8–6.  

Hanley, J. R., & Damjanovic, L. (2009). It is more difficult to retrieve a familiar person's 

name and occupation from their voice than from their blurred 

face. Memory, 17(8), 830-839. https://doi.org/10.1080/09658210903264175 

Huestegge, S. M. (2019). Matching unfamiliar voices to static and dynamic faces: No 

evidence for a dynamic face advantage in a simultaneous presentation 

paradigm. Frontiers in Psychology, 10, 1957. 

https://doi.org/10.3389/fpsyg.2019.01957 

Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in 

social psychology: A new and comprehensive solution to a pervasive but largely 

ignored problem. Journal of Personality and Social Psychology, 103, 54-69. 

https://doi.org/10.1037/ a0028347 

Kamachi, M., Hill, H., Lander, K., & Vatikiotis-Bateson, E. (2003). Putting the face to 

the voice: Matching identity across modality. Current Biology, 13, 1709–1714. 

https://doi.org/10.1016/j.cub.2003.09.005 

Krauss, R. M., Freyberg, R., & Morsella, E. (2002). Inferring speakers’ physical 

attributes from their voices. Journal of Experimental Social Psychology, 38, 

618–625. https://doi.org/10.1016/S0022-1031(02) 00510-3 



Mouth movements and face-voice matching 

 31 

Lachs, L., & Pisoni, D. B. (2004a). Crossmodal source identification in speech 

perception. Ecological Psychology, 16, 159–187. https://doi.org/10. 

1207/s15326969eco1603_1 

Lander, K., Bruce, V., & Hill, H. (2001). Evaluating the effectiveness of pixelation and 

blurring on masking the identity of familiar faces. Applied Cognitive Psychology: 

The Official Journal of the Society for Applied Research in Memory and 

Cognition, 15(1), 101-116. https://doi.org/10.1002/1099-

0720(200101/02)15:1<101::AID-ACP697>3.0.CO;2-7 

Lander, K., Hill, H., Kamachi, M., & Vatikiotis-Bateson, E. (2007). It’s not what you say 

but the way you say it: Matching faces and voices. Journal of Experimental 

Psychology: Human Perception and Performance, 33, 905–914. 

https://doi.org/10.1037/0096-1523.33.4.905 

Mathias, S. R., & von Kriegstein, K. (2014). How do we recognise who is 

speaking?. Frontiers in Bioscience, 6, 92-109. https://doi.org/10.2741/s417 

Mavica, L. W., & Barenholtz, E. (2013). Matching voice and face identity from static 

images. Journal of Experimental Psychology: Human Perception and 

Performance, 39, 307–312. https://doi.org/10.1037/ a0030945 

McGettigan, C., Faulkner, A., Altarelli, I., Obleser, J., Baverstock, H., & Scott, S. K. 

(2012). Speech comprehension aided by multiple modalities: behavioural and 

neural interactions. Neuropsychologia, 50(5), 762-776. 

https://doi.org/10.1016/j.neuropsychologia.2012.01.010 

Saxton, T. K., Caryl, P. G., & Roberts, C. S. (2006). Vocal and facial attractiveness 

judgments of children, adolescents and adults: The ontogeny of mate 

choice. Ethology, 112, 1179–1185. https://doi.org/10.1111/j.1439-

0310.2006.01278.x  



Mouth movements and face-voice matching 

 32 

Smith, H. M. J., Dunn, A. K., Baguley, T., & Stacey, P. C. (2016a). Concordant cues 

in faces and voices: Testing the backup signal hypothesis. Evolutionary 

Psychology, 14(1), 1474704916630317. 

https://doi.org/10.1177/1474704916630317 

Smith, H. M. J., Dunn, A. K., Baguley, T., & Stacey, P. C. (2016b). Matching novel face 

and voice identity using static and dynamic facial images. Attention, Perception, 

& Psychophysics, 78(3), 868-879. https://doi.org/10.3758/s13414-015-1045-8 

Smith, H. M. J., Dunn, A. K., Baguley, T., & Stacey, P. C. (2016c). The effect of 

inserting an inter-stimulus interval in face–voice matching tasks. Quarterly 

Journal of Experimental Psychology, 71(2), 424-434. 

https://doi.org/10.1080/17470218.2016.1253758 

Stevenage, S. V., Hamlin, I., & Ford, B. (2017). Distinctiveness helps when matching 

static faces and voices. Journal of Cognitive Psychology, 29(3), 289-304. 

https://doi.org/10.1080/20445911.2016.1272605 

Stevenage, S. V., Howland, A., & Tippelt, A. (2011). Interference in eyewitness and 

earwitness recognition. Applied Cognitive Psychology, 25(1), 112-118. 

https://doi.org/10.1002/acp.1649 

Stevenage, S. V., Hugill, A. R., & Lewis, H. G. (2012). Integrating voice recognition 

into models of person perception. Journal of Cognitive Psychology, 24(4), 409-

419. https://doi.org/10.1080/20445911.2011.642859 

Stevenage, S. V., & Neil, G. J. (2014). Hearing faces and seeing voices: The 

integration and interaction of face and voice processing. Psychologica 

Belgica, 54(3), 266-281. http://dx.doi.org/10.5334/pb.ar 



Mouth movements and face-voice matching 

 33 

Stevenage, S. V., Neil, G. J., Barlow, J., Dyson, A., Eaton-Brown, C., & Parsons, B. 

(2013). The effect of distraction on face and voice recognition. Psychological 

Research, 77(2), 167-175.  https://doi.org/10.1007/s00426-012-0450-z 

Wells, T., Baguley, T., Sergeant, M., & Dunn, A. (2013). Perceptions of human 

attractiveness comprising face and voice cues. Archives of Sexual 

Behavior, 42(5), 805-811. https://doi.org/10.1007/s10508-012-0054-0 

Woods, K. J., Siegel, M. H., Traer, J., & McDermott, J. H. (2017). Headphone 

screening to facilitate web-based auditory experiments. Attention, Perception, 

and Psychophysics, 79, 2064–2072. https://doi.org/10.3758/s13414-017-1361- 

2 

Yehia, H. C., Kuratate, T., & Vatikiotis-Bateson, E. (2002). Linking facial animation, 

head motion and speech acoustics. Journal of Phonetics, 30(3), 555-568. 

https://doi.org/10.1006/jpho.2002.0165 

Young, A. W., Frühholz, S., & Schweinberger, S. R. (2020). Face and voice 

perception: Understanding commonalities and differences. Trends in Cognitive 

Sciences, 24(5), 398-410. https://doi.org/10.1016/j.tics.2020.02.001 

 
 


