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Abstract: 

A numerical analysis on the thermo-natural convection as well as entropy generation of 

Al2O3-H2O nanofluid enclosed by two circular cylinders in the presence of magnetic fields 

was performed. The internal hot cylinder is fitted with rectangular fins of different lengths. 

Irreversibilities related to the thermo-effects, friction effects, magnetic effects were 

considered. FEM was selected as the solving method. Results described the impact of active 

parameters on the thermo-natural convective flow and heat transfer behaviour as well as 

entropy generation characteristics. In addition, a basic economic analysis has been proposed 

to consider the cost of nanofluids in comparison to their contribution in enhancing the heat 

transfer rate. 

Keywords: Thermo-Economic Analysis, Nanofluids; Fins, Magnetic natural convection; 

FEM; Entropy generation. 

1. Introduction 

In several thermal devices and equipment, thermo-natural convection is one of the vital heat 

transfer mechanisms. Many external and internal factors affect thermo-natural convection. 

Therefore, to ameliorate the performance of these devices, various variables need to be 

explored for optimizing heat transfer and reducing energy consumption. A key disadvantage 

of the thermal efficiency of thermal devices is considered to be the low thermal conductivity 

of common heat transfer liquids like water, ethylene glycol, oil, etc. A revolutionary 

technique for optimizing thermal transmission using nanomaterials suspended in a base 

liquid, referred as nanofluid, has been largely examined in recent years with respect to heat 

transfer improvement. Also, the presence of a magnetic field in the thermo-natural convection 

process, commonly called Magneto-hydrodynamics (MHD), is also a very influential external 

factor. The study of thermo-natural convective flows of nanofluids in the presence of 



 
 

magnetic field has generated considerable interest which resulted in a large number of studies 

due to its use in a number of technological applications especially since nanofluids have the 

characteristics of magnetic properties and fluid simultaneously [1–10]. Besides, the perusal of 

natural convection based on the entropy generation inspection can accurately evaluate the 

performance of thermal systems [11– 02 ]. Kashaniet al. [21] perused the entropy generation 

and thermo-natural convection of nanoliquid inside an enclosure with diverse patterns of 

vertical walls that are considered waved. Their investigations indicate that there is a reduction 

in the entropy generation by a growth in nanoparticles into base water, especially at higher 

Rayleigh numbers. Cho et al. [22] discussed the thermal efficiency and entropy production of 

thermo-natural convection in a nanoliquid-loaded U-shaped domain. The findings revealed 

that the overall heat transmission improves and the total irreversibilities decrease as the 

concentration in volume of nanoparticles increases. While the overall heat transmission and 

the total irreversibilities are both boosted as the Rayleigh values increase. In the presence of 

magnetic and heat sink/source effects in a square porous domain loaded with Alumina-water 

nanofluid, Rashad et al. [23] perused the thermo-natural convective process and entropy 

production. They conveyed that by raising the amount of Alumina nanomaterials and 

enhancing the Hartmann number, the Nusselt goes down. In comparison, the preferred 

location and length of the heat source/sink are identified respectively at 0.7 and 0.2. 

Mahmoudi et al. [24] simulated the thermo-free convection of alumina-water nanofluid-filled 

square domain. The domain is affected by an external magnetic field and regular 

generation/absorption of heat energy. Kefayati [25] performed a CFD analysis, based on the 

second law of thermodynamics, to evaluate the thermal performance of laminar thermo-

natural convective flow of a non-Newtonian nanoliquid in a square domain by considering an 

external horizontal magnetic field. Seyyedi et al. [26] performed an entropy generation-based 

analysis in magnetic thermo-convective flow of nanoliquid-filled L-shaped enclosure. They 



 
 

implemented for the first time, an economic evaluation to estimate the enclosure's thermal 

efficiency with consideration cost of used nanoparticles. The entropy generation features and 

heat transfer caused by the thermo-natural convection and of the Cu-Al2O3/water hybrid 

nanoliquid enclosed by square cavities containing various conductive elements with different 

geometries are further explored by Tayebi and Chamkha [27-28]. In these studies, they 

identified that the flow, heat transmission rate and entropy production in the hybrid 

nanoliquid is parameters dependent. Selimefendigil and Öztop [29] have considered a 

centered conductive curved solid wall and magnetic field to evaluate the thermo-natural 

convective flow and entropy generation in an oblique cavity which was loaded by a 

nanofluid. Tayebi and Öztop [30] conducted a numerical study utilizing Al2O3 -Cu/water 

hybrid nanofluid as heat transfer agent to determine entropy generation for the thermo-natural 

convective flow between two confocal elliptical cylinders. Hashemi-Tilehnoee et al. [31] 

examined via ANSYS Fluent, effects of magnetic field on thermo-natural convection and 

entropy production of Al2O3-water nanoliquid circulating within an incinerator-shaped 

porous cavity in the presence of a wavy solid wall. Thermo-effects, fluid friction, magnetic 

effects, and porous medium irreversibilities are considered. 

The key aim of this analysis is to address the irreversibility problem in MHD nanofluid flow 

within a gap among two differentially heated circular cylinders. The internal hot cylinder is 

fitted with rectangular fins that its length could be changed in size. Nonlinear PDEs are 

computed through the Finite Element Technique. Physical aspects of several influential 

variables on fluid flow features, temperature, Bejan number, and heat transmission are 

examined. Irreversibilities related to the thermo-effects, friction effects, and magnetic effects 

are considered. In addition, an economic analysis study was suggested to consider the cost of 

nanofluids in comparison to their contribution in boosting the heat transfer rate. 



 
 

2. Basic equations and problem explanation 

Thermo-natural convection of Al2O3-H2O nanoliquid within a gap among two circular 

cylinders is perused (Fig. 1). The inner hot cylinder is equipped with rectangular fins that its 

length could be changeable. Considering the impact of magnetic field, the equations ruled 

over the current problem could be mentioned as: 
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where the features for the nanofluid as function of nanoparticles’ concentration could be 

assumed as: 
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Considering the following parameters, 
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The equations ruled over the current work along with the boundary conditions could be stated 

in their non-dimensional type as: 
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The Nusselt numbers i.e. local and average along the exterior cylinder can be depicted as: 
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3. Entropy generation analysis 

Based on [26], the local entropy generation (Enlocal) in its dimensionless type considering 

magnetic field could be declared as: 
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The total entropy generation (Entotal) could be gained by: 
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V

En En   (13) 

The Bejan number (Belocal, Beave), furthermore, could be stated as follow: 
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4. A simple economic investigation 

Admittedly, adding nanoparticles to the normal fluid could boost the heat transfer rate. The 

cost of nanofluids, nevertheless, may well be ascended by ascending the volume fraction of 

nanofluid which should be considered. The total cost of nanofluid (CT) could be expressed as 

[26]: 

T Nanoparticle Base fluid otherC C C C    (15) 

where CNanoparticle, CBase-fluid, and Cother signify the cost of whole nanoparticles (€), the cost of 

base fluid, and the cost of preparing nanofluid, respectively. In this work, the latter one is 

disregarded and Cnanoparticle could be defines as: 

Nanoparticle uC m C   
(16) 

here Cu denotes the unit cost of nanoparticle (€/gr) and m indicates the mass of nanoparticles 

required for the considered cavity which could be acquired as: 

m V     (17) 



 
 

where ϕ, V, and ρ indicate the volume fraction of nanoliquid, the volume of the cavity (cm3), 

and the density of the nanoparticle (gr/cm3). In addition to this, the allocated values to the Cu 

and CBase-fluid are 2.721 €/gr (Al2O3) and 0.07076 €/dm3 [26], respectively, and since these 

values are valid for 2017 so Cu and CBase-fluid should be updated for the current year 2021 by 

considering the interest rate equals to 10%. By doing so, we have: 

Cu (2021) = 2.721 €/gr×(1+0.1)4=3.9838161 €/gr 

CBase-fluid (2021) =0.07076 €/dm3 × (1+0.1)4=0.103599716 €/dm3=0.103599716×10-3 €/cm3 

Table 2 portrays the total cost of nanofluid for diverse values of ϕ. Furthermore, Seyyedi et 

al. [26] recently introduced a criterion in order to explore the thermal performance of adding 

nanoparticles to the base fluid versus its costs that could be determined as follow: 

   
 

   
 

0%

0%

0%

0%

ave ave

ave

T T

T

Nu Nu

Nu
Cr

C C

C

 



 



 




 



 (18) 

5. Numerical validation and the methodology 

A numerical approach called finite element method is utilized to gain the solution of non-

dimensional type of equations ruled over the current problem. In addition to this, based on 

figure 2 one could observe a supreme compromise among the current result and those of 

studies done experimentally as well as numerically. 

6. Results and discussion 

In the following section, we investigate thermal, flow, entropy generation and heat transfer 

features of nanofluids filled-annulus of a double-cylinder with rectangular fins mounted to 

the surface of the inner cylinder. The simulation results which represented in terms of 

isotherms lines, stream function isolines, U- and V-velocities components isolines and Beloc. 



 
 

isolines, and profiles of Nusselt and Bejan numbers, were evaluated for disparate values of 

AR, Ha, and Ra. 

The thermal and flow features variations with respect to Hartmann and Rayleigh numbers are 

portrayed in Fig. 3. Despite the rise in buoyancy effects (Ra) and magnetic forces (Ha), 

temperatures and stream function isolines preserve the property of symmetry concerning the 

middle vertical line of the system, where two symmetrical vortices with two cores are formed 

that rotates at the same speed and in opposite directions. With the escalation of Ra and the 

decline in Ha, the intensity of the thermo-convective flow heightens. This is explicated by the 

magnitudes of stream function which are found to be ascended with Rayleigh number and 

descended with Hartmann number. With regard to the thermal behavior, with increasing Ra, 

the isotherms were gradually deformed towards the surface of the outer cylinder and found to 

be denser at the outer edges of the rectangular fins reflecting a higher local heat transfer rate 

near those zones. The distributions of the velocity components inside the annulus in Fig. 4 

reflect the flow directions and high-speed regions within the system. Positive and negative 

values confirm that the nanofluid flow is bi-cellular as seen by the streamlines. It was 

observed that the maximum values of vertical velocity (V) were reported near the surface of 

the cold cylinder downward and upwards near the inner cylinder. The maximum horizontal 

velocities, to the right or the left direction, are found at the top and bottom of the annulus 

with symmetry with respect to the midpoint of the annulus. The values of the velocity 

components increase under the action of the buoyancy forces and decrease under the action of 

the magnetic forces. This is explained by the fact that the magnetic force acts in the opposite 

direction to the buoyancy force.  

The comparison of isotherms and streamlines maps for varying Rayleigh and Hartmann 

numbers are shown in Fig. 5. It is observed that the thermo-convective flow intensity reduces 

by augmenting the size of the rectangular fins on the inner surface since the fins act to 



 
 

obstructing the circulation of the nanofluid inside the annulus. Besides, As AR reduces, we 

observe that the isotherms lines approach the inner hot surface, which increases local heat 

transfer and makes the distribution of heat transfer more uniform on the inner surface. It can 

be concluded from Fig. 6, that an increase in fin size on the hot surface mainly affects the 

vertical velocity decrease as compared to the horizontal velocity.  

Fig. 7 portrays isolines maps of local Bejan numbers for disparate values of AR, Ha, and Ra. 

The local Bejan numbers are generated from the ratio of local irreversible heat transfer to 

total local irreversibility owing to heat transfer, fluid friction, and magnetic effects. It can be 

seen that the maximum values of local Bejan numbers are found to be in regions with high-

temperature gradients and low-velocity intensity and vice versa. At the lower Rayleigh 

number, the Bejan number in the almost whole system is close to 1, which means that the 

irreversibility related to the thermal effects is predominant. Since Rayleigh acts to irritate the 

intensity of the thermo-convection and augments the velocity gradients within the system, a 

decrease in the overall Bejan number is thus noticed at high Rayleigh values suggesting that 

irreversibility thermal effects are no longer the key contributors to the total irreversibility. At 

a given Rayleigh, with increasing Hartmann the Bejan number decreases especially in zones 

with high-velocity gradients. This is due to the magnetic effects irreversibilities that are 

added to the total production of entropy. Moreover, the overall production of entropy is more 

in the system in which its inner surface is fitted with large fins. This is due to the nanofluid 

friction irreversibilities that are apparent particularly near the fins' surfaces. 

Fig. 8 shows the distribution diagram of the local heat transfer rate, which is estimated by 

local Nusselt numbers (Nuloc), along the exterior cold cylinder for disparate values of AR, Ha, 

and Ra. As can be observed, at lower Ra, the Nusselt profiles are in peaks fashion where each 

peak corresponds to the highest heat transfer rate as there is a maximum temperature gradient 

on the surface of the outer cylinder at these areas. These areas where the maximum rate of 



 
 

heat transfer has occurred are located against the prominent fins on the inner cylinder surface. 

The distribution of Nusselt numbers tends to be more uniform over the outer cylinder surface 

as AR decreases. Moreover, as the buoyancy effects increases, the heat transfer rate becomes 

more apparent in the top portion of the outer surface. The effect of magnetic forces on 

reducing heat transfer is also becoming more noticeable. We present the mean Nusselt 

number as a function of the Rayleigh number for various AR values and two separate Ha 

values in Fig. 9. We can see that Nusselt is an ascending function of Ra for a given AR value. 

For Ra<104, the Nusselt number is less sensitive to the variation of Ra. This sensitivity 

increases with the increase in the Ra number. Hartmann's influence on the Nusselt number 

soars with growing Rayleigh. The highest average heat transfer rate was for the higher values 

of the fins protruding from the inner cylinder surface. This is attributed to the enhancement in 

the heat exchange surface by an increasing AR. The profiles of average Bejan numbers, in 

Fig. 9, indicate that the contribution of the irreversibilities due to the thermo-effects to the 

overall irreversibility inside the system is more prominent for lower Ra. Also, the magnetic 

field tends to augment these thermo-effects irreversibilities contribution. 

To assess the cost of using the nanofluid to improve heat transfer in the system, Fig. 10 

shows the variation of the ratio of the heat transfer enhancement by using nanofluid versus 

the increment in the cost of the mixture according to the solid volume fraction (0.01, 0.02, 

0.03, 0.04) for Ha= 0 and Ha=40 at Ra= 105 where convection is the predominant heat 

transfer mechanism. From this figure, it is predicted that while the value of Cr decreases with 

increasing the nanoparticles volume fraction in the absence of the magnetic field (Ha=0), it 

tends to increases as  increases for the case of Ha=40. This means that improving the 

thermal transfer enhancement in the case of the presence of magnetic forces is more costly, 

and the reason is that the magnetic field plays an opposite role in improving the heat transfer 

rate within the cavity. 



 
 

7. Conclusion 

MHD-Thermo-natural convection and entropy generation analysis in a gap between two 

circular cylinders in which the internal hot cylinder is equipped with rectangular fins were 

evaluated numerically. The results described the impact of active parameters on the 

behaviour of thermo-natural convective flow and heat transfer, as well as the features of 

entropy generation in the annulus. In addition, a basic economic analysis has been proposed 

to consider the cost of nanofluids compared to their contribution to enhancing the rate of heat 

transfer. The key results of the numerical analysis can be briefed as follows: 

- The magnitude of thermo-natural convective motion is found to be increased with the 

Rayleigh number and decreased with the Hartmann number and the size of the 

rectangular fins. 

- As the size of the fins reduces, the local heat transfer distribution tends to be more 

uniform on the inner surface. 

- A rise in the size of the fins on the hot surface mainly contributes to the decrease of 

the vertical velocity relative to the horizontal velocity. 

- For low Rayleigh numbers, the irreversibility related to the thermo-effects is 

predominant within the annulus. By augmenting Rayleigh values, the irreversibility 

due to the thermo-effects is no longer the key contributor to the overall entropy 

production. 

- The magnetic forces help to increase the thermo-effects irreversibility contribution to 

the overall irreversibilities.   

- It is found that the thermal transfer enhancement in the case of the presence of 

magnetic forces is more costly in terms of nanofluids, and the reason is that the 

magnetic field plays an opposite role in improving the heat transfer rate within the 

cavity. 



 
 

Table 1: Thermo-physical specifications of H2O and Al2O3 

  /  pC J kg K   3/kg m   /  k W m K  

Al2O3 765 3970 40 

H2O 4179 997.1 0.613 

 

 

Table 2: CT for diverse values of ϕ 

ϕ CNanoparticle (€) CBase-fluid (€) CT (€) 

0.00 0 0.065 0.065 

0.01 99.235 0.065 99.300 

0.02 198.471 0.065 198.536 

0.03 297.706 0.065 297.771 

0.04 396.942 0.065 397.007 

 

 

 

Table 3: Impact of ϕ on Nuave. 

Ra ϕ Nuave. 

103 
0.01 3.245291 

0.04 3.615988 

104 
0.01 3.253477 

0.04 3.620284 

105 
0.01 3.778663 

0.04 3.954019 

 

 

 

 



 
 

 

Fig. 1. Geometry of current work 

 

 

 

 

 



 
 

 

Fig. 2. Validation of current outcome with experimental data [32] and numerical result [33] 
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Fig. 3. Isotherms and streamlines for disparate amounts of Ha as well as Ra when AR=0.15 
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Fig. 4. Velocities (U,V) for disparate amounts of Ha as well as Ra when AR=0.15 
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Fig. 5. Isotherms and streamlines for disparate amounts of AR at various Ra 
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Fig. 6. Velocities (U,V) for disparate values of AR at various Ra 
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 Fig. 7. Beloc for for disparate values of AR, Ha, and Ra 
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Fig. 8. Nuloc for disparate values of AR, Ha, and Ra 
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Fig. 9. Nuave and Beave for for disparate values of AR, Ha, and Ra 
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Fig. 10. Cr for for disparate values of ϕ and Ha at Ra=105 
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