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In natural ecosystems, the efficiency of energy transfer from resources to consumers de-19

termines the biomass structure of food webs. As a general rule, about 10% of the energy20

produced in one trophic level makes it up to the next1–3. Recent theory suggests this energy21

transfer could be further constrained if rising temperatures increase metabolic growth22

costs4, although experimental confirmation in whole ecosystems is lacking. We quantified23

nitrogen transfer efficiency (a proxy for overall energy transfer) in freshwater plankton in24

artificial ponds exposed to 7 years of experimental warming. We provide the first direct25

experimental evidence that, relative to ambient conditions, 4˚C of warming can decrease26

trophic transfer efficiency by up to 56%. In addition, both phytoplankton and zooplank-27

ton biomass were lower in the warmed ponds, indicating major shifts in energy uptake,28

transformation and transfer5,6. These new findings reconcile observed warming-driven29

changes in individual-level growth costs and carbon-use efficiency across diverse taxa4,7–1030

with increases in the ratio of total respiration to gross primary production at the ecosystem31

level11–13. Our results imply that an increasing proportion of the carbon fixed by photo-32

synthesis will be lost to the atmosphere as the planet warms, impairing energy flux through33

food chains, with negative implications for larger consumers and the functioning of entire34

ecosystems.35

Energy transfer efficiency between trophic levels has been recognised as a key determinant36

of how biomass is distributed in ecosystems for more than a century1–3,14–17. More efficient37

energy transfer across short food chains can lead to higher standing biomass of upper trophic38

levels: for example, inverted biomass pyramids are often seen in aquatic food webs18,19, where39

consumer stocks outweigh those of the smaller producers, with much higher biomass turnover40

rates than their animal consumers. At the other extreme, inefficient energy transfer via long41

food chains can explain the relatively low biomass of apex predators in other ecosystems16,20,21.42

Understanding how rising temperaturesmight alter the efficiency of energy transfer through food43

chains22,23 is therefore critical for predicting how ecosystem structure and function will respond44

to global warming as well as for assessing impacts on commercially important apex predators,45

which are already under threat from a multitude of other stressors24.46

Multiple studies suggest that elevated temperatures decrease the carbon-use efficiency or in-47

crease growth costs for individuals4,7–10 and recent theory demonstrates how higher growth48
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costs could reduce energy transfer efficiency through food chains4. Although a handful of stud-49

ies have indirectly inferred that rising temperatures may be linked to declines in energy transfer50

efficiency in different systems22,23,25, direct experimental measurements have remained elusive.51

We established an outdoor, still-water mesocosm experiment in 200517 to address this gap, us-52

ing twenty 1 m3 artificial ponds, half of which have been warmed by 4˚C (e.g. in line with53

IPCC Scenario A1B26) above ambient temperature since September 2006 (Extended Data Fig.54

1). These ponds have been open to natural dispersal and colonisation from the regional species55

pool for hundreds of generations and have well-established, diverse communities27, allowing us56

to explore how warming alters ecological and evolutionary dynamics in whole ecosystems. In57

2013, after 7 years of warming, we carried out a 15N isotope tracer experiment28 to track how58

long-term warming had altered the trophic transfer efficiency between phytoplankton and their59

zooplankton consumers.60

On the 16th July 2013, we added a trace amount (980 µmol) of K15NO3—hereafter the 15N-61

tracer—to sixteen ponds over the course of 24 hours (Extended Data Fig. 1). The experiment62

was designed to trace the natural incorporation of nitrogen over time, but without perturbing the63

system by inducing a phytoplankton bloom due to an artificial fertilisation effect. The addition64

of the 15N-tracer had no detectable influence on the concentration of total dissolved inorganic65

nitrogen, nor did it affect the daytime CO2 influx to the ponds through net primary production66

(see Methods, Extended Data Figs. 2,3, Supplementary Table S1, Supplementary Figs. S1–4).67

We quantified nitrogen transfer between phytoplankton and zooplankton as a proxy for overall68

energy transfer based on our finding that the biomass C:N ratio of both plankton groups did not69

vary systematically within each pond during the experiment (see Methods, Supplementary Fig.70

S5). Because the C:N ratio within each pond remained constant while nitrogen was being assim-71

ilated, we can conclude that carbon was assimilated proportionately, supporting the assumption72

that the efficiency of carbon and energy transfer between trophic levels can be measured by73

tracing nitrogen incorporation dynamics (see Methods). The 15N-tracer was quantified in each74

pond as 15N% (i.e. excess atom percent) relative to baseline throughout the experiment (54 days;75

see Methods).76

Using stable isotope tracers to understand material fluxes, and how they vary with environ-77

mental gradients has a rich history in ecology28–31. We adapted a one-compartment, first-order78
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absorption model previously employed to model isotope incorporation in insects29. Here, the79

dynamics of the tracer (i.e. incorporation up to the peak and decay after the peak) results from80

the balance between an absorption, κa, and an elimination, κe, rate (d-1). Specifically, the excess81

15N%, χ , realised in the biomass pool at time t can be described as82

χ(t) =
ϕκeκa(e−κet − e−κat)

κa −κe
, (1)

where ϕ (% d) is an empirical normalisation constant. We applied a Bayesian hierarchical ap-83

proach to estimate ϕ , κa, and κe for each temperature treatment (ambient vs. warmed), while84

accounting for pond-level variation (see Methods and Extended Data Fig. 4). The model cap-85

tured the 15N-tracer dynamics and revealed substantial differences between treatments for both86

phytoplankton and zooplankton (Fig. 1, Extended Data Fig. 5, Supplementary Fig. S6). Phyto-87

plankton rapidly incorporated the 15N% during the first few days of the experiment (Extended88

Data Fig. 5), whereas its uptake by the zooplankton was slower and mirrored the tracer decay89

in the phytoplankton, highlighting the close coupling of material transfer between these trophic90

levels. Both response curves were asymmetric (Fig. 1), with a faster approach to the peak than91

for the decay phase29.92

The absorption rate, κa, was unaffected by warming among the phytoplankton (ambient: median93

= 0.61; 95% credible intervals (C.I.) = 0.35–0.89; warmed: median = 0.62; 95% C.I. = 0.33–94

1.03), but was elevated among the zooplankton from thewarmed ponds (median = 0.17; 95%C.I.95

= 0.04–0.47) relative to ambient ponds (median = 0.08; 95%C.I. = 0.02–0.23; Fig. 2a, Extended96

Data Table 1). The elimination rate, κe, however, was higher in the warmed ponds for both phy-97

toplankton (ambient: median = 0.11; 95%C.I. = 0.05–0.22; warmed: median = 0.31; 95%C.I. =98

0.13–0.55) and zooplankton (ambient: median = 0.09; 95% C.I. = 0.05–0.14; warmed: median99

= 0.14; 95% C.I. = 0.06–0.26; Fig. 2b). These findings demonstrate that long-term warming100

has fundamentally altered material flux dynamics in these plankton communities. The higher101

rates of 15N absorption and elimination in the zooplankton, as well as higher rates of elimina-102

tion in the phytoplankton are consistent with faster metabolism at elevated temperatures32,33.103

Furthermore, the lack of a warming effect on the absorption rate, coupled with markedly faster104

elimination in the phytoplankton, and the substantial effects of warming on the rates of both105
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processes in the zooplankton, is also consistent with the differential temperature sensitivities106

of photosynthesis and respiration5. That is, nitrogen absorption in the phytoplankton is likely107

linked to autotrophic metabolism and growth only, while nitrogen elimination in both the phy-108

toplankton and zooplankton will also be influenced by rates of heterotrophic metabolism which109

tend to have a higher temperature sensitivity5,6,34,35.110

Equation 1 shows that at time t, the 15N-tracer present in the biomass pool will depend on the111

balance between κa and κe: i.e., there are gains and losses throughout the curve. Thus, the112

efficiency of nitrogen transfer, ε(t), is calculable as the ratio between the tracer realised in the113

biomass pool at time t relative to the entire tracer fraction that has been absorbed since day 0 up114

to t115

ε(t) =
χ(t)

ϕκe (1− e−κat)
. (2)

We can then integrate equation 2 to quantify the mean efficiency of nitrogen transfer, ε̄ , over116

the duration of the experiment, τ = 54 days:117

ε̄ =

∫ t=τ
t=0 ε(t)dt

τ
. (3)

For phytoplankton, ε̄ reflects the efficiency of nitrogen uptake from the inorganic tracer pool118

(including any recycled nitrogen through, e.g., zooplankton excretion), while for zooplankton119

it quantifies nitrogen transfer efficiency from the phytoplankton. It is important to note that120

equations 1–3 constitute a phenomenological characterisation of nitrogen incorporation dynam-121

ics and transfer efficiency in that they make no attempt to mechanistically quantify the multi-122

tude of physiological (e.g. nutrient uptake, respiration, excretion, photosynthesis), ecological123

(e.g. predation, mortality, changes in biomass and species composition) and biogeochemical124

(e.g. internal nutrient recycling) processes that ultimately influence the rates of nitrogen absorp-125

tion, elimination and transfer efficiency within the phytoplankton and zooplankton. Rather, any126

treatment effects that we observe in the model parameters κa and κe, and the efficiency ε̄ re-127

flect the emergent outcome of temperature-driven shifts in some or all of these physiological,128

ecological and biogeochemical processes.129
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We obtained posterior distributions of treatment-specific mean efficiencies of nitrogen trans-130

fer, ε̄ , based on the treatment-specific Bayesian posterior distributions of κa, κe, and ϕ . ε̄131

ranged from 10–40% on average across treatments and groups (Fig. 2d), consistent with pre-132

vious estimates from natural systems2,3. From the posterior draws of treatment-specific ε̄ , we133

also obtained a distribution of the percentage decline in ε̄ between ambient and warmed ponds,134

which was substantially reduced in the warmed ponds for both the phytoplankton (median de-135

cline = 56.4%; upper 95% C.I. = 27.5–87.8%) and zooplankton (38.1%; upper 95% C.I. = 3.6–136

81.3%) communities (Fig. 2d; Extended Data Fig. 6). A Bayesian hierarchical model, which137

accounted for repeated measures throughout the experiment, revealed that biomass was lower in138

the warmed ponds (Fig. 3) for both phytoplankton (median decline = 58.4%; 95% C.I. = 22.9–139

84.0%) and zooplankton (65.6%; 95% C.I. = 12.8–93.2%), which is consistent with reduced140

energy transfer efficiency altering the biomass pyramid17 (Extended Data Fig. 6, Supplemen-141

tary Fig. S7).142

Our findings show that the structure and functioning of the ecosystems that have emerged after 7143

years of experimental warming are characterised by markedly lower trophic transfer efficiency144

compared with those that have assembled under ambient temperature regimes. A wide range145

of interrelated and non-mutually exclusive physiological, ecological and evolutionary mecha-146

nisms could provide causative explanations for these results, but such fine-grained processes147

cannot be disentangled in a field experiment with freely assembling ecosystems of the scale148

and complexity as presented in this study. Nevertheless, a number of lines of evidence pro-149

vide important clues. For example, we have consistently observed that warming has shifted the150

phytoplankton communities towards larger species17,27,36 (Supplementary Fig. S8) that are also151

potentially less palatable to zooplankton consumers. Such a shift in the edibility of the phy-152

toplankton communities could at least partially explain the lower trophic transfer efficiency in153

the warmed ecosystems. In contrast, the metabolic balance quantifies the overall energy bal-154

ance between photosynthesis (carbon fixation) and respiration (carbon remineralisation) at the155

ecosystem scale and throughout this long-term experiment we have observed that warming has156

increased the ratio of ecosystem respiration (ER) to gross primary production (GPP)13,26 (see157

Supplementary Fig. S9). These results emphasise that despite shifts in taxonomic composition,158

the fundamental effect of warming in altering the carbonmetabolism and energy balance of these159
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ecosystems has remained consistent. Thus, whilst the structural elements of the ecosystems may160

have undergone reorganisation over time either via ecological change of the constituent taxa17,27161

or via evolutionary adaptation37, the thermodynamic impacts of warming on energy metabolism162

seem to ultimately constrain the effects of rising temperatures on ecosystem functioning. The163

findings in the present manuscript—that warming has decreased the efficiency of energy transfer164

between trophic levels—appears to encapsulate yet another manifestation of the way in which165

warming has radically altered the metabolism and energy flows in these ecosystems. Together166

this body of evidence suggests that rising temperatures alter metabolism at the organism level167

which, in turn, reduces the amount of energy that can be transferred from one trophic level to the168

next. Ultimately this means that more of the carbon fixed by photosynthesis is respired and lost169

to the atmosphere as heat and CO2 with less being retained in the ecosystem. If these findings170

are generally applicable—and there is good reason to believe they could be22,23,25,38—climate171

warming could cause major changes to the flux of energy and declines in the biomass of top-172

predators in the aquatic realm, which may impair the critical services that aquatic ecosystems173

deliver to society, including the provision of food from commercial fisheries.174
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Figure legends261

Fig. 1 | Temporal dynamics of the 15N-tracer, χ (excess 15N%), during the experiment.262

a, mean predicted curves for phytoplankton and b, zooplankton. Solid lines represent mean263

treatment-specific (ambient, blue vs. warmed, red) predicted curves which were obtained by264

fitting equation 1 to the data via a non-linear hierarchical model using a Bayesian model (see265

Methods). See Extended Data Fig. 5 and Supplementary Fig. S6 for pond-level mean model fits266

to the data and posterior predictive checks. Shaded polygons represent Bayesian 95% credible267

intervals which were calculated from 20,000 posterior draws. Silhouettes: ©Diego Barneche.268

Fig. 2 | Impacts of long-term warming on the parameters that determine 15N-tracer dy-269

namics (equation 1), and themean efficiency of nitrogen transfer (equation 3). a, absorption270

rate, κa, b, elimination rate, κe, c, empirical constant, ϕ , and d,mean efficiency of nitrogen trans-271

fer, ε̄ . Treatment-level (ambient, blue vs. warmed, red) parameter estimates (a–c) were obtained272

by fitting equation 1 to the data via a non-linear hierarchical Bayesian model (see Methods). Ef-273

ficiency (d) was calculated over τ = 54 days (duration of the experiment) based on equations274

2 and 3, using the treatment-level parameter estimates. Density polygons represent Bayesian275

99% credible intervals (C.I.) which were calculated from 20,000 posterior draws. Left panels:276

phytoplankton; right panel: zooplankton. Silhouettes: ©Diego Barneche.277

Fig. 3 | Impacts of long-term warming on plankton community biomass. Mean biomass278

estimates were calculated from ambient (blue) and warmed (red) ponds (n = 8 per treatment).279

y-axis is log-scaled. Points represent mean carbon biomass for each pond calculated over the280

entire duration of the 15N-tracer experiment (see Methods). Boxplots depict the median (mean281

line), as well as the first and third quartiles (lower and upper hinges). Error whiskers represent282

up to 1.5 times the the inter-quartile range (i.e. distance between the first and third quartiles)283

beyond the hinges. Shapes represent phytoplankton (top, circles) and zooplankton (squares,284

bottom). Silhouettes: ©Diego Barneche.285
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Methods286

Experimental set up287

Mesocosm pond facility. The facility was established in 2005 and consists of 20 artificial ponds288

of about 1m3 volume, 50 cm depth, sited in southern England (Freshwater Biological Associ-289

ation River Laboratory, East Stoke, 2˚10’W, 50˚13’N), designed to be broadly representative290

of mid-latitude shallow standing waters17. Warming of 4–5˚C above ambient began in half291

of the ponds in September 2006 by maintaining a constant differential between thermocouples292

in a pair of warmed and ambient ponds (Extended Data Fig. 1). The choice of 4˚C for the293

warmed treatment was based on the IPCC Scenario A1B for temperate regions of the Northern294

hemisphere26,39.295

The warming treatment has been continuously maintained until the present (May 2020). We296

categorise the duration of the experiment as “long-term” because it encompasses enough time297

for ecological, evolutionary and ecosystem successional dynamics to play out. Seven years (the298

duration of the experiment at the time of the tracer additions) encompasses many hundreds to299

thousands of generations for the planktonic organisms studied here. This means that the emer-300

gent outcomes we are measuring in these systems encompass both the immediate physiological301

impacts of warming, as well as the changes due to local extinctions and colonisation dynamics302

(ecological turnover) and genetic changes in the constituent taxa as they adapt (evolutionary dy-303

namics) to the new environmental conditions imposed by the experimental treatments17,27,36,37.304

Taxonomic composition. The pool of species available for initial colonisation was standardised305

at the outset by seeding all of the ponds in December 2005 with a “common garden” inoculum306

of organisms from surrounding freshwater habitats. The ponds were then left open to natu-307

ral colonisation and dispersal and now contain diverse multi-trophic communities that include308

macrophytes, macroinvertebrates40, microbes, phytoplankton and zooplankton17,27. The com-309

position and biomass structure of these communities in the warmed and ambient treatments have310

diverged substantially over the course of the experiment17,27,36 (see Supplementary Fig. S8).311

15N-tracer Experiment. The tracer experiment ran from the 10th of July 2013 to 8th of Septem-312

ber 2013. Before the 15N-tracer experiment started a representative sample of the entire commu-313

nity was collected from each of the 20 ponds. Over the course of 24 hours, starting on the 16th of314
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July 2013, 16 of the 1000 L ponds (8 warmed and 8 ambient) each received a total of 980 µmol315

of K15NO3 (98 Atom%, Sigma-Aldrich) from a 20 mmol L-1 stock solution. The 15N-tracer was316

added in 10 aliquots of 5 mL stock solution diluted in approximately 10 L of pond water trickled317

over the surface of the same pond using a watering can. Each aliquot of 15N-tracer was equiva-318

lent to ∼ 0.1 µmol 15NO –
3 L-1 in each pond to a total of ∼ 1 µmol 15NO –

3 L-1 over 24 hours.319

The across-time and across-pond means of dissolved inorganic nitrogen (DIN = NO –
2 + NO –

3320

+ NH +
4 ) was 2.87 µmol L-1 ± 0.5 (S.E.). Addition of the 15N-tracer had no discernible effect on321

the concentration of dissolved inorganic nitrogen and the daytime CO2 influx (Extended Data322

Figs. 2,3). A further 3 of the remaining ponds were not treated, but were used as controls for323

15N addition (Extended Data Fig. 7).324

The water column of the ponds was sampled using a 4 L plastic tube open at both ends, the325

tube was gently sunk through the water column until it reached the bottom and then closed on326

both ends. Duplicate samples were taken from each pond so that both open water and areas327

with macrophytes were sampled; these were then mixed and immediately taken to the on-site328

laboratory.329

In the laboratory, samples were sieved through a 50 µm nylon mesh to isolate zooplankton. The330

< 50 µm fraction was filtered through a pre-ashed Whatman GF/F filter (0.7 µm nominal pore331

size) in duplicate to isolate the phytoplankton fraction (verified by microscopy); the contents332

of each fraction was gently rinsed with clean particulate-free water to remove any excess of333

15N-tracer enriched water. The GF/F and a 30 mL sub-sample of water filtered at 0.7 µm were334

immediately frozen at -20˚C for inorganic nutrient analysis (see below), whilst the >50 µm335

fraction was re-suspended in clean water and the zooplankton kept alive at room temperature to336

allow gut evacuation and sedimentation of the debris. After a few hours, the zooplankton were337

separated from water and debris and then frozen at -20˚C.338

Samples were collected with a decreasing frequency so that 4 sets of 16 samples of each fraction339

were taken over the first 48 hours, starting from the addition of the first 15N-tracer aliquot; then340

one set per day was taken for the following three days; one set per week for the following month;341

and a final set taken a month after the last sample.342

Following the experiment, samples were analysed using a Sercon Integra 2 Isotope Ratio343

13



Mass Spectrometer (IRMS). Samples of the zooplankton fraction were quickly defrosted344

by re-suspension in ultra-pure water and all individuals were collected under a dissection345

microscope using forceps, placed directly in pre-weighted ultraclean tin caps (6 mm × 4 mm,346

Elemental Microanalysis, UK), dried (48 hours, 60˚C) and weighed on a Mettler Toledo MX5347

precision balance. Phytoplankton samples were dried to a constant weight (48 hours, 60˚C),348

and the dry weight of particulate matter on the filter used to calculate and standardise the349

sample mass for IRMS. Phytoplankton sub-samples were prepared by coring the GF/F filters350

and samples contained 14.9 µg N on average.351

Samples were assembled in batches of 60 to 100 similar sample weight and each of these batches352

were analysed by IRMS. Two types of certified reference materials were used for this analysis:353

Casein (δ 15N +5.94‰, 13.32% Nitrogen, 46.5% Carbon) and EMA (δ 15N -1.57‰, 7.46% Ni-354

trogen, 68.35% Carbon) (Elemental Microanalysis, UK). Casein was used for calibration of all355

samples. EMAwas used to confirm calibration performance. Each batch of samples analysed by356

IRMS contained a range of urea standards covering the range of sample weights in each batch:357

first, 4 samples of the same reference material, then 4 samples of non-enriched urea δ 15N ≈358

0.0‰ and finally 4 samples of enriched urea δ 15N = 1000‰.359

Data processing. For each sample, we converted the abundance of heavy nitrogen, δ 15N (‰)28,360

into atom percent, 15N%, as361

δ 15N =

[
Rs

Ra
−1

]
1000

15N% = 100
δ 15N+1000

δ 15N+1000+
(

1000
Ra

) ,
(4)

where Rs and Ra = 0.00367647 are respectively the 15N:14N ratios of the sample and the atmo-362

sphere. For each sample, we calculated excess 15N% over baseline abundance (i.e. χ in equation363

1) by subtracting the natural abundance values for each taxon, in each pond, measured 7 days364

before the addition of the K15NO3 tracer.365

CO2 and dissolved inorganic nitrogen. Daytime CO2 influx (µmol m-2 d-1) was measured366
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daily in each pond using multiplexed automatic gas flux chambers (LI8100 & LI8150, Li-Cor)367

with an infra-red gas analyser as described in ref.13. We used fluxes integrated across the day-368

light absorption phase (i.e. influx) because those encompass the period within which phyto-369

plankton are actively photosynthesising13. Dissolved inorganic nitrogen species (NO –
2 , NO –

3 ,370

NH +
4 ) were measured with a Skalar San++ continuous flow auto-analyser and standard colori-371

metric methods as described in ref.41.372

Model framework373

Model development. We adapted equation 1 in the main text from a one-compartment first-374

order absorption model which has been previously used to trace stable isotope incorporation in375

animal models29. This model can be employed to characterise either the mass, m, or concentra-376

tion, c (mass / volume), of a stable isotope in a particular compartment (e.g. phytoplankton or377

zooplankton) of interest at time t. The model is generally formulated as378

m(t) =
m0κa(e−κet − e−κat)

κa −κe

c(t) =
m0κeκa(e−κet − e−κat)

θ (κa −κe)
,

(5)

where m0 is the mass of tracer added to the ponds on time t = 0, and θ = vκe is the clearance379

rate (volume / time), with v representing the compartment biovolume. It follows from this type380

of model that the mass of the 15N-tracer, m0, will be absorbed at an exponential rate; thus, we381

can calculate the mass of the 15N-tracer that was absorbed into the compartment since time 0382

as ma(t) = m0(1− e−κat), such that ma(t)≡ m0 when t is large—this assumes that m0 is 100%383

absorbable.384

It is important to emphasise that equation 1 is a phenomenological adaptation of equation 5,385

tailored to describe the dynamics of excess 15N%, χ , observed in our experiment. As noted in386

the main text, parameters κa and κe emerge frommultiple potential physiological and ecological387

processes that cannot be disentangled with this type of experiment. Moreover, a clearance rate388

is impractical to determine because v represents the (unknown) biovolume of phytoplankton and389
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zooplankton. Therefore, in equation 1, we collapsed the ratio m0/θ into the empirical constant,390

ϕ , noting that its units (% d) are different because χ(t) in equation 1 is expressed as an excess391

atom percent rather than concentration or mass as in equation 5 above. It also follows that the392

product ϕκe is analogous to the ratio m0/v. We empirically demonstrate in the online Supple-393

mentary information how we can quantify the efficiency of 15N transfer at time t (i.e. equation394

2) using three equivalent expressions.395

Model fitting. We adopted a hierarchical model based on equation 1, which was implemented396

in a Bayesian framework using the R package rstan42 version 2.21.3 to determine posterior dis-397

tributions and associated 95% credible intervals (C.I.) for the fitted parameters (Extended Data398

Fig. 4). We fitted two models, one for each group (i.e. phyoplankton and zooplankton). Pa-399

rameters κa, κe and ϕ were sampled from m treatment-level distributions (warmed vs. ambient),400

and additional uncertainty within each of these distributions was estimated at the pond level, j401

= {1–8}, within each treatment (i.e. 8 ponds per treatment; see Extended Data Fig. 4). A series402

of transformations were adopted to improve convergence and run speed; (1) κa was estimated403

on the natural log scale, such that pond-level κa[m, j] = exp(lnκa[m]+ ln∆κa[m, j]); (2) to ensure404

the constraint κe < 1, κe was estimated using a logit transformation, κ ′
e, such that pond-level405

κe[m, j] = 1/(1+exp(−(κ ′
e[m]+∆κ ′

e[m, j]))); (3) convergence was achieved by enforcing the con-406

straint ϕ < 1 / κe (i.e. assuming θ ≪ v and κe < 1 in equation 5), hence ϕ was estimated using407

a logit transformation, ϕ ′; (4) for phytoplankton, ϕ was calculated from ϕ ′ and transformed to408

the natural log scale, such that pond-level ϕ[m, j] = exp(lnϕ[m]+∆lnϕ[m, j]); (5) for zooplankton,409

pond-level ϕ[m, j] = (1/κe[m, j])/(1+ exp(−(ϕ ′
[m]+∆ϕ ′

[m, j]))).410

We used treatment and group-agnostic, weakly informative priors (Extended Data Fig. 4; Sup-411

plementary Fig. S10) for all parameters. For the treatment-level means lnκam, κ ′
em and ϕ ′

m,412

we used N (0,1). Pond-level hierarchical deviations from treatment-level means (ln∆κa[m, j],413

∆κ ′
e[m, j], ∆lnϕ[m, j], ∆ϕ ′

[m, j]) were assumed to be normally distributed with means of 0, thus the414

treatment-level means (lnκa, κ ′
e, lnϕ , ϕ ′) are among-pond means: ln∆κa[m, j] ∼ N (0,σln∆κa),415

∆κ ′
e[m, j] ∼ N (0,σ∆κ ′

e
), ∆lnϕ[m, j] ∼ N (0,σ∆lnϕ ), ∆ϕ ′

[m, j] ∼ N (0,σ∆ϕ ′). For the hyper priors416

σln∆κa , σ∆κ ′
e
, σ∆lnϕ and σ∆ϕ ′ , we used Γ(2,0.1).417

The posterior distributions of model parameters (Extended Data Table 1) were estimated using418

Markov chain Monte Carlo (MCMC) methods by constructing four chains of 30,000 steps each,419
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with each starting at a distinct point drawn at random from the prior distributions. Most of these420

iterations (25,000) were used as a warm-up, so a total of 20,000 steps were retained to estimate421

posterior distributions (i.e. 4× (30,000 - 25,000) = 20,000). All four independent chains reached422

convergence, i.e. the Gelman-Rubin statistic43, R̂, was 1.423

Linking nitrogen to carbon and energy transfer efficiency424

We used a 15N-tracer to quantify material transfer between trophic levels in the plankton food425

web, assuming that our measurements of the efficiency of nitrogen transfer also reflect carbon426

and energy transfer between trophic levels. To verify this assumption, we first tested whether427

there were any within-pond temporal changes in C:N ratio in the ambient and warmed ponds by428

fitting a Bayesian hierarchical linear model to each group (phytoplankton and zooplankton). If429

over the duration of the 54 day experiment, which encompassed several turnovers in the short-430

lived phyto- and zooplankton communities, the C:N ratio remained constant while nitrogen was431

being assimilated, then we can conclude that carbon was being assimilated proportionately. We432

included a fixed-effect interaction between time (continuous: day) and treatment (categorical:433

ambient vs. warmed), and a pond-level random effect to account for repeated measures through-434

out the experiment. C:N ratios were calculated based on moles of carbon and nitrogen in each435

sample on each day. A time slope, βt , that is indistinguishable from 0 would be considered436

as evidence of no change in C:N ratio over the 15N-tracer experiment, and our results support437

this assumption: C:N ratio did not change over time for both phytoplankton (βt for ambient438

treatment: -0.02; Bayesian 95% C.I. = -0.08–0.03; βt for warmed treatment: -0.03; 95% C.I.439

= -0.08–0.03) or zooplankton (βt for ambient treatment: -0.01; 95% C.I. = -0.04–0.02; βt for440

warmed treatment: 0.02; 95% C.I. = -0.01–0.04). These results reflect the fact that carbon441

biomass differences between treatments (Fig. 3) mirror those of nitrogen biomass (Extended442

Data Fig. 8). Pond-level C:N ratio means are shown in Extended Data Fig. 9. Together, these443

lines of evidence support our key assumption that the assimilation and trophic transfer of nitro-444

gen can be used as a direct proxy for the assimilation and transfer of carbon and energy.445

We then tested whether there was a decline in plankton carbon biomass between ambient and446

warmed treatments (Fig. 3 in the main text) that would be consistent with a decline in the effi-447

ciency of energy transfer, by fitting a Bayesian hierarchical linear model to the biomass estimates448
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for each group. We included treatment (ambient vs. warmed) as a fixed effect, and pond as a449

random effect to account for repeated measures throughout the experiment. Biomass data were450

normalised by applying a natural-logarithm transformation. One of the samples presented an un-451

usually high carbon biomass of phytoplankton (10-fold higher than the mean; Fig. 3) and was452

therefore removed from the analysis. We used the posterior distribution of estimated parameters,453

βw (mean carbon biomass from warmed treatments) and βa (mean carbon biomass from ambi-454

ent treatments), to calculate a posterior distribution of between-treatment percentage decline for455

both groups: (1 - (βw / βa)) × 100. These distributions were overlaid on the percentage-decline456

posterior distributions obtained for the efficiency of nitrogen transfer described in the main text.457

For phytoplankton, the posterior distribution of carbon biomass % decline is virtually identical458

to that of the percentage-decline in the efficiency of nitrogen transfer. For zooplankton, there459

were subtle differences in means although the distributions overlapped over most of the range460

(Extended Data Fig. 6). These data provide clear evidence of a decline in plankton biomass461

between ambient and warmed treatments that is consistent with an impaired energy transfer462

efficiency.463

Models were fitted using the R package brms44 version 2.14.4. Priors were uninformative (brms464

default), and fitting specifications (number of chains, warm-up period) and convergence crite-465

rion are the same as described above for equation 1.466

Before-after analyses467

We ran multiple before-after analyses to test whether the addition of the tracer had a discernible468

effect on the dynamics of nitrogen incorporation in the plankton, and whether that exhibited469

any interactions with the temperature treatment. Multiple dissolved inorganic nitrogen species470

(NO –
2 , NO –

3 , NH +
4 ; Extended Data Fig. 2) as well as daytime CO2 influx (Extended Data471

Fig. 3) were used as response variables, each in a separate model. For dissolved inorganic nitro-472

gen species, measurements were compared between treatments and time periods (10th–15th July473

2013 = “before”; 17th July–06th August = “after”) which were designated relative to the addition474

of the 15N-tracer on the 16th of July 2013. For daytime CO2 influx, measurements were taken475

throughout the week “before” (9th–15th), and “after” (17th–23th) the addition of the 15N-tracer.476

We fitted the before-after model as an interaction between period (before, after) and treatment477
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(warm, ambient) using a Bayesian hierarchical approach, with pond added as an intercept-level478

random effect. The before-after model was fitted using the R package brms44 version 2.14.4.479

Priors were uninformative (brms default), and fitting specifications (number of chains, warm-480

up period) and convergence criterion are the same as described above for equation 1. The test481

revealed no discernible interaction between treatment and period for any of the dissolved inor-482

ganic nitrogen species nor daytime CO2 influx (Extended Data Figs. 2,3; Supplementary Table483

S1).484

Main model residual analysis485

We tested whether other physico-chemical properties besides temperature could be affecting the486

variability in the tracer incorporation dynamics. To do so, we first calculated the mean posterior487

observation-level residuals from our main model for each taxonomic group (i.e. phytoplankton488

and zooplankton; Fig. 1; Extended Data Fig. 5; Extended Data Table 1). Then, for each group489

separately, we employed a Bayesian hierarchical model to investigate the relationship between490

the residuals from the original model and the dissolved inorganic nitrogen species (DIN =NO –
2 ,491

NO –
3 , NH +

4 ) in the ponds. The model accounted for the repeated measurements at the pond492

level as hierarchical effects both on the intercept and slopes of DIN species. The model was493

fitted using the R package brms44 version 2.14.4. Priors were uninformative (brms default),494

and fitting specifications (number of chains, warm-up period) and convergence criterion are the495

same as described above for equation 1. Results indicate that the DIN species could not explain496

any systematic variation in our main model residuals (Supplementary Table S2; Supplementary497

Figs. S11–13). That is, the main statistical analysis in our manuscript identifies a strong, main498

effect of temperature that is not improved by adding the effect of inorganic nutrients.499

Data and Code Availability500

All data and R code (data manipulation, analyses, figures and tables) can be downloaded from501

a GitHub repository (https://github.com/dbarneche/nature20200508666). When using502

the data or code from this project, please cite it as “Barneche DR, Hulatt CJ, Dossena M, Pad-503

field D, Woodward G, Trimmer M, Yvon-Durocher G (2021) dbarneche/nature20200508666:504

Accepted version of paper data and code of manuscript: Warming impairs trophic transfer effi-505

ciency in a long-term field experiment (Nature). Zenodo. doi: 10.5281/zenodo.4468371”506
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Extended Data533

ExtendedData Table 1 | Parameter estimates from equation 1, which characterises the tem-534

poral dynamics of the 15N-tracer. Mean parameter estimates, 95% credible intervals (lower535

and upper bound), effective sample size, and Gelman-Rubin statistic43, R̂, were obtained using536

a Bayesian hierarchical model. Parameter notation and model fitting approach are described537

in subsection Model framework of Methods. “amb” = ambient temperature; “war” = warmed538

(+4˚C) relative to ambient temperature. Overall treatment- and group-level model fits are visu-539

ally depicted in Fig. 1; pond-level model fits are depicted in Extended Data Fig. 5.540
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Extended Data Figure 1 | Schematic of experimental pond set-up and 15N-tracer measure-541

ments. a, Twenty artificial ponds, with 10 warmed (red) by 4˚C above (since September 2006)542

10 ambient (blue) ponds, were paired in a randomized block design. b, Ponds were controlled543

via two temperature sensors, a heating element (HE) a thermostat (T-stat) and a solid-state relay544

(SSR). c, Timeline of experimental measurements, including quantification of baseline 15N% of545

phytoplankton and zooplankton before the addition of the K15NO3 tracer, followed by continu-546

ous sampling of excess 15N% relative to baseline on each pond. d, Dissolved oxygen saturation547

and pH did not change before and after the addition of the tracer (see ref.13 for measurement548

details). Symbols represent treatments: ambient (blue triangles) and warmed (red inverted tri-549

angles). Silhouettes: ©Diego Barneche.550

Extended Data Figure 2 | Concentration of dissolved inorganic nitrogen species in the551

ponds before and after the addition of the 15N-tracer on the 16th July 2013. Addition of552

the 15N-tracer had no discernible effect on the natural concentration of dissolved inorganic ni-553

trogen in the ponds (Supplementary Table S1). Points are treatment-level means, error bars are554

95% confidence intervals. Dashed line marks 16th July.555

Extended Data Figure 3 | Daytime CO2 influx before and after the addition of the 15N-556

tracer on the 16th July 2013. Each point represents an individual measurement within a pond557

(n = 56 measurements per treatment per period; as described in detail in ref.13). Colours refer558

to ambient (blue triangles) and warmed (red inverted triangles) ponds. “Before” measurements559

were taken daily throughout the week leading to the addition of the 15N-tracer on the 16th of July560

2013 (9th–15th), whereas “After” measurements were taken daily throughout the week following561

the addition of the tracer (17th–23th). Boxplots depict the median (mean line), as well as the562

first and third quartiles (lower and upper hinges). Error whiskers represent up to 1.5 times the563

the inter-quartile range (i.e. distance between the first and third quartiles) beyond the hinges.564

Outliers were removed from the plot for visualisation purposes only. A before-after analysis565

(see Supplementary Table S1) revealed no substantial changes in daytime CO2 influx and net566

primary production due to the addition of the 15N-tracer.567

Extended Data Figure 4 | Hierarchical model structure for the fitting of equation 1. Data,568

processes and parameters are explicitly identified, with equation 1 parameters ϕ , κa and κe569

being fitted at the treatment level with pond-level deviations. Phytoplankton and zooplankton570
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silhouettes depict whether a certain transformation or prior was used for either group or both571

(see Methods). Silhouettes: ©Diego Barneche.572

Extended Data Figure 5 | Temporal dynamics of the 15N-tracer, χ (excess 15N%), in phyto-573

plankton and zooplankton during the experiment. Dashed lines represent mean pond-level574

predictions which were obtained by fitting the data to equation 1 via a non-linear hierarchical575

Bayesian model (see Methods). Shaded polygons represent Bayesian 95% credible intervals576

which were calculated from 20,000 posterior draws. Note the sharp increase in the χ(t) in the577

first few days of the experiment, particularly when compared to baseline 15N% in the control578

ponds (Extended Data Fig. 7).579

Extended Data Figure 6 | Posterior distributions of percentage decline in carbon biomass580

(µg C L-1) and efficiency of nitrogen transfer due to long-termwarming. Distributions were581

calculated using 20,000 posterior draws which were estimated via Bayesian hierarchical linear582

models (see Methods). Positive and negative values represent percentage decline and increase583

respectively. The strong overlap between distributions corroborates the assumption that mean584

nitrogen transfer efficiency, ε̄ , as calculated from the 15N-tracer dynamics (equation 3), reflects585

the efficiency of carbon and hence energy transfer. Silhouettes: ©Diego Barneche.586

Extended Data Figure 7 | Measurements of 15N% (atom percent) in three untreated control587

ponds. Green circles represent phytoplankton (n = 5 per pond), whereas brown squares represent588

zooplankton (n = 3–5 per pond). These results are expected given that no tracer was added. The589

y-axis was kept fixed in order to compare the magnitude of change between treatments (see590

Extended Data Fig. 5) and controls. Refer to the Methods section for further explanations about591

how the data were collected.592

Extended Data Figure 8 | Impacts of long-term warming on mean nitrogen biomass. Mean593

biomass nitrogen estimates were calculated from ambient and warmed ponds. Points represent594

means calculated for the entire duration of the 15N-tracer experiment (n = 8 per treatment).595

Boxplots depict the median (mean line), as well as the first and third quartiles (lower and up-596

per hinges). Error whiskers represent up to 1.5 times the the inter-quartile range (i.e. distance597

between the first and third quartiles) beyond the hinges. Shapes represent phytoplankton (top,598

circles) and zooplankton (squares, bottom). Silhouettes: ©Diego Barneche.599
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Extended Data Figure 9 | Impacts of long-term warming on C:N ratios. Mean C:N ratios600

were calculated from ambient and warmed ponds. Points represent means calculated for the601

entire duration of the experiment (n = 8 per treatment). Boxplots depict the median (mean line),602

as well as the first and third quartiles (lower and upper hinges). Error whiskers represent up to603

1.5 times the the inter-quartile range (i.e. distance between the first and third quartiles) beyond604

the hinges. Shapes represent phytoplankton (top, circles) and zooplankton (squares, bottom).605

Silhouettes: ©Diego Barneche.606
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