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Abstract—Non-intrusive speech quality assessment is a crucial
operation in multimedia applications. The scarcity of annotated
data and the lack of a reference signal represent some of the
main challenges for designing efficient quality assessment metrics.
In this paper, we propose two multi-task models to tackle the
problems above. In the first model, we first learn a feature
representation with a degradation classifier on a large dataset.
Then we perform MOS prediction and degradation classification
simultaneously on a small dataset annotated with MOS. In the
second approach, the initial stage consists of learning features
with a deep clustering-based unsupervised feature representation
on the large dataset. Next, we perform MOS prediction and
cluster label classification simultaneously on a small dataset.
We show that the deep clustering-based model outperforms
the degradation classifier-based model and the 3 baselines (au-
toencoder features, P.563, and SRMRnorm) on TCD-VoIP and
P.Sup23 Expl. In particular, the deep clustering-based approach
shows good domain adaptation performance on P.Sup23 Expl
which consists of degradations different from those included
in the large dataset. This paper shows that multi-task learning
combined with feature representations from unlabelled data is a
promising approach to deal with the lack of large MOS annotated
datasets.

Index Terms—non-intrusive speech quality, multi-task learn-
ing, unsupervised feature representation, deep clustering

I. INTRODUCTION

Speech quality assessment is fundamental to improve users’
quality of experience (QoE) of multimedia communication
systems. Perceived audio quality is affected by several degra-
dations caused by many factors including audio codecs, net-
work conditions, speech enhancement and background noise.
The most accurate way to assess audio quality is through
subjective listening tests. For instance, in the ITU standard
P.800 [1], participants judge audio quality on a 5-point scale.
Next, the sound quality of a stimulus is measured with the
mean opinion scores (MOS) computed from several listeners.

Despite their reliability, subjective listening tests are not
always convenient given that they require a (1) substantial
number of participants; (2) they cannot be used in real-time
applications; (3) they are not suitable when large sound col-
lections have to be evaluated; (4) they can be time-consuming
and expensive.
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Objective quality metrics are a reliable replacement of
the subjective judgement in the conditions above. Objective
quality metrics can be divided into full-reference metrics,
where a reference signal is available, and non-intrusive metrics
where quality is estimated through the noisy signal only. Non-
intrusive objective metrics are preferred in scenarios where the
reference signal does not exist such as real-time applications
and real-world recordings. Traditional non-intrusive methods
include the ITU standard P.563 [2] and SRMRnorm [3]. A
more recent approach to predict audio quality is to learn a
mapping between noisy audio signals and MOS in a supervised
learning fashion. The main drawback of using supervised
learning is that a considerable amount of annotated data is
required. Annotating large datasets is a general problem in
machine learning, especially in multimedia quality assessment
where multiple recruiters are needed to annotate only one stim-
ulus. Although annotations obtained through crowdsourcing
can be as valid as a lab setting quality measures [4], [5],
annotating data is still a costly and time-consuming operation.

To overcome the scarcity of annotated data, we propose
unsupervised feature learning combined with multi-task learn-
ing. We introduce two multi-task learning techniques. In the
first approach, we optimize both degradation classification
and quality prediction simultaneously. Given the lack of large
MOS annotated datasets, we propose to initialize the multi-
task model by using the weights learned from a degradation
classifier trained on a large dataset. Unlike quality prediction,
classifying degradations can be done using large synthetic
datasets where we apply various degradations. In the second
approach, we propose a semi-supervised multi-task feature
learning model without using the degradation labels. We first
learn an unsupervised feature representation using a deep
clustering technique [6] on a large dataset where the MOS
annotations are not given. Next, we cluster a small MOS
annotated dataset using the feature representation and we use
the cluster assignments as labels for the multi-task learning
step. Our proposed approach can be especially useful in real-
world scenarios where the knowledge of the degradation is
not given and a large amount of real-world recordings is
available [7], [8].

In this paper we make the following contributions;

o We propose multi-task learning for non-intrusive speech

quality prediction using degradation classification as an
auxiliary task.



o We propose a semi-supervised multi-task feature learning
model where the labels for the auxiliary task are not
given and are being generated using an unsupervised
feature representation based on deep clustering called
deep convolutional embedded clustering (DCEC) [6], [9].

o We show that deep clustering-based feature representation
combined with multi-task learning achieves promising
performance in non-intrusive speech quality assessment
using small datasets annotated with MOS.

II. RELATED WORK AND MOTIVATION

Recently, some non-intrusive metrics with deep learning
techniques emerged. Only a few studies used large datasets
annotated with MOS [10], [11] while others relied on anno-
tations created with full-reference metrics [12]-[14] or hybrid
annotations [15]. Another group of non-intrusive metrics is
closer to our approach, in the sense that they rely on different
tasks to improve quality prediction. Ooster et al. [16] used an
automatic speech recogniser, assuming that phoneme posterior
probabilities from a neural network degrade in presence of
factors that affect speech quality. Semi-Supervised Speech
Quality Assessment (SESQA) [17] uses 5 complementary aux-
iliary tasks and 3 optimization criteria (MOS error, pairwise
ranking, and score consistency). Soni et al. [18] use a fully
connected autoencoder to learn a feature representation from a
large dataset. To the best of the authors’ knowledge, the study
of Soni et al. is the only one that learns an unsupervised feature
representation for speech quality prediction.

Multi-task learning [19] is based on training multiple tasks
simultaneously. The motivation is that sharing weights be-
tween related tasks can improve all the tasks together. In
our setting, MOS prediction is the main task and degradation
classification or cluster assignment prediction is the auxiliary
task. Multi-task learning improves generalisation and predic-
tions of both tasks if the auxiliary task is related to the main
task. Classifying degradations is a suitable auxiliary task for
speech quality prediction because; (1) Perceived audio quality
depends on the degradation [20]. The model has to learn
how a clean speech signal is degraded, which is a concept
associated with quality as well; (2) Classifying degradations
is related to quality prediction but these tasks are not iden-
tical, which is desired [21]. Indeed, two completely different
degradations might be annotated with the same MOS. Also,
using degradation information together with quality prediction
has been proposed in image quality assessment [22] and can
be transferred to speech quality assessment similarly. In the
second proposed approach, instead of relying on degradation
labels, we generate cluster labels from unsupervised feature
representations. The perceived quality of a speech signal is not
only related to the degradation and more factors are involved.
We assume that having labels that represent a semantic simi-
larity between the data points could be more meaningful than
using only degradation labels in a multi-task learning scenario.
These annotations are generated using only unlabelled data
through a deep clustering [6] technique that here we propose
as a feature learning step for speech quality prediction. It must
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Fig. 1. MTL-based model. STEP 1 consists of training a supervised degrada-
tion classifier on a large dataset. STEP 2 is a multi-task network trained on a
small MOS annotated dataset that simultaneously classifies degradations and
predicts quality scores. The model in STEP 2 is initialized with the weights
learned in STEP 1.

be noted that different clustering techniques for unsupervised
learning of features have been already employed in computer
vision [23], [24]

III. METHOD

In this section, we describe two methods for non-intrusive
speech quality assessment based on Multi-Task Learning
(MTL) and Semi-Supervised Multi-Task Learning (SEMTL).

A. Multi-Task Learning

In the MTL-based model, we train a model that performs
simultaneous learning of MOS scores and degradation type. To
tackle the lack of large MOS annotated datasets, we use the
weights learned by a degradation classifier that is trained on a
different and larger dataset. The approach is shown in Fig. 1. In
the first step, we minimize the cross-entropy L. (D, D), where
D represents the degradation class and D is the predicted
degradation type. We use a large dataset to learn a rich feature
representation so that we can reuse the weights. In the second
step, we initialize the weights from step 1 and we minimize
the multi-task loss

£t0t :Ece(DaD)+EmS€(S’ S) (1)

where S is the annotated MOS, S is the predicted score, and
Lonse is the mean squared error. This second step is carried
out on the small dataset where MOS annotations are available.



B. Semi-Supervised Multi-Task Learning

Motivation: In the SEMTL-based model, we study whether
a multi-task approach can be designed without using human-
annotated labels in either dataset. We first learn a feature
representation on the large dataset using deep convolutional
embedded clustering (DCEC) [6], [9]. The motivation behind
DCEC is that it simultaneously learns a feature representation
and clusters the data on top of the feature representation.
We use the DCEC cluster assignments as cluster labels on
the annotated MOS dataset to perform multi-task learning
without using the degradation information. The weights of
the multi-task network are initialized with DCEC, similarly
to the MTL approach above with the degradation classifier.
We believe that using cluster labels might be beneficial for
two reasons. First, the cluster assignments could represent
concepts that are more complex than a degradation label. A
speech signal is characterised by many factors which include
rhythm, pitch, timbre and linguistic content. These factors
are poorly represented by a degradation label. Instead, the
cluster labels might represent a high-level semantic similarity
between the data points and as a consequence classification
of such cluster labels can be seen as a useful auxiliary task.
Secondly, when transferring the weights from DCEC we might
deteriorate the feature representation due to the optimization of
the weights for the target task i.e., MOS prediction. Therefore,
when doing multi-task learning with the output of DCEC we
help the network to retain existing knowledge of the learnt
representation from the large dataset.

SEMTL description: The proposed SEMTL-based model is
represented in Fig. 2. In the first step, we use DCEC to cluster
the large dataset. In the second step, we first assign clusters to
the data in the small set by freezing the trained DCEC network.
After annotating the dataset with the cluster assignments, we
perform multi-task learning. The two tasks consist of cluster
label classification and MOS prediction as follows:

['tot = ‘Cce (Y(Cl)a Y(Cl)) + £mse(s7 S’) (2)

where Y and Y represent respectively the cluster labels
and their prediction, S is the MOS, L., is the cross-entropy
and L,,s. is the mean squared error. The multi-task network
is initialized with the DCEC weights so that we use a learnt
feature representation.

DCEC explained: DCEC consists of a convolutional autoen-
coder and a clustering layer that is attached to the embedded
layer of the autoencoder. The embedded points z; representing
the input audio data are mapped by the clustering layer into a
soft label using the Student’s ¢-distribution:

SN () ) )
D SR [ )

where ¢;; is interpreted as the probability to assign the
embedded point z; to a cluster u;. The parameter « is set to 1
in all the experiments. The number of clusters J is arbitrarily
chosen and cluster centres are initialized by training K-means
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Fig. 2. SEMTL-based model. STEP 1 consists of performing DCEC on the
large set. In STEP 2 we first extract the cluster assignments on the small
dataset using DCEC, which has been previously trained in STEP 1. Then, the
multi-task network is trained to classify the cluster assignments and to predict
MOS simultaneously. The model in STEP 2 is initialized with the weights
learned in STEP 1.

on the embedded features of the convolutional autoencoder.
DCEC is based on minimizing two loss functions as follows:

where £, = |z — 2'|3 is the cost function of the autoencoder
with z representing the input data. The second term is a
clustering loss defined as £. = KL(P || Q) which is the
Kullback-Leibler divergence between the soft label assign-
ments ¢;; and an auxiliary target distribution p;; defined as:

(J%j/fij
= e 5
5= S R ) ®

where f;; = >, q;;. The auxiliary target distribution is based
on giving importance to the most confident predictions and
penalizing clusters with too many samples. As in [6] we fix
7 to 0.1.

DCEC optimization: We optimize DCEC with convolu-
tional autoencoders as done in [6]. We first train an autoen-
coder to initialize the DCEC network parameters and the clus-
ter centres. Then we minimize the DCEC cost function which
updates both cluster centres u; and network parameters. All
the learnable parameters can be updated with backpropagation
as shown in [6], [9]. The auxiliary target distribution is updated
every T iterations to avoid instability.



IV. EXPERIMENTS
A. Datasets

TCD-VoIP [20] is used as the small MOS annotated dataset
which consists of 384 recordings sampled at 48 kHz. This
dataset size is typically considered as not sufficient for train-
ing an efficient deep learning model'. We take the audio
stimuli with the following degradations: chop, clip, echo and
background noise, collecting around 45 minutes of data. The
dataset consists of degraded stimuli created with clean speech
taken from the TSP speech database [25]. Speech sentences
have a duration of ~8 seconds and include 4 speakers (2
Male, 2 Female). TCD-VoIP includes several conditions for
each degradation and there are 4 clips for each condition.

The large annotated dataset is built with the same degra-
dations of TCD-VoIP using different speakers and sentences
from the TSP database. TSP includes 24 adult speakers. We
discarded the 4 speakers used in TCD-VoIP and we use the
remaining 20 speakers. In this way, we make sure that no
speaker or sentence dependent biases are transferred from
the model trained on the large dataset to the one trained on
TCD-VolIP. For each degradation, we include more conditions
than the ones present in the TCD-VoIP to improve general-
ization in our model. We generate 3805 recordings which are
almost 8.5h of audio. The dataset is divided into 761 stimuli
per class. In total, we use 5 classes: CHOP, CLIP, ECHO,
NOISE, REFERENCE. The reference speech is included as
distinguishing degraded speech from clean speech could be
useful for quality prediction.

B. Experiment set-up

Initial experiments showed that using 48 kHz sampling was
not adding any benefit. Therefore, we downsample the data
to 16 kHz to reduce the input dimension. We transform each
raw audio waveform to log mel spectrograms using 64 mel
bands and windows of 25 ms with 10 ms hop length. In
both MTL and SEMTL we use 5 classes as we want to
equally compare SEMTL with MTL. Therefore, we choose
5 clusters for DCEC and 5 classes for the auxiliary task in
SEMTL (i.e., we classify 5 cluster labels in the auxiliary task).
DCEC is trained in two steps. First, we train an autoencoder
for 200 epochs. Secondly, DCEC with the clustering loss is
trained until the number of cluster assignments between two
consecutive auxiliary target distribution updates is lower than
a threshold. We set the convergence threshold to 0.1% of
the dataset size. We update the auxiliary target distribution
every 70 batches. In [6] the target distribution is updated
every 140 steps but our experiments showed instability. The
supervised classifier is trained for 200 epochs as well. In all
the experiments on the large dataset, we use a batch size of
64 and we update the weights using Adam optimizer with a
learning rate of 0.001. The models on the TCD-VoIP dataset
are trained using 10-fold cross-validation as the size is too
small for splitting into training and test sets. In each fold, we

!In the results section we show the performance of a naive baseline model
trained on this dataset only.

TABLE I
FULLY CONNECTED NETWORKS ATTACHED TO THE CONVNET BASED ON
THE TASK TYPE. WHEN WE CLASSIFY DEGRADATIONS OR CLUSTER
ASSIGNMENTS WE ATTACH “CLASSIFICATION”. WHEN WE PREDICT MOS
SCORES WE ATTACH THE NETWORK “REGRESSION”. WE USE A SHIFTED
SIGMOID o AS THE FINAL ACTIVATION FUNCTION TO MAP THE MOS
RANGE FROM 1 TO 5. DCEC 1S COMPOSED BY TWO FULLY CONNECTED
LAYERS, 10 NEURONS FOR THE EMBEDDED LAYER AND 5 NEURONS FOR
THE CLUSTERING LAYER. IN EACH MULTI-TASK NETWORK, WE ATTACH
BOTH “CLASSIFICATION” AND “REGRESSION” TO THE SAME SHARED

CONVNET.
Task Model
DCEC ConvNet — FC;9 — FCs
Classification = ConvNet — FCa56 — ReLU — D(0.5) — FCs — Softmax
Regression ConvNet — FCas6 — ReLU — D(0.5) - FC; — 1440

train with 19—0 of the data and test on the remaining 1—10. We
store the predicted quality score for each clip belonging to
the test set in that fold. After training all the folds we have a
predicted quality score for each clip in the TCD-VoIP dataset.
The models trained on TCD-VoIP (i.e., the ones that predict
quality scores) are optimized for 40 epochs in each fold, using
Adam with learning rate 0.00001 and a batch size of 64.

C. Architecture

We use the same convolutional architecture (ConvNet) in
every model and we attach different fully connected layers
depending on the task. Fixing the same ConvNet is required
so that we can transfer the weights and we can fairly compare
the different feature representations. The ConvNet consists of
4 layers L3, — L3, — L3y — L35 — where LF, means
a convolutional layer with m kernels and (k, k) kernel size.
We used stride 2 and “same” padding in all the layers. This
architecture represents the encoder in the autoencoder used in
DCEC and the convolutional part in all of the other models.
The structure of the decoder is the mirror of the encoder. In
each layer, we use the ReLU activation function and batch
normalization. For each task, we attach a fully connected
network to the ConvNet as summarised in Table I.

D. Results

In our experiments, we want to compare MTL and SEMTL
to each other. Also, we compare our proposed models with
different combinations of feature representations with single-
task or multi-task scenarios as shown in Fig. 3. We also
explore the multi-task model using degradation classification
as an auxiliary task after learning features with a convolutional
autoencoder trained on the large dataset. The autoencoder is
the same that we use to initialize DCEC.

We test the predicted scores against MOS using
root-mean-square error (RMSE), Pearson correlation coeffi-
cient (PCC) and Spearman’s rank-order correlation coefficient
(SRCC) [26] as shown in Table II. The results are collected
per condition. We predict quality scores for each clip and
we compute the average of all the clips belonging to the
same condition. Results show that every multi-task model
combined with feature learning outperforms multi-task only
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TABLE II
PERFORMANCE EVALUATION WITH ROOT MEAN SQUARE ERROR
(RMSE), PEARSON CORRELATION COEFFICIENT (PCC), AND
SPEARMAN’S RANK-ORDER CORRELATION COEFFICIENT (SRCC).

RMSE | CHOP CLIP ECHO NOISE | ALL | P.Sup23
Single-Task Baseline | 0.802  0.838 0.938 0.571 0.786 | 0.616
Multi-Task Baseline 0.778 0.754 0.926 0.533 0.753 | /
DEgr Single-Task 0.632  0.599 0.766 0.391 0.605 | 0.571
Multi-Task 0.702 0.489 0.570 0.395 0.557 | /
AE Single-Task 0.704  0.545 0.664 0.397 0.591 | 0.558
DCEC Multi-Task 0.676 0.487 0.594 0.383 | 0.551 | /
DCEC Single-Task 0.688  0.524 0.665 0.405 0.584 | 0.507
MTL 0.684  0.561 0.628 0.358 0.569 | /
SEMTL 0.678  0.491 0.595 0.383 | 0.55 0.461
P.563 0.652 0.627  0.975 0.945 ‘ 0.827 | 1.119
SRMRnorm 0.936 1.023 1.023 0.982 0.986 | 0.696
PCcC | CHOP CLIP ECHO NOISE | ALL | P.Sup23
Single-Task Baseline | 0.421 0.489 0.694 0.847 0.655 0.648
Multi-Task Baseline 0.487 0.686 0.780 0.878 0.712 /
D%gr. Single-Task 0.784 0.894  0.809 0.924 0.812 0.813
AE Multi-Task 0.698  0.950 0.907 0.922 0.846 /
AE Single-Task 0.670  0.927  0.881 0.921 0.825 0.718
DCEC Multi-Task 0.701  0.963 0.894 0.926 | 0.850 /
DCEC Single-Task 0.673  0.943 0.876 0.917 0.831 0.816
MTL 0.720 0911 0.907 0.937 | 0.837 /
SEMTL 0.703 0.964 0.894 0.926 .850 | 0.861
P.563 0.761 0.887  0.712 0.356 ‘ 0.637 ‘ 0.664
SRMRnorm 0.482  0.694 0.640 0.634 0.576 0.616
SRCC | CHOP CLIP ECHO NOISE | ALL | P.Sup23
Single-Task Baseline | 0.440 0.437 0.596 0.827 0.606 0.680
Multi-Task Baseline 0.560  0.665 0.771 0.888 0.723 /
Degr. Single-Task 0.825 0.881 0.813 0.906 0.792 0.804
AE Multi-Task 0.696 0.942  0.855 0.911 0.828 /
AE Single-Task 0.633 0920 0.887 0.920 | 0.811 0.723
DCEC Multi-Task 0.652 0.942  0.840 0.907 0.826 /
DCEC Single-Task 0.655 0.956  0.866 0.906 0.823 0.811
MTL 0.746  0.881 0.906 0.912 | 0.827 /
SEMTL 0.652 0.942  0.843 0.907 | 0.827 | 0.853
P.563 0.786  0.745 0.681 0.162 0.569 0.677
SRMRnorm 0.534  0.683 0.669 0.721 0.613 0.579
or pre-tralnlng only as well as the two baselines P.O63 and

SRMRnorm?. RMSE and PCC show that the multi-task models
with features learnt by DCEC have the highest performance.
SEMTL achieves the same results as DCEC Multi-Task with
the advantage of not using the degradation labels, which
is very encouraging. MTL is not able to outperform AE
Multi-Task i.e., multi-task learning with feature learnt by an
autoencoder.

The same procedure described in step 2 of each proposed
model was repeated using the ITU-T P.Sup23 Experiment
1 database [27], which is a speech codec dataset including
different languages (Japanese, French, and English). We test
unseen degradations to evaluate whether the TCD-VoIP results

2P.563 and SRMRnorm are computed from https://github.com/qin/p.563 and
https://github.com/MuSAELab/SRMRToolbox on data downsampled to 8 kHz.

are due to the usage of the same degradations between
the larger dataset and the small one. Therefore, we only
transferred the weights from the model trained on the same
large dataset and we fine-tuned on P.Sup23 Expl. Compared
to the TCD-VoIP models, we only changed the learning rate
to 0.0001. The results on the P.Sup23 (Table II) show that
DCEC is robust on unseen degradations and unseen languages.
Compared to TCD-VoIP, there is a larger gap between DCEC-
based models (DCEC single-task and SEMTL-based model)
and the autoencoder. This suggests that our proposed approach
has better generalisation capacity than the autoencoder.

E. Cluster analysis

DCEC clusters on TCD-VoIP are shown in Fig. 4 (a) against
the degradation type and in Fig. 4 (b) against MOS. Both
figures suggest that DCEC performs clustering according to
a criterion that does not correspond to either degradations or
MOS. Considering that DCEC learns a robust feature represen-
tation for quality prediction, it is plausible to assume that data
points are grouped based on a high-level semantic similarity.
Also, our results show that the simultaneous classification
of the cluster assignments is beneficial for quality prediction
which suggests that a meaningful grouping of the data points
occurs. In Fig. 4 (b) we can see that subgroups based on
MOS occur for NOISE only. This suggests that the different
signal-to-noise ratio levels of the background noise are easily
captured by DCEC. However, complex non-linear distortions
such as CHOP, ECHO, and CLIP do not show this trend.

V. DISCUSSION

Multi-task learning combined with unsupervised feature
representation learning shows promising results for non-
intrusive speech quality prediction. RMSE and PCC (Table II)
show that the unsupervised representation can replace a fully
supervised degradation classifier.

The results of this paper suggest that going towards a better
feature representation from unlabelled data is a promising ap-
proach and that might be taken into consideration as opposed
to collecting large annotated MOS datasets which is not always
affordable. We have also shown that our approach achieves
very good generalization performance on unseen degradations
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Fig. 4. Comparing DCEC cluster assignments with degradations (a) and MOS
(b) using t-SNE. "REF” data points represent the first condition per each
degradation which is clean speech as claimed by the TCD-VoIP authors [20].

and languages (P.Sup 23) compared to the autoencoder which
is the only unsupervised feature learning approach proposed
so far for speech quality assessment [18].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed two multi-task learning
approaches combined with unsupervised feature learning for
non-intrusive speech quality assessment. In the MTL-based ap-
proach, we use degradation classification either as an auxiliary
task and for learning the initial weights. The SEMTL-based
approach consists of classifying cluster labels generated from
DCEC, a deep clustering technique that learns features and
clusters the data simultaneously. We have shown that multi-
task learning combined with unsupervised feature learning
shows promising performance for non-intrusive speech quality
assessment using a very small MOS annotated dataset. In
particular, SEMTL does not need any auxiliary labels and
achieves the same performance as DCEC Multi-Task which
uses degradation classification as an auxiliary task. Also, we
have shown that DCEC learns good feature representations
for speech quality prediction achieving higher RMSE and
linear correlation than the autoencoder and the degradation
classifier. Similar trends are shown on unseen degradations
and languages.

In the future, we will evaluate this approach with a larger
dataset (one order of magnitude bigger). We will design a
transfer learning approach where we take a dataset with degra-
dations from different applications (e.g., speech enhancement,
audio codecs etc.). The experiments shown in this paper do
not explore the number of clusters in DCEC. We believe that
feature representation learned with DCEC might be sensitive to
the number of clusters and that the optimal number of clusters
could have not been found in this paper. Finally, we are aware
that we have used a basic multi-task approach (e.g., we have
not found optimal weight loss). We will explore different
multi-task techniques with both degradation types and cluster
assignments.
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