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Abstract. Using quantum Riemannian geometry, we solve for a Ricci = 0

static spherically-symmetric solution in 4D, with the S2 at each t, r a noncom-
mutative fuzzy sphere, finding a dimension jump with solutions having the

time and radial form of a classical 5D Tangherlini black hole. Thus, even a

small amount of angular noncommutativity leads to radically different radial
behaviour, modifying the Laplacian and the weak gravity limit. We likewise

provide a version of a 3D black hole with the S1 at each t, r now a discrete circle
Zn, with the time and radial form of the inside of a classical 4D Schwarzschild

black hole far from the horizon. We study the Laplacian and the classical limit

Zn → S1. We also study the 3D FLRW model on R×S2 with S2 an expanding
fuzzy sphere and find that the Friedmann equation for the expansion is the

classical 4D one for a closed R× S3 universe.

1. Introduction

The idea that not only quantum phase spaces but spacetime coordinates them-
selves could be noncommutative or ‘quantum’ due to quantum gravity effects has
been around since the first days of quantum theory. An often cited early work
was [44], although not proposing a closed spacetime algebra as such. In modern
times, such a quantum spacetime hypothesis was proposed in [32] on the grounds
that the division into position and momentum should be arbitrary and hence if
these do not commute then so should position and momentum separately noncom-
mute. Several flat quantum spacetimes were studied in the 1990s[20, 38, 28], but
only recently has there emerged a constructive formalism of quantum Riemann-
ian geometry[12] to more easily develop curved models[11, 36, 37, 39, 3, 29]. This
formalism complements Connes’ well-known ‘spectral triple’ approach to noncom-
mutative geometry[18] based on an axiomatically defined ‘Dirac operator’ in that
the different layers of Riemannian geometry are built up starting with a bimodule of
differential forms Ω1 for the coordinate algebra A, a quantum metric g ∈ Ω1⊗A Ω1

and a compatible ‘quantum Levi-Civita’ connection ∇ : Ω1 → Ω1 ⊗A Ω1, without
necessarily having a Dirac operator at all. This bottom-up approach fits well with
examples coming from quantum groups and in some cases leads to spectral triples,
see [12, Chap. 8.5].

In the present work, we take curved quantum spacetime model building to the next
level with black hole and FLRW cosmological models. Here, [3], introduced an
expanding FLRW model based on R × S1 with S1 replaced by a discrete group
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Zn with noncommutative differentials, while the coordinate algebra itself remains
commutative. In Section 3, we similarly look at the 3D R× S2 model but replace
S2 by a noncommutative fuzzy sphere. This has coordinate algebra Cλ[S2] defined
as the usual angular momentum algebra viewed as a quantum space[28, 9, 23] but
with a fixed value of the quadratic Casimir (i.e., a coadjoint orbit quantisation) and
with differential structure as recently introduced in [12]. Here, Cλ[S2] are infinite-
dimensional algebras but for a discrete series of values of the deformation parameter,
they can be reduced to the matrix algebra ‘fuzzy spheres’ introduced by Madore[31]
as ‘finite geometries’ and studied in several further works, see [7, 25, 26, 47] to name
some. A feature of our approach is that we adopt a single functorial framework that
includes discrete geometries, noncommutative geometries such as fuzzy spheres, and
indeed classical Riemannian geometry, as opposed to ad-hoc methods for different
settings.

We then proceed to our main results, noncommutative black hole models. Pre-
viously, 4D black holes were studied in a semidirect ‘almost commutative’ quan-
tisation [35] but with the quantum geometry only implicitly defined through the
wave operator constructed as a noncommutative extension to the classical differen-
tial calculus. Also previously, a 4D FLRW model was constructed in a deformation
setting at the Poisson-Riemannian geometry level[24] and with the expected dimen-
sion, but at the price of nonassociativity of the exterior algebra due to curvature
of the Poisson connection. Hence, the models in the present paper are the first
fully noncommutative FLRW and black hole ones that we are aware of within usual
(associative) quantum Riemannian geometry. Section 4 does the 4D black hole
with S2 in polars replaced by a fuzzy one, while Section 5 looks for a 3D black
hole model with the S1 in polar coordinates replaced by Zn. The latter is not flat
but Ricci flat (which can not happen classically in 3D) and has a naked singularity
rather than a horizon.

A common feature that we find is what we call ‘dimension jump’. It has long been
known that quantum exterior algebras often have extra dimensions that could not
be predicted classically. Thus, in [36, 3] the calculus on Z and Zn respectively was
actually 2D and this made possible curvature effects not expected for a classical
line or circle. The limit of the geometry on Zn as n → ∞ was likewise shown
in [3] to be a classical circle but with an extra 1-form θ′ normal to the circle
when viewed in the plane. We then found that the Friedmann equations for the
discrete R × Zn model were the same as for a classical flat R × R2 FLRW model
(an expanding plane), i.e. a dimension jump. The same will apply now for the
fuzzy sphere with, in the classical limit λp → 0, an extra ‘normal’ direction θ′ for
the sphere embedded in R3. This time the dimension jump means that the radial-
time sector matches to the closed (positively curved) 4D FLRW model. For the
black hole model, the dimension jump means we land on radial and time behaviour
matching the 5D Tangherlini black hole[45] when we use the fuzzy sphere. Here
the β(r) = 1 − rH/r factor in the familiar Schwarzschild metric case for horizon
radius rH is now a factor β(r) = 1 − r2H/r2. This gets asymptotically flat faster
than the Schwarzschild case and the effective gravity in the Newtonian limit is an
inverse cubic force law. Finally, for the R2 × Zn black hole, we have β = −rH/r
which is as for a usual black hole but without the constant term. This therefore
approximates the metric inside a Schwarzschild black hole of infinite mass (so that
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the missing 1 is negligible). We also cover the case β(r) = rH/r of interest in its
own right. These models have no horizon but naked singularities. We describe the
Zn → S1 limit where S1 retains a 2D noncommutative differential structure, and
the classical projection to the usual calculus on S1 where the metric is no longer
Ricci flat, i.e. this is a purely quantum-geometric solution of the vacuum Einstein
equations.

Our noncommutative models are theoretical and we are not aware of an immedi-
ate application, but they do indicate an unusual phenomenon which has a purely
quantum origin in an extra ‘normal direction’ θ′ required for an associative differ-
ential calculus in our examples. We also begin to explore some of physics in our
noncommutative backgrounds. In principle, one could use a new framework [10, 13]
of quantum geodesics to do this, but the full formulation of that is rather involved
and we propose instead a direct approach starting with the Klein-Gordon equation
in the noncommutative background. In Section 4.1, we introduce the notion of
a Schroedinger-like equation for an effective quantum theory relative to an exact
solution in the same manner as usual quantum mechanics for a free particle can be
obtained as a nonrelativistic limit of the Klein-Gordon equations for solutions of
the form e−ımtψ with ψ slowly varying. The novel feature will be to replace e−ımt

by an exact reference solution of the Klein Gordon equation, and we explain first
how this looks for a classical Schwarzschild black hole. This appears to be rather
different from well-known methods of quantum field theory on a curved background
[14, 43, 42] but fits with the general idea of [10, 13] that a quantum geodesic flow
is actually a Schroedinger-like evolution.

The paper starts with some preliminaries in Section 2, where we introduce the key
points of the formalism for quantum Riemannian geometry from [12] by way of the
quantum metric and connection for the fuzzy sphere from [29], and investigate the
classical limit of the latter. We use dot or ∂t for time derivatives and prime or ∂r for
radial derivatives (while ∂i, ∂± will be noncommutative angular derivatives). We
sum over repeated indices. ⊗s will denote the symmetric tensor product, where we
add the two sides flipped, and we work in units where ~ = c = 1. Numerical com-
putations were done with Mathematica. The paper concludes with some remarks
about further directions.

2. Recap of the fuzzy sphere and its classical limit

The fuzzy sphere A = Cλ[S2] in the sense of [28, 23, 12, 29] just means the angular
momentum enveloping algebra U(su2) with an additional relation giving a fixed
value of the quadratic Casimir. This is the standard coadjoint quantisation of the
unit sphere with its Kirillov-Kostant bracket known since the 1970s, and in our
conventions takes the form

[xi, xj ] = 2ıλpεijkxk,
∑
i

x2i = 1− λ2p, (2.1)

where λp is a real dimensionless parameter. These conventions are chosen so that
the standard spin j representation ρj descends to a representation of the the fuzzy
sphere if λp = 1/(2j + 1). In this case, ρj is surjective but has a large kernel and
quotienting out by this gives the ‘reduced fuzzy sphere’ cλ[S2] ∼= M2j+1(C) via ρj ,
recovering the original usage of the term ‘fuzzy sphere’ in [31] as a matrix algebra
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with additional structure. We are not restricted to these discrete values, however.
Also note that physical coordinate generators with units of length would be

Xi := Lxi, [Xi, Xj ] = 2ıλpLεijkXk,
∑
i

X2
i = L2(1− λ2p) (2.2)

as a deformation of a sphere of radius L. For a quantum gravity effect, we might
expect λp ∼ lPlanck/L in terms of the Planck length.

Next, there is a rotationally invariant differential calculus[12, Example 1.46] in
the sense of an exterior algebra (Ω,d) given by central basic 1-forms si ∈ Ω1 and
exterior derivative

dxi = εijkxjs
k, dsi = −1

2
εijks

j ∧ sk, (2.3)

with associated partial derivatives defined by df(x) = (∂if)si in this basis (they
act in the same way as orbital angular momentum). The si are preferable as they
graded commute with everything, but they can be recovered in terms of the dxi by

si =
1

1− λ2p
(xiθ

′ + εijkdxjxk); θ′ = xis
i =

xidxi
2ıλp

. (2.4)

There is a similar formula in the context of reduced fuzzy spheres M2j+1(C) in [31].
There is also a ∗-operation with x∗i = xi and si∗ = si. (Then ∗ commutes with d
and θ′∗ = θ′.) There is also a top form

s1 ∧ s2 ∧ s3 =
1

2ıλp(1− λ2p)
θ′3 (2.5)

in contrast to 1
2εijkxis

j ∧ sk = θ′2

2ıλp
for a deformation of the 2-sphere volume form.

A metric on the fuzzy sphere from the point of view of quantum Riemannian ge-
ometry means g ∈ Ω1 ⊗A Ω1 subject to certain conditions, and is shown in [12] to
be necessarily of the form

g = gijs
i ⊗ sj (2.6)

for a real symmetric matrix gij . Here g, in order to have a bimodule inverse, needs
to be central and this forces the gij to be constants. Here, by bimodule inverse, we
mean a bimodule map

( , ) : Ω1 ⊗A Ω1 → A (2.7)

inverting g in the sense ((ω, ) ⊗ id)(g) = ω = (id ⊗ ( , ω))(g) for all ω ∈ Ω1. A
‘bimodule map’ means commuting with the product by elements of A from either
side, i.e. tensorial from either side, and we also require tensoriality in the middle
in asking that ( , ) is well-defined on the tensor product over A. This then requires
g to be central[11], see [12, Lemma 1.16] for a short proof. In our case, (si, sj) =
gij is just the inverse matrix to gij . The rotationally invariant ‘round metric’ is
gij = δij or g = si ⊗ si (sum over i understood). Finally, quantum symmetry in
the sense ∧(g) = 0 requires the matrix to be symmetric and reality in the sense
flip(∗ ⊗ ∗)(g) = g then requires gij to be real-valued.

We next need a quantum Levi-Civita connection ∇ : Ω1 → Ω1 ⊗A Ω1 in the sense
of torsion free and metric compatible. Here, if X : Ω1 → A is a right module map
or ‘right vector field’ then ∇X := (X ⊗ id)∇ is well defined as a kind of ‘covariant
derivative’ on Ω1. The associated left Leibniz rule is

∇(aω) = da⊗ ω + a(∇ω) (2.8)
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for all a ∈ A,ω ∈ Ω1. We define the torsion tensor and Riemann curvature tensor
for any connection as maps[12]

T∇ : Ω1 → Ω2, T∇ = ∧∇−d, R∇ : Ω1 → Ω2⊗AΩ1, R∇ = (d⊗ id− id∧∇)∇.
(2.9)

However, as we can also multiply 1-forms by algebra elements from the right, we
need another Leibniz rule[22]

∇(ωa) = (∇ω)a+ σ(ω ⊗ da) (2.10)

for some bimodule map σ : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1. The generalised braiding map
σ is not additional data as it is determined by the above if it exists. Connections
where it exists are called ‘bimodule connections’ and we will focus on these. We
then define the metric compatibility tensor by

∇g := (∇⊗ id + (σ ⊗ id)(id⊗∇))g. (2.11)

The connection is quantum Levi-Civita if T∇ = ∇g = 0. We also require a reality
condition

σ ◦ flip(∗ ⊗ ∗) ◦ ∇ = ∇ ◦ ∗. (2.12)

Finally, for physics we need a Ricci tensor and the working definition[12] is to
suppose a bimodule map i : Ω2 → Ω1⊗AΩ1 and define Ricci by a trace of (i⊗id)R∇ :
Ω1 → Ω1 ⊗A Ω1 ⊗A Ω1. This can be done explicitly via the metric and its inverse
to make the trace between the input and the first output factor,

Ricci = (( , )⊗ id)(id⊗ i⊗ id)(id⊗R∇)g. (2.13)

These natural definitions mean, however, that Ricci as it comes out from quantum
Riemannian geometry is − 1

2 of the usual Ricci in the classical case. The Ricci scalar

S = ( , )Ricci is also − 1
2 of the usual one.

All of this can be solved for the fuzzy sphere under the assumption that the con-
nection coefficients are constant in the si basis, giving[29]

∇si = −1

2
Γijks

j ⊗ sk, Γijk = gil(2εlkmgmj + Tr(g)εljk). (2.14)

Moreover, as classically, we can just take the map i to be the antisymmetric lift, so

i(si ∧ sj) =
1

2
(si ⊗ sj − sj ⊗ si). (2.15)

The resulting Ricci curvature on the fuzzy sphere is in [29] but in the round metric
case one has

∇si = −1

2
εijks

j ⊗ sk, Ricci = −1

4
g, S = −3

4
. (2.16)

This round metric connection projects in the reduced fuzzy sphere M2j+1(C) case
to something similar to the covariant derivative in [31]. The Ricci curvatures are
not the values you might have expected for a unit sphere even allowing for our
conventions. Nor does the Einstein tensor (at least, if defined in the usual way)
vanish as would be the case for a classical 2-manifold.

To understand this last point better, which is the modest new result of this prelim-
inary section, we look more carefully at the classical limit λp → 0. By the Leibniz
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rule and the values above, we have for the round metric

∇(θ′) = xi∇si + dxi ⊗ si = −1

2
εijkxis

j ⊗ sk + εijkxjs
k ⊗ si =

1

2
εijkxis

j ⊗ sk

=
1

2(1− λ2p)2
εijk(xjθ

′ + εjmn(dxm)xn)⊗ (xkθ
′ + εkab(dxa)xb)

=
1

2
εijkdxi ⊗ (dxj)xk +O(λp).

This means that we cannot just set θ′ = 0 in the classical limit for the given
quantum geometry. Meanwhile, we write the commutation relations of the calculus
as

[θ′, xi] = 2ıλpdxi, xidxi = 2ıλpθ
′, [xi,dxj ] = 2ıλp(δijθ

′− xj
1− λ2p

(xiθ
′+εimn(dxm)xn))

from which we see that the calculus is commutative and xidxi = 0 in the classical
limit λp → 0 as expected for the unit sphere, but θ′ itself does not need to vanish,
and we have seen that it cannot if we want to have a limit for ∇. Rather, we
consider the classical limit as the classical sphere plus a single remnant θ′ which
graded-commutes with everything and (in the classical limit) does not arise from
functions and differentials on the sphere. Indeed, this limit is not a strict differential
calculus but a generalised one for this reason, but there is no such problem in the
quantum case, where

θ′ =
1

2ıλp
xidxi (2.17)

shows its origin as ‘normal’ to the sphere as embedded in R3. We now note that
the round metric has the limit

g = si ⊗ si = (xiθ
′ + εimn(dxm)xn)⊗ (xiθ

′ + εiab(dxa)xb)

= (1− λ2p)θ′ ⊗ θ′ + εimnxiθ
′ ⊗s (dxm)xn + (δmaδnb − δmbδna)(dxm)xn ⊗ (dxa)xb

= θ′ ⊗ θ′ + dxi ⊗ dxi +O(λp)

since the calculus is commutative to O(λp). Thus, we see that the rotationally
invariant ‘round’ metric actually has an extra direction required by the calculus.
We can recover the completely classical S2 by the limit λp → 0 and projecting
θ′ = 0, but traces taken for the Ricci curvature before we do this will remember
the extra ‘normal direction’ and not map onto the classical values.

3. Expanding fuzzy sphere FLRW model

Here we work with the coordinate algebra A = C∞(R)⊗ Cλ[S2], where the R has
a classical time variable t with classical dt graded commuting with t, dt and with
the generators xi, s

i of the exterior algebra of the fuzzy sphere. We first consider a
general metric of the form

g = βdt⊗ dt+ ni(dt⊗ si + si ⊗ dt) + gijs
i ⊗ sj , (3.1)

where gij is a symmetric 3 × 3 matrix of coefficients and β, ni further coefficients,
a priori all valued in A. Centrality of the metric, however, then forces the ni = 0
and the remaining coefficients to be in the centre of Cλ[S2], which is trivial. Hence
gij , β are functions only of the time t. The reality condition for quantum metrics
forces them to be real-valued.



FUZZY AND DISCRETE BLACK HOLE MODELS 7

Next, a general QLC for the calculus has the form

∇si =− 1

2
Γijks

j ⊗ sk + γijs
j ⊗s dt+ τ idt⊗ dt (3.2)

∇dt =µjks
j ⊗ sk + ηjs

j ⊗s dt+ Γdt⊗ dt (3.3)

again with Γijk, γ
i
j , τ

i,Γ, ηj , µjk ∈ A. However, given that the spatial metric gij are
functions only of t, it is natural to assume this also for the spatial Christoffel symbols
Γijk just as is done for the fuzzy sphere alone in[29]. In this case, compatibility of ∇
with the relations of commutativity of dt, si with t, xj and the natural assumption
that the associated braiding σ has the classical ‘flip’ form when one of the arguments
is dt require that γij , τ

i,Γ, ηj , µjk are also function of time alone in order to have a
bimodule connection.

The nontrivial conditions for ∇ to be torsion-free are

1

2
(−Γijk + εijk)sj ⊗ sk = 0, µjk = µkj , (3.4)

since d(dt) = 0. The conditions ∇g = 0 for metric compatibility then produces

dt⊗ si ⊗ sj : ġij + gilγ
l
j + gljγ

l
i = 0,

dt⊗ dt⊗ dt : β̇ + 2βΓ = 0,

sl ⊗ sm ⊗ sj : −gij
2

Γilm −
gin
2

Γnpjσ
ip
lm = 0,

sl ⊗ dt⊗ sj : gijγ
i
l + βµlj = 0,

dt⊗ dt⊗ sj : gijτ
i + βηj = 0,

sn ⊗ sp ⊗ dt : gijγ
j
lσ
il
np + βµnp = 0,

dt⊗ si ⊗ dt : gijτ
j + βηi = 0,

sm ⊗ dt⊗ dt : 2βηm = 0.

It is clear from third of these and the first of (3.4) that Γijk is indeed the Christoffel
symbol for the fuzzy sphere QLC as solved uniquely in the ∗-preserving case with
constant coefficients in [29]. Also, the last equation implies that ηm = 0 and,
using this together with the fifth or seventh equation, we get τ i = 0. The second
equation makes Γ = −β̇/(2β). Using gikγ

k
j = γij and the symmetry of gij in the

first equation gives the value of γij , then this together with the 4th equation gives
µij , resulting in

γij = −1

2
ġjkg

ik, µij =
ġij
2β
. (3.5)

Note that µij is proportional to the time derivative of the metric, which implies
that it is also symmetric if the metric is, solving the second half of (3.4). Because
γij , µij just depend on real functions, they are also real-valued functions. This
leads to a reasonably canonical QLC.

Theorem 3.1. Up to a reparametrisation of t, a generic quantum metric on the
algebra C∞(R)⊗ Cλ[S2] can be taken in the form

g = −dt⊗ dt+ gijs
i ⊗ sj ,
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where gij is a time-dependent real 3 × 3 symmetric matrix. Moreover, this admits
a canonical ∗-preserving QLC

∇dt = −1

2
ġijs

i ⊗ sj , ∇si = −1

2
Γijks

j ⊗ sk − 1

2
gkiġjks

j ⊗s dt,

where Γijk = 2εikmgmj + Tr(g)εijk as for the fuzzy sphere in [29]. The associated
Ricci scalar and Laplacian are

2S = −gij g̈ij − Tr(g) +
1

2
(Tr(g))2 − δij −

1

4

(
gmlgij ġmlġij + gklgmnġnkġlm

)
,

∆ = gij∂i∂j −
1

2
gij ġij∂t − ∂2t .

Proof. The analysis for the metric (3.1) was done above and we were forced by the
requirement for the metric to be central (in order to be invertible) to ni = 0 and
only a time dependence β(t), gij(t). We add the ∗-reality of the metric in the form
flip(∗ ⊗ ∗)g = g to find β and gij real. Quantum symmetry also requires the latter
to be symmetric, while the expected signature requires β(t) < 0.

Now substituting the values obtained so far in the analysis of the general form of
(3.2)-(3.3), we have the connection

∇dt =
1

2β
ġijs

i ⊗ sj − 1

2

β̇

β
dt⊗ dt; ∇si = −1

2
Γijks

j ⊗ sk − 1

2
gkiġjks

j ⊗s dt (3.6)

for some unknown Γijk(t), where this does not depend on fuzzy sphere variables
under our assumptions. The requirement of being ∗-preserving yields

ġjk(sj ⊗ sk − σ(sk ⊗ sj)) = 0, Γijks
j ⊗ sk − Γ

i
kjσ(sk ⊗ sj) = 0. (3.7)

with the second of these the same as for the fuzzy sphere in [29] at each fixed time.
Here we used dt∗ = dt. Thus all the equations for Γijk are the same as in that
paper and hence there is a unique solution (2.14) for it in terms of gij(t), as stated,
under our assumptions. In this case, we know from [29] that σ =flip on sj ⊗ sk and
hence the first of (3.7) is empty, as is the 6th of the metric compatibility equations
in our previous analysis. The rest of the ∗-preserving conditions require Γ, ηi, γ

i
j

to be real-valued functions, which already holds as we have solved for them.

The curvature for the connection (3.6) is

R∇dt =

(
1

2β
g̈ij −

β̇

4β2
ġij −

1

4β
gmlgilgjm

)
dt ∧ si ⊗ sj

+
1

4β

(
−ġlkεlij + ġilΓ

l
jk

)
si ∧ sj ⊗ sk +

1

4β
glmġjlġims

i ∧ sj ⊗ dt

R∇s
i =

(
1

4
Γijlg

mlġkm −
1

4
Γljkg

miġlm

)
dt ∧ sj ⊗ sk

+

(
1

4
gliġmlε

m
jk −

1

4
Γijlg

mlġkm

)
sj ∧ sk ⊗ dt

+

(
1

4
Γimlε

m
jk −

1

4
ΓijmΓmkl +

1

4β
gmiġjmġkl

)
sj ∧ sk ⊗ sl

+

(
−1

2
(ġkiġjk + gkig̈jk) +

β̇

4β
gkiġjk −

1

4
gkigmlġlkġjm

)
dt ∧ sj ⊗ dt,
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For this connection we have the Ricci tensor,

2Ricci =

(
1

2β

(
g̈ij −

β̇

2β
ġij − gklġilġjk

)
+

1

2
Γlmjε

m
li −

1

4
ΓllmΓmij +

1

4β
gmlġmlġij

+
1

4
ΓlimΓmlj −

1

4β
gmlġimġlj

)
si ⊗ sj

−

(
−1

2

(
ġklġlk + gij g̈ij

)
+

β̇

4β
gij ġij −

1

4
gklgmnġnkġml

)
dt⊗ dt

+

(
1

2
gnlġmnε

m
il −

1

4
Γllmg

nmġin +
1

4
Γlimg

nmġln

)
si ⊗ dt

+

(
−1

4
Γllmg

nmġin +
1

4
gnlġmnΓmli

)
dt⊗ si

Next, as we require β(t) < 0, we can generically absorb this in a redefinition of t

(by changing to a new variable t′ solving dt′

dt =
√
−β(t)). Therefore, up to such a

redefinition, we can assume that β = −1 as stated. In this case, and with Γijk as
explained from (2.14), the Ricci tensor simplifies to

2Ricci =

(
− g̈ij

2
+

1

2
gklġilġjk −

1

4
gmlġmlġij − gij − δij +

1

2
Tr(g)gij

)
si ⊗ sj

−
(
−1

2

(
ġklġlk + gij g̈ij

)
− 1

4
gklgmnġnkġml

)
dt⊗ dt

+

(
1

2
gnlġmnε

m
il −

1

2
εklmg

nmgklġin +
1

4
(2εklmgik + Tr(g)εlim)gnmġln

)
si ⊗ dt

+

(
−1

2
εklmgklg

nmġin −
1

4
gnlġmn(2εkmigkl + Tr(g)εmli)

)
dt⊗ si

Making the contraction with the inverse metric, we recover the required Ricci scalar.
The Laplacian for a function f = f(t, xi) follows as

∆f = (, )∇(df) = (, )∇(∂ifs
i + ḟdt) = gij∂i∂jf − ∂2t f −

1

2
gij ġij∂tf −

1

2
gjkΓijk∂if,

where the last term vanishes when we take into account the explicit form of Γijk,
recovering the required Laplacian. �

The QLC here is unique under the reasonable assumption as in [29] that the Γijk
are constant on the fuzzy sphere, given that the gij have to be. The theorem applies
somewhat generally, but now we take the expanding round metric gij = R2(t)δij
for the spatial part, so the metric, non-zero inverse metric entries, QLC, curvature
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and Laplacian are

g = −dt⊗ dt+R2(t)si ⊗ si, (dt, dt) = −1, (si, sj) =
δij

R2
, (3.8)

∇dt = −RṘsi ⊗ si, ∇si = −1

2
εijks

j ⊗ sk − Ṙ

R
si ⊗s dt, (3.9)

R∇dt = −RR̈dt ∧ si ⊗ si, (3.10)

R∇s
i =

(
1

4
εpinεpkm − Ṙ2δimδnk

)
sm ∧ sn ⊗ sk +

R̈

R
dt ∧ si ⊗ dt, (3.11)

Ricci = −(Ṙ2 +
1

2
RR̈+

1

4
)si ⊗ si +

3

2

R̈

R
dt⊗ dt, (3.12)

S = −3

(
Ṙ2

R2
+
R̈

R
+

1

4R2

)
, (3.13)

∆ =
1

R2

∑
i

∂2i − 3
Ṙ

R
∂t − ∂2t . (3.14)

Also of interest is the Einstein tensor and, in the absence of a general theory, we
assume as in [3] the ‘naive definition’ Eins = Ricci− S

2 g, which works out as.

Eins =

(
R̈+

1

2
Ṙ2 +

1

8

)
si ⊗ si − 3

2

(
1

4R2
+
Ṙ2

R2

)
dt⊗ dt (3.15)

and is justified by checking that

∇ · Eins = 0. (3.16)

Here, if we have any tensor for the form T = fdt ⊗ dt + pR2si ⊗ si, then the
divergence is

∇ · T = (( , )⊗ id)∇T = −

(
ḟ + 3(f + p)

Ṙ

R

)
dt+ ∂ips

i (3.17)

and we use this now for the particular form of the Einstein tensor to establish
(3.16). We also assume this form of T for the energy-momentum tensor of dust
with pressure p and density f , in which case the continuity equation ∇ · T = 0 for
p a function only of t is

ḟ + 3(f + p)
Ṙ

R
= 0 (3.18)

as usual, and Einstein’s equation Eins + 4πGT = 0 in our curvature conventions is

4πGf =
3

2

(
Ṙ2

R2
+

1

4R2

)
, 4πGp = − R̈

R
− 1

2

Ṙ2

R2
− 1

8R2
= − R̈

R
− 4πG

3
f. (3.19)

These are identical to the classical FLRW equations, see e.g.[16, Chap. 8], for a 4D
closed universe with curvature constant κ = 1/(4R2

0) in the classical FLRW metric

−dt⊗ dt+R(t)2
(

1

r2(1− κr2)
dr ⊗ dr + gS2

)
,

where gS2 is the metric on a unit sphere, R0 is a normalisation constant with
dimension of length, and we have adapted R(t) to include a factor r in order to
match our conventions.
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4. Black hole with the fuzzy sphere

We assume a similar framework as in the previous section, but now with a 4D
metric of a static form in polar coordinates. Thus, we add a radial variable r with
differential dr and consider the Schwarzschild-like metric

g = −β(r)dt⊗ dt+H(r)dr ⊗ dr + r2gijs
i ⊗ sj . (4.1)

The algebra of functions here is A = C∞(R×R>0)⊗Cλ[S2] with classical variables
and differentials t, r,dr, dt for the R× R>0 part (so these graded commute among
themselves and with the functions and forms on the fuzzy sphere). The coefficients
gij define the metric on the fuzzy sphere, and centrality and reality of the metric
dictates that these are constant real values. Thus, gij is a real symmetric invertible
3 × 3 matrix (it should also be positive definite for the expected signature) and
β(r), H(r) are real-valued functions.

We start with the general form of connection on the tensor product calculus,

∇si = −1

2
Γijks

j ⊗ sk + αidt⊗ dt+ γidr ⊗ dr + ∆idr ⊗s dt+ ηijdt⊗s sj + τ ijdr ⊗s sj ,

∇dt = aijs
i ⊗ sj + bdt⊗ dt+ cdr ⊗ dr + ddr ⊗s dt+ ejdr ⊗s sj + fjdt⊗s sj ,

∇dr = hijs
i ⊗ sj + θdt⊗ dt+Rdr ⊗ dr + φdr ⊗s dt+ νjdt⊗s sj + ψjdr ⊗s sj .

Assuming that σ(dt⊗ ), σ( ⊗dt), σ(dr⊗ ), σ( ⊗dr) are the flip on the 1-forms
dr, dt, si and the natural restrictions needed for a bimodule connection, one finds
that all the coefficients are functions of t and r alone (constant on the fuzzy sphere).

The torsion freeness conditions for ∇dt,∇dr and ∇si are

aij = aji, hij = hji, Γijk − Γikj + 2εijk = 0, (4.2)

respectively, and the conditions needed for the compatibility with the metric are

dr ⊗ dt⊗ dt : ∂rβ + 2βd = 0,

dr⊗3 : ∂rH + 2HR = 0,

dr ⊗ sl ⊗ sj : 2rglj + r2gijτ
i
l + r2glmτ

m
j = 0,

sm ⊗ sn ⊗ dt : −βmn + r2gijη
j
lσ
il
mn = 0,

dt⊗3 : −2βb = 0,

dr ⊗ dr ⊗ dt/dr ⊗ dt⊗ dr : −βc+Hφ = 0,

dt⊗ dr ⊗ dr : 2Hφ = 0,

si ⊗ dt⊗ dr/si ⊗ dr ⊗ dt : −βei +Hνi = 0,

dr ⊗ sj ⊗ dt/dr ⊗ dt⊗ sj : −βej + r2gij∆
i = 0,

si ⊗ dt⊗ dt : −2βfj = 0,

dt⊗ dt⊗ sj/dt⊗ sj ⊗ dt : −βfj + r2gijα
i = 0,

si ⊗ dt⊗ sj : −βaij + r2gljη
l
i = 0,

dt⊗ dr ⊗ dt/dt⊗ dt⊗ dr : −βd+Hθ = 0,

dr ⊗ dt⊗ dt : ∂rβ + 2βd = 0,

sm ⊗ sn ⊗ dr : Hhmn + r2gijτ
j
lσ
il
mn = 0,
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dt⊗ dr ⊗ si/dt⊗ si ⊗ dr : Hνi + r2gij∆
j = 0,

dr ⊗ dr ⊗ si/dr ⊗ si ⊗ dr : Hψi + r2gijγ
j = 0,

si ⊗ dr ⊗ dr : 2Hψi = 0,

si ⊗ dr ⊗ sj : Hhij + r2gljτ
l
i = 0,

sp ⊗ sq ⊗ sm : glmΓlpq + gijΓ
j
lmσ

il
pq = 0,

dt⊗ si ⊗ sj : gljη
l
i + gilη

l
j = 0.

We immediately note that b = φ = fj = ψi = 0 for the 5th, 7th, 10th, and 18th
equations respectively. In this case, we have that αi = φ = γi = 0 by the 11th, 6th
and 17th equations respectively. Also, solving simultaneously the 8th, 9th, 16th
equations, we obtain ∆i = ei = νi = 0. The value of d and R is deduced for the 1st
and 2nd equations respectively, while θ comes from 13th and 1st equations, with
result

d = −∂rβ
2β

, R = −∂rH
2H

, θ = −∂rβ
2H

. (4.3)

The 3rd equations together with the symmetry of gij lead to τ ij = − 1
r δ
i
j . Now,

we can solve the 19th equation as

hij =
r

H
gij . (4.4)

The 21st equation gives the condition ηij − ηji = 0, where we used ηkjgki = ηij .

But the 12th equation produces aij = r2

β ηij so that aij is anti-symmetric, which

together with the torsion freeness conditions imply that aij = ηij = 0.

Theorem 4.1. The static Schwarzschild-like metric with spatial part a fuzzy sphere,

g = −β(r)dt⊗ dt+H(r)dr ⊗ dr + r2gijs
i ⊗ sj ,

where gij is a constant real symmetric matrix, has a canonical ∗-preserving QLC

∇dt = − 1

2β
∂rβdr ⊗s dt, ∇dr = − 1

2H
∂rHdr ⊗ dr +

r

H
gijs

i ⊗ sj − 1

2H
∂rβdt⊗ dt,

∇si = −1

2
Γijks

j ⊗ sk − 1

r
dr ⊗s si,

where Γijk = 2εikmgmj + Tr(g)εijk is the fuzzy sphere QLC from [29]. The corre-
sponding Ricci scalar and Laplacian are

S =
1

2Hβ
∂2rβ −

1

4Hβ2
(∂rβ)2 − 1

4H2β
∂rβ∂rH +

3

2r2

+
1

4rH
(3 + Tr(g))

(
∂rβ

β
− ∂rH

H

)
+
Tr(g)

r2H
(1− H

2
) +

(Tr(g))2

4r2
,

∆ = − 1

β
∂2t +

1

H
∂2r +

(
3

rH
− ∂rH

2H2
+

∂rβ

2Hβ

)
∂r +

gij

r2
∂i∂j .

Proof. Most of the analysis was done above. The torsion-freeness and metric com-
patibility conditions for the Christoffel symbol Γ of the fuzzy sphere part are the
same as in [29], namely the second half of the ∗-preserving conditions

hijs
i ⊗ sj − hjiσ(sj ⊗ si) = 0, Γijks

j ⊗ sk − Γ
i
kjσ(sk ⊗ sj) = 0
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coming from ∇dr and ∇si respectively, with (si)∗ = si,dr∗ = dr and dt∗ = dt.
There is therefore a unique solution for Γ under the assumption that it consists of
constants according to [29], and we use this solution. This has σ the flip on the
si and hence Γ real. In this case, the other condition for ∗-preserving requires hij
to be hermitian, which already holds because hij is real and symmetric for (4.4).
The 4th and 15th metric compatibility equations also then hold. The connection
stated is then obtained by substituting into the general form of the connection.
This completes the analysis for the canonical QLC.

The curvature for this connection comes out as

R∇s
i =

(
1

4
Γijkε

j
mn −

1

4
ΓimlΓ

l
nk +

1

H
gnkδ

i
m

)
sm ∧ sn ⊗ sk

− 1

2rH
∂rHs

i ∧ dr ⊗ dr +
1

2r

(
εijk − Γijk

)
sj ∧ sk ⊗ dr − 1

2rH
∂rβs

i ∧ dt⊗ dt,

R∇dt =

(
∂2rβ

2β
−
(
∂rβ

2β

)2

− 1

4βH
∂rβ∂rH

)
dt ∧ dr ⊗ dr +

r

2Hβ
∂rβgijdt ∧ si ⊗ sj ,

R∇dr = − r

2H2
gij∂rHdr ∧ si ⊗ sj +

r

2H
(gmlΓ

l
nj − gijεimn)sm ∧ sn ⊗ sj

+

(
1

4H2
∂rβ∂rH −

1

2H
∂2rβ +

1

4βH
(∂rβ)2

)
dr ∧ dt⊗ dt+

gij
H
si ∧ sj ⊗ dr.

Taking the antisymmetric lift of products of the basic 1-forms and tracing gives the
associated Ricci tensor

4Ricci =

(
∂2rβ

β
− 3

rH
∂rH −

1

2βH
∂rβ∂rH −

1

2

(∂rβ
β

)2)
dr ⊗ dr

+
1

H

(
1

2H
∂rβ∂rH − ∂2rβ +

1

2β
(∂rβ)2 − 3

r
∂rβ

)
dt⊗ dt

+

(
r

Hβ
gij∂rβ −

r

H2
gij∂rH + 4

gij
H
− 2gij − 2δij + Tr(g)gij

)
si ⊗ sj .

This gives the Ricci scalar as stated. The Laplacian is also immediate from ∇ and
the inverse metric. �

The QLC here is unique under the reasonable assumption as in [29] that the Γijk
are constant on the fuzzy sphere, given that the gij have to be. To do some physics,
we focus on the static rotationally invariant case where gij = kδij , for a positive
constant k. In this case, it follows from the above that Ricci = 0 if and only if

H(r) =
1

β(r)
, β(r) =

1

2
(
1

k
+ 1)− 3

4
k +

c1
r2
,

where c1 is an arbitrary constant. The values

k =
1

3
(
√

7− 1), c1 = −r2H (4.5)

give the form of β for the Tangherlini black hole metric of mass M , namely

β(r) = 1− r2H
r2
, r2H =

8

3
G5M, (4.6)

but note that the latter only makes sense in 5D spacetime due to an extra length
dimension in the Newton constant G5. We are thinking of our model as 4D so we
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will not take this value but just work with rH as a free parameter. A different value
of k can be absorbed in different normalisation of the t, r variables while rH is more
physical.

The quantum geometric structures in this ‘fuzzy black hole’ Ricci flat case are

g = −(1− r2H
r2

)dt⊗ dt+ (1− r2H
r2

)−1dr ⊗ dr + r2ksi ⊗ si, (4.7)

(dt, dt) = − r2

r2 − r2H
, (dr, dr) = 1− r2H

r2
, (si, sj) =

δij

kr2
, (4.8)

∇dt = − r2H
r(r2 − r2H)

dr ⊗s dt, (4.9)

∇dr =
r2H

r(r2 − r2H)
dr ⊗ dr − r2H

r3

(
1− r2H

r2

)
dt⊗ dt+ rk

(
1− r2H

r2

)
si ⊗ si,

(4.10)

∇si = −1

2
εijks

j ⊗ sk − 1

r
dr ⊗s si, (4.11)

R∇dt = − 3r2H
r2(r2 − r2H)

dt ∧ dr ⊗ dr +
(rH
r

)2
kdt ∧ si ⊗ si, (4.12)

R∇dr =
(rH
r

)2
kdr ∧ si ⊗ si + 3r2H

r2 − r2H
r6

dr ∧ dt⊗ dt, (4.13)

R∇s
i =

(
−1

4
+ k

(
1− r2H

r2

))
si ∧ sj ⊗ sj +

(rH
r

)2 1

r2 − r2H
si ∧ dr ⊗ dr

+
r2H
r6

(r2H − r2)si ∧ dt⊗ dt, (4.14)

∆ = −
(

1− r2H
r2

)−1
∂2t +

(
3

r
− r2H
r3

)
∂r +

(
1− r2H

r2

)
∂2r +

1

kr2

∑
i

∂2i .

(4.15)

For comparison, the classical Tangherilini 5D black hole metric has the form

g = −
(

1− r2H
r2

)
dt⊗ dt+

(
1− r2H

r2

)−1
dr ⊗ dr + r2gS3

with the Laplacian

∆ = −
(

1− r2H
r2

)−1
∂2t +

(
3

r
− r2H
r3

)
∂r +

(
1− r2H

r2

)
∂2r +

1

r2
∆S3 ,

where gS3 denotes the metric element on a unit S3. We see that this has just the
same form as our metric and Laplacian except that our unit fuzzy sphere Laplacian∑
i ∂

2
i is replaced by the classical unit S3 Laplacian

∆S3 =
1

sin2 ψ
∂ψ(sin2 ψ∂ψ) +

1

sin2 ψ sin θ
∂θ(sin θ∂θ) +

1

sin2 ψ sin2 θ
∂2φ

in standard angular coordinates.

We will also be interested in the spatial geometry of the fuzzy black hole as a time
slice with respect to the t coordinate. This is easily achieved in our formalism.
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Proposition 4.2. Defining the spatial geometry of the fuzzy black hole as a slice
of the 4D geometry by setting dt = 0, gives

g = β−1dr ⊗ dr + kr2si ⊗ si,

∇dr =
r2H
r3β

dr ⊗ dr + krβsi ⊗ si, ∇si = −1

2
εijks

j ⊗ sk − 1

r
dr ⊗s si,

R∇dr = k(
rH
r

)2dr ∧ si ⊗ si, R∇s
i = (kβ − 1

4
)si ∧ sj ⊗ sj +

r2H
r4β

si ∧ dr ⊗ dr,

Ricci =
3r2H
2r4β

dr ⊗ dr +

(
k(1− r2H

2r2
)− 1

4

)
si ⊗ si, S =

3

r2
(1− 1

4k
),

using the antisymmetric lift as usual and β = 1− r2H
r2 . The spatial Einstein tensor

Eins = Ricci− S
2 g comes out as

Eins =
3

2r2β
(

1

4k
− β)dr ⊗ dr +

1

2
(
1

4
− k(1 +

r2H
r2

))si ⊗ si

and is conserved in the sense ∇ · Eins = 0.

Proof. That setting dt = 0 gives a QLC for the reduced metric and its curvature
follows on general grounds but can be checked explicitly. The computation of Ricci
is a trace of R∇ as usual: we apply this to the second factors of g and then apply

(dr, dr) = β−1, (si, sj) =
δij
kr2 (and other cases zero) to the first two tensor factors.

The Ricci scalar S and Einstein tensor then follow. For its divergence, we first
compute ∇Eins by acting with ∇ on each tensor factor but keeping its left-most
output to the far left using the trivial flip σ,

∇Eins =
1

2
(
1

4
− k(1 +

r2H
r2

))(−1

r
si ⊗ si ⊗ dr) + d(

3

2r2β
(

1

4k
− β))⊗ dr ⊗ dr

+
3

2r2β
(

1

4k
− β)(

2r2H
r3β

dr ⊗ dr ⊗ dr + krβsi ⊗ si ⊗ dr) + · · · ,

where · · · refers to terms that involve dr ⊗ si or si ⊗ dr in the first two tensor
factors. The terms in ∇(si ⊗ si) with s’s in all tensor factors cancel. We then
define ∇ · Eins by applying ( , ) to the first two tensor factors to give

∇ · Eins =
(
− 3

2r3k
(
1

4
− k(1 +

r2H
r2

)) + β(
1

4
− k(1 +

r2H
r2

))′

+
3

2r2
(

1

4k
− β)

2r2H
r3β

+
9

2r3
(

1

4k
− β)

)
dr

from the displayed terms taken in order. We then check that the function in brackets
vanishes. �

4.1. Motion in the fuzzy black hole background. In terms of physical im-
plications, since the radial form for the fuzzy black hole is the same as that of
the Tangherilini solution, we can apply the usual logic that g00 = −(1 + 2Φ) to
first approximation contains the gravitational potential Φ per unit mass governing
geodesic motion for a mass m in the weak field limit. Therefore in our case, this
should be

Φ = − r
2
H

2r2
(4.16)
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but, because we are thinking of this as a 4D model, we do not set rH to be the
same as for a Tangherilini 5D black hole. Rather, we think of rH as the physical
parameter and equate it for purpose of comparison with rH = 2GM so that the
horizon occurs at the same r as for a Schwarzschild black hole of mass M . The
weak field force law is no longer Newtonian gravity, having an inverse cubic form
according to Φ = −2G2M2/r2. This is rather different from modified gravity
schemes such as MOND for the modelling of dark matter[41], but could still be of
interest.

To properly justify the above, we should study geodesics, which is possible but not
easy on quantum spacetimes. Here, we instead reach the same conclusion from the
point of view of quantum mechanics as the non-relativistic limit of the Klein-Gordon
equation

∆φ = m2φ.

As proof of concept, we first do this for a classical Schwarzschild black hole, where
β(r) = 1− rH

r . The Laplacian is

∆Sch = − 1

β

∂2

∂t2
+ ∆r +

1

r2
∆S2 ; ∆r :=

1

r2
∂

∂r
(βr2

∂

∂r
)

and ∆S2 is normalised to have eigenvalues λl = −l(l+1) on the spherical harmonics
of degree l ∈ N ∪ {0} for the orbital angular momentum. We focus on waves of
fixed l and look for solutions of the form

φ = e−ımtψl(t, r)

with ψl slowly varying in t. Accordingly neglecting its double time derivative, the
Klein-Gordon equation becomes the Schroedinger-like equation

ıψ̇l = − β

2m

(
∆r +

λl
r2

)
ψl + (β − 1)

m

2
ψl, (4.17)

where β(∆r + λl
r2 ) is a modification by β of the R3 Laplacian on ψl in polars,

which we think of as the square of a modified momentum (the difference is anyhow
suppressed at large r), and (β − 1)m/2 = −GMm/r is the expected Newtonian
potential for Schroedinger’s equation in the presence of a point source of mass M .

Note that e−ımt is not itself a solution of the Klein-Gordon equation. Repeating the
above but with reference to an actual solution would be analogous to finding the
forces experienced by a particle in geodesic motion, where one only sees tidal forces.
Doing this in the Schwarzschild case, we first solve (numerically) for spherical l = 0
solutions of the form

φ = e−ıωtφω(r); (
ω2

β
−m2)φω + ∆rφω = 0 (4.18)

with initial conditions specified at large r. We then look for a Schroedinger-like
equation relative to a fixed φω, by solving the Klein-Gordon equation for solutions
of the form

φ = e−ıωtφω(r)ψl(t, r) (4.19)

with ψl of orbital angular momentum labelled by l and slowly varying in t. This
time we obtain

ıψ̇l = − β

2ω
(∆r +

λl
r2

+ 2β
φ′ω
φω

∂

∂r
)ψl (4.20)
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Figure 1. Radial solution φm(r) for the Klein-Gordon equation
around a black hole shown for m = 2/rH , rH = 1 and asymptotic
form of φ′m/φm shown dashed

r t

r = rH
horizon

initial Gaussian

Figure 2. Schroedinger-like evolution relative to the φm in Fig-
ure 1. We see an initial Gaussian centred at r = 5rH evolving
much as in quantum mechanics but decaying over time, with the
essentially zero initial values at r = 1.1rH , 10rH held fixed.

with a new velocity-dependent correction but without the gravitational point source
potential, as expected.

The natural choice for a reference field is to focus on the case ω = m. For large r,
we can neglect β′ relative to 2/r in ∆r and in this case one has an exact solution for
φm in terms of Bessel I, K functions. We choose conditions which match to Bessel
I, say, at large r, and we assume m > 1/rH so that the test particle Compton
wavelength is less than rH . Then φ′m/φm is barely oscillatory for larger m and
decays gradually as r →∞ according to

φ′m
φm
≈ ım

√
rH

r − rH
, r >> rH . (4.21)

The exact numerical solution as illustrated in Figure 1 is similar to this, although
more oscilliatory. We see that in this ‘comoving frame’ from a Klein-Gordon point
of view, we do not experience the main force of gravity but we do see a novel radial
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velocity term in the effective Schroedinger-like equation approximated as

ıψ̇l ≈ −
β

2m
(∆r +

λl
r2

)ψl − ıβ
3
2

√
2GM

r
ψ′l (4.22)

far from the horizon. Nearer the horizon, one needs to use the actual φ′m/φm to
avoid an instability coming in from the horizon. A numerical solution for ψl at
l = 0 using the actual values is in Figure 2, showing an initial Gaussian centred
at r = 5rH evolving much as in regular quantum mechanics but, unlike the latter,
decaying over time. Some of the noise in the picture comes from the numerical
approximation.

The above is for a regular Schwarzschild black hole, but one can make a similar
analysis for the different radial equations for our fuzzy black hole and thereby justify
(4.16), provided we know something about the operators

∑
i ∂

2
i .

Proposition 4.3.
∑
i ∂

2
i on the fuzzy sphere has eigenvalues λl = −l(l+ 1) as for

the classical ∆S2 , with eigenspaces

Hl = {xi1xi2 · · ·xilfi1···il | f totally symmetric and traceless}.

Proof. Here, as vector spaces, C[x1, · · · , xn] = C[su∗2] ∼= U(su2) by the Duflo map
(as for any Lie algebra). This sends a commutative monomial in the xi to an
average of all orderings of its factors (it is an isomorphism because, although there
are nontrivial commutation relations in the enveloping algebra, these are strong
enough to reorder at the expense of lower degree.) This map is covariant for the
coadjoint and adjoint actions, in our case, of su2, and therefore descends to a
vector space isomorphism between polynomial functions on the classical sphere
in cartesian coordinates on one side, and the fuzzy sphere Cλ[S2] on the other
side. Moreover, ∂kxi = εijkx

j for our differential calculus on the latter acts as
orbital angular momentum. Hence

∑
i ∂

2
i acts as the quadratic Casimir and can be

computed on the classical sphere, where it decomposes the polynomial functions
into the spherical harmonics of each degree l. These then correspond to the Hl as
stated. One can check this directly on the fuzzy sphere on low degrees by hand, to
fix the normalisation. For example, on degree l = 1, we have

∑
k ∂

2
kx

i = ∂kεijkx
j =

εjmkεijkx
m = −2xi. �

An expansion of M2j+1(C) into subspaces similar to Hl also applies in the reduced
fuzzy sphere case with l = 0, · · · , 2j, see [31]. It means in our case that we can
solve the Laplacian and look at the non-relativistic limits by the same methods
as we illustrated for the Schwarzschild black hole. The only difference is that the
functions have values ψl(t, r) ∈ Cλ[S2], but the differential equations themselves in
t, r are purely classical according to

∆fuz = − 1

β

∂2

∂t2
+ ∆r +

1

kr2
λl; ∆r :=

1

r3
∂

∂r
(βr3

∂

∂r
)

with β = 1−r2H/r2. Taking e−ımt as reference gives the same form as (4.17) but with
λl
kr2 in a modified effective spatial Laplacian. Then (β − 1)m/2 = −2G2M2m/r2

for the gravitational potential energy, in agreement with (4.16).

Next, for the ‘comoving’ version, the l = 0 solutions of the Klein-Gordon equation
are given by solving (4.18) as before and, relative to this, slowly-varying ψl defined
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Figure 3. Radial solution φm(r) for the Klein-Gordon equation
around a fuzzy black hole shown for m = 4/rH , rH = 1, and func-
tion φ′m(r)/φm(r).

by (4.19) obey the Schroedinger-like equation (4.20) but now with λl
kr2 in place of

λl
r2 . Focussing on the ω = m case, the main difference now is that φm decays more
rapidly and in first approximation, if we leave out the β′ term in ∆r, is now solved
by

φm(r) ∝
(
r2 − r2H

) 1
2±

1
2

√
1−m2r2H

r2
.

We focus on the + case of the square root, which leads for m >> 1/rH to a fair
approximation

φ′m
φm
≈ ım rH

r(1− r2H
r2 )

, r >> rH .

The exact numerical solution is similar but with a degree of oscillation as illustrated
in Figure 3. As a result, the long range Schroedinger-like equation is

ıψ̇l ≈ −
β

2m

(
∆r +

λl
kr2

)
ψl − ıβ

2GM

r
ψ′l

if we use the Schwarzschild value of rH , showing a coupling to the velocity term of
the same size as the usual gravitational potential per unit mass. As before, near the
horizon we need the actual φ′m/φm values for stability of the solutions. An initial
Gaussian breaks up and decays over time, looking much as before.

Finally, although we have used the Schwarzschild value of rH for purposes of com-
parison, since the geometry is asymptotically flat, we could naively try to define
an actual ADM mass by copying its physical formulation in terms of the Einstein
tensor of the spatial geometry[5, 17, 40], which in spherical polars amounts to the
limit r →∞ of

M(r) =
2

G(n− 1)(n− 2)Ωn−1

∫
Sn−1
r

Eins(r∂r,
√
β∂r)d

n−1Ω

=
2

G(n− 1)(n− 2)
rn−1Eins(r∂r,

√
β∂r)

for a spatial geometry of dimension n. Here there is a factor −2 compared to the
usual definition because our Ricci and hence Einstein tensor conventions reduce in
the classical case to − 1

2 of the usual ones. Ωn−1 is the volume of a unit sphere

of dimension n− 1 and we integrate with measure dn−1Ω over the sphere Sn−1r at
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radius r. The conformal Killing vector field in the general formula in [40] is just
r∂r in our case and the unit outward normal vector field is

√
β∂r given the form of

the spatial metric. As everything is rotationally invariant, the integration merely
gives a factor rn−1Ωn−1. For a usual Schwarzschild black hole with n = 3, the
Einstein tensor of the spatial geometry in our conventions can be extracted from
[12, Cor. 9.9] to find

EinsSch(r∂r,
√
β∂r) =

1

2r
√
β

(1− β), M(r) =
rH

2G
√
β
→ rH

2G

as expected for the Schwarzschild β(r) = 1− rH
r . If we instead use the fuzzy quan-

tum black hole spatial geometry in Proposition 4.2, the radial sector is completely
classical, so it still makes sense to read off Eins(∂r, ∂r) as the coefficient of dr⊗ dr,
resulting in our case in

Einsfuz(r∂r,
√
β∂r) =

3

2r
√
β

(
1

4k
− β),

which, since β(r) = 1 − r2H
r2 and k 6= 1

4 , results in M(r) → ∞. If we took k = 1
4

then we would not have a Ricci flat metric in the spacetime quantum geometry
and we would get M(r) → 0, which is not reasonable either. These problems are
a consequence of the dimension jump in the quantum model, evidently requiring a
more sophisticated approach to ADM mass. By contrast, if we were to set n = 4

and k = 1
4 then we would obtain M(r) → r2H

2G , which is rather close to the value
(4.6) for a classical 5D black hole.

There is a similar story if we try to compute the Komar mass in 4D from its classical
formula as a surface integral around a 2-sphere at infinity. This can be written,
cf[46], as the limit r →∞ of

MKomar(r) = − 1

8πG

∫
S2(r)

i∂ti∂r (∂rβdt ∧ dr) =
1

2G
r2∂rβ

where, for our form of metric, the timelike Killing vector converted to a 1-form via
the metric is ξ = −βdt with ∇∧ ξ = −∇ ∧ (βdt) = −d(βdt) = ∂rβdt ∧ dr since ∇
has zero torsion. The unit timelike reference field is 1√

β
∂t and (and as above) the

outward unit normal to the sphere S2(r) of radius r is
√
β∂r (the

√
β factors cancel

in their product). For a Schwarzschild black hole, this gives rH
2G as expected, but for

our solution β(r) = 1− r2H
r2 , we obtain MKomar(r)→ 0. We would have obtained a

reasonable answer if we were integrating over a 3-sphere in a 4-dimensional spatial
geometry, but that is not the case for our fuzzy black hole geometry.

5. Black hole with the discrete circle

We now consider the same ideas as in the preceding section, but for a 3D spacetime
metric with S1 in polar coordinates replaced by the discrete group Zn. The 2D
FLRW model with S1 replaced by Zn was done in [3] and we use the same notations.
Briefly, i ∈ Zn now labels the vertices of a polygon as an integer mod n. The ‘step
up’ and ‘step down’ partial derivatives are ∂± = R±− id, where (R±f)(i) = f(i±1)
and e± are the associated invariant 1-forms with e+∗ = −e−. The calculus on Zn
is not commutative as e±f = R±(f)e± for a function f , the e± anticommute with
each other and the exterior derivative is df = (∂±f)e± (sum over ±) and de± = 0.
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The classical limit n → ∞ can be seen as a circle with a noncommutative 2D
calculus, which is the classical calculus on S1 extended by a 1-form Θ0. The latter
has no classical analogue but can be viewed as normal to the circle when embedded
in a plane[3], but without an actual normal variable. The natural invariant metric
on the polygon is −e+ ⊗s e−.

Now the spacetime coordinate algebra is A = C∞(R × R>0) ⊗ C(Zn) with t, r for
the time and radial classical variables, and we consider a static Schwarzschild-like
metric of the form

g = −β(r)dt⊗ dt+H(r)dr ⊗ dr − αab(r, i)ea ⊗ eb. (5.1)

Invertibility of the metric requires centrality, which dictates αab(r, i) = αa(r, i)δab−1

for some real-valued functions αa. We also require edge-symmetry αa = Ra(αa−1)
so that the length of each edge •i−•i+1 for the Zn at radius r is the same in either
direction, namely given by some real function a(r, i) according to

α+(r, i) = a(r, i), α−(r, i) = R−a(r, i). (5.2)

We limit attention to this form of metric.

We take analogous conditions on the tensor product calculus as in the previous
section, in the sense that the functions of the time t, radius r as well as dt,dr are
classical and graded-commute with everything. In view of this, and in line with
[3] and with the fuzzy case above, we make the simplifying assumption that the
connection braiding σ among the differentials dr, dt and between them and e± is
just the flip map. In this case, the most general form of a potential bimodule
connection turns out to be

∇ea = −Γabce
b ⊗ ec + νabdt⊗s eb + γabdr ⊗s eb,

∇dt = ξabe
a ⊗ eb + bdt⊗ dt+ cdr ⊗ dr + hdr ⊗s dt,

∇dr = Aabe
a ⊗ eb +Bdt⊗ dt+ Cdr ⊗ dr +Ddr ⊗s dt,

where the coefficients are elements of the algebra A and of the form

νab = νaδa,b−1 , γab = γaδa,b−1 , Aab = Aaδa,b−1 , ξab = ξaδa,b−1 . (5.3)

We now analyse when such a bimodule connection is a QLC. The requirement to
be torsion free comes down to

Aab = Aba, ξab = ξba, Γabc = Γacb, ∧(id + σ)(ea ⊗ eb) = 0, (5.4)
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while to be metric compatible comes down to the 13 equations:

dr ⊗ dt⊗ dt : ∂rβ + 2βh = 0,

dr⊗3 : ∂rH + 2HC = 0,

dt⊗3 : 2βb = 0,

dr ⊗ dt⊗ dr/dr ⊗ dr ⊗ dt : −βc+HD = 0,

dt⊗ dt⊗ dr/dt⊗ dr ⊗ dt : −βh+HB = 0,

dt⊗ dr ⊗ dr : 2HD = 0,

dr ⊗ ea ⊗ eb : −∂rαab − αcbγca − αacRa(γcb) = 0,

ea ⊗ eb ⊗ dt : −βξab − αcdRc(νdf )σcf ab = 0,

ea ⊗ dt⊗ eb : −βξab − αcbνca = 0,

ea ⊗ eb ⊗ dr : HAab − αcdRc(γdf )σcf ab = 0,

ea ⊗ dr ⊗ eb : HAab − αcbγca = 0,

ea ⊗ eb ⊗ ec : −∂aαbc − αdcΓdab − αdfRd(Γf gc)σdgab = 0,

dt⊗ ea ⊗ eb : −αcbνca − αacRa(νcb) = 0.

The 1st and 2nd equations gives h,C respectively, and these together with the 5th
equation give B, resulting in

h = − 1

2β
∂rβ, C = − 1

2H
∂rH, B = − 1

2H
∂rβ. (5.5)

The 3rd, 6th and 4th equations imply that c = b = D = 0. Next, the 9th and 11th
equations tell us that

νa = −βξa
αa

, γa =
HAa
αa

, (5.6)

while, given the edge-symmetry, the 13th and 7th equations reduce to

νa +Ra(νa−1) = 0, γa +Ra(γa−1) = −∂rαa
αa

. (5.7)

Given that the 12th equation for metric compatibility and the torsion-freeness con-
dition are the same as for the polygon in [3], we are led to take Γabc at each radius
r the same as for the QLC ∇Zn on the polygon found there. This has

∇Zne+ = (1− ρ)e+ ⊗ e+, ∇Zne− = (1−R2
−ρ
−1)e− ⊗ e−, ρ(r, i) =

a(r, i+ 1)

a(r, i)

and its braiding obeys σ(e±⊗e∓) = e∓⊗e±, in which case the 8th and 10th metric
compatibility equations become

Ra(νa−1) = − β

αa
ξa−1 , Ra(γa−1) =

HAa−1

αa
. (5.8)

Using the first of (5.6) and (5.8) in (5.7) leads us to ξa = −ξa−1 , which together
with the second half of the torsion-freeness conditions (5.4) requires ξa = 0, and as
consequence νa = 0. Similarly, inserting the second half of (5.6) and (5.8) in (5.7)
produces

−Aa −Aa−1 =
∂rαa
H

. (5.9)
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In summary, for a QLC, it only remains to solve for Aa, γa subject to such residual
equations, with the other coefficients zero or determined. It also remains to impose
reality in the form of ∇ ∗-preserving.

Proposition 5.1. Assuming a static edge-symmetric central metric (5.1) and σ
the flip on generators involving dr, dt leads to a ∗-preserving QLC if and only if
∂−∂rαa = 0 (which needs the underlying a(r, i) to be the sum of a function of r and
a function of i). The ∗-preserving QLC with real coefficients is then unique and
given by

∇dt =− 1

2β
∂rβdr ⊗s dt,

∇dr =− 1

2H
∂rHdr ⊗ dr − ∂rα+

2H
e+ ⊗ e− − ∂rα−

2H
e− ⊗ e+ − 1

2H
∂rβdt⊗ dt,

∇e± =∇Zne± − 1

r
dr ⊗s e±.

Proof. The ∗-preserving conditions for ∇ include conditions on Γ which coincide at
each r with those for a QLC on Zn as in [3], for which the solution is unique, so
we are forced to this choice for Γ. The remaining ∗-preserving conditions require
B,C, h to be real-valued, which already holds because they are functions of the
metric coefficients, together with the conditions∑

a

(Aa−1σ(ea
−1

⊗ ea)−Aaea ⊗ ea
−1

) = 0, γa = Ra(γa−1), (5.10)∑
a

(ξa−1σ(ea
−1

⊗ ea)− ξaea ⊗ ea
−1

) = 0, νa = Ra(νa−1). (5.11)

The conditions (5.11) are trivially fulfilled, while the second half of (5.10) implies
Aa = Aa−1 , which together with the form of the braiding map σ solves the first
half of (5.10). In this case, (5.9) takes the form

−Aa −Aa =
∂rαa
H

. (5.12)

The second halves of (5.6) and (5.8), together with the edge-symmetric condition,
tell us that Aa = Ra−1(Aa) and hence that Aa is independent of the discrete
variable, i.e., just a function of r. In this case, we must have

A± = −∂rα±
2H

± ıy(r), γ± = −∂rα±
2α±

± ıHy(r)

α±

for some real-valued function y(r). It is natural at this point to set y(r) = 0 so as to
keep coefficients real, and we do this now (this was also done at the parallel point
in [3]). Another consequence of A± being constant on the polygon is ∂±A± = 0,
which lead us to ∂±∂rαa = 0. This corresponds to restricting the underlying metric
function a(r, i) in (5.2) as stated. �

This is a general result, but we now focus attention to the Zn-invariant metric
where a(r, i) is independent of i and moreover of the expected radial form.

Theorem 5.2. The static Zn-invariant Schwarzschild-like metric

g = −β(r)dt⊗ dt+H(r)dr ⊗ dr − r2e+ ⊗s e−
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has a canonical ∗-preserving QLC,

∇dt =− 1

2β
∂rβdr ⊗s dt,

∇dr =− 1

2H
∂rHdr ⊗ dr − r

H
e+ ⊗s e− −

1

2H
∂rβdt⊗ dt,

∇e± =− 1

r
dr ⊗s e±

with the corresponding Ricci scalar and Laplacian

S =
1

2Hβ
∂2rβ −

1

4Hβ2
(∂rβ)2 − 1

4H2β
∂rH∂rβ −

1

rH2
∂rH +

1

rHβ
∂rβ +

1

r2H
,

∆ =
2

r2
(∂+ + ∂−)− 1

β
∂2t +

1

H
∂2r +

(
2

rH
− 1

2H2
∂rH +

1

2Hβ
∂rβ

)
∂r.

This is Ricci flat if and only if

H(r) =
1

β(r)
, β(r) =

rH
r

(5.13)

for some constant rH of length dimension.

Proof. Taking α± = r2 in the preceding proposition immediately gives the canonical
QLC stated. Its associated curvature comes out as

R∇dt =
1

2β

(
∂2rβ −

1

2β
(∂rβ)2 − 1

2H
∂rH∂rβ

)
dt ∧ dr ⊗ dr − r

2Hβ
∂rβdt ∧ e+ ⊗s e−,

R∇e
± = −∂rH

2rH
e± ∧ dr ⊗ dr − 1

2rH
∂rβe

± ∧ dt⊗ dt− 1

H
e± ∧ e∓ ⊗ e±,

R∇dr =
1

2H

(
1

2H
∂rβ∂rH − ∂2rβ +

1

2β
(∂rβ)2

)
dr ∧ dt⊗ dt− 1

2
r∂rβdr ∧ e+ ⊗s e−.

Taking the antisymmetric lift of products of basic 1-forms and tracing gives the
associated Ricci tensor

2Ricci =

(
1

2β
∂2rβ −

(
∂rβ

2β

)2

− 1

4Hβ
∂rH∂rβ −

1

rH
∂rH

)
dr ⊗ dr(

− r

2Hβ
∂rβ +

r

2H2
∂rH −

1

H

)
e+ ⊗s e−

+

(
1

4H2
∂rβ∂rH −

1

2H
∂2rβ +

1

4Hβ
(∂rβ)2 − ∂rβ

rH

)
dt⊗ dt.

The Ricci scalar and Laplacian follow on application of the inverse metric. We then
solve for Ricci = 0. The calculations are straightforward and are omitted. �
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The quantum geometric structures in the discrete black hole-like Ricci-flat case are

g =− rH
r

dt⊗ dt+
r

rH
dr ⊗ dr − r2e+ ⊗s e−, (5.14)

(dt,dt) = −rH
r
, (dr, dr) =

r

rH
, (e±, e∓) = − 1

r2
, (5.15)

∇dt =
1

2r
dr ⊗s dt, (5.16)

∇dr =− 1

2r
dr ⊗ dr − rHe+ ⊗s e− +

r2H
2r3

dt⊗ dt, (5.17)

∇e± =− 1

r
dr ⊗s e±, (5.18)

R∇dt =
1

r2
dt ∧ dr ⊗ dr +

rH
2r

dt ∧ e+ ⊗s e−, (5.19)

R∇dr =− r2H
r4

dr ∧ dt⊗ dt+
rH
2r

dr ∧ e+ ⊗s e−, (5.20)

R∇e
± =− 1

2r2
e± ∧ dr ⊗ dr +

r2H
2r4

e± ∧ dt⊗ dt∓ rH
r
e+ ∧ e− ⊗ e±, (5.21)

∆ =− r

rH
∂2t +

rH
r
∂2r +

rH
r2
∂r +

2

r2
(∂+ + ∂−). (5.22)

To keep the signature, we can take rH > 0 and we will analyse this case first.
However, to approximately match the inside of a black hole, we will then also
analyse the case rH = −2GM < 0 with the physical roles of r, t interchanged.

We also note that β = H = 1 leads to

g = −dt⊗ dt+ dr ⊗ dr − r2e+ ⊗s e−, Ricci = −1

2
e+ ⊗s e−, S =

1

r2
,

∆ = −∂2t + ∂2r +
2

r
∂r +

2

r2
(∂+ + ∂−),

which is more like the spacetime Laplacian in 3 spatial dimensions, again showing
the dimension jump and the constant curvature at each fixed radius and time. Here
S1 behaves more like S2 in polar coordinates, just with 2(∂+ + ∂−) in the role of
the angular Laplacian.

5.1. Klein-Gordon equation on the discrete black hole-like model for
β(r) > 0. Here, we analyse the case of the length scale rH > 0 in the Lapla-
cian (5.22) found for the discrete black hole-like model above in ‘polar coordinates’
form. The eigenvalues of the angular Laplacian ∂+ + ∂− are labelled by l ∈ Zn and
given by[3]

λl = ql + q−l − 2 = 2(cos(
2πl

n
)− 1) = −4 sin2(

πl

n
); q = e

2πı
n

with eigenfunctions qil. If we followed the format of Section 4.1, we might first
consider ‘quantum mechanics-like’ solutions of Klein-Gordon equations ∆φ = m2φ
of the form

φ = e−ımtψl(t, r)
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Figure 4. Solution of Klein-Gordon equation for l = 0 and ω =
m = rH = 1, with Cauchy boundary condition at r0 = rHm

2/ω2.

of orbital angular momentum l and slowly varying in t. This is not particularly
justified from the form of the metric but leads to

ıψ̇ = − rH
2mr

(
∆r +

2λl
r2

)
ψl + (1− rH

r
)
m

2
ψl; ∆r =

rH
r2
∂r(r∂r).

The mass term from the Klein-Gordon equation has not cancelled due to the rH/r
factor in the dt⊗ dt term in the metric, except in the vicinity of r ≈ rH .

Here, it makes more sense to look in the ‘comoving’ case where we start with an
l = 0 reference solution of the Klein-Gordon equation of the form

φ = e−ıωtφω; φ′′ω +
1

r
φ′ω + (

r2

r2H
ω2 − r

rH
m2)φω = 0.

A generic solution of this for ω = m = rH = 1 is shown in Figure 4, which illustrates
that we can have an extended region where φω is approximately constant, here with
boundary condition

φ′ω(r0) = 0, φω(r0) = 1; r0 := rH
m2

ω2
.

This results in ∣∣∣∣φ′ω(r)

φω(r)

∣∣∣∣ < m

|ω|rH
, r ≈ r0

for a reasonable range around the central value, as illustrated in the second half
of the figure. An obvious choice would be ω = m and hence r0 = rH , but we can
choose other ω to have other central values r0.

Next, we use this as reference and look for solutions of the Klein-Gordon equations
of the form φ = e−ıωtφω(r)ψl(t, r) with ψl in the λl eigenspace and slowly varying

in t. Discarding ψ̈l terms, we have

ıψ̇l = − rH
2ωr

(
∆r +

2φ′ω
φω

rH
r
∂r +

2λl
r2

)
ψl

and hence in any regime where the φ′ω/φω term can be neglected, we have approx-
imately

ıψ̇l ≈ −
rH
2ωr

(
∆r +

2λl
r2

)
ψl
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as an effective Schroedinger-like equation. We still have an expected scale factor
out front, but now the unwanted mass terms are absent, i.e. this looks more like
free motion as expected.

We can go further and replace r by a new variable

ρ(r) =
r2

2rH
,

∂

∂r
=

r

rH

∂

∂ρ
,

∂2

∂r2
=

∂

∂r

(
r

rH

∂

∂ρ

)
=

r2

r2H

∂2

∂ρ2
+

1

rH

∂

∂ρ
,

in which case

ıψ̇l ≈ −
1

2ω

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

2λl

(2ρ)
3
2 r

1
2

H

)
ψl.

This absorbs the β2 = r2H/r
2 factor in front of the radial double derivative so as to

look more like flat space quantum mechanics, but has an unusual radial power for
the angular contribution. Here ω plays the role of the effective mass and determines
the central value

ρ0 =
rH
2

(m
ω

)4
around which we wish our approximation to hold.

5.2. Continuum limit of the discrete black hole-like model. Here, we send
n → ∞ in such a way that the Zn geometry becomes S1 with its usual constant
metric. The algebraic way to do this was explained in [3] as a switch from functions
on Zn to the algebraic circle C[s, s−1], where classically s = eiθ for an angle coor-
dinate θ. The limiting calculus is not, however, the classical one on S1, being 2D
not 1D. Rather, it is the q → 1 limit of the 2D q-deformed calculus with generators
f± and the commutation relations and exterior derivative[3]

f−s = −sf+, f+s = s(f− + (q + q−1)f+), ds = sf+, ds−1 = s−1f−.

The calculus is inner with

Θ =
q

(q − 1)2
(f+ + f−)

and has a quantum metric

gS1 =
1

2
f+ ⊗s f− +

q

(q − 1)2
(f+ + f−)⊗ (f+ + f−)

One can check that this is central, i.e. commutes with s and obeys the reality
property flip(∗⊗∗)(gS1) = gS1 for a quantum metric if q is real or modulus 1. If we

impose q = e
2πı
n and sn = 1 then this is the constant metric 1

2 (q − q−1)2e+ ⊗s e−
on Zn under the correspondence[3]

e± =
qf± + f∓

(q − q−1)(q − 1)
. (5.23)

In this case (q − q−1)2 is negative, which is the reason for the − sign that was
needed in the discrete model. But we do not impose these restrictions and thereby
work on the circle. One still has a flat ∗-preserving QLC with

∇f± = 0, f+∗ = −f−
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and σ the flip on the basic 1-forms. We now work on A = C∞(R×R>0)⊗C[s, s−1]
with t, r,dt,dr classical and graded-commuting with the s, f±. We take the metric

g = −rH
r

dt⊗ dt+
r

rH
dr ⊗ dr + r2gS1

and we look for QLCs with σ assumed to be the flip on the basic 1-forms.

Proposition 5.3. The metric g has a canonical Ricci flat ∗-preserving QLC and
associated geometry

∇dt =
1

2r
dr ⊗s dt, ∇dr = − 1

2r
dr ⊗ dr +

r2H
2r3

dt⊗ dt+ rHgS1 , ∇f± = −1

r
dr ⊗s f±,

R∇dt =
1

r2
dt ∧ dr ⊗ dr − rH

2r
dt ∧ gS1 , R∇dr = −r

2
H

r4
dr ∧ dt⊗ dt− rH

2r
dr ∧ gS1 ,

R∇f
± =− 1

2r2
f± ∧ dr ⊗ dr +

r2H
2r4

f± ∧ dt⊗ dt+
rH
r
f± ∧ gS1 ,

∆ =− r

rH
∂2t +

rH
r
∂2r +

rH
r2
∂r +

1

r2
∆S1 , ∆S1 = −4(1 + (q − 1)s∂q)

(q + 1)2
(s∂q)

2,

where ∂q is the standard q-derivative so that ∆S1 on modes sl has eigenvalue

λl = −
4ql[l]2q

(q + 1)2
, [l]q :=

1− ql

1− q
.

Proof. First, we can redo the discrete black hole-like model with a(r, i) = ar2 for
any constant factor a for the angular term gZn = −ae+ ⊗s e− in the metric. This
same factor enters in the connection ∇dr as gZn there. The same happens for R∇ in
the term where e+⊗s e− entered. We then replace gZn by gS1 to get the connection
as stated, noting that f± are a linear combination of e±, so expressions linear in
these have the same form. This version is constructed so as to be isomorphic to the
discrete black hole-like model when q = e

2πı
n and sn = 1 are imposed, but these

properties do not enter into the computations for a QLC, so this also holds for
generic q, and likewise for Ricci flatness and for being ∗-preserving when |q| = 1.
One can do a direct check of these features and see that ∇ is ∗-preserving also when
q is real, as a consequence of gS1 being real in the required sense.

For Ricci, the antisymmetric lift i(f+ ∧ f−) = 1
2 (f+ ⊗ f− − f− ⊗ f+) of

f+ ∧ f− =

(
q − 1

q + 1

)
(q − q−1)2e+ ∧ e−

is equivalent to that of e+ ∧ e− when we use the correspondence (5.23). We also
use the inverse metric which on the f± comes out as

(f±, f±) = − 4q

r2(q + 1)2
, (f±, f∓) = 2

q2 + 1

r2(q + 1)2
.

For the Laplacian, we use dsl = − q[l]qs
l

q+1 (q[−1 − l]qf+ + [1 − l]qf−) from [3] and

( , ) to compute ∆sl = ( , )∇dsl = − 4q2+l

r2(q+1)2 [l]2qs
l, which we write as stated since

s∂qs
l = [l]qs

l for the standard q-derivative ∂qf(s) = (f(qs)− f(s))/((q− 1)s). The
other values of ∆ on functions of r, t are unchanged from the discrete case. In the
classical case with s = eıθ, we have s ∂∂s = −ı ∂∂θ as the limit of s∂q. �
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It remains to say a few words about the actual classical limit of the geometry. As
explained in [3], this is a joint process q → 1 and f+ = −f−, with the latter taking
precedence so that gS1 → −f+ ⊗ f+ = dθ ⊗ dθ as classically in our normalisation
of gS1 . In this way, one arrives as the classical 1+2-dimensional curved metric

gclass = −rH
r

dt⊗ dt+
r

rH
dr ⊗ dr + r2dθ ⊗ dθ,

which is not, however, Ricci flat. One finds in our conventions (which are −1/2 of
the usual ones)

Ricci = −1

2

(
r2H
2r4

dt⊗ dt− 1

2r2
dr ⊗ dr +

rH
r

dθ ⊗ dθ

)
, S = 0,

∆ = − r

rH
∂2t +

rH
r
∂2r +

1

r2
∂2

∂θ2
.

The Laplacian agrees with the limit of the q-deformed geometry but Ricci does
not. This is due to the 4D cotangent bundle in the quantum model, since the trace
gives a different result from the trace in the quotient, where we impose f+ = −f−.
Moreover, the dropped terms in the metric that are singular as q → 1 contribute
in the calculation of Ricci = 0 in the quantum model.

5.3. Discrete black hole model for β(r) < 0. Here we briefly analyse the case
where rH < 0 in our previous presentation of the discrete black hole-like model.
More precisely, we still define rH = 2GM > 0 but replace rH by −rH and we
also replace t by r and r by t in all the formulae (5.14)-(5.22) so as to match the
signature. Thus, the quantum metric and resulting quantum geometry are now

g = − t

rH
dt⊗ dt+

rH
t

dr ⊗ dr − t2e+ ⊗s e−,

∇dr =
1

2t
dr ⊗s dt, ∇dt = − 1

2t
dt⊗ dt+

r2H
2t3

dr ⊗ dr − rHe+ ⊗s e−,

∇e± = −1

t
dr ⊗s e±, ∆ = −rH

t
∂2t +

t

rH
∂2r −

rH
t2
∂t +

2

t2
(∂+ + ∂−)

with a curvature singularity now at t = 0. We next make a change of variable

t = (
3τ

2
)

2
3 r

1
3

H = η(τ)2rH , η(τ) =

(
3τ

2rH

) 1
3

in order to have a constant term in the ‘time’ coefficient of the metric, so that the
quatum geometric structures become

g = −dτ ⊗ dτ + η−2dr ⊗ dr − η4r2He+ ⊗s e−,

∇e± = − 2

3τ
dτ ⊗s e±, ∇dτ = − 1

3η2τ
dr ⊗ dr − ηrHe+ ⊗s e−,

∇dr =
1

3τ
dr ⊗s dτ, ∆ = −∂2τ +

1

3τ
∂τ + η2∂2r +

2

η4r2H
(∂+ + ∂−).

We now do the parallel analysis to Section 5.1. Using the above Laplacian for the
Klein-Gordon equation, we first look for solutions of the form φ = e−ımτψl(τ, r),
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where ψl is slowly varying in τ and with eigenvalue λl for the angular sector.
Ignoring ψ̈l, we have

ıψ̇l = − η2

2m− ı
3τ

(
∂2r +

8λl
9τ2

)
ψl,

where dot denotes ∂τ . If we assume that we are very far from the τ = 0 singularity
in the sense

τ >>
1

m

(i.e. at macroscopic times much larger than the Compton wavelength in time units),
we have

ıψ̇l ≈ −
η2

2m

(
∂2r +

8λl
9τ2

)
ψl. (5.24)

This looks a bit like quantum mechanics, not in the presence of a point source
potential but rather with an overall time-dependent expansion factor and a time-
dependent contribution of the angular momentum. Note that e−ımτ does not itself
obey the Klein Gordon equation.

Next, we look for the ‘comoving’ behaviour, noting that reference solutions of the
Klein-Gordon equation of mass m and l = 0 are in fact given by Hankel functions,
of which we focus on the first type,

φm(τ) = τ
2
3H

(1)
2
3

(mτ).

Here, the real and imaginary parts (Bessel J, K functions respectively) oscillate,
φm(0) is a nonzero (imaginary) value and |φm|2 gradually increases with time.
This therefore plays the role of an exact plane wave. Relative to this, we look for
solutions of the form

φ(τ, r) = φm(τ)ψl(τ, r)

with ψl slowly varying in τ , leading to a Schroedinger-like equation

ıψ̇l = −η
2h(mτ)

2m

(
∂2r +

8λl
9τ2

)
ψl,

where

h(s) = ı
H

(1)
2
3

(s)

H
(1)

− 1
3

(s)− 1
6sH

(1)
2
3

(s)
≈ 1

for large s, as shown on the left in Figure 5. Here, one can see that h(mτ)
approaches 1 very rapidly as τ >> 1/m. In other words, the behaviour near the
τ = 0 singularity is different but for larger τ the effective Schroedinger-like equation
is now much more sharply approximated by (5.24) than before.

The numerical solution for the real part of these equation is shown on the right
in Figure 5, where we used the exact function h(mτ) and set the initial Gaussian
at mτ = 1. The evolution becomes noticeably constant in r compared to regular
quantum mechanics. Some of the noise in the picture comes from the numerical
approximation.
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Re h(mτ)
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initial  
singularity

Figure 5. Function h(mτ) in definition of Schroedinger-like equa-
tion for discrete black hole metric and evolution of a Gaussian cen-
tred at r = 10rH at τ = 1/m, for rH = m = 1 and l = 0. The
essentially zero initial values at r = 0, 20rH are held fixed.

6. Concluding remarks

We have solved for the quantum Levi-Civita connection and hence found the quan-
tum geometry for quantum metrics with each sphere at radius r, t replaced by a
fuzzy sphere Cλ[S2]. We did this for both FLRW-type metrics (3.1) and static
black-hole like metrics (4.1) in polar coordinates and general metric gij on the
fuzzy sphere. We also completed the discrete case with static metric (5.1), where
each sphere is replaced by Zn as a discrete circle or its noncommutative S1 limit,
the FLRW-like case having already been treated in [3]. After the general analysis,
we specialised to the ‘round’ metric gij = kδij in the fuzzy case and the regu-
lar polygon metric −e+ ⊗s e− in the discrete case, respectively, and solved the
Friedmann equations for the cosmological model and the Ricci=0 equation for the
black-hole-like models.

The four models between them show a remarkably consistent ‘dimension jump’
phenomenon where the radial-time sector behaves as for a classical model of one
dimension higher. The origin of this from a mathematical point of view is what has
been called a ‘quantum anomaly for differential structures’ [33], where quantisation
of an algebra while preserving symmetries typically has an obstruction requiring
either a breakdown of associativity or, which is our approach here, an extra cotan-
gent dimension. This then affects both the Ricci tensor and Laplace operator. This
is not surprising, but it is remarkable that the result appears so simply as a clas-
sical dimension jump. The consequence from a physical point of view is striking:
if each sphere at r, t is better modelled as fuzzy due to quantum gravity effects,
which is plausible enough if one wanted to preserve rotational symmetry but allow
for some noncommutativity of spatial coordinates, then Ricci flat solutions, in par-
ticular, have a very different long range behaviour in 4D, being now of the form
of a 5D black hole with the black hole appearing as a source of an inverse cubic
gravitational force. In the discrete circle case, as well as in its noncommutative
circle limit, the fact that the circle has zero constant curvature in contrast to S2

also resulted in dropping the 1 in the usual Schwarzschild factor β = 1 − 2GM/r,
which meant that we only approximated the a black hole far inside the horizon.



32 J. N. ARGOTA-QUIROZ AND S. MAJID

We are not proposing the model as 4D physics, since the angular sector remains
a circle not a sphere, but it could be of interest in 2+1 gravity. It also illustrates
that it is possible to have a nonflat Ricci=0 quantum geometry in 3D, ultimately
because of the hidden extra cotangent direction. The geometric meaning of the
extra dimension was discussed in [3] as a kind of normal to the circle but without
actually extending the circle to an ambient plane. (This is not unlike the notion of
a ribbon or framed knot in TQFTs.) Finally, we have considered θ′ as part of the
background quantum geometry, but in the light of experience with Connes spectral
triple approach (and notably, the appearance of a Higgs field there[19]), it could
be interesting to promote this extra 1-form to a dynamical field. According to our
discussion, such a field might be associated to some kind ‘normal bundle’. Other
ideas for a physical role of θ′ have ranged from a spontaneously induced external
time as in [33, 34, 35] to a direction associated to a renormalisation group flow[23].
In the former context, a functional coefficient in front of θ′ was indeed interpreted
in [34, 35] as a gravitational potential.

In summary, we offer new models with different radial-time behaviour from those
expected. We do not know if such effects could be relevant to real-world cosmology,
but the idea of modified gravity[41] is of interest and it is possible that our new
theoretical mechanism could likewise be of interest. We also introduced a novel
‘comoving’ Schroedinger-like equation i.e. slowly varying relative to an actual so-
lution φm of the Klein-Gordon equation. We have not developed this as a formal
theory but this could certainly be looked at further as a complement to more estab-
lished methods of quantum field theory on curved spaces[14, 43, 42]. In particular,
the solutions ψl appear in practice to dissipate over time even for a regular black
hole background. This could potentially relate to ideas for gravitational measure-
ment, but note that this would be a very different phenomenon from gravitational
decoherence[8], which applies to mixed states not pure states.

Of course, our analysis is only as good as the assumed formalism, and here we
assumed the constructive approach to quantum Riemannian geometry as in [12].
As in the concluding remarks in [3], it would be fair to say that the Einstein
tensor in the general set up is not known and the proposal for Ricci is merely
by analogy (a trace of Riemann) rather than springing from a more conceptual
understanding. In general, in order to take a trace, the formulation of Ricci depends
on a lifting map i : Ω2 → Ω1 ⊗A Ω1 which classically would express a 2-form as
an antisymmetric tensor but which in general depends on the structure of Ω2.
Fortunately, for the models in the present paper, as in [3], there are natural basic
1-forms with respect to which Ω2 is given by skew-symmetrising, so we can take i
in the standard form as classically. We also found for the FLRW model (3.15) and
for the spatial geometry of the fuzzy black hole model (Proposition 4.2), that the
quantum Einstein tensor defined by Eins = Ricci− S

2 g, where S is the Ricci scalar,
led as expected to ∇·Eins = 0. Such vanishing of the divergence provides evidence
that this ‘naive’ definition of the Einstein tensor can be useful for some classes of
models. It has also been used in some other approaches, such as [4]. An actual
derivation and deeper understanding from a noncommutative variational principle,
remains, however, an important direction for further work. This issue is discussed
further in the concluding remarks of [3].
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The physics of such quantum Ricci and Einstein tensors also remains to be under-
stood much better. For example, we took the view for the fuzzy black hole that
an observer sees the event horizon at r = rH , which is the physical parameter, but
equated it to 2GM for an effective ‘Schwarzschild mass’ for the purposes of com-
parison. To do better, one should have a noncommutative version of ADM theory,
but we saw that naively adopting its classical physical formulation in terms of the
spatial Einstein tensor[5, 17, 40] while using the spatial quantum Einstein tensor
gave an infinite ADM mass as a consequence of the dimension jump. We likewise
found that naively adopting the classical formulation of the Komar mass as a sur-
face integral gave an unreasonable answer. Here again, one should have a better
noncommutative version of the theory relating a ‘surface’ integral of ∗dξ (where ξ is
the timelike Killing 1-form and ∗ is the Hodge star operator) to a volume integral of
the evaluated Ricci curvature (so as to be topological for a vacuum solution). This
again requires a deeper understanding of the Ricci tensor in the noncommutative
case. In our case, we would also have to deal with ∗dξ being a 3-form due to the
extra dimension.

It is also the case that the models in the present paper do not concern quantum
gravity itself, but rather noncommutative classical gravity proposed to better model
quantum gravity effects. It remains to understand mechanisms for how our class of
models might indeed emerge from an underlying theory. Thus, [28, 24] gave some
reasons for why the fuzzy sphere could emerge from 2+1 quantum gravity, but
it is unclear how such arguments might extend to the higher dimensional models
proposed here. By contrast, [1] studies effects on the interior of a black hole from
loop quantum gravity, albeit the considerations there are quite different. See also
[6] as an example of a loop quantum gravity model of a cosmological nature. There
are also many other approaches to quantum gravity, some of them implicitly or
explicitly related to some kind of noncommutative geometry. Aside from Connes
spectral triples, which can be applied to models of quantum gravity, e.g.[27], we also
mention lattice quantum gravity[2] and causal set models [21] as approaches where
spacetime is modified away from the continuum and which it would be interesting
to connect better to noncommutative geometry. There are also emerging variants
of the formalism we used which could be useful to consider, for example [15] studies
Zn with a larger class of not necessarily edge-symmetric metrics compared to [3].

Nevertheless, the class of models studied in this paper were particularly nice as far
as the quantum geometry itself is concerned and more tractable than fully noncom-
mutative models where r, t need not be classical as they were for us. We refer to
the concluding remarks of [3] for a wider discussion. Also remaining to study, even
for our simple class of models, are quantum geodesics using the Schroedinger-like
formalism of [10, 13]. This requires further machinery, notably the construction of
a certain A-B-bimodule connection (where B is the classical geodesic time algebra),
and will be considered elsewhere. These are some directions for further work.
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