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DIRECT AND INVERSE PROBLEMS FOR TIME-FRACTIONAL

PSEUDO-PARABOLIC EQUATIONS

MICHAEL RUZHANSKY, DAURENBEK SERIKBAEV, NIYAZ TOKMAGAMBETOV,
AND BERIKBOL T. TOREBEK

Abstract. The purpose of this paper is to establish the solvability results to direct
and inverse problems for time-fractional pseudo-parabolic equations with the self-
adjoint operators. We are especially interested in proving existence and uniqueness
of the solutions in the abstract setting of Hilbert spaces.
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1. Introduction

The problems of determination of temperature at interior points of a region when
the initial and boundary conditions along with diffusion source term are specified are
known as direct diffusion conduction problems. In many physical problems, determi-
nation of coefficients or the right-hand side (the source term, in case of the diffusion
equation) in a differential equation from some available information is required; these
problems are known as inverse problems.
Inverse source problems for the diffusion, sub-diffusion and for other types of equa-

tions are well studied. There are numerous works published only in recent years in
this area (for example, see [AKT19, HLIK19, KY19, RZh18, SSB19]). However, in-
verse problems for pseudo-parabolic equations and for their fractional analogues have
been studied relatively little (see [KJ18, LT11a, LT11b, LV19, Run80, RTT19]).
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The inverse problem of determining the coefficient and the right hand side of a
pseudo-parabolic equation from local over defined states has important applications
in various fields of applied science and engineering. The study of inverse problems
for pseudo-parabolic equations began in the 1980s by Rundell (see [Run80]).
Let H be a separable Hilbert space and let L, M be operators with the corre-

sponding discrete spectra {λξ}ξ∈I , {µξ}ξ∈I on H, where I is a countable set.
In this paper we consider solvability of an inverse source problem for the following

pseudo-parabolic equation

(1.1) Dα
t [u(t) + Lu(t)] +Mu(t) = f(t) in H,

for 0 < t < T <∞, with initial data

(1.2) u(0) = ϕ ∈ H,

and final condition

(1.3) u(T ) = ψ ∈ H.

Here Dα
t is the Caputo fractional derivative of order 0 < α ≤ 1.

In the particular case α = 1, the equation (1.1) coincides with the classical pseudo-
parabolic equation with some differential operators L and M. The energy for the
isotropic material can be modeled by a pseudo-parabolic equation [CG68]. Some wave
processes [BBM72], filtration of the two-phase flow in porous media with the dynamic
capillary pressure [BGPV97] are also modeled by pseudo-parabolic equations. Time-
fractional pseudo-parabolic equation (1.1) occurs in the study of flows of the Oldroyd-
B fluid, one of the most important classes for dilute solutions of polymers [FFKV09,
TL05].
In this paper, we consider direct and inverse problems for the time-fractional

pseudo-parabolic equation with different abstract operators. We seek generalized
solutions to these problems in a form of series expansions using the elements of non-
harmonic analysis (see [RT16, RTT19]) and we also examine the convergence of the
obtained series solutions. The main results on well-posedness of direct and inverse
problems are formulated in three theorems.
We will be making the following assumption:

Assumption 1.1. We assume that the operators L and M are diagonalisable (can
be written in the infinite dimensional matrix form) with respect to some basis {eξ}ξ∈I
of the separable Hilbert space H with the eigenvalues λξ ∈ R : λξ ≥ cL > 0 and
µξ ∈ R : µξ ≥ cM > 0 for all ξ ∈ I, respectively. Here cL and cM are some constants,
I is some countable set.

We will be sometimes also making the following assumption with I = N
k or I = Z

k

for some k:

Assumption 1.2. In further calculus for our analysis we will also require that λξ →
∞ and µξ → ∞ as |ξ| → ∞. Moreover, we will assume that |λξ| = O(|µξ|

κ) as
|ξ| → ∞ for some κ > 0.

1.1. Preliminaries. Now, for the formulation of problems we need to define frac-
tional differentiation operators.
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Definition 1.3. The Riemann-Liouville fractional integral Iα of order 0 < α < 1 for
an integrable function f is defined by

Iα[f ](t) =
1

Γ(α)

∫ t

c

(t− s)α−1f(s)ds, t ∈ [c, d],

where Γ denotes the Euler gamma function.
The Caputo fractional derivative of order 0 < α < 1 of a differentiable function f

is defined by

Dα
t [f ](t) = I1−α[f ′(t)] =

1

Γ(1− α)

∫ t

c

f ′(s)

(t− s)α
ds, t ∈ [c, d].

For more information see [KST06].
In what follows, we will widely use the properties of the Mittag-Leffler type function

(see [LG99])

Eα,β(z) =
∞
∑

m=0

zm

Γ(αm+ β)
.

In [Sim14] the following estimate for the Mittag-Leffler function is proved, when
0 < α < 1 (not true for α ≥ 1)

(1.4)
1

1 + Γ(1− α)z
≤ Eα,1(−z) ≤

1

1 + Γ(1 + α)−1z
, z > 0.

Thus, it follows that

(1.5) 0 < Eα,1(−z) < 1, z > 0.

2. Direct problem

We consider the pseudo-parabolic equation

(2.1) Dα
t [u(t) + Lu(t)] +Mu(t) = f(t),

for 0 < t < T <∞, with the Cauchy condition

(2.2) u(0) = ϕ ∈ H.

Definition 2.1. Let X be a separable Hilbert space.

• The space Cα([0, T ];X), 0 < α ≤ 1 is the space of all continuous functions
g : [0, T ] → X with also continuous Dα

t g : [0, T ] → X , such that

‖g‖Cα([0,T ];X) = ‖g‖C([0,T ];X) + ‖Dα
t g‖C([0,T ];X) <∞.

• The space W α([0, T ];X), 0 < α ≤ 1 is the space of all L2-integrable functions
g : [0, T ] → X with L2-integrable Dα

t g : [0, T ] → X , such that

‖g‖Wα([0,T ];X) = ‖g‖L2([0,T ];X) + ‖Dα
t g‖L2([0,T ];X) <∞.

A generalised solution of the direct problem (2.1)-(2.2) is the function u ∈ L2([0, T ];H1
L
)∩

L2([0, T ];H1
M) ∩W α([0, T ];H1

L). Here we define Hl,m
L,M as

(2.3) Hl,m
L,M := {u ∈ H : LlMmu ∈ H},

for any l, m ∈ R. In view of this we can define Hl
L, H

m
M correspondingly

Hl
L := {u ∈ H : Llu ∈ H},
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Hm
M := {u ∈ H : Mmu ∈ H},

for any l, m ∈ R.

2.1. Case I: 1/2 < α < 1. For Problem (2.1)-(2.2), the following theorem holds true.

Theorem 2.2. Let 1/2 < α < 1. Suppose that Assumption 1.1 holds. Let ϕ ∈
H1

L∩H
1
M and f ∈ L2([0, T ];H)∩L2([0, T ],H−1,1

L,M). Then there exists a unique solution

u(t) of Problem (2.1)-(2.2) such that u ∈ L2([0, T ];H1
M) ∩ W α([0, T ];H1

L). This
solution can be written in the form

u(t) =
∑

ξ∈I

ϕξEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

[

1

1 + λξ

∫ t

0

sα−1Eα,α

(

−
µξ

1 + λξ
sα
)

fξ(t− s)ds

]

eξ,

where ϕξ = (ϕ, eξ)H, fξ(t) = (f(t), eξ)H.

Proof. Let us first prove the existence result. Since the system of eigenfunctions eξ
is a basis in H, we seek the function u(t) in the form

(2.4) u(t) =
∑

ξ∈I

uξ(t)eξ,

where uξ(t) are unknown functions. Substituting (2.4) into Equations (2.1)-(2.2) and
taking into account Assumption 1.1, we obtain the following equations corresponding
to the function uξ(t):

(2.5) Dα
t uξ(t) +

µξ

1 + λξ
uξ(t) =

fξ(t)

1 + λξ
,

(2.6) uξ(0) = ϕξ, ξ ∈ I.

Here fξ(t) is the coefficient function of the expansion of f(t), i.e.

f(t) =
∑

ξ∈I

fξ(t)eξ,

with
fξ(t) = (f(t), eξ)H,

and ϕξ is the coefficient of the expansion of ϕ, i.e.

ϕ =
∑

ξ∈I

ϕξeξ,

with

(2.7) ϕξ = (ϕ, eξ)H.

According to [LG99], the solutions of the equation (2.5) satisfying the initial con-
dition (2.6) can be represented in the form

uξ(t) = ϕξEα,1

(

−
µξ

1 + λξ
tα
)

−
1

µξ

∫ t

0

d

ds

(

Eα,1

(

−
µξ

1 + λξ
sα
))

fξ(t− s)ds.(2.8)
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Putting (2.8) into (2.4), we obtain a solution of Problem (2.1)-(2.2), i.e.

u(t) =
∑

ξ∈I

ϕξEα,1

(

−
µξ

1 + λξ
tα
)

eξ

−
∑

ξ∈I

[

1

µξ

∫ t

0

d

ds

(

Eα,1

(

−
µξ

1 + λξ
sα
))

fξ(t− s)ds

]

eξ.

(2.9)

Here under the integral we have the derivative of the Mittag-Leffler function, which
is a non-positive function, i.e.

d

ds

(

Eα,1

(

−
µξ

1 + λξ
sα
))

= −
µξ

1 + λξ
sα−1Eα,α

(

−
µξ

1 + λξ
sα
)

≤ 0,

in view of the fact that

E ′

α,1(z) =
d

dz

(

∞
∑

k=0

zk

Γ(αk + 1)

)

=
∞
∑

k=1

kzk−1

Γ(αk + 1)

=
1

α

∞
∑

m=0

zm

Γ(αm+ α)
=

1

α
Eα,α(z), z ∈ R.

From this we have

u(t) =
∑

ξ∈I

ϕξEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

[
∫ t

0

sα−1Eα,α

(

−
µξ

1 + λξ
sα
)

fξ(t− s)

1 + λξ
ds

]

eξ.

(2.10)

Now, we prove the convergence of the obtained infinite series corresponding to the
functions u(t), Dα

t u(t), Mu(t) and Dα
t Lu(t).

Before we get the convergence, let us calculate Mu(t), Dα
t u(t) and Dα

t Lu(t). By
using Assumption 1.1 in (2.7), we have

λξϕξ = λξ(ϕ, eξ)H = (ϕ,Leξ)H = (Lϕ, eξ)H;

µξϕξ = µξ(ϕ, eξ)H = (ϕ,Meξ)H = (Mϕ, eξ)H.
(2.11)
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Applying the operator L to (2.9), and taking into account formulas (2.11), we get

Lu(t) =
∑

ξ∈I

ϕξEα,1

(

−
µξ

1 + λξ
tα
)

Leξ

+
∑

ξ∈I

[
∫ t

0

sα−1Eα,α

(

−
µξ

1 + λξ
sα
)

fξ(t− s)

1 + λξ
ds

]

Leξ

=
∑

ξ∈I

λξϕξEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

λξ
1 + λξ

[
∫ t

0

sα−1Eα,α

(

−
µξ

1 + λξ
sα
)

fξ(t− s)ds

]

eξ

=
∑

ξ∈I

(Lϕ, eξ)HEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

λξ
1 + λξ

[
∫ t

0

sα−1Eα,α

(

−
µξ

1 + λξ
sα
)

fξ(t− s)ds

]

eξ.

(2.12)

Analogously, we have

Mu(t) =
∑

ξ∈I

(Mϕ, eξ)HEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

µξ

1 + λξ

[
∫ t

0

sα−1Eα,α

(

−
µξ

1 + λξ
sα
)

fξ(t− s)ds

]

eξ.

(2.13)

Applying the operator Dα
t to (2.4), we have

(2.14) Dα
t u(t) =

∑

ξ∈I

Dα
t uξ(t)eξ.

By using (2.5), we find Dα
t uξ(t)

Dα
t uξ(t) =

fξ(t)

1 + λξ
−

µξ

1 + λξ
uξ(t).(2.15)

Putting (2.10) into (2.15), we get

Dα
t uξ(t) =

fξ(t)

1 + λξ
−

µξ

1 + λξ
ϕξEα,1

(

−
µξ

1 + λξ
tα
)

+
µξ

(1 + λξ)2

[∫ t

0

sα−1Eα,α

(

−
µξ

1 + λξ
sα
)

fξ(t− s)ds

]

.

(2.16)

Substituting (2.16) into (2.14), we obtain

Dα
t u(t) =

∑

ξ∈I

fξ(t)

1 + λξ
eξ −

∑

ξ∈I

µξ

1 + λξ
ϕξEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

µξ

(1 + λξ)2

[
∫ t

0

sα−1Eα,α

(

−
µξ

1 + λξ
sα
)

fξ(t− s)ds

]

eξ.

(2.17)
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Applying the operator L to (2.17) and taking into account formulas (2.11), we have

Dα
t Lu(t) =

∑

ξ∈I

λξ
1 + λξ

fξ(t)eξ −
∑

ξ∈I

µξ

1 + λξ
(Lϕ, eξ)HEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

µξλξ
(1 + λξ)2

[
∫ t

0

sα−1Eα,α

(

−
µξ

1 + λξ
sα
)

fξ(t− s)ds

]

eξeξ.

(2.18)

Now let us estimate H-norms

‖u(t)‖2H ≤
∑

ξ∈I

∣

∣

∣

∣

Eα,1

(

−
µξ

1 + λξ
tα
)∣

∣

∣

∣

2

|ϕξ|
2

+
∑

ξ∈I

1

(1 + λξ)2

∣

∣

∣

∣

∫ t

0

sα−1Eα,α

(

−
µξ

1 + λξ
sα
)

fξ(t− s)ds

∣

∣

∣

∣

2

≤ C
∑

ξ∈I

(

1

1 +
µξ

1+λξ
tα

)2

|ϕξ|
2

+ C
∑

ξ∈I

1

(1 + λξ)2





t
∫

0

sα−1

1 +
µξ

1+λξ
sα

|fξ(t− s)|ds





2

≤ C
∑

ξ∈I

|ϕξ|
2 + C

∑

ξ∈I

1

(1 + λξ)2

t
∫

0

(

sα−1

1 +
µξ

1+λξ
sα

)2

ds

t
∫

0

|fξ(s)|
2ds

≤ C‖ϕ‖2H + C
∑

ξ∈I

1

(1 + λξ)2

t
∫

0

(

1

s1−α +
µξ

1+λξ
s

)2

ds

t
∫

0

|fξ(s)|
2ds

≤ C‖ϕ‖2H + C
∑

ξ∈I

1

(1 + λξ)2

t
∫

0

1

s2−2α
ds

t
∫

0

|fξ(s)|
2ds

(2.19)

Due to the assumption α > 1/2, finally, we get

‖u‖2L2(0,T ;H) ≤ C(‖ϕ‖2H + ‖f‖2
L2([0,T ];H−1

L
)
).

Here we take into account that

∑

ξ∈I

1

(1 + λξ)2

t
∫

0

|fξ(s)|
2ds =

t
∫

0

∑

ξ∈I

∣

∣

∣

∣

fξ(s)

1 + λξ

∣

∣

∣

∣

2

ds

=
∑

ξ∈I

t
∫

0

‖f(s)‖2
H

−1

L

ds ≤ C‖f‖2
L2([0,T ];H−1

L
)
,

(2.20)

for some constant C > 0.
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Finally, by using (1.5) and arguing as in (2.19), from (2.9)–(2.18) we get the fol-
lowing estimates

‖Lu‖2L2([0,T ],H) ≤ C(‖Lϕ‖2H + ‖f‖2L2([0,T ],H)),

‖Mu‖2L2([0,T ],H) ≤ C(‖Mϕ‖2H + ‖f‖2
L2([0,T ],H−1,1

L,M
)
),

‖Dα
t u‖

2
L2([0,T ],H) ≤ C(‖ϕ‖2

H
−1,1
L,M

+ ‖f‖2
L2([0,T ],H−1

L
)
+ ‖f‖2

L2([0,T ],H−2,1
L,M

)
),

and

‖Dα
t Lu‖

2
L2([0,T ],H) ≤ C(‖ϕ‖2

H1
M

+ ‖f‖2L2([0,T ],H) + ‖f‖2
L2([0,T ],H−1,1

L,M
)
),

respectively. Here in all our estimates in the spaces Hl,m
L,M for some l, m ∈ R we play

with the argument as in (2.20). Thus, we finish the proof of the existence result.
Proof of the uniqueness of the solution. Let w(t) and v(t) be two solutions of

Problem (2.1)-(2.2), i.e.

Dα
t w(t) +Dα

t Lw(t) +Mw(t) = f(t),

w(0) = ϕ,

Dα
t v(t) +Dα

t Lv(t) +Mv(t) = f(t),

v(0) = ϕ.

By subtracting these equations from each other, and denoting u(t) = w(t)− v(t), we
obtain

(2.21) Dα
t u(t) +Dα

t Lu(t) +Mu(t) = 0,

(2.22) u(0) = 0.

We also have

(2.23) uξ(t) = (u(t), eξ)H, ξ ∈ I.

Applying the operator Dα
t to (2.23), we have

(2.24) Dα
t uξ(t) = (Dα

t u(t), eξ)H, ξ ∈ I.

From (2.21)–(2.22), we have

(2.25) Dα
t uξ(t) +

µξ

1 + λξ
uξ(t) = 0,

(2.26) uξ(0) = 0.

By the formula (2.8), when ϕξ = 0, fξ(t) = 0, the solution of the problem (2.25)–
(2.26) is uξ(t) ≡ 0.
Further, by the basis property of the system {eξ}ξ∈I in H, we obtain u(t) ≡ 0. The

uniqueness of the solution of Problem (2.1)–(2.2) is proved. �
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2.2. Case II: 0 < α < 1. Here we deal with the case when 0 < α < 1. But for this
we will require more conditions on source term.

Theorem 2.3. Let 0 < α < 1. Suppose that Assumption 1.1 holds. Let ϕ ∈ H1
L∩H

1
M

and f ∈ W 1([0, T ];H). Then there exists a unique solution u(t) of Problem (2.1)-
(2.2) such that u ∈ L2([0, T ];H1

M) ∩W α([0, T ];H1
L). This solution can be written in

the form

u(t) =
∑

ξ∈I

ϕξEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

fξ(t)

µξ

eξ −
∑

ξ∈I

fξ(0)

µξ

Eα,1

(

−
µξ

1 + λξ
tα
)

eξ

−
∑

ξ∈I

[
∫ t

0

f ′
ξ(t− s)

µξ

Eα,1

(

−
µξ

1 + λξ
sα
)

ds

]

eξ,

where ϕξ = (ϕ, eξ)H, fξ(t) = (f(t), eξ)H.

Proof. By repeating the arguments of Theorem 2.2, we start from the formula (2.8).
For the last term of the equation (2.8), we have

−
1

µξ

∫ t

0

d

ds

(

Eα,1

(

−
µξ

1 + λξ
sα
))

fξ(t− s)ds

=−
1

µξ

Eα,1

(

−
µξ

1 + λξ
sα
)

fξ(t− s)
∣

∣

∣

t

0

−
1

µξ

∫ t

0

Eα,1

(

−
µξ

1 + λξ
sα
)

f ′

ξ(t− s)ds

=
1

µξ

fξ(t)−
1

µξ

Eα,1

(

−
µξ

1 + λξ
tα
)

fξ(0)

−
1

µξ

∫ t

0

Eα,1

(

−
µξ

1 + λξ
sα
)

f ′

ξ(t− s)ds.

(2.27)

Thus, for the solution of the Cauchy problem

Dα
t uξ(t) +

µξ

1 + λξ
uξ(t) =

fξ(t)

1 + λξ
, uξ(0) = ϕξ,

we have

uξ(t) = ϕξEα,1

(

−
µξ

1 + λξ
tα
)

+
1

µξ

fξ(t)

−
1

µξ

Eα,1

(

−
µξ

1 + λξ
tα
)

fξ(0)

−
1

µξ

∫ t

0

Eα,1

(

−
µξ

1 + λξ
sα
)

f ′

ξ(t− s)ds,

(2.28)

for all ξ ∈ I.



10 M. RUZHANSKY, D. SERIKBAEV, N. TOKMAGAMBETOV, AND B. T. TOREBEK

Putting (2.28) into (2.4), we obtain the solution of Problem (2.1)-(2.2) in the
following form

u(t) =
∑

ξ∈I

ϕξEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

fξ(t)

µξ

eξ −
∑

ξ∈I

fξ(0)

µξ

Eα,1

(

−
µξ

1 + λξ
tα
)

eξ

−
∑

ξ∈I

[∫ t

0

f ′
ξ(t− s)

µξ

Eα,1

(

−
µξ

1 + λξ
sα
)

ds

]

eξ.

(2.29)

To prove the convergence of the obtained infinite series corresponding to the func-
tions Lu(t), Mu(t), Dα

t u(t) and Dα
t Lu(t), first, we need to calculate them.

Applying the operator L to (2.9), and taking into account formulas (2.11), we get

Lu(t) =
∑

ξ∈I

(Lϕ, eξ)HEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

λξ
µξ

fξ(t)eξ −
∑

ξ∈I

λξ
µξ

fξ(0)Eα,1

(

−
µξ

1 + λξ
tα
)

eξ

−
∑

ξ∈I

λξ
µξ

[
∫ t

0

f ′

ξ(t− s)Eα,1

(

−
µξ

1 + λξ
sα
)

ds

]

eξ.

(2.30)

Analogously, we have

Mu(t) =
∑

ξ∈I

(Mϕ, eξ)HEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

fξ(t)eξ −
∑

ξ∈I

fξ(0)Eα,1

(

−
µξ

1 + λξ
tα
)

eξ

−
∑

ξ∈I

[
∫ t

0

f ′

ξ(t− s)Eα,1

(

−
µξ

1 + λξ
sα
)

ds

]

eξ.

(2.31)

Applying the operator Dα
t to (2.4), we have

(2.32) Dα
t u(t) =

∑

ξ∈I

Dα
t uξ(t)eξ.

By using (2.5), we find Dα
t uξ(t)

Dα
t uξ(t) =

fξ(t)

1 + λξ
−

µξ

1 + λξ
uξ(t).(2.33)
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Putting (2.8) into (2.33), we get

Dα
t uξ(t) =−

µξ

1 + λξ
ϕξEα,1

(

−
µξ

1 + λξ
tα
)

+
1

1 + λξ
Eα,1

(

−
µξ

1 + λξ
tα
)

fξ(0)

+
1

1 + λξ

∫ t

0

Eα,1

(

−
µξ

1 + λξ
sα
)

f ′

ξ(t− s)ds.

(2.34)

Substituting (2.34) into (2.32), we obtain

Dα
t u(t) =−

∑

ξ∈I

µξ

1 + λξ
ϕξEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

1

1 + λξ
Eα,1

(

−
µξ

1 + λξ
tα
)

fξ(0)eξ

+
∑

ξ∈I

[

1

1 + λξ

∫ t

0

Eα,1

(

−
µξ

1 + λξ
sα
)

f ′

ξ(t− s)ds

]

eξ.

(2.35)

Applying the operator L to (2.35) and taking into account formulas (2.11), we have

Dα
t Lu(t) = −

∑

ξ∈I

µξ

1 + λξ
(Lϕ, eξ)HEα,1

(

−
µξ

1 + λξ
tα
)

eξ

+
∑

ξ∈I

λξ
1 + λξ

Eα,1

(

−
µξ

1 + λξ
tα
)

fξ(0)eξ

+
∑

ξ∈I

[

λξ
1 + λξ

∫ t

0

Eα,1

(

−
µξ

1 + λξ
sα
)

f ′

ξ(t− s)ds

]

eξ.

(2.36)
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Now, let us estimate H-norms

‖u(t)‖2H ≤
∑

ξ∈I

∣

∣

∣

∣

Eα,1

(

−
µξ

1 + λξ
tα
)∣

∣

∣

∣

2

|ϕξ|
2

+
∑

ξ∈I

∣

∣

∣

∣

fξ(t)

µξ

∣

∣

∣

∣

2

+
∑

ξ∈I

∣

∣

∣

∣

fξ(0)

µξ

∣

∣

∣

∣

2 ∣
∣

∣

∣

Eα,1

(

−
µξ

1 + λξ
tα
)∣

∣

∣

∣

2

+
∑

ξ∈I

∣

∣

∣

∣

∫ t

0

f ′
ξ(t− s)

µξ

Eα,1

(

−
µξ

1 + λξ
sα
)

ds

∣

∣

∣

∣

2

≤ C
∑

ξ∈I

(

1

1 +
µξ

1+λξ
tα

)2

|ϕξ|
2

+
∑

ξ∈I

∣

∣

∣

∣

fξ(t)

µξ

∣

∣

∣

∣

2

+ C
∑

ξ∈I

(

1

1 +
µξ

1+λξ
tα

)2 ∣
∣

∣

∣

fξ(0)

µξ

∣

∣

∣

∣

2

+ C
∑

ξ∈I

1

µ2
ξ





t
∫

0

1

1 +
µξ

1+λξ
sα

|f ′

ξ(t− s)|ds





2

(2.37)

≤ C
∑

ξ∈I

|ϕξ|
2 + C

∑

ξ∈I

∣

∣

∣

∣

fξ(t)

µξ

∣

∣

∣

∣

2

+ C
∑

ξ∈I

1

µ2
ξ

T
∫

0

(

1

1 +
µξ

1+λξ
sα

)2

ds

T
∫

0

|f ′

ξ(s)|
2ds

≤ C‖ϕ‖2H + C‖f(t)‖2
H

−1

M

+ C‖f‖2
W 1(0,T ;H−1

M
)
.

Finally, we obtain

‖u‖2L2(0,T ;H) ≤ C(‖ϕ‖2H + ‖f‖2
W 1(0,T ;H−1

M
)
).

By using (1.5) and arguing as in (2.37), from (2.29)–(2.36) we get the following
estimates

‖Lu‖2L2([0,T ],H) ≤ C‖Lϕ‖2H + C‖f‖2
W 1([0,T ],H1,−1

L,M
)
,

‖Mu‖2L2([0,T ],H) ≤ C‖Mϕ‖2H + C‖f‖2W 1([0,T ],H),

‖Dα
t u‖

2
L2([0,T ],H) ≤ C(‖ϕ‖2

H
−1,1
L,M

+ ‖f‖2
W 1([0,T ],H−1

L
)
),

and

‖Dα
t Lu‖

2
L2([0,T ],H) ≤ C(‖ϕ‖2

H1
M

+ ‖f‖2W 1([0,T ],H)),

respectively. It proves the existence result.
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The proof of the uniqueness of the solution of Theorem 2.3 is the same as in the
case of Theorem 2.2. �

3. Inverse problem

This section is concerned with an inverse problem for the pseudo-parabolic equation
(1.1). We obtain existence and uniqueness results for this problem, by using the L–
Fourier method.

Problem 3.1. Find a pair of functions (u(t), f) satisfying the inverse problem (1.1)-
(1.3).

Let us define γ := max{0, κ− 1}, where κ is from Assumption 1.2. A generalised
solution of the inverse problem (1.1)–(1.3) is the pair of functions (u(t), f), where
u ∈ Cα([0, T ];H1+γ

L

⋂

H1+γ
M

), and f ∈ H.
For Problem (1.1)–(1.3) the following statement holds true.

Theorem 3.2. Suppose that Assumptions 1.1 and 1.2 hold. Let ϕ, ψ ∈ H1+γ
L

⋂

H1+γ
M

.
Then the generalised solution of the inverse problem (1.1)–(1.3) exists, is unique, and
can be written in the form

u(t) = ϕ+
∑

ξ∈I

[(ψ, eξ)H − (ϕ, eξ)H]
(

1− Eα,1(−
µξ

1+λξ
tα)
)

eξ
(

1−Eα,1(−
µξ

1+λξ
T α)

) ,

f = Mϕ+
∑

ξ∈I

[(Mψ, eξ)H − (Mϕ, eξ)H] eξ
1−Eα,1(−

µξ

1+λξ
T α)

.

Proof. Existence. Since the system {eξ}ξ∈I is a basis in the space H, we expand the
functions u(t) and f as follows:

(3.1) u(t) =
∑

ξ∈I

uξ(t)eξ,

and

(3.2) f =
∑

ξ∈I

fξeξ,

where uξ(t) and fξ are

uξ(t) = (u(t), eξ)H, ξ ∈ I,

fξ = (f, eξ)H, ξ ∈ I.

Substituting (3.1) and (3.2) into the equations (1.1)–(1.3) and using the relations

Leξ = λξeξ, Meξ = µξeξ,

we get the following problem for the functions uξ(t) and for the constants fξ, ξ ∈ I:

(3.3) Dα
t uξ(t) +

µξ

1 + λξ
uξ(t) =

fξ
1 + λξ

,

(3.4) uξ(0) = ϕξ,
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(3.5) uξ(T ) = ψξ,

for t ∈ [0, T ] and for any ξ ∈ I. Where ϕξ, ψξ are the coefficients of the expansions
of ϕ, ψ, i.e.

ϕ =
∑

ξ∈I

ϕξeξ, ψ =
∑

ξ∈I

ψξeξ,(3.6)

given by

(3.7) ϕξ = (ϕ, eξ)H, ψξ = (ψ, eξ)H.

We seek a general solution of Problem (3.3)–(3.5) in the following form

(3.8) uξ(t) =
fξ
µξ

+ CξEα,1(−
µξ

1 + λξ
tα),

where the constants Cξ, fξ are unknown. By using the conditions (1.2)–(1.3) we can
find them.
We first find Cξ:

uξ(0) =
fξ
µξ

+ Cξ = ϕξ,

uξ(T ) =
fξ
µξ

+ CξEα,1(−
µξ

1 + λξ
T α) = ψξ,

ϕξ − Cξ + CξEα,1(−
µξ

1 + λξ
T α) = ψξ.

Then

Cξ =
ϕξ − ψξ

1− Eα,1(−
µξ

1+λξ
T α)

.

Then fξ is represented as

fξ = µξϕξ − µξCξ.

Substituting fξ, uξ(t) into the expansions (3.1) and (3.2), we find

u(t) = ϕ+
∑

ξ∈I

Cξ

(

Eα,1(−
µξ

1 + λξ
tα)− 1

)

eξ,

f =
∑

ξ∈I

µξϕξeξ −
∑

ξ∈I

µξCξeξ.

By using the self-adjointness of the operator M,

(Mϕ, eξ)H = (ϕ,Meξ)H,

and using Meξ = µξeξ, we obtain

(ϕ, eξ)H =
(Mϕ, eξ)H

µξ

, (ψ, eξ)H =
(Mψ, eξ)H

µξ

.

Substituting these identities into the formula of Cξ, we get that

Cξ =
(Mϕ, eξ)H − (Mψ, eξ)H

µξ

(

1− Eα,1(−
µξ

1+λξ
T α)

) .
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Then, formally, one obtains

(3.9) u(t) = ϕ+
∑

ξ∈I

[(ψ, eξ)H − (ϕ, eξ)H]
(

1− Eα,1(−
µξ

1+λξ
tα)
)

eξ
(

1−Eα,1(−
µξ

1+λξ
T α)

) ,

(3.10) f = Mϕ+
∑

ξ∈I

[(Mψ, eξ)H − (Mϕ, eξ)H] eξ
1−Eα,1(−

µξ

1+λξ
T α)

.

Since T > T0 ≥ 0, T0 = const, for denominators of (3.9) and (3.10), the following
estimate holds true by (1.4),

1−Eα,1(−
µξ

1 + λξ
T α) ≥ 1−

1

1 +
µξ

1+λξ
T αΓ(1 + α)−1

=

µξ

1+λξ
T αΓ(1 + α)−1

1 +
µξ

1+λξ
T αΓ(1 + α)−1

=
Γ(1 + α)−1

1+λξ

µξT
α + Γ(1 + α)−1

≥M > 0.

(3.11)

Here, by Assumption 1.2 we have |λξ| = O(|µξ|
κ) as |ξ| → ∞ for some κ > 0. In

the case if κ ≤ 1 the estimate (3.11) makes a sense. Now, suppose that κ > 1. Then,
we have

|µξ|
κ−1(1−Eα,1(−

µξ

1 + λξ
T α)) ≥ |µξ|

κ−1 Γ(1 + α)−1

1+λξ

µξT
α + Γ(1 + α)−1

≥M > 0.(3.12)

According to [LG99], we have

(3.13) Dα
t (Eα,1(−λt

α)) = −λEα,1(−λt
α).

Now, we prove the convergence of the obtained infinite series corresponding to the
functions u(t), Dα

t u(t), Mu(t), Dα
t Lu(t), and f .

Before we get the convergence, let us calculate Dα
t u(t), Mu(t) and Dα

t Lu(t). Ap-
plying the operator Dα

t to (3.9), and using (3.13), we have

Dα
t u(t) =

∑

ξ∈I

[(Mψ, eξ)H − (Mϕ, eξ)H]D
α
t

(

1− Eα,1(−
µξ

1+λξ
tα)
)

eξ

µξ

(

1− Eα,1(−
µξ

1+λξ
T α)

)

=
∑

ξ∈I

[(Mψ, eξ)H − (Mϕ, eξ)H]Eα,1(−
µξ

1+λξ
tα) eξ

(1 + λξ)
(

1−Eα,1(−
µξ

1+λξ
T α)

) .

(3.14)

Applying the operators L and M to (3.9) and taking into account (2.11), we have

Lu(t) = Lϕ+
∑

ξ∈I

[(Lψ, eξ)H − (Lϕ, eξ)H]
(

1−Eα,1(−
µξ

1+λξ
tα)
)

eξ

1− Eα,1(−
µξ

1+λξ
T α)

,
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Mu(t) = Mϕ+
∑

ξ∈I

[(Mψ, eξ)H − (Mϕ, eξ)H]
(

1− Eα,1(−
µξ

1+λξ
tα)
)

eξ

1− Eα,1(−
µξ

1+λξ
T α)

,(3.15)

respectively.
Now, applying the operator Dα

t to the first equality in (3.15), and taking into
account formulas (2.11), we have

Dα
t Lu(t) =

∑

ξ∈I

µξ[(Lψ, eξ)H − (Lϕ, eξ)H]Eα,1(−
µξ

1+λξ
tα) eξ

(1 + λξ)
(

1− Eα,1(−
µξ

1+λξ
T α)

) .(3.16)

Let us recall that γ = max{0, κ−1}. By using the formulas (3.9)–(3.16), and taking
into account estimates (1.5), we get the following estimates

(3.17) ‖u‖2C([0,T ],H) ≤ C(‖ϕ‖2H + ‖ϕ‖2
H

γ
M

+ ‖ψ‖2
H

γ
M

),

‖Mu‖2C([0,T ],H) ≤ C(‖ϕ‖2
H1

M

+ ‖ϕ‖2
H

1+γ
M

+ ‖ψ‖2
H

1+γ
M

),

‖Dα
t u‖

2
C([0,T ],H) ≤ C(‖ϕ‖2

H
−1,1+γ
L,M

+ ‖ψ‖2
H

−1,1+γ
L,M

),

‖Dα
t Lu‖

2
C([0,T ],H) ≤ C(‖ϕ‖2

H
1+γ
M

+ ‖ψ‖2
H

1+γ
M

).

For clarity, we only show the first estimate. By taking the H-norm from the both
sides of the representation (3.9), we obtain

‖u(t)‖2H ≤ ‖ϕ‖2H +
∑

ξ∈I

[

|ϕξ|
2 + |ψξ|

2
]

∣

∣

∣

∣

∣

∣

(

1− Eα,1(−
µξ

1+λξ
tα)
)

(

1− Eα,1(−
µξ

1+λξ
T α)

)

∣

∣

∣

∣

∣

∣

2

.(3.18)

Now, by using the estimates (1.5), (3.11) and (3.12), we get

‖u(t)‖2H ≤ ‖ϕ‖2H + C1

∑

ξ∈I

|µξ|
2γ
[

|ϕξ|
2 + |ψξ|

2
]

≤ C(‖ϕ‖2H + ‖ϕ‖2
H

γ
M

+ ‖ψ‖2
H

γ
M

),

(3.19)

for some constants C1 > 0 and C > 0. Thus, we finish the proof of (3.17).
Similarly, for the source term f , one obtains the estimate

‖f‖2H ≤ C(‖ϕ‖2
H1

M

+ ‖ϕ‖2
H

1+γ
M

+ ‖ψ‖2
H

1+γ
M

).

Existence of the solution of Problem (1.1)-(1.3) is proved.
Proof of the uniqueness result. Let us suppose that {u1(t), f1} and {u2(t), f2} are

solution of the Problem (1.1)-(1.3). Let u(t) = u1(t)− u2(t) and f = f1 − f2. Then
u(t) and f satisfy

(3.20) Dα
t [u(t) + Lu(t)] +Mu(t) = f,

(3.21) u(0) = 0,

(3.22) u(T ) = 0.
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We also have

(3.23) uξ(t) = (u(t), eξ)H, ξ ∈ I,

and

(3.24) fξ = (f, eξ)H, ξ ∈ I.

Applying the operator Dα
t to (3.23), we have

(1 + λξ)D
α
t uξ(t) = (Dα

t [u(t) + Lu(t)], eξ)H = (−Mu(t) + f, eξ)H = −µξuξ(t) + fξ.

Thus, we get the problem with homogeneous conditions. The general solution of
this equation has the form (3.8). Using the homogeneous conditions uξ(0) = 0 and
uξ(T ) = 0 we obtain

fξ = 0 and uξ(t) ≡ 0.

Further, by the completeness of the system {eξ}ξ∈I in H, we obtain f ≡ 0, u(t) ≡ 0.
Uniqueness of the solution of Problem (1.1)-(1.3) is proved. �
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