
  

Abstract—The application of machine learning-based state of 

health (SOH) prediction is hindered by large demand of training 

data. To conquer this defect, a flexible and easy transferred SOH 

prediction scheme for lithium-ion battery packs is developed. 

Firstly, the charging duration for a predefined voltage range is 

hired as the health feature to quantify capacity degradation. Then, 

the long short-term memory (LSTM) network and transfer 

learning (TL) with fine-tuning strategy are incorporated to 

constitute the cell mean model (CMM) for SOH prediction with 

partial training data. Next, to evaluate the SOH inconsistencies 

among cells, the LSTM model is employed as the cell difference 

model (CDM), and the minimum estimation value of CDM is 

identified to determine pack SOH. The experimental results reveal 

that even when the first 360 cycle data, occupying only 40% in the 

whole 904 cycle data, are chosen and constituted to the dataset for 

model training, the obtained estimation algorithm can still predict 

SOH precisely with the error of less than 3%, thus remarkably 

reducing the training data amount and mitigating the computation 

burden during model training. In addition, the preferable 

validation results on different types of lithium-ion batteries 

further manifest the extendibility of the proposed strategy. 

 
Index Terms—Lithium-ion battery pack, long short-term 

memory (LSTM), transfer learning (TL), state of health (SOH). 

I. INTRODUCTION 

UE to the massive consumption of fossil fuel and pressing 

concerns over carbon emissions, high-efficiency and 

environment-friendly electric vehicles (EVs) have become the 

development mainstream in transportation electrification [1, 2]. 

In EVs, lithium-ion batteries have been widely deployed as 

main energy sources, with a form of pack consisting of tens to 

thousands of cells connected in series, parallel or mixed 

topologies [3, 4]. However, with the increase of operation, 

battery performance degrades gradually, including capacity 
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decline, resistance increase and inconsistency aggravation 

among cells [5]. It is, therefore, critical to reliably estimate the 

healthy status of lithium-ion batteries, referred to as state of 

health (SOH) prediction [6]. Accurate knowledge of SOH 

cannot only contribute to the estimation promotion of state of 

charge (SOC), but also facilitate safe operation of batteries [7].  

Battery SOH represents the ratio of maximum discharging 

capacity over the rated value [8]. Generally, the prediction 

methods of SOH can be sorted into three groups: direct 

calibration methods, filter-based methods and machine 

learning-based methods [9]. Direct calibration methods 

determine battery SOH via specific experimental operations, 

such as full discharge of the battery after a complete charge 

[10]. This kind of methods are simple and easy to implement. 

Nevertheless, it is an open-loop approach highly depending on 

the acquisition accuracy of current and voltage; and 

furthermore it is impractical to fully charge and discharge the 

batteries equipped in EVs. To cope with the restrictions of 

direct calibration methods, filter-based methods are developed, 

and they treat SOH as one parameter waiting to be identified in 

the model or one state variable that needs to be estimated in the 

built observer [11]. Ordinary filter algorithms, such as extended 

Kalman filter (EKF) [12], particle filter [13] and H-infinity 

filter [14], have been intensively applied for online SOH 

estimation. However, the performance of these methods highly 

relies on the accuracy and robustness of the established battery 

model or observer.  

Machine learning-based methods have been progressively 

exploited to predict SOH due to their strong data processing and 

nonlinear fitting capabilities [15]. These methods usually 

employ different machine learning algorithms to capture the 

degradation trend from measurement and generate healthy 

features representing SOH variation [16]. Ref. [17] reveals that 
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the partial differential temperature variation is related to SOH 

degradation, and then the support vector regression (SVR) is 

exploited to predict SOH based on temperature variation. In 

[18], Gaussian process regression (GPR) is introduced to map 

the relationship between partial capacity increase and SOH. In 

addition to SVR and GPR methods, random forest regression 

(RFR) [19], radial basis function neural network (RBFNN) 

[20], relevance vector machine (RVM) [21] and long short-term 

memory (LSTM) network [22] are also successfully leveraged 

to estimate SOH. Among these machine learning algorithms, 

LSTM network, as a typical representative of recurrent neural 

networks (RNNs), can capture the long-term dependency 

information through its specially designed gate structure, and 

overcome the drawbacks of gradient explosion and gradient 

vanishing existing in RNN. Consequently, LSTM network is 

widely adopted in state prediction due to its superior 

performance in capturing long-term relationship of historical 

information [23]. 

Although the above-mentioned approaches can achieve 

satisfactory SOH prediction, a large amount of training data are 

indispensable, undoubtedly increasing the duration of offline 

test. Moreover, when the battery type or the health feature is 

changed, the pre-determined model needs to be reconstructed, 

or the model parameters need to be retrained, obviously 

complicating the algorithm design. Ref. [24] exerts the GPR to 

estimate SOH based on two different types of batteries. 

However, when the GPR model trained on the basis of dataset 

1 is transplanted to estimate the battery SOH described in 

dataset 2, the repetitive operations, including reselecting the 

model parameters and retraining the model, need to be 

conducted once again. The similar difficulties are also 

encountered in [19], where the relative incremental capacity 

within three different voltage ranges are considered as healthy 

features to characterize the SOH variation. However, the built 

model needs to be retrained with massive cycle data after the 

voltage range varies. In real-time applications, it is time-

consuming, material-consuming and labor-intensive to do so. 

How to mitigate the burdensome training job or reduce the 

required data amount when constructing the SOH model based 

on machine learning algorithms needs to be further 

investigated.  

Another critical concern for SOH estimation is the 

inconsistency among battery cells, which is ineluctable in 

production and usage, especially for EV application. To the 

author’s knowledge, there is still lack of efficient manners to 

characterize the SOH of battery packs on the basis of cell’s 

SOH. To diagnose the health state of lithium-ion battery packs, 

Ref. [25] applies a multi-stage constant current (CC) charging 

strategy to accelerate battery pack degradation, and a dual GPR 

framework is advanced to simultaneously forecast SOH and 

remaining useful life (RUL). However, the whole pack is 

deemed as an integrated unit without considering the 

inconsistency among cells. In [26], to identify the inconsistency 

of cell SOC, a cell mean model (CMM) and a cell difference 

model (CDM) are respectively constructed to delineate the 

overall SOC of pack and the difference between cell SOC and 

mean value. Nevertheless, few methods have been devoted to 

the estimation of cell SOH inconsistency in battery packs. It is, 

therefore, imperative to design a straightforward and efficient 

pack SOH estimation method to fill in the gap of existing 

research.  

Aiming to promote the potential of machine learning-based 

methods and investigate an efficient pack SOH prediction 

algorithm, a flexible and transferable SOH prediction scheme is 

advanced for lithium-ion battery packs. Concretely, a LSTM 

network integrating a fully connected layer is constructed to 

learn the long-term dependency of battery cell SOH according 

to the features generated from partial charging voltage data. On 

this basis, a transfer learning (TL) method, which is applied to 

improve the learning ability by transferring information from a 

related domain, is proposed for easy adaption to the variation of 

feature voltages existing in different batteries, thereby 

significantly mitigating the burdensome training task. In 

addition, to fully consider the inconsistency among battery 

cells, the CMM and CDM are respectively addressed to 

simulate mean SOH level of pack and difference of cell SOH, 

thereby efficiently identifying the pack SOH. Eight battery cells 

and three types of batteries are experimented to verify the 

effectiveness of the proposed method. In addition, more in-

depth validations on another two different types of lithium-ion 

batteries further justify the extendibility and flexibility of the 

proposed algorithm. 

The reminder of this paper is structured as follows: the main 

methodologies including LSTM and TL are introduced in 

Section II. The experimental tests and generation process of 

health features are described in Section III. Next, the detailed 

prediction procedure of pack SOH is detailed in Section IV. 

After that, Section V analyzes and discusses the experimental 

validation results. Finally, Section VI draws the main 

conclusions. 

II. METHODOLOGIES 

The objective of this study is to construct a uniform scheme 

to forecast SOH with partial training data based on LSTM and 

TL. To attain it, the theoretical basis of both algorithms are 

detailed first. 

A. Long Short-Term Memory Network 

The LSTM network, as an extended form of RNN, exploits 

the memory units in place of conventional hidden nodes to avert 

gradient vanishing or explosion [27]. Fig. 1 exhibits the 

schematic diagram of LSTM, which includes an input gate, an 

output gate and a forget gate [28, 29]. They are in charge of 

receiving data, outputting estimation and eliminating 

unnecessary information, respectively. Another key part of 

LSTM is the state cell, of which the main function is to store a 

summary of previous input sequences. Additionally, the 

structure of LSTM for regression consists of five layers, i.e., 

input layer, LSTM layer, dropout layer, fully connected layer 

and regression output layer [30]. The basic functions of LSTM 

can be formulated as: 
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Fig. 1. Schematic diagram of LSTM. 
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Fig. 2. Schematic diagram of transfer learning. 

where i , f , o , C  and h  denote input gate, forget gate, 

output gate, state cell and output data, respectively;  is the 

bias parameter; xW  and hW  respectively represent the weight 

matrices for input and previous output;  indicates the 

element-wise product; sigm  expresses the sigmoid function 

that is an activation function; tanh  is defined as the hyperbolic 

function. In (1), the information amount for the cell memory to 

update, forget and output its state is determined by the first three 

equations, and the state cell and output are determined by the 

last two recursive equations. Herein, the root-mean-square error 

(RMSE) is applied to construct the loss function, as: 
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where 
RefSOH  and PreSOH  denote the reference value and 

the predicted value of SOH, and N  means the data size of 

SOH. 

B. Transfer Learning 

Existing machine learning methods usually assume that the 

data obey the same distribution, and also a large amount of 

labeled data are required to train the model. However, in real 

applications, the domain of the source dataset and target dataset 

are usually different, and the limited label data in the target data 

hindered the promotion of machine learning methods. To 

recognize the knowledge and skills learned from previous tasks 

and transfer them to novel domains/tasks, the TL based on deep 

neural networks is proposed and has attracted wide attention to 

now [31]. As an efficient data mining framework, TL can 

transfer the data or features from previous tasks (named as 

source domain hereinafter) to facilitate the model construction 

of target task (called as target domain), thus remedying the 

difficulty of information loss caused by the data insufficiency. 

For compensating the data loss on degradation prediction and 

improve the SOH estimation precision, a flexibility scheme for 

SOH prediction of different types of batteries is presented by 

integrating LSTM and TL. Among all TL solutions, fine-tuning 

of a pre-trained model based on a new dataset is the most 

popular manner for knowledge transfer in the machine learning 

field [32]. On this account, it is engaged in SOH estimation in 

this study, and the schematic diagram of TL with fine-tuning 

strategy is exhibited in Fig. 2. 

The network consists of five layers, where the first layer is 

the input layer, and the last layer is the output layer. The input 

on the left and right networks includes respectively the source 

data and target data. Firstly, the network is pre-trained through 

the source data to obtain the base model. Then, the target data 

is set as the input variable, and the TL with fine-tuning strategy 

is activated to adjust the parameters of one middle layer, while 

the parameters of other layers remain unchanged. By this 

manner, a new transfer model is constructed. Since only partial 

parameters of the base model are adjusted, the training speed is 

much faster than that of retraining the whole model. 

Simultaneously, the proposed method can cooperatively 

transfer the cycle data and the formerly trained model of source 

battery to the newly built model of target batteries for easier 

SOH prediction. Its strong learning capability can bridge the 

serviceable information implied in the data and model between 

two domains to facilitate the prediction model construction of 

target domain, thus mitigating the requirement of aging data 

and obviously improving the training efficiency.  

After detailing the principles of LSTM and TL, the related 

experiments and SOH prediction based on the proposed 

methods will be investigated. 

III. EXPERIMENTS AND FEATURE GENERATION 

This section details the aging experiment procedures and 

specifies the feature generation from the test data for SOH 

estimation. 

A. Aging Experiment 

In this study, three different sources of battery data are 

considered: 1) the nickel cobalt manganese (NCM) dataset from 

our laboratory; 2) the lithium cobalt oxide (LCO) dataset from 

the Center for Advanced Life Cycle Engineering (CALCE), 

which is an open-access depository supplied by the University 

of Maryland [33]; and 3) the commercial lithium iron phosphate 

(LFP) battery dataset from the Massachusetts Institute of 

Technology (MIT) and Stanford University [34]. These three 

datasets are named as dataset 1, dataset 2 and dataset 3, 

respectively. The specifications of these three batteries are 

tabulated in Table I. The laboratory batteries are repeatedly 

experimented according to a constant current charge/discharge 

strategy at room temperature. During charging process, 2 A 

current is imposed in the constant current (CC) charging step, 

and 4.15 V is sustained in the constant voltage (CV) charging 

b



stage until the current drops to the predefined cut-off value. 

Then, the test batteries are discharged with the 1C current, 

where C denotes the value of rated capacity with unit Ampere-

hour (Ah), to the lower cut-off voltage after 5 minutes rest. The 

batteries in dataset 2 belong to commercial prismatic cells with 

1100 milli Ah (mAh) nominal capacity. Three cells, referred to 

as 2-1, 2-2 and 2-3, are aged with the similar cycle experiment 

setting in dataset 1, and the charging current is set to 0.55 A. 

More detailed test steps can be found in [35]. For dataset 3, the 

charging protocol and chemistry property of batteries are 

different from the first two batteries. The cells are charged with 

a two-step fast-charging strategy: C1(Q1)-C2 scheme, in which 

C1 and C2 respectively indicate the first and second step 

current, and Q1 denotes the SOC at which the current switches 

from C1 to C2. The second step charge is terminated at 80% 

SOC, followed by the 1C current based CC-CV charge mode. 

Finally, 4C current is imposed to discharge the battery until its 

voltage reaches the minimum cut-off value [36]. The 

experimental data from the aging test are employed to extract 

battery health features, train the model and test the developed 

battery SOH estimation algorithm. Firstly, the extraction 

process of health features will be introduced. 

B. Feature Generation 

As discussed above, it is critical to find a representative 

health feature to properly assess the aging state. The health 

feature needs to be easy to obtain, simple to calculate, and 

efficient for anti-interference. In EV applications, since driving 

conditions and driving demands are time-varying and 

stochastic, the discharging process of lithium-ion batteries is 

usually stochastic and unforeseeable [36], and it is tricky to 

apply the discharge data for SOH estimation. Nonetheless, the 

charging process is generally uniform as the battery is usually 

charged from the grid according to specific instructions. Hence, 

the charging voltage and capacity profiles are designated for 

feature generation and SOH prediction. Taking the dataset 1 as 

an example, the charging voltage profiles under different cycles 

are plotted in Fig. 3 (a), and we can find that the charging time 

decreases with the increase of cycle numbers. Intuitively, the 

charging time for a fixed voltage range will be shortened when 

the battery capacity degrades. On this account, the duration for 

a fixed voltage range can be deemed as a health feature to 

quantify SOH variation. A full charging voltage profile under 

the CC scheme is presented in Fig. 3 (b), where 1t  and 2t  

denote the moment when the voltage reaches the preset low and 

high threshold during the battery charging process, and X  

indicates the feature vector. According to Fig. 3 (b), the detail 

feature generation procedures can be summarized, as follows: 

1) Execute the pre-defined CC charge strategy for certain 

duration and measure the voltage throughout. Since a full 

charging cycle experiment from empty is difficult to acquire, a 

subset of the acquired points will be applied as the input 

representing the whole information of one cycle. As such, a 

definite voltage range based on the test data is marked, and the 

low and high boundaries are assumed as 1V  and 2V , 

respectively.  

2) With the age of batteries, the polarization becomes severer 

with the form of internal resistance increase, and concretely, the 

CC charging time decreases. On this account, the charging time 

for a certain voltage range can be hired to measure the battery 

degradation. To be specific, for each charging curve, the 

duration 
iT  in the designated voltage range, i.e., 

1V  to 
2V , is 

considered as a health feature, which can not only capture the 

degradation of capacity and increment of resistance, but also 

evaluate the inconsistency of battery cells in a pack to some 

extent. 

In the next step, the SOH prediction scheme will be designed 

according to the proposed strategy and the identified healthy 

features. 

IV. BATTERY PACK SOH PREDICTION SCHEME 

To avoid over operation of individual battery cell in packs, 

the minimum SOH value among that of cells is defined as the 

SOH of battery pack. Due to imperfect fabrication techniques 

in manufacturing process and inconsistent heat distribution 

inside battery pack, the aging speed of cells is different. In this 

section, a two-part SOH estimation model incorporating the 

CMM and CDM is developed, in which CMM describes the 

mean SOH performance among cells, and CDM mainly 

accounts for the difference between cell SOH and the mean 

value. 

A. Construction of Cell Mean Model 

The constructed block diagram of the CMM is depicted in 

Fig. 4. Firstly, the health features are extracted by the method 

defined in Section III, and then the basic model is built by the 

LSTM method to map the relationship between health features 

and SOH. Finally, the TL method with fine-tuning strategy is 

exerted to establish the autonomous learning model, and attain 

SOH prediction based on the reduced training data and mutative 

feature range. The whole prediction scheme mainly includes 

three steps: 

1) Feature extraction: Partial voltage data are acquired from 

the voltage curves during CC charging process to generate the 

first health feature coefficient, and the specified charging 

interval for the preset voltage range is calculated as the second 

health feature factor. Both factors are selected as the input of 

the base model. 
TABLE I. SPECIFICATIONS OF THE TEST BATTERIES. 

Properties Dataset 1 Dataset 2 Dataset 3 

Cathode material NCM LCO LFP 
Shape Cylinder Prism Cylinder 

Nominal capacity (mAh) 4000 1100 1100 

Maximum cut-off voltage (V) 4.20 4.20 3.60 
Minimum cut-off voltage (V) 2.75 2.75 2.00 

End-of-charge current (mA) 80 50 50 

Voltage range 
definition

Charging time 
calculation 2 1

T t t= −

Feature generation

     1 2 1 2
, , , ,

n n
X x x x T T T= =

 
     (a)                   (b) 

Fig. 3. Illustration of health feature generation. (a) CC-CV charging profiles 

under different cycles; (b) Health feature extraction process.  
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Fig. 4. Overall block diagram of the presented SOH prediction. 

2) Base model construction: According to the offline test 

results, partial measurement data are selected as the training 

dataset, and the remaining data are assigned as the validation 

object. The ratio of partitioning the data between training and 

testing will be discussed in the next section. Then, the LSTM 

network with five layers is implemented to construct the base 

model. As well known, increasing layers will complicate the 

calculation process and aggravate the computation intensity. 

However, when the number of layers is too small, the model 

accuracy will be deteriorated. Through optimization, the 

number of layers is set to five after trading off the prediction 

accuracy and calculation complexity. It is known that 

environment temperature and charging/discharging current can 

generate significant influences on aging of lithium-ion 

batteries; however, it is quite difficult to fully account for the 

massive influences incurred by different operation conditions in 

long-term prediction of SOH. Hence, in the proposed scheme, 

a one-step-ahead prediction method is exploited to predict 

battery SOH. That is, no matter how much the battery degrades, 

it is not necessary to know the previous capacity; and only if the 

specific characteristic parameter, i.e., health feature is 

extracted, the trained model can be employed to predict battery 

SOH efficiently. Additionally, although the current health 

feature is extracted to estimate the SOH, the long-term 

dependence during SOH estimation is merged due to the long-

term memory characteristics of LSTM algorithm. By this 

manner, the up-to-date aging state of lithium-ion batteries can 

be estimated comprehensively, and the impact of working 

environment on battery degradation can be considered to some 

extent. 

3) Transfer model construction: To ensure the flexibility of 

the proposed SOH prediction method, the TL with fine-tuning 

strategy is exploited to adjust the parameters of the base model. 

In this scheme, only the parameters of the bottom two layers, 

i.e., the fully connected layer and regression output layer, will 

be updated, and the parameters of other layers will remain 

unchanged. Note that as the model parameters need to be 

adjusted according to the new features or battery types, the 

labeled data need to be prepared for retraining. By this manner, 

the transfer model is constructed. 

B. Construction of Cell Difference Model 

Here, we assume the SOH of the first cell in pack as the 

CMM, the feature difference 
iT  and the SOH difference 

iSOH  between the mean value meanSOH  and iSOH  of ith 

cell can be formulated as: 

 i i

meanT T T = −  (3) 

 i i

meanSOH SOH SOH = −  (4) 

where iT  denotes the duration in the designated voltage range 

of cell i; 
meanT  indicates the duration in the designated voltage 

range of mean cell SOH. SOH  is negative for lower iSOH  

and positive for higher iSOH , compared to the mean value. To 

map the hidden relationship between 
iT  and iSOH , LSTM 

is employed to establish the CDM, in which 
iT  and iSOH  

are assigned as the input and output. After attaining the mean 

value and the difference, the minimum difference under the 

same cycle is selected. Then, the minimum cell SOH, i.e., the 

pack SOH, can be deduced by inverse transformation of (3). 

During the estimation process, only the duration for a preset 

voltage range needs to be determined online, and it is easy to 

acquire. Meanwhile, the real capacity or SOH of the training set 

needs to be known in advance for model training, and the real 

capacity of the test set is treated as the reference to evaluate the 

model performance. 

By this manner, the SOH inconsistency within the battery 

pack can be well evaluated by the proposed CDM, and the 

proposed method can effectively distinguish the cell 

inconsistency and identify the battery pack SOH state. Next, the 

experimental validation will be conducted and discussed. 

V. VALIDATION AND ANALYSIS 

The performance of the proposed scheme for SOH prediction 

is evaluated by conducting a large number of comparisons 

raised by different predictors under various operation 

conditions. To demonstrate the feasibility and advancement of 

the proposed method, four representative tests are conducted, 

including the performance comparison of different predictors in 

the base model with training and testing datasets of different 

length, the portability over other voltage ranges and battery 

types as well as validations on battery packs. The evaluation 

criteria include average absolute error (AAE), maximum 

absolute error (MAE) and RMSE, the AAE and MAE are 

formulated as: 
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A. Comparison of Different Methods on Base Model 

Based on the experimental data, the feasibility of the 

proposed base model is firstly validated in terms of prediction 

of dataset 1. Another three commonly used SOH predictors, 

including back propagation NN (BP-NN), SVM and least 

square SVM (LS-SVM), are employed to conduct the 

estimation for performance comparison. The influence of 

voltage range selection is also addressed in this part. In the three 

commonly used predictors, the voltage range of 3.6 V to 3.8 V 

is applied to extract the health feature. In the proposed method, 

three different ranges are considered for healthy feature 

generation. The first two ranges express individual voltage 

interval, and the third one includes two ranges, as presented in 

Table II. For each prediction scenario, the first 70% of aging 

profiles are applied for model training, and all the four methods 



are applied to forecast the same degradation data. Moreover, to 

fully promote the advantages of each network, the grid search 

method is leveraged to find the optimal parameters of each 

model.  

The prediction performance of these four methods is 

compared with the reference curve, and the results are shown in 

Fig. 5 and Table II, respectively. As can be found, the capacity 

degradation trend is generally consistent, and no obvious rapid 

aging process emerges. Note that as the phenomenon of 

capacity recovery exists due to the intermittent experiment, the 

capacity degradation curve is not monotonously decreasing. 

From Fig. 5 and Table II, it can be observed that all the four 

approaches can effectively track the reference curve during the 

entire lifetime, the AAEs by the BP-NN, SVM and LS-SVM 

are 0.43%, 0.50% and 0.43%, respectively; in contrast, the 

largest AAE for the proposed scheme is less than 0.43%. After 

removing the estimation results in the initial stage, the MAE of 

the proposed method is much lower than that of other three 

algorithms, except when two voltage ranges are selected to 

extract the health feature. Additionally, for the BP-NN, SVM 

and LS-SVM algorithms, their RMSEs are respectively 0.63%, 

0.69% and 0.60%, obviously higher than that of the proposed 

method. The running time of the proposed method is evaluated 

on a desktop computer, which is equipped with Intel Xeon E3-

1230 (3.30 GHz) processor and 32 GB memory. The calculation 

time of the proposed method is 3.02 s when using dataset 1 to 

predict SOH. Since SOH can be merely estimated once per 

cycle, the average running time of each cycle for dataset 1 is 

3.34 ms. Compared with the duration of one cycle experiment 

that lasts for a number of hours, the short estimation duration 

can fully meet the requirements of online implementation. By 

comparing the prediction results, it can be concluded that 

different voltage ranges as health features lead to different 

estimation performance. It is also distinct that the developed 

method with the input data under range from 3.6 V to 3.8 V can 

raise better prediction performance, compared to that with other 

voltage ranges. Additionally, the model inputs with two voltage 

ranges will possibly increase the model instability and 

consequent computational complexity. Therefore, we can infer 

that the proposed algorithm with five layers and the health 

feature extracted from a single voltage range are feasible and 

reasonable. 

 
     (a)                   (b) 

Fig. 5. Prediction results of different methods on base model. (a) SOH curves; 

(b) Error curves. 
TABLE II. Comparison Results of Different Methods. 

Algorithm  Voltage range AAE (%) MAE (%) RMSE (%) 

BP-NN [3.6 3.8] 0.43 2.56 0.63 

SVM [3.6 3.8] 0.50 2.21 0.69 

LS-SVM [3.6 3.8] 0.43 2.63 0.60 

Proposed  

[3.6 3.8] 0.31 1.88 0.42 

[3.5 3.7] 0.36 1.81 0.54 

[3.5 3.7] & 

[3.6 3.8] 
0.42 2.38 0.59 

B. Performance Evaluation on Different Voltage Ranges 

In previous discussions, a random voltage range is selected 

to construct the base model. To validate the adaptability of the 

proposed scheme, the voltage range for health feature extraction 

is modified to 3.5 to 4 V and 3.5 to 4.15 V, significantly 

deviating from the preset voltage range of the base model. Fig. 

6 displays the results for different voltage ranges by the 

proposed method as well as the single LSTM method. In this 

case, the model trained by the first 360 cycle data (40% of the 

experimental data) are utilized to predict the SOH of the 

remaining 544 cycles. From Fig. 6, it can be found that the 

predicted SOH is in general less accurate than before, and the 

MAE becomes larger, due to the improper selection of the 

voltage range and the amount decrease of the training dataset. 

Even so, the estimation performance based on the proposed 

method is still acceptable. However, the SOH curves obtained 

by the proposed method and the single LSTM method show 

different trends, and the prediction profile of the former method 

can track the degradation curve more accurately during the 

whole process; nonetheless, the latter only follows the reference 

curve during training and gradually moves away from the true 

value during test. 

Similar as before, the proposed approach achieves more 

robust results with less training data and varying feature range. 

Fig. 6 (c) shows the boxplot of the prediction errors across all 

the voltage ranges based on the proposed and individual LSTM 

methods, and the red lines represent the median value of error. 

We can find that the boxplots of LSTM and TL-based method 

for different voltage ranges are flatter, show that the error 

distribution of this method is more concentrated. Moreover, the 

median error line based on the LSTM and TL method is closer 

to zero. The maximum error of the proposed method occurs in 

the initial cycle, which is included in the training set. However, 

the maximum error of individual LSTM method appears in the 

test set and higher than 9%. It can be concluded that the 

proposed scheme outperforms than the single LSTM approach. 

Moreover, it also can be observed from the above analysis that 

the proposed method can result in precise SOH estimation with 

the MAE of 3.2%. Moreover, this method can reduce the 

training data amount by about 30% (about 270 cycles). From 

the perspective of balancing data preparation and accuracy, it is 

still acceptable to sacrifice the slight accuracy while reducing a 

variety of test data and saving much testing time. 
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Fig. 6. Prediction results of different voltage ranges. (a) Comparison of SOH 
prediction; (b) Comparison of SOH error; (c) Boxplot of different voltage 

ranges. 

C. Performance Evaluation on Other Batteries  

To verify the adaptability and scalability of the proposed 

scheme to other types of batteries. The datasets 2 and 3 

specified in Table I are applied to estimate the SOH via the 

proposed method, and the performance of dataset 2 is presented 

in Fig. 7. Compared with dataset 1, the capacity recovery 

phenomenon of dataset 2 is more obvious. With the help of TL 

with fine-tuning strategy, the model is trained by the data of the 

first 100 cycles (occupying 18% to 20% of the aging data), 

which is determined through trial and error. The remaining 

cycles are applied for validation, and the selected voltage 

interval for feature generation ranges from 3.8 V to 4.1 V. 

Although only 100 cycles data are leveraged to train the model, 

the developed method leads to satisfactory performance during 

the entire aging process. In the worst case, the maximum AAE, 

MAE and RMSE are 0.82%, 3.9% and 1.07%, respectively. 

Note that the MAEs of the cells 2-1 and 2-2 exceed 3%, and it 

can be seen from Fig. 7 (b), (e) and (h) that most of the errors 

can be restricted within 2.8%. Concretely, the error distribution 

can be schematically summarized in Fig. 7 (c), (f) and (i). As 

can be found, the zero (or near) error emerges frequently. With 

the increase of the absolute value of error, the error occurrence 

probability decreases gradually, being in line with the Gaussian 

distribution with the mean value of 0.04%, 0.3%, 0.006% and 

the variance of 0.0002, 0.00008, 0.00006. The detailed 

validation results reveal that the distribution of error is 

reasonable, and manifest that the proposed method can 

accurately and stably estimate battery SOH, even in the case of 

obvious size reduction of training dataset. Moreover, the 

proposed method can effectively reduce the degradation 

experiment by 285 cycles, which will cost around 855 hours in 

this case. This in turn highlights the strong timeliness and high 

efficiency of the proposed framework when it is leveraged to 

predict the SOH of different batteries, manifesting its 

adaptability and extendibility. 

After the comparison based on dataset 2, dataset 3 is further 

experimented to examine the performance of the proposed 

method. The cathode material of dataset 3 is LFP, which is 

different from the first two types of batteries. Here, only one 

cell is chosen for validation, and the voltage range of 2.5 V to 

3.5 V is selected as the health feature. The prediction results are 

sketched in Fig. 8, from which we can find that the general 

degradation trend looks like a polynomial curve, and hence an 

efficient polynomial fitting method may gain preferable 

estimation with the input of cycle number. However, from the 

zoomed-in figure in Fig. 8 (a), local partial capacity recovery 

emerges, making it difficult to accurately estimate the SOH by 

the simple polynomial fitting method. On the other hand, since 

the battery in dataset 3 is fully charged and discharged during 

experiment, the SOH value with respect to cycle number is 

close to a polynomial curve. Nevertheless, it is difficult to 

encounter full charge and discharge operations all the time in 

practice. Once partial charge and discharge behaviors occur, the 

number of cycles will increase, while the SOH degradation rate 

will be slower, and in this case the polynomial curve fitting 

method cannot work well. Additionally, as the research target 

of this paper is to investigate a general efficient SOH prediction 

algorithm that can adapt to different types of batteries with the 

reduction of training data size, it is obvious that the polynomial 

fitting method and the related settings based on dataset 3 are not 

applicable for datasets 1 and 2. Instead, the LSTM network and 

TL with fine-tuning strategy based on dataset 1 can be 

transplanted to predict SOH of dataset 3 with preferable and 

robust estimation. In addition, the single LSTM algorithm is 

continuously exploited to compare the size of training data. In 

the two networks, except the training data, the other parameters 

remain the same. Through repetitive optimization, the first 80% 

(1076 cycles) and 60% (611 cycles) of aging data are 

respectively applied for training the single LSTM and the 

present algorithm, and all the data are exerted to assess the 

prediction performance. As can be found, the prediction results 

do not show distinct difference, and both methods can provide 

precise predictions. Concretely, the RMSE and AAE by the 

LSTM are 0.27% and 0.16%, and those by the proposed method 

remain close and are 0.36% and 0.24%. Nonetheless, the MAE 

by the proposed method is 0.09%, much lower than that by the 

LSTM; and moreover, the dataset size for training the proposed 

method is 20% less than that for training the single LSTM 

algorithm. In other words, with the same estimation results, 465 

cycle tests can be saved by the proposed method in this study, 

and most of the estimation error can still be controlled within 

2.8%, which is only 0.92% higher than that of the base model. 

Thus, it can be summarized that the proposed algorithm can be 

transplanted from NCM batteries to LCO and LFP batteries, 

manifesting its superior extendable capability. The only task 

that needs to be conducted is to adjust the parameters of the 

fully connected layer and output layer. By this manner, the 

feasibility of the proposed algorithm when applied in different 

types of batteries is verified.  
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Fig. 7. Prediction results for the dataset 2. (a) – (c) SOH prediction curves, 
errors and errors histogram distribution of cell 2-1; (d) – (f) SOH prediction 

curves, errors and errors histogram distribution of cell 2-2; (g) – (h) SOH 

prediction curves, errors and errors histogram distribution of cell 2-3.  

D. Performance Evaluation on Battery Pack 

Four cells grouped into a small pack by serial connection are 

experimented with the same environmental conditions. These 

four cells are with the same property in dataset 1, and referred 

to as cell 1-1, 1-2, 1-3 and 1-4, respectively. The acquired data 

are utilized to identify the SOH by the proposed pack estimation 

algorithm. In this study, the estimation results of cell 1-1 are 

hired to construct the CMM. Note that the validation in Part A 

is based on the experiment of cell 1-1, and hence the estimation 

results of cell 1-1 are not repeated here. The estimation curves 

of CDM for cells 1-2, 1-3 and 1-4 are depicted in Fig. 9 (a), (d) 

and (g). It can be clearly found the evolution trend of CDM for 

each cell shows different trend. In the first 200 cycles, the 

differences are not obvious, and the maximum SOH difference 

is less than 2%. However, as the battery ages, the difference of 

CDM becomes more and more obvious; and when the cycle 

reaches 440 times, the maximum difference exceeds 3%.  

The prediction results of cell SOH are sketched in Fig. 9 (b), 

(e) and (h), and their corresponding errors are plotted in Fig. 9 

(c), (f) and (i) and summarized in Table III, where “LSTM” 

means the SOH obtained by the single LSTM algorithm. As can 

be seen, the prediction curves of the proposed method are closer 

to the reference profiles than those by the single LSTM. The 

prediction error of the proposed method for all the cells is 

located closer to the horizontal axis. Also, the result of MAE is 

better than that of the single LSTM method, as portrayed in Fig. 

9 (c), (f) and (i). Moreover, due to the long-term memory 

characteristics of single LSTM, the initial state of LSTM 

fluctuates obviously, raising larger SOH estimation error. By 

contrast, thanks to the LSTM-TL method and CDM, the SOH 

prediction results by the proposed method do not show the 

similar phenomenon.  

The diagnosis results of battery pack SOH for single LSTM 

and the proposed method are shown in Fig. 10, and the 

statistical error is listed in Table III. As can be seen, the 

prediction value of the single LSTM is mostly below the 

reference value, while the estimation value of the proposed 

method oscillates around the reference. Obviously, the 

proposed method enables more reasonable variation track of 

pack SOH, compared to the single LSTM method. According 

to Table III, the evaluation indexes reveal that the proposed 

method performs more accurate than single LSTM. To be 

specific, the AAE, MAE and RMSE of the proposed method are 

less than two thirds, one third and three fifths of that by the 

single LSTM method.  

To sum up, the proposed LSTM integrating TL algorithm and 

CDM can achieve satisfactory pack SOH estimation. As such, 

the abuse of battery packs can be effectively avoided by reliably 

diagnosing the pack SOH and safe operation of batteries can be 

guaranteed. Moreover, the prediction procedure of the proposed 

scheme is executed during the charging phase, indicating its 

easy application potential in practice. Additionally, in the 

proposed pack SOH prediction scheme, the LSTM model is 

employed as the CDM, and the minimum estimation value of 

CDM is identified to determine the pack SOH. When facing the 

SOH of a battery pack with multiple cells (for example tens to 

thousands), firstly the CDM value of each cell needs to be 

compared, and the minimum CDM will be selected. Then, the 

estimation method will be exploited to predict the entire battery 

pack SOH. From this point of view, applying the proposed 

scheme to the pack with multiple cells increases only the 

amount of CDM comparison, and thus the estimation 

performance of pack SOH by the proposed algorithm will be 

still the same as addressed in this study. 

 
     (a)                   (b) 

Fig. 8. Prediction results for the dataset 3. (a) SOH prediction curve; (b) SOH 

prediction error.  
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Fig. 9. SOH prediction results for battery cells. (a) – (c) CDM curve, SOH 
evolution curves and errors for cell 1-2; (d) – (f) CDM curve, SOH evolution 

curves and errors for cell 1-3; (g) – (i) CDM curve, SOH evolution curves and 

errors for cell 1-4. 
TABLE III. COMPARISON RESULTS OF BATTERY PACK. 

Battery Method AAE (%) MAE (%) RMSE (%) 

Cell 1-2 
LSTM 0.39 6.31 0.63 

Proposed 0.31 2.01 0.41 

Cell 1-3 
LSTM 0.45 7.41 0.71 

Proposed 0.31 2.01 0.43 

Cell 1-4 
LSTM 0.41 7.95 0.67 

Proposed 0.30 2.35 0.42 

Pack 
LSTM 0.51 6.80 0.71 

Proposed 0.31 1.82 0.42 

 
     (a)                   (b) 

Fig. 10. SOH prediction results for lithium-ion battery pack. (a) SOH evolution 

for battery pack; (b) SOH errors for battery pack. 

VI. CONCLUSIONS 

The knowledge of battery pack SOH is of vital importance 

for safe operation. Machine learning-based methods require a 

large amount of training data to portray the hidden nonlinear 

relationship of lithium-ion batteries to predict SOH. In this 

study, a flexible LSTM based battery pack SOH prediction 

scheme is advanced with the combination of TL strategy. The 

relative charging time for a pre-set voltage range is extracted as 

the health feature to represent the degradation state of lithium-

ion battery cells. Then, an improved LSTM network integrating 

TL is proposed to establish the CMM and fully substantiated by 

comparing with the commonly used SOH prediction 

algorithms. The validation results based on the proposed model 

manifest that the cell SOH error is less than 3% with 70% 

training data. Moreover, the flexibility of the proposed TL 

algorithm is validated on different voltage ranges and different 

types of batteries, and the training data can be reduced by 20% 

to 40% without discrediting the estimation performance, 

thereby justifying the remarkable contribution of TL in 

mitigating the training data amount. Based on the developed 

CDM, the SOH inconsistency existing in battery cells can be 

effectively taken into account, and the pack SOH is properly 

determined by the CMM and minimum value of CDM. 

According to the proposed cell and pack SOH prediction 

methods, the pack SOH can reasonably follow the variation 

trend of the minimum SOH of cells, and therefore enables the 

avoidance of improper abuse operations more efficiently.  

Although a smaller power battery pack is employed as the 

validation object in this study, the proposed scheme is also 

feasible to predict SOH of larger battery packs, which will be 

our validation focus in the next step. In the future, the aging 

mechanism and SOH diagnosis of lithium-ion batteries from the 

perspective of electrochemical reactions and the long-term 

prediction of battery SOH are imperative to be explored for 

promotion of estimation precision. In addition, the impact of 

temperature on performance variation and SOH prediction of 

lithium-ion batteries also needs to be further investigated. 
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