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Abstract: In this paper, the elastic-plastic analysis of cantilever beam and the Reinforced 

Concrete (RC) column-Steel (S) beam connection are studied using the Radial Basis 

Function- Finite Difference (RBF-FD) method. A direct method using bilinear nodes is 

proposed to deal with the instability caused by the first derivative calculation in the 

traditional RBF-FD method. Based on the idea of gradient projection method, the improved 

RBF-FD method is further applied to the multi-domain material nonlinearity. Numerical 

results are validated with the finite element method software (COMSOL).  

Keywords: Radial basis function; Reinforced concrete column-steel beam; Finite element 

method; Collocation method 

 

1. Introduction 

The elastic-plastic deformation behavior in the most engineering solids is described by 

the Prandtl-Reuss increment theory and the Hencky-Ilyushin strain theory. The Finite 

Element Method (FEM) with increment theory for elastic-plastic problems is developed by 

Owen and Hinton [1]. The FEM is the most popular numerical method applied in engineering 

and science; however mesh generation may limit its application in large deformation 

problems. Meshless approximations based on interpolation techniques have received 

extensive attention since the diffusion element method proposed by Nayroles et al [2] and the 

radial basis function based on Euclidean distance has been applied to high dimensional 

problems successfully [3]. Currently, various types of numerical approaches with RBFs have 

been developed for different engineering problems [4-12]. The RBF-FD method is one of 

most famous numerical methods [6,13-16] with only need a few nodes to form a sparse 

matrix, which enhance the computational speed significantly. However, its derivatives cause 

instability [17-19]. In order to overcome this difficulty, the direct method, indirect method 

and fictitious node method are proposed [20-22]. The improved RBF-FD method has been 

successfully applied to different problems with phononic crystals. However, as the effective 



 

2 

 

shear modulus in the RBF-FD method has to be continuous in the domain, the simulation of 

the multi-domain elastic-plastic Mechanics by the RBF-FD method can hardly be found [23]. 

The Reinforced Concrete column-Steel (RCS) beam frame structures are multi-domain 

structures that have been widely used in high-rise buildings at low earthquake risk areas since 

1986 [24]. The joint area of the RCS composite structure locates at the cross section of a 

reinforced concrete column and structural steel [25]. The mechanical properties in the joint 

area keep the same values under certain loads, and there is no slip between the concrete slab 

and the steel beam. In order to analysis the joint area of the RCS composite structure, the 

FEM software such as ANSYS, COMSOL and ABAQUS are often applied to simulate the 

RCS structure [26-28]. The corresponding results can be validated by analyzing the 

mechanical response and the deformation in connection [29-32]. The FEM is the most 

popular method for the RCS composite structure simulation, and few works based on other 

numerical methods can be found [33-37]. 

In this work, the RBF-FD method is extended to the elastic-plastic analysis of the RCS 

joint. The projection method proposed by Desikan and Sethuraman [38] is introduced to deal 

with the nonlinearity based on the Hencky’s deformation theory [39], and the effective shear 

modulus technique in [23] is applied. The numerical model of the elastic-plastic analysis with 

a cantilever beam and the RCS joint is established. The stability and accuracy of the RBF-FD 

method for elastic-plastic problems are validated with the results given by the FEM. The 

structure of this work is presented as following. In section 2, the RBF-FD method with 

elastic-plastic iteration is described in details. The numerical accuracy and stability are 

discussed in section 3. In section 4, numerical results of a quasi-static compression analysis of 

RCS connection are carried out. The conclusions and future works are given in section 5. 

 

2. The RBF-FD method for elastic-plastic problems 

In this section, the elastic-plastic theory and the projection method by considering 

equivalent shear modulus are briefly introduced.  

 

2.1 Introduction of elastic-plastic theory 

Considering elastostatics, the elastic equilibrium equations are given by 

 
, 0, ij j iσ f   (1) 

where if  and ij, jσ  denote the physical force vector and stress tensor respectively. The 

relationship between strain and displacement is 

  , ,

1
.

2
ij i j j iε u u   (2) 
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The solid strain in the elastic-plastic state can be presented as the sum of the elastic and 

plastic strains 

 ,e p

ij ij ijε ε ε    (3) 

where 
e

ijε  and 
p

ijε  are parts of elastic strain and plastic strain, respectively. The relationship 

between strain and stress can be given as 

 
1

,e

ij ij ij kk

ν ν
ε σ δ σ

E E


   (4) 

where ijδ  is the Kronecker tensor symbol, E elasticity modulus, v Poisson ratio. According 

to Hencky’s theory [38], the plastic strain can be expressed as 

 ,
2

p

ij ijε σ
G


   (5) 

where deviatoric stress tensor ijσ   can be expressed as 

 ,ij ij ij m        (6) 

where 
m  is the hidrostatic stress, and   is a scalar valued function given as 

 3 ,
pε

ψ G
σ

   (7) 

pε  and σ  are equivalent plastic strain and equivalent stress, 

 
2

,
3

p p p

ij ijε ε ε  (8) 
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.
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ij ij      (9) 

Substituting Eqs. (4) to (9) into Eq. (3) produces 

 
1

.
2 6G

ij ij ij kk

ν ψ ν ψ
ε σ δ σ

E G E

   
      
   

 (10) 

Comparing Eqs. (4) and (10), the difference between plastic and elastic states in terms of 

the equivalent coefficient gives 

 
1 1

,
3Geff

ψ

E E
   (11) 

 ,
6G

eff eff

ν ψ
ν E

E

 
  

 
  (12) 

where 
effE  and 

effv
 
denotes the equivalent Young's modulus and Poisson ratio. When the 

model is considered as the linear hardening material, the equivalent shear modulus in [23] is 

given as 

 
31

,
3

s TT

eff s

σ EE Gε
G σ

ε E E

 
   

 

  (13) 

 1,
eff

G
Ψ

G
    (14) 
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where T
E  is tangent modulus beyond the yield stress s , and G is shear modulus. The 

equivalent strain is defined as 

 
2

.
3

ij ij     (15) 

According to the equivalent coefficient conversion model derived above, the 2D 

stress-strain relationship can be expressed as  

 
11 11 11 12 22 22 21 11 22 22 12 21 12 21, , ,σ D ε D ε σ D ε D ε σ σ Sε Sε        (16) 

where subscripts 1 and 2 denote 1x  and 2x , respectively, and the material properties of the 

elastic model are given as 

    
 11 1 2 22 1 2 2

, , ,
1

E
D x x D x x

v
 


 (17) 

    
 12 1 2 21 1 2 2

, , ,
1

Eν
D x x D x x

v
 


 (18) 

  
 1 2, ,

2 1

E
S x x

v



  (19) 

the effective coefficient of plane-stress elastic-plastic are evaluated as  

    
 

  11 1 2 22 1 2

1
, , ,

1 1 2

eff eff

eff eff

E ν
D x x D x x

v v


 

 
 (20) 

    
  12 1 2 21 1 2, , ,
1 1 2

eff eff

eff eff

E ν
D x x D x x

v v
 

 
 (21) 

 
 1 2, .

2 1

eff

eff

E
S x x

v



                       (22)  

By substituting Eq. (16) and (2) into equilibrium Eq. (1), 2D elastic-plastic equation 

can be obtained. The displacements are specified as 

    1 2 1 2, g , ,iu x x x x  (23) 

on the displacement boundary Γ
u

, and the tractions are 

 ,ij j iσ n t   (24) 

on the traction boundary Γ


, where j
n  denotes the outwards normal vector at the boundary 

node.  

 

2.2 Gradient projection method  

The calculation process of the project method for elastic-plastic problem is shown in 

Fig. 1, where the stress and strain are depicted by two axes. The computation procedure is 

given as below. 

Step 1, the position of node A is determined firstly for certain loads on the boundary 
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with the elastic model.  

Step 2, the equivalent coefficient can be obtained by Eqs. (11) and (12) with the stress 

and strain at node A. Then the location of node B in Fig. 1 can be found with the equivalent 

coefficient and the strain of node A. 

Step 3, the position of node C is obtained by considering the same loads applied on the 

boundary with the elastic analysis.  

Step 4, following the same rule in step 2, based on node C, the position of node D can be 

obtained. 

Repeat the above process until the variation of the numerical results satisfy 

 

   1

0
1

1
,

n n
N

eff eff

i=

E E
η η

N E




  <  (25) 

where N is the total number of nodes, and 
0  is the convergence tolerance.  

 

 
Fig. 1 The iterative process of equivalent modulus method for linear hardening material 

 

2.3 2D multi-domain elastic-plastic 

A 2D problem with multi-domains is considered as shown in Fig. 2. Substituting Eqs. 

(16) and (2) into Eq. (1) yields 

 

 

11 1 11 1 22 11 1 1 1 2 1 2 12 2 12 12 1 2 2 2 2 1 1

21 1 12 21 2 1 1 1 1 2 22 2 22 2 11 22 2 2 2 1 2 1 2

0,

0.

D u Su D u S u D S u D u S u f

D S u D u S u D u Su D u S u f

          

          

         


        

    (26) 

These coefficients of elastic-plastic Dij and S are calculated by Eqs. (17)-(22). With the 

fixed boundary conditions on Γ
u

 given as 

      1 1 2 2 1 2 1 2
, 0,  , 0, , Γ ,

u
u x x u x x x x     (27) 

and free boundary conditions given as 
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   

   
 

11 1 2 1 12 1 2 2

1 2

21 1 2 1 22 1 2 2

, , 0,
, Γ ,

, , 0,

x x n x x n
x x

x x n x x n


 

 

 




+

+
  (28) 

 

 
Fig. 2 A 2D elasto-plastic problem with two domains 

 

The displacement continuity condition at the interface 
c

 can be given as 

          (1) (2) (1) (2)

1 1 2 1 1 2 2 1 2 2 1 2 1 2
, , , , , , , ,u x x u x x u x x u x x x x  =   =

c  (29) 

where (1) (1)

1 2
,u u  and (2) (2)

1 2
,u u  are the displacements at the interface of material 1 and 

material 2, respectively. The traction continuity condition at the interface 
c

 can be given 

as  

       

       
 

1 1 1 1 2 2 2 2

11 1 2 1 12 1 2 2 11 1 2 1 12 1 2 2

1 21 1 1 1 2 2 2 2

21 1 2 1 22 1 2 2 21 1 2 1 22 1 2 2

, , , , ,
, Γ .

, , , , ,

x x n x x n x x n x x n
x x

x x n x x n x x n x x n

   

   

 




+ +

+ +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) c

 

(30) 

 

2.4 The RBF-FD method descriptions 

With RBF function ( )u x can be approximated as 

  
1

( ) ,
sN

n n

n

u  


 x x x    (31) 

where sN  is the number of interpolating nodes in the local domain, as shown in Fig. 3. n  

are unknown coefficients to be solved,   is the RBF. In this work, the Multi-quadratic is 

employed 

   2 ,2

n nr r c    (32) 

where n nr  x x  denotes the Euclidean distance and c is the shape parameter. In the 

uniform nodes distribution, the shape parameter is related to the node distance [40-41]. In this 

work, the shape parameter is selected by using test functions method given in [42]. Several 

test functions are used for the same problem, and the optimal shape parameter c can be 
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simply determined with the error observation. More details of the shape parameters can be 

found in [42-44]. Elastic-plastic analysis is carried out with uniformly distributing nodes as 

shown in Fig. 3. 

  

 

Fig. 3 The local interpolation range at a node in the RBF-FD method 

 

From Eq. (31), by using the neighboring nodes for each source node, we have 

 1 ,n

α uΦ   (33) 

where  
1 , s

j l
l j N


 

 
 

x xΦ   is the RBF interpolation matrix with size of Ns×Ns, and 

1( ) ( )
s

T

Nu u    u x x  is the vector of displacement with size of 1×Ns . Letting 

    1
, , ,

sN
     
  

x x x x   (34) 

and substituting Eq. (33) and (34) into Eq. (31), the solution and its differential form can be 

expressed as 

   1

1

( ) ,
sN

n n

n

u   



   x x x uΦ   (35) 

   1

1

( ) .
sN

n n

n

Lu L L  



   x x x uΦ   (36) 

For simplicity we define  

   1 1

1

,
sN

n
n

  



    x xΦ Φ Φ  (37) 

  1 1

1

,
sN

n
n

L L L  



    x xΦ Φ Φ                (38) 

where the size of Φ  and LΦ  is 1×Ns, L is the differential operator. Then Eqs. (35) and (36) 

can be expressed as  

 ( ) ,u x uΦ   (39) 

 ( ) .Lu Lx uΦ   (40) 
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By inserting zeros at proper position, the above equations can be further expressed 

as 

 
global

local
( ) ,u  x u uΦ Φ   (41) 

 
global

local
( ) ,Lu L L x u uΦ Φ   (42) 

where u is the vector of the displacements at all nodes, the size of u, Φ  and LΦ  is 1×N, 

where N is the number of all nodes. The discretization matrix can be formed by considering 

Eqs. (41) and (42) in Eqs. (26)-(30). The stress and strain can be obtained by Eqs. (16) and 

(2). The first derivative is evaluated by the direct method, where 3 bilinear local nodes are 

employed to calculate the first derivatives as shown in Fig. 4. The calculation of the normal 

derivative by considering bilinear nodes for 2D or 3D case is thus reduced to a 1D case in the 

one direction, the accuracy and stability of derivative calculation will be improved. More 

details please refer to [22]. 

 

 

Fig. 4 The bilinear nodes in one direction  

 

3. Discussion of stability 

In this section, the numerical stability of the RBF-FD method is discussed by a 

cantilever beam. Furthermore, the details of the stress and strain obtained from the RBF-FD 

method and FEM are fully discussed.  

 

3.1 Stability analysis 

In this case, a 2D cantilever beam is subjected to a load P510
7
N at the end of 

right-hand side shown in Fig. 5. The length and width of the beam LD4m1m, and the 

material properties are given as: Elasticity modulus E200GPa, Poisson ratio v0.25, 

yielding stress  s 235MPa. The tangent modulus after the yield stress is  E0.2E. The 

uniformly distributed nodes with gap d are considered, and 9 local nodes are employed to 
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guarantee the shape of each local domain is a square. Unlike the traditional RBF-FD method, 

3 bilinear nodes are used to evaluate the first derivative in the improved RBF-FD method. 

The shape parameters can be determined by the trial function proposed in [42].  

 

    

Fig. 5 Cantilever beam model (left) and node distribution (right, the gap d=0.2m) 
 

 

In order to show the improvement of the improved RBF-FD method, the relative errors 

of 
2u  versus the different shape parameter c by the improved RBF-FD method and 

traditional RBF-FD method are given the Fig. 6. The improved RBF-FD method employs 

three bilinear nodes. The definition of relative error is /f l f u u u , where uf and ul 

denote the displacements obtained from the FEM and RBF-FD method, respectively.  

Numerical results show that, the numerical results obtained by the improved RBF-FD 

method are very close to the FEM when c=40 to 80. The improved RBF-FD method show a 

better numerical error, this validates the improvement by using the bilinear nodes in the 

improved RBF-FD method. 

 

 

Fig. 6 The average relative errors of 2u  with different shape parameter c 

 

The numerical results obtained by the improved RBF-FD method are further compared 
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and validated with the results by FEM (COMSOL). The uniform mesh generation used by 

FEM method is considered shown in Fig. 7. The grid size d of uniform distributed meshes 

can be used to control the number of meshes. 

 

 

Fig. 7 The FEM uniform mesh with grid difference d 

 

According to the numerical results, the results are stable after 10 iteration steps, and 

convergent solutions with the convergence tolerance 
0 0.001   in Eq. (25) can be obtained. 

The numerical results obtained from the RBF-FD method with d0.02m are close to the 

results by FEM as shown in Fig. 8. Excellent accuracy and convergence have been achieved.  

 

  
Fig. 8 The vertical displacement of (4,0.5) obtained by code under different loads 

 

In addition, three different types of meshes are employed in the FEM, i.e. (a) uniform 

square grid with d0.1m as shown in Fig. 7, (b) triangular meshes as shown in Fig. 9, and (c) 

square mesh as shown in Fig. 7 with d0.05m. The strains of the nodes located at Y= 1m are 

evaluated by the FEM and the RBF-FD method are compared in Fig. 10.  
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Fig. 9 The optimized mesh distribution 

 

 

Fig. 10 The final strain in the axis X directions (left) and Y directions (right) at Y= 1m 

 

The numerical results of the strain obtained by FEM and RBF-FD method in Fig. 10 

have good agreement as well. However, largest difference can be observed near two fixed 

ends, where the stress distributions are singular. It can be found that the strain obtained by the 

RBF-FD method is smooth; however the results obtained from the FEM with different 

meshes show a large variant. This indicates the derivative calculation by using the FEM is not 

stable.     

 

4. Numerical analysis of RCS joints  

In this case, the RBF-FD method is applied to the beam-passed-through RCS connection. 

As shown in Fig. 11, a 4m0.4m steel beam penetrates through a concrete columns with two 

fixed ends, and the size of the two concrete columns is 0.4m0.5m. A static uniformly 

distributed load P810
7
N is applied on the top of the column. The material constants of the 

steel beam are: Elasticity modulus E200GPa, Poisson ratio v0.25, yielding stress  s

235MPa. The tangent modulus after the yield stress is  E0.2E. For the material constants 

of the concrete, the Elasticity modulus Ec25GPa, Poisson ratio vc0.2. The results obtained 

from the FEM COMSOL software are used to compare and validate the numerical results of 

the RBF-FD method.  
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Fig. 11 The numerical model with grid difference d (greens are steel, blues are concrete) 

 

The uniform nodes distribution with grid size d 0.02m (the degree of freedom is 10702) 

is used in the RBF-FD method, the shape parameter c60, 9 local nodes are considered. The 

continuity conditions in Eqs. (29) and (30) are considered at the interface. The triangular 

elements are implemented in FEM, the degree of freedom (DOFs) of the FEM is 101082.  

The average relative errors with different iteration steps are given as Fig. 12. The 

average relative error is /f l f u u u , where uf and ul denote the displacements 

obtained from the FEM and RBF-FD method, respectively.  

 

 

Fig. 12 The average relative error with the iterations 

 

The convergence tolerance ƞ is less than 0.001 after 14 iteration steps in this case. 
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However, 10 iteration steps are needed for the cantilever beam problem in example 1. In 

order to further study the RBF-FD method, the load displacements at node (0, -0.7) are given 

in Fig. 13. The numerical results obtained from the RBF-FD method and FEM show a high 

similarity. 

 

 

Fig. 13 The load-displacement curve at (0, -0.7) 

 

As the structure of the numerical results is symmetric, we present the numerical results 

at the half part of the RCS joint. The stress of 
11  and 12 , as well as the von Mises stress 

are presented in Fig. 14-Fig. 16 respectively. 

 

 

Fig. 14 Stress in the X direction obtained from RBF-FD method (left) and FEM (right) 
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Fig. 15 Stress in the Y direction obtained from RBF-FD method (left) and FEM (right) 

 

 

Fig. 16 Final von Mises stress obtained from RBF-FD method (left) and FEM (right) 

 

The final deformation of the model after 10 times is presented in Fig. 17 to better show 

the numerical results. 

 

 

Fig. 17 Final deformation obtained from RBF-FD method (left) and FEM (right) /mm 

 

P a
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The stress distributions of the beam-passed-through RCS show that, the stress 

concentrations can be observed at the corners between the concrete and steel. Therefore, 

certain engineering treatments will be carried out to reduce the damage in the local area. The 

numerical results of both FEM and RBF-FD method are of the same degree of accuracy in 

general. However, the stress and stain evaluated by the RBF-FD method will be smoother and 

more stable than that by the FEM.  

 

5. Conclusion 

The RBF-FD method is extended to the elastic-plastic calculation of the RCS joint in 

this paper. By applying the direct method, the stability of the RBF-FD method in solving the 

nonlinearity of the multi-domain elastic-plastic problem has been achieved. Numerical results 

show that the shape parameter in RBF-FD is not sensitive in computation of the improved 

RBF-FD method. The future work is to develop RBF-FD to 3D elastic-plastic problem in the 

RCS joint. 
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