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Abstract: This paper presents an approach to the design of an optimal control strategy for plug-in hybrid electric 

vehicles (PHEVs) incorporating Internet of Vehicles (IoVs). The optimal strategy is designed and implemented 

by employing a mobile edge computing (MEC) based framework for IoVs. The thresholds in the optimal strategy 

can be instantaneously optimized by chaotic particle swarm optimization with sequential quadratic programming 

(CPSO-SQP) in the mobile edge computing units (MECUs). The vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communication are adopted in IoV to collect traffic information for a CPSO-SQP based 

optimization and transmit the optimized control commands to vehicle from MECUs. To guarantee real-time 

optimal performance, the communication delay in V2V and V2I is decreased via an alternative iterative 

optimization algorithm (AIOA) approach. The simulation results demonstrate the superior performance of the 

novel optimal control strategy for PHEV with 9% improvement, compared with the original strategy.    

Key words: Optimal control strategy, plug-in hybrid electric vehicle (PHEV), Internet of Vehicles (IoVs), mobile 

edge computing (MEC), chaotic particle swarm optimization with sequential quadratic programming (CPSO-

SQP), alternative iterative optimization algorithm (AIOA). 

I. INTRODUCTION 

The 5th generation communication technology offers the potential for rapid developments in the field of 

Internet of Vehicles (IoVs) [1]. In highly evolved IoVs, the frequency of information interchange, information 

carrying capacity and other essential parameters are highly evolved to the point where they can facilitate novel 

vehicle-environment cooperation methods, such as mobile edge computing (MEC) [2]. Using these platforms, 
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further energy saving opportunities beyond that achievable from the information available to an isolated vehicle 

can be identified, and this opportunity is explored in this work for plug-in hybrid electric vehicles (PHEVs). Here, 

we focus on the optimal design of a control strategy for the studied 4-wheel drive (4WD) PHEV and how this can 

be improved through leveraging IoV capability. The mode of operation and energy management are the two key 

factors that impact on fuel economy. To this end, there have been numerous studies undertaken considering 

strategies for minimization of energy consumption in PHEVs. These methods can be divided into the following 

three categories according to the characteristics of different algorithms: rule based strategies [3, 4], global 

optimization based strategies [5, 6], and instantaneous optimization based strategies [7, 8].  

Rule based strategies, such as threshold strategies [9] and fuzzy logic based strategies [10], can typically be 

implemented in real time as they have relatively low computational intensity. However, the threshold values or 

rules are normally designed by expert knowledge and therefore can be difficult to adapt to various driving 

conditions. Global optimization based strategies, such as dynamic programming (DP) [11], can be used to develop 

optimal control rules offline, but this process is typically computationally intensive and again does not lend itself 

to real time adaptability. While there are options for instantaneous optimization which can offer reasonable real 

time performance, but still do not provide the level of responsiveness that would be desirable in a fully adaptive 

system. Reinforcement learning [12] and deep reinforcement learning methods [13] have emerged as promising 

candidates, and have been shown potential in development of mode transition strategies and energy distribution 

management in PHEVs. However, these methods again place high computational demands on vehicle hardware. 

Moreover, in most of the proposed methods, mode transition and energy distribution are undertaken 

simultaneously by calculating the appropriate energy distribution ratio. This may lead to frequent mode transition, 

owing to the limitations of the different linear and non-linear optimization algorithms. It is thus imperative to look 

back upon the simple rule based method with optimally determined threshold values for respective mode transition 

and energy management by incorporating environment information via IoVs. Through this strategy, some 

restrictions of traditional rule based methods, caused by pseudo-expert knowledge, can be overcome, thus allowing 

the system to become more responsive to time-varying driving conditions. 

However, the implementation of real-time control strategies in IoVs still has challenges. Due to the limited 

computational capacity of most mobile devices, many of the proposed control strategies for PHEVs require longer 
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computational time than the time step that would be permissible for safe vehicle control, which again presents a 

barrier to achieving real-time flexibility, and cloud computing capabilities typically rely on servers located far 

from the vehicle. As such, MEC, where the computation is undertaken at the edge of a mobile network (for 

instance, through local servers) has the potential to reduce network congestion and latency overcoming many of 

these limitations [14]. By this way, the complex onboard control processes can be executed at network edge, 

instead of in on-board VCU. In this case, the vehicle needs to offload the optimization task (either in part or fully) 

to network edge via a wireless network. The offload rate, also known as the communication rate, can be evaluated 

for its suitability by measuring the communication delay. In recent years, considerable progress has been made in 

millimeter wave (mmWave) with ultra-wide bandwidth technologies [15], whose implementation is based on the 

sparse radio frequency (SRF) chain antenna structure at the edges of the vehicle and the base stations (BSs) of 

network. It is anticipated that this will lower hardware costs and associated power consumption [16] relative to 

other communication methods, and the SRF chain antenna structure could be adopted in MEC to provide the 

necessary communication rates.  

Motivated by these technology advancements, a multi-dimension optimization based novel control strategy 

is proposed in this study for a 4WD PHEV to exploit the capability of MEC based framework. An online control 

threshold optimization method based on the chaotic particle swarm optimization with sequential quadratic 

programming (CPSO-SQP) is applied, in which the control thresholds are instantaneously tuned via the MEC 

based vehicle-environment cooperation in IoVs. The MEC based framework empowers efficient energy 

management accomplished in real time by integrally utilizing powerful computation capabilities of different 

control modules. To guarantee optimal control effect, the communication speed, commonly indexed by 

communication delay, among different control modules in MEC based framework should be guaranteed. 

Therefore, the communication delay in the MEC based framework is optimized by studying a joint optimization 

problem of the precoding design under SRF chain antenna structure and offloading task. Three contributions are 

added in the literature:  

1. A MEC based cooperative control framework is constructed. The cooperation among vehicle on-board VCU, 

mobile edge computing units (MECUs) and global server make it possible to attain the efficient vehicle-

environment cooperative control by virtue of IoV. 
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2. The CPSO-SQP is employed to instantaneously optimize the control thresholds of the proposed strategy in 

MECUs, which assimilates the traffic information processed by the MEC and identifies the most appropriate 

control thresholds in the given route segment. The CPSO-SQP prompts the control effect of original strategy 

by adding the optimization skills into the expert-knowledge based strategy design. The off-vehicle 

optimization manner, additionally, strengthens the capability of the novel strategy in real-time application.   

3. The communication delay in the MEC based framework, including delay in vehicle-to-vehicle (V2V) and 

vehicle-to-infrastructure (V2I), is reduced exhaustively through the joint optimization by employing the 

alternatively iterative optimization algorithm (AIOA). The reduced communication delay enables that 

complex control tasks can be instantly and flexibly shared among different computation resources in MEC 

based cooperative control framework, thereby strengthening the capacity of real-time application of the raised 

control strategy and enhancing improvement of fuel economy.  

The remainder of this study is organized as follows. The studied 4WD PHEV, original control strategy and 

designed optimal control strategy are described in Section II. Section III elaborates on the CPSO-SQP based 

method which has been used here to optimize the control thresholds. Section IV provides the AIOA to prompt the 

communication ability. Section V discusses the simulation results and discusses the performance of the new 

control optimization approach developed here relative to traditional methods for control threshold optimization, 

followed by the main conclusions drawn in Section VI.    

II. THE STUDIED 4WD PHEV AND DESIGNED OPTIMAL CONTROL STRATEGY   

The studied 4WD PHEV, as illustrated in Fig. 1, consists of an internal combustion engine (ICE), generator, 

motor 1 and motor 2. The specific hybrid powertrain can operate in several different modes by cooperatively 

controlling the ICE, generator and motors, providing extreme drivability and greater potential in energy savings 

when compared with the two-wheel drive (2WD) PHEV. Motor 1 and motor 2 are installed on the front and rear 

axle, respectively. The ICE can either drive the vehicle directly with motors in parallel mode or supply tractive 

power through driving the generator in serial mode. The ICE and generator are known collectively as the auxiliary 

power unit (APU) in serial mode. The switch between serial and parallel mode is achieved by controlling the 

engagement/disengagement of the clutch between the ICE and motor 1. Additionally, the 4WD PHEV can also 

operate in pure electric (EV) mode and is driven by motor 1 and motor 2 together. In this paper, the torque 
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distribution ratio between motor 1 and motor 2 is fixed at 0.5. The original logic of controlling the mode transition 

in the studied PHEV has been designed by a rule-based method based on the data from a benchmark test. The 

mode switch is chosen according to the current vehicle speed v , the required tractive power reqP  and the required 

tractive torque reqT . The mode transition conditions are illustrated in Fig. 2.  

 

Fig. 1. The schematic of the 4WD PHEV configuration. 

 

Fig. 2. Mode transition conditions in charge-depleting and charge-sustaining stage. 

In general, the original energy management principle is to regulate the engine to operate in the brake-specific 

fuel consumption (BSFC) line based on the load following method. The energy management in both serial and 

parallel mode at charge-depleting and charge-sustaining stage can be shown in Tables 1 and 2. 

Table 1 Energy management principle in charge depleting and sustaining stages under the serial mode 

_  req apu optP P  0apuP =  batt reqP P=  

_ _ _ max _ / _ )(apu opt req apu opt batt CD CS sP P P P  +   _apu apu optP P=  _batt req apu optP P P= −  

_ _ _ / _( )apu opt batt max CD CS s reqP P P+   _apu apu maxP P=  _batt req apu optP P P= −  

Table 2 Energy management principle in charge depleting and sustaining stage under the parallel mode 

_  req eng optP P  0engP =  batt reqP P=  

_ _ _ max _ / _ )(eng opt req eng opt batt CD CS pP P P P  +  _eng eng optP P=  _batt req eng optP P P= −  

_ _ _ / _( )eng opt batt max CD CS p reqP P P+   eng eng_maxP P=  _batt req eng optP P P= −  
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where _apu optP  and _eng optP  denote the power corresponding to the optimal operation points of APU; apu_maxP  and 

eng_maxP   denote the maximum power corresponding to the specific speed of APU and ICE; _ _ _batt max CD sP  and 

_ _ _batt max CS sP  correspond to the maximum power limit of battery in the charge-depleting and charge-sustaining 

stage when the vehicle is in serial mode; _ _ _batt max CD pP and _ _ _batt max CS pP  correspond to the maximum power limit 

of battery in charge-depleting and charge-sustaining stage when the vehicle is in parallel mode. The APU 

integrating ICE and generator operates to output tractive power in serial mode. _apu optP  is calculated based on the 

combined efficiency look-up table data of the ICE and generator, and _eng optP  is calculated based on the ICE 

efficiency look-up table data. Both of these look-up tables are extracted from a benchmark test.  

To improve the performance of original control strategy in real-time application, an optimal control strategy 

can be developed based on a novel MEC based cooperative control framework, where the mobile edge computing 

units (MECUs) at roadside can calculate the optimal thresholds for the control strategy based on the shared 

information, such as instantaneous velocities and geographical coordinates of the vehicles on the current route 

sector. With the shared information, the MECUs can predict the likely future vehicle velocity trajectory and 

optimize the control thresholds accordingly. This proposed MEC based cooperative control framework is shown 

in Fig. 3. In the development process of conventional energy management strategies, the thresholds that determine 

mode transition, including velocity boundaries and tractive power boundaries, and battery power limits in charge 

depleting and charge sustaining modes, are calibrated by hand according to the expert knowledge on some 

designated driving cycles. However, the limited expert knowledge is intractable to optimize the control effect, and 

the incomplete information hidden in calibrated driving cycles usually discounts the adaptability of the developed 

control strategy to varying traffic conditions in real-word scenarios. The predicated future velocity can inform the 

control unit of upcoming driving conditions in next route segment, thus supporting on-line adaptive control 

thresholds calibration by optimal algorithms and exhausting energy saving potential of PHEV. According to the 

forecasted velocity profile, the designed algorithm can optimize velocity boundaries and tractive power boundaries 

that are referred to for mode transition, as well as battery power constraints that can facilitate better different 

operation mode and energy consuming stage transition. In the proposed cooperative control framework, the MECU 
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that takes charge of any given route segment predicts the future velocity profiles for that route segment by the 

method described in [17]. Simultaneously, the specific MECU also optimally calculates the control thresholds in 

control strategy by CPSO-SQP for the driving in next route segment based on the predicted velocity profile of next 

segment. The forecasted velocity profile of vehicle driving in next segment is transmitted between MECUs via 

mmWave, which allows information about routes to be constructed. A global server assigns the MECUs according 

to the route to be travelled by the vehicle. The optimized control thresholds for vehicle driving in next route 

segment are issued to the on-board VCU from the MECU on duty. When the vehicle moves into next route 

segment, the on-board VCU updates the control strategy by employing the latest optimized control thresholds. 

Through the proposed optimization process, the optimal control thresholds can be determined for each segment 

before the vehicle enters it, enabling real-time optimal control. In addition to the specific designed control 

threshold optimization manner, the MEC based cooperative control framework also contributes to real-time 

implementation. Ref. [18] presents that the calculation capacity of on-board VCU in hybrid electric vehicles 

(HEVs) can reach 150 MIPS [18]; while as introduced in [19], the calculation capacity of the installed control unit 

in MECU can reach 955 MIPS, which is over 6 times higher than that in conventional on-board VCU, thus solidly 

underpinning complex real-time computation.     

 

Fig. 3. The schematic of MEC based optimization. 

III. CPSO-SQP BASED CONTROL THRESHOLD OPTIMIZATION   

3.1 Particle Swarm Optimization (PSO) 

PSO is a widely accepted evolutionary computational method [20] which can search for the optimal solution 

in multi-dimensional space by updating the particle position. In a population, each particle represents a solution 
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of the optimization problem, and it updates its position according to both its own and its ’neighbors’ experience. 

The particle status can be generally characterized by particle position and velocity. The relationship between 

particle position and velocity can be expressed, as:  

 
1 21 ([ ] [ ]

[ ] [ ] [ 1]

) ( )

1

i i besti i gbest i

i i i

V t V c P X c P X

X t X V

t

t t

  + = + − + −


+ = + +
 (1) 

where 1 2[ , , , ]i i i inV v v v=   is the velocity of particle i, 1 2[ , , , ]i i i inX x x x=   denotes the position of particle i, bestiP

represents the best position of particle i, gbestP  is the optimal position among particles,  and   are the uniformly 

distributed random variables, 1c  and 2c  are the acceleration coefficients, and   is the inertial weight. The PSO 

has been applied in many fields [21]. However, given the nature of the searching process, it is possible that local, 

rather than global, optima may be identified, reducing the effectiveness of the approach.  

3.2 Chaotic Particle Swam Optimization with Sequential Quadratic Programming  

To avoid being trapped in local optima, the chaotic PSO with sequential quadratic programming (CPSO-SQP) 

is employed. This is a two-phased iterative strategy based on PSO [22]. The chaotic local search (CLS) is applied 

to reinforce the local oriented optimization, while the SQP is used to tune the search results [23]. The pseudo code 

of the CPSO-SQP is provided in Table 3. 

Table 3 Pseudo Code of CPSO-SQP 

1 for i=1 to N do 

2     parameter initialization  

3 end  

4 for n=1 to iteration limit do  

5    for i=1 to N do  

6  
1 2[ ] [ ]

[ ] [ ] [ ]

1 ( ) ( )

1 1

i i besti i gbest i

i i i

V t V c P X c P X

tt X V t

t

X

  + = + − + −


+ = + +

 

7          do CLS 

8 end  

9 if  ( 1)besti best iP P −  then 

10       solve the optimization problem by SQP with start point of bestiP  

11    end  

12 end  

The CLS is performed based on the Tent equation [21], as:  

                                                                
( ) ( )

( 1)

(k) ( )

2 0 0.5

2(1 2 ), 0.5 1

,i i
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i
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k
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kcx cx
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cx cx
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=

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
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where icx   means the i  th chaotic variable, and k   denotes the iteration number. The procedure of CLS can be 

described as:  

1. Initiate 0k = , and convert the ( ) , 1,2, ,k
ix i n=   within , ,( , )min i max ix x  to chaotic variable ( )k

icx  in (0,1) by: 

)

 
,(

, ,

k
i min i

i

max i min i

k
x x

cx
x x

−
=

−
                                                                    (3) 

2. Calculate ( 1)
i

kcx +  for next iteration by (2).  

3. Convert ( 1)k
icx +  to ( 1)k

ix +  by: 

   
( 1) ( 1)

, , ,( )k k
i min i i max i min ix x cx x x+ += + −                                                               (4) 

4. Evaluate the new solutions with ( 1) , 1,2, ,k
ix i n+ =    

5. If the new solution is more optimal than (0) (0) (0) (0)
1 2[ , , , ]nX X X X=   or iteration limits, output the new solution, 

or return to step 2.  

The SQP has been verified capable in producing accurate solutions for nonlinear control problems with 

efficient performance [24]. In the iterative process, the Hessian of the Lagrangian function with the quasi-Newton 

update method is used to find the approximation to generate a quadratic programming (QP) sub-problem, which 

forms a search direction for the line optimization. The QP sub-problem can be formulated as: 

                                                                         
1

min
2

T T
T k k k k kF P d d H d +  (5) 

subject to: 

                                                                           ( ) ( ) 0T
k k kC P C P d+ =  (6) 

                                                                              min k k maxP P d P +   (7) 

where kH  is the Hessian matric at the k th iteration, kd  represents the search direction, kP  denotes the optimal 

solution, ( )kC P  means the constraint in the optimization, and TF  is the cost function value. The relationship 

between TF  and ( )kC P  can be written as:  

                                                                  )( , ) (( )T
T kL P F P C P = +  (8) 

where   is the Lagrangian multiplier vector. The quasi-Newton updating can be expressed, as: 
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k k k k k
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+ = + −  (9) 

where 

                                                                                    1k k kS P P+= −  (10) 

                                                                   1 1 1( , ) ( , )k k k k kQ L P L P + + += −  (11) 

In each iteration of QP, the solution is utilized to form a new iteration, as: 

                                                                                    1k k k kP P d+ = +  (12) 

where k  is the step length applied to generate a reduction in the augmented Lagrangian function, such that:  

                                                          ( ) ( ) ( ) ( ) ( ), ,
2

T
A TL P F C CP P P P


  = − +  (13) 

where   is a non-negative scalar. In the control threshold optimization by the CPSO-SQP, the updated particles 

are the control thresholds in the control strategy. The evaluation function J in each iteration can be written as: 

                                                                  
1

( )
( )( )

N
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P
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Q

X
X 

=

= +  (14) 

where fm   is the instant fuel consumption after determining the optimized control thresholds X   on the 

particularly route segment, battP  is the battery power, lhvQ  is the fuel low heat value, t  denotes the weighting on 

energy consumption, and t  is the time step. The optimized control thresholds include variables that determine the 

mode transition and battery power limits in different operation modes in charge-depleting and charge-sustaining 

stage. The inequality constraints on the optimization problem can written as: 
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where the superscripts min  and max  denote the minimum and maximum value of each variable, respectively; 

engT , _1motT , _ 2motT  and genT  represent torque of ICE, motor 1, motor 2, and generator, respectively; and eng , 

_1mot , _ 2mot  and gen  denote their respective speeds. battI  denotes the battery current. The maximum tractive 

torque that can be provided from powertrain is calculated according to the calibrated driver torque look-up table.  

IV. AIOA BASED COMMUNICATION ABILITY OPTIMIZATION 

In general, IoV based MEC needs tree stages. The first stage is that the vehicles need to upload the data to the 

server by wireless communication, and then the server calculates the received tasks. Finally, the server returns the 

calculation results to the vehicles. It is assumed that IoVs adopt the mmWave communication because of its ultra-

wide band. To mitigate hardware complexity and energy consumption, the base station (BS) and vehicles are 

equipped with single radio frequency (RF) chain, that can connect to multiple antennas via phase shifters (PSs) 

[16], as shown in Fig. 4.  

 

Fig. 4. The antenna structure at the BS and vehicle. 

In addition, the BS and each vehicle are equipped with N  and M  ( M N ) antennas, respectively; and the 

BS is connected to the MEC via a highspeed backhaul link. The channel between the BS and each vehicle is 

assumed as flat fading, and the total mmWave bandwidth is set as B GHz. For avoiding the interference, each 

vehicle is allocated to a unique bandwidth. We assume that each BS can serve K vehicles according to its coverage 

area, and the allocated bandwidth for the kth vehicle is kB , and thus, we have 
1

K

kk
B B

=
 。Therefore, the signal 

of the kth vehicle received by the BS can be expressed as:  

k k k k k k ky p x= +fH g f n
                                                                 (16) 

where f denotes the analog combine vector of the BS for all vehicles, kg , kx and kp  represent the transmit 

precoding, transmit signal and transmit power of the kth vehicle, respectively. kH  denotes the mmWave channel 
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matrix between the BS and kth vehicle, and kn  is the received noise vector. For the mmWave channel, the widely 

used limited-scattering model is adopted with a uniform liner array [15], such that (we omit the index k here): 

1

( ) ( )
L

H
l t l r l

l

  
=

=H a a                                                                           (17) 

where L  denotes the number of multiple paths, l  is the complex gain of the l th path, l  and l  denote the angle 

of arrival and angle of departure of the l th path, respectively. Therefore, the steering vectors ( )t la  and ( )r la  

can be formulated, as: 

  
2 ( 1)1

( ) 1, , ,...,l l l
T

j j j M
t l e e e

M

   − =
 

a                                                         (18) 

2 ( 1)1
( ) 1, , ,...,l l l

T
j j j N

r l e e e
N

   − =
 

a                                                          (19) 

According to the above analysis, the transmission rate of kth vehicle can be calculated, as: 

2

2 2
log 1

k k k

k k

p
R B



 
 = +
 
 

fH g
                                                         (20) 

where 2  deotes the noise power. It is assumed that there are kA  bits to be processed for the kth vehicle. Although 

the vehicle owns the computational resources and can execute the calculation task locally, the computational 

duration may be intensive due to the limited onboard computation capacity. Therefore, to reduce the system delay, 

the task can be partially offloaded to the BS and executed via the MEC server [25]. [0,1]k   denotes the task 

offloading ratio for the kth vehicle, and thus, k kA  bits are offloaded to the BS and processed by the MEC server, 

while the kth vehicle executes the remaining (1 )k kA−   bits locally. Based on the findings in [26], it can be 

assumed that both the computational time on the MEC server at the BS and the feedback delay can be reasonably 

neglected. The offloaded computational delay includes two parts: the local computing delay and the transmission 

delay. If k  denotes the local computing resource of the kth vehicle, the computing delay can be expressed as: 

(1 )c k k
k

k

A
T





−
=                                                                          (21) 

Then, the transmission delay can be formulated, as: 
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t k k
k

k

A
T

R


=                                                                             (22) 

After that, the delay used to process kA  bits data can be expressed as: 

max { , }c t
k k kT T T=                                                                       (23) 

Meanwhile, for guaranteeing the fairness among vehicles, the offloading computing delay minimization problem 

can be formulated, as: 

{ , , , }
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min max { }

. . [0,1], {1 }

1 1
( ) , {1 }, ( ) , {1 }

k k k

k
B k
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kk

k

T

s t k K
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n n N m m M
N M







=

 



=  = 



f g

f g

， ，

， ， ， ，

                          (24) 

where ( )nf  and ( )k mg  denote the nth element of f  and the mth element of kg , respectively. The objective of 

(24) is to minimize the maximum delay among all the vehicles by jointly optimizing the transmit precoding kg , 

combine vector f , the task offloading ratio k  and the bandwidth allocation kB . In fact, it is extremely difficult 

to directly solve (24), and next an effective algorithm is proposed to tailor it. For each vehicle, it is obvious that 

the delay is minimum when the computing delay is equal to the transmission delay, i.e., c t
k kT T= , such that we can 

obtain k , as: 

{1, , }k
k

k k

R
k K

R



= 

+
，                                                               (25)  

By substituting k  into (24), the following optimization problem can be yielded, as: 
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2

1

min max
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1
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B k
k k k
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B

s t B B

n n N
N

m m M
M
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=

+ +



= 

= 



f g

f
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， ，

， ，

                                                        (26) 
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where the signal noise ratio (SNR) 

2

2

k k k

k

p



=

fH g
. It is obvious that (26) is still difficult to solve, and we define 

the spectral efficiency of the kth vehicle as 2log (1 )k+ . From (26), one can observe that the delay can be reduced 

for larger k . Therefore, we consider maximizing the spectral efficiency of each vehicle and ignoring the 

transmission bandwidth, i.e.,  

( )2
{ , }
max log 1

1
. . ( ) , {1 },

1
( ) , {1 }

k

k

k

s t n n N
N

m m M
M

+

= 

= 

f g

f

g

， ，

， ，

                                                        (27) 

According to (27), all the vehicles share the combine vector f  of the BS. To reduce the complexity and 

guarantee the fairness, we assume that the antennas of BS are allocated in K sub-antenna sets, and each set includes 

' /N N K=  antenna (we assume that 'N  is an integer, and when it is not an integer, we can adjust the antenna 

number). Next, 1 2[ ]K=f f f f  is defined, where kf  is a '1 N combine vector used for the kth vehicle. Then, Eqn. 

(27) can be divided into K individual sub-problems, as:  

2

2 2{ , }

ˆ

max log 1

1
. . ( ) , {1 },

1
( ) , {1 }

k k

k k k k

k

k

p

s t n n N
N

m m M
M



 
 
+ 

 
 

= 

= 

f g

f H g

f

g

， ，

， ，

                                                        (28) 

where ˆ
kH  denotes the sub-channel between the sub-antenna of the BS and vehicle. To solve (28), an alternatively 

iterative algorithm is proposed. Firstly, the analog transmit precoding o
kg  is initialized; then the analog combined 

vector can be directly yield, as: 

*

( )
( ) , {1, }

( ) ( )

o k
k

k k

n
n n N

N n n
= 

h
f

h h
                                                      (29)  

where ˆ o
k k k=h H g  and ( )o

k nf  denotes the nth element of vector o
kf . Then, o

kf  is substituted into (28), and the value 

of the analog transmit precoding o
kg  is recalculated, as: 
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*

( )
( ) {1, , }

( ) ( )

o k
k

k k

m
m m M

M m m
= 

s
g

s s
，                                                    (30) 

where ˆo
k k k=s f H . The calculation is repeated until convergence, and we define the final combined vector and 

transmitted precoding as opt
kf  and opt

kg . After that, the combined vector of the BS can be attained, as 

opt opt opt opt
1 2[ , , , ]K=f f f f , and then opt

f and opt
kg  are substituted into (26). Thus, the bandwidth allocation 

optimization problem can be reformulated, as: 

( ){ }
2

1

min max
log 1

. .

k

k

B k
k k k

K

kk

A

B

s t B B

 

=

+ +



                                                         (31) 

To solve (31), we introduce auxiliary   and transform the original problem, as: 

 

( )

{ }

1
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. .

log 1 {1, , }
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

，

，

                                                (32) 

It is clear that (32) is a convex optimization problem and can be directly solved by the CVX toolbox. After 

obtaining the optimal bandwidth kB  for the kth vehicle, we can get the optimal task offloading ratio, as: 

2

2

log (1 )
{1, , }

log (1 )

k k
k

k k k

B
k K

B




 

+
= 

+ +
，                                                     (33) 

V. SIMULATION AND EVALUATION 

In the simulation evaluation, the original control strategy of a 4WD PHEV, which was developed through a 

series of standalone benchmark tests, is evaluated for potential improvements by leveraging IoV capability. In the 

simulation and evaluation, OS represents the original control strategy that is developed on the basis of rule logics, 

and OCS denotes the optimal control strategy based on IoV which has been proposed in this paper. The 

optimization of the control strategy based on dynamic programming (DP) is also presented for benchmark. The 

detailed parameters of the 4WD PHEV are provided in Table 4, and the simulation is conducted on a workstation 

with an Intel Xeon E3-1270 @ 3.4 GHz and 32 Gigabytes memory. In the simulation, the performance of the 

raised method in communication optimization and optimal control is comprehensively evaluated.  
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Table 4 Component Parameters in the 4WD PHEV 

Engine 

Displacement 2.0 [L] 16V DOHC 

Maximum Power 89 [kW] @4500 [rpm] 

Maximum Torque 190 [Nm] @4500 [rpm] 

Motor 1 
Maximum Power 60 [kW] 

Maximum Torque 137 [Nm] 

Motor 2 
Maximum Power 60 [kW] 

Maximum Torque 195 [Nm] 

Battery 

Type Lithium-ion 

Capacity 12 [kWh] 

Nominal Voltage 300 [V] 

Gear Ratio 

Between ICE and final drive 1gi =3.425 

Between motor 1 and final drive 2gi =9.663 

Between motor 2 and final drive 3gi =7.065 

Between ICE and generator 4gi =2.736 

4.1 Performance Evaluation of the Raised Method in Communication Improvement 

Figs. 5 to 8 show the results of our proposed algorithm. We assume that the number of vehicles within the 

serving area of certain MECU is 5K = , and 4M =  antennas are deployed in each vehicle. For convenience, we 

assume that the local computing capabilities, processed data size and transmit power for each vehicle remain the 

same, i.e., 1 2 K   = = = = , 1 2 KA A A A= = = = , and 1 2 Kp p p p= = = = . The BS antennas is 60N = , 

and the signal-to-noise ratio (SNR) equals 2/p   after calculation. The total size of computational task is 100A =  

Mbit/s, the local computing capability is 1 =  Gbit/s, and the total bandwidth is 10B =  GHz. Fig. 5 shows the 

convergence trend of the proposed algorithm when solving (28). It is obvious that the spectral efficiency speedily 

converges to a stable value, manifesting the effectiveness of the proposed algorithm. The spectral efficiency 

obtained by BS differs for different vehicles, due to the random channel condition between each vehicle and BS.  

 
Fig. 5. The convergence for the proposed alternatively iterative algorithm. 
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Fig. 6 shows the delay under different bandwidths, where we set the total bandwidth as 10 GHz, 15 GHz and 

20 GHz, respectively. One can observe that the delay decreases with the increase of bandwidth for the same SNR. 

This is because when the bandwidth increases, the transmission rate will be improved, as calculated in (20). As a 

result, the transmission delay calculated in (22) will be reduced. On the other hand, it can also be found that the 

delay decreases with the increase of SNR. This is also easy to understand that larger SNR can raise higher 

transmission rate, which also mitigates the transmission delay. In addition, we can find that the delay is always 

limited within 10 ms, which is enough for controlling vehicles. Fig. 7 shows the delay versus SNR under different 

local computing capacities, where we set local computing capacity   as 1 Gbits/s, 2 Gbits/s and 3 Gbits/s, 

respectively. It is obvious that lower delay leads to more local computing capacity. It is also easy to understand 

that the processed data can be finished quickly when the computing capacity of a server is enough. Additionally, 

the same conclusion can be attained that the delay decreases with the increase of SNR. The bandwidth allocation 

result for each vehicle is plotted in Fig. 9. One can observe that different vehicles are allocated to different 

bandwidth, as the channel vector of each vehicle is different and thus results in different channel gains. Therefore, 

when the channel gain of the vehicle is low, it will be allocated to more bandwidth to improve the transmission 

rate and reduce the delay. The results illustrated in Figs. 5 to 8 validate that the optimized communication delay 

allows that the cooperation within the MEC based framework can be performed freely, and the prompted 

communication speed in V2V and V2I promotes the efficiency of raised novel method in real-time application.  

 
Fig. 6. The delay versus SNR under different bandwidth. 
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Fig. 7. The delay versus SNR under different local computing capacities. 

 
Fig. 8. The bandwidth allocation for each vehicle. 

4.2 Assessment on the Effectiveness of the Novel Control Strategy 

Fig. 9 (a) shows the predicted fuel consumption of the 4WD PHEV using three different strategies. The IoV 

enables enhanced adaptability to different driving conditions, thus resulting in better selection of operational mode 

and distribution energy between the available power sources. The fuel consumption predicted by the optimal 

control strategy is closer to that of DP across a number of cycle segments (such as 1000 s to 1500 s and 6000 s to 

7500 s) and throughout the trip as a whole trip. The control threshold optimization in each route segments delivers 

control decisions are close, or equal, to those that would have been identified by DP. Fig. 9 (b) shows the effect 

on the battery SOC by different methods. The optimal strategy regulates the SOC to decrease in slow, continuous 

rates, rather than the relatively large discharge outputted by the original control strategy. The slower discharge of 

the battery SOC coupled with the reduced fuel consumption results reinforces that the energy management in the 

vehicle can be managed better. Similar to the fuel consumption results, the battery SOC profile is closer to that 

predicted by DP. Table 5 lists the detailed fuel consumption results. The equivalent fuel consumption of the new 
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optimal control strategy, including the converted equivalent fuel consumption from the electric energy, is closer 

to that of DP. The normalized average performance of optimally designed method is 98.4% of that by DP, where 

the values obtained through the DP can be considered as the ‘ideal’ case.  

Table 5 Compare in Fuel Consumption.  

Strategy 
Fuel 

Consumption (g) 

Converted Fuel 

Consumption (L/100km) 

Normalized 

Average value 

OS 3439 4.22 89.5% 

OCS 3121 3.84 98.4% 

DP 3077 3.78 100% 

 
(a) 

 
(b) 

Fig. 9. The energy consumption by different methods. (a) Engine fuel consumption; (b) Electric energy consumption reflected 

by battery SOC. 

Figs. 10 (a) to (c) illustrate the engine operational points. In the original control strategy, these points are 

more dispersed, compared with those by the optimal control strategy and DP. In addition, most of the engine 

operation points identified by the optimal control strategy and DP are located in the high efficiency region. Fig. 

11 (a) shows the generator torque during simulation. Despite the operation mode, the operation points of the 

generator by the optimal control strategy and DP are more concentrated than those by the original control strategy, 

proving the rational performance of the optimal control strategy from another perspective, as the generator 



 

20 

 

operation is highly correlated with the engine operation. By observing Figs. 11 (a) to (c) as a whole, it can be found 

that the optimized control thresholds promote more stable operation with less mode transition and overall better 

fuel economy for the studied PHEV. 

Table 6 Compare in Engine Operation Time 

Strategy OS OCS DP 

Engine Operation Time (s) 1753 1543 1485 

Figs. 11 (b) and (c) provide further insight into the engine and generator operation. A number of cycle 

segments (such as 6000 s to 7500 s in Fig. 11 (b) and 5500 s to 7500 s in Fig. 11 (c)) shows the tight cooperation 

between ICE and generator. The optimized control strategy in this paper governs the operation of ICE and 

generator optimally by avoiding frequent on/off. The control behaviors by the proposed method are closer to those 

by DP. Table 6 lists the engine operation times by three methods. In Table 6, the engine operation time by the 

optimal strategy is less than that by the original control strategy, demonstrating that the optimal strategy can better 

employ the electrical energy and improve the cooperation among the ICE, generator and motor. 

 
(a) 

 
(b) 
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(c) 

Fig. 10. The engine operation by different methods. (a) The engine operation by OS; (b) The engine operation by OCS; (c) 

The engine operation by DP. 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Different components performance. (a) . Generator operation points by different methods in 5 WLTC cycles.; (b) 
Engine torques by different methods in 5 WLTC cycles; (c) Generator torques by different methods in 5 WLTC cycles.  
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In the simulation, the step computational time of the three different methods is also discussed to assess their 

real-time implementation ability. Table 7 lists the computing times of the three methods. During simulation, each 

MECU accounts for a route segment of 500 m length. The total computing time is the sum of the computing time 

in each route segment. The step computing time can be calculated by dividing the total computing time over total 

simulation steps. Note that the simulation step is 1s. Even though the step computing time of the optimal control 

strategy is a bit more than the original control strategy, the optimal control strategy can still complete the control 

process in one simulation step, justifying its online operation ability in real-time application. For the step 

computing time by DP, it is larger than the simulation step time, and thus it cannot be applied online. 

Table 7 Compare in Step Computing Time.  

Strategy OS OCS DP 

Step Computing Time (s) 0.0712 0.109 2.374 

Through evaluation, it can be concluded the optimal control strategy proposed in this study can improve the 

performance of the simple rule based control strategy by enabling responsiveness to driving conditions through 

vehicle-environment cooperative control. Even though the advanced optimization method has been preferred, the 

complex optimization has never encroached the remarkable implementation ability of the raised method in real 

time after leveraging the MEC based framework.  

V. CONCLUSION 

The development of a framework optimal control of a 4-wheel plug-in hybrid electric vehicle using Internet 

of Vehicles is presented in this study. The control thresholds in the strategy are optimized by the chaotic particle 

optimization with sequential quadratic programming by virtue of the mobile edge computing-based framework. 

To guarantee the ideal control effect, the communication ability in the mobile edge computing-based framework 

is optimized by the alternatively iterative algorithm. The simulation results demonstrate that the method achieves 

better performance when compared with the original control strategy derived from benchmark testing. The fuel 

economy of the studied vehicle by the optimal control strategy can be improved by 9%. The control effect of the 

optimal control strategy can reach 98.4% of that by dynamic programming. The analysis in step computing time 

highlights the reasonable capability of the optimal control strategy in real-time application. The proposed novel 

control strategy provides a novel inspiration on improving vehicle performance from the perspective of vehicle-

environment cooperative control. Owing to its specific control mechanism, the novel control strategy avoids the 
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burdensome computation in real time. With the assist from the advanced communication techniques, the novel 

control strategy holds significant potential in instant application and promotes the performance of plug-in hybrid 

electric vehicle dramatically.  

In the future work, we will focus on the mobile edge computing based application. In addition, driving 

condition prediction methods in the framework of internet of vehicles will be studied, and novel vehicle-

environment cooperative control methods will also be investigated.  
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